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OR IG INAL RESEARCH

How useful is active learning for image-based plant phenotyping?
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Abstract
Deep learning models have been successfully deployed for a diverse array of

image-based plant phenotyping applications including disease detection and classifi-

cation. However, successful deployment of supervised deep learning models requires

large amount of labeled data, which is a significant challenge in plant sciences (and

most biological) domain due to the inherent complexities. Specifically, data annota-

tion is costly, laborious, time consuming and needs domain expertise for phenotyping

tasks, especially for diseases. To overcome this challenge, active learning algorithms

have been proposed to reduce the amount of labeling needed by deep learning models

to achieve good predictive performance. Active learning methods work by adaptively

suggesting samples to annotate using an acquisition function to achieve maximum

(classification) performance under a fixed labeling budget. We report the perfor-

mance of four different active learning methods, (1) Deep Bayesian Active Learning

(DBAL), (2) Entropy, (3) Least Confidence, and (4) core-set, with conventional ran-

dom sampling-based annotation for two vastly different image-based classification

datasets. The first image dataset consists of soybean [Glycine max L. (Merr.)] leaves

belonging to eight different soybean stresses and a healthy class, and the second con-

sists of nine different weed species from the field. For a fixed labeling budget, we

observed that the classification performance of deep learning models using active

learning based acquisition strategies is better than random sampling-based acquisi-

tion for both datasets. The integration of active learning strategies for data annotation

can help mitigate labelling challenges in the plant sciences applications particularly

where resources dedicated to annotations are limited.

1 INTRODUCTION

With the advent of high throughput phenotyping in plant sci-

ences (Araus et al., 2018; Singh et al., 2016; Singh et al.,

Abbreviations: AL, active learning; BALD, Bayesian Active Learning by

Disagreement; CNN, convolutional neural networks; DBAL, Deep Bayesian

Active Learning; DL, deep learning; LC, Least Confidence; ML, machine

learning.
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2020; Singh et al., 2021), we are now able to collect copi-

ous amounts of image data. Deep learning (DL) architectures

have advanced the state-of-the-art performance for image-

based classification tasks (Krizhevsky et al., 2012), and have

been successfully deployed for a diverse array of image-

based plant phenotyping applications including disease detec-

tion, classification, and quantification (Singh et al., 2018).
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However, one of the critical drawbacks of DL models is its

necessity to have a large amount of labeled data to achieve

good model accuracy. This is especially true for plant science

applications, where annotating data can be costly, laborious,

and time consuming to obtain, and generally need domain

expertise (for instance, for plant disease image labeling that

requires trained plant pathologists). To overcome this draw-

back, one effective and practical strategy is to use Active

Learning (AL) based image annotation (Cohn et al., 1996).

Weak supervision (Ghosal et al., 2019), synthetic dataset cre-

ation (Valerio Giuffrida & Scharr Forschungszentrum Jülich,

2017), and transfer learning (Tapas, 2016) are some of the

other methods available to reduce the amount of labeling

needed. However, when large amounts of unlabeled data are

available, but the task of labeling is hard or infeasible, AL

methods are very useful. Active learning methods adaptively

select the most informative samples for labeling for the high-

est improvement in test accuracy. The goal of AL is to achieve

maximum predictive performance under a fixed labeling bud-

get, which makes it desirable for plant science applications.

Many AL methods have been proposed with different

heuristics (Settles, 2009) to reduce the amount of labeling

needed for training machine learning (ML) models for clas-

sification tasks. A small amount of data is randomly chosen

initially for labeling; this labeled dataset is used to train a neu-

ral network model. Then, a batch of data from the remaining

unlabeled data set is adaptively selected using an acquisition
function for labeling by human domain experts. The acquisi-
tion function serves to select the most useful samples in the

unlabeled dataset for improving neural network model perfor-

mance. This process of choosing limited samples from unla-

beled data sets, having the human expert annotate/label these

limited samples, adding them to the labeled set, and retrain-

ing the model continues until one of two termination crite-

ria is met – a desired performance threshold of the model is

achieved, or the labeling budget is exhausted.

Recently, in non-plant sciences problems, AL methods

have been successfully applied for improving the performance

of DL models, for example, DL-based image classification

(Wang et al., 2016), biomedical image segmentation (Yang

et al., 2017), text classification (Zhang, Lease, & Wallace,

2017), and object detection (Kao et al., 2018). In the field of

plant phenotyping, uncertainty-based sampling method was

used to select samples for training a Faster R-CNN model for

panicle detection in cereal crops (Chandra et al., 2020).

The continual improvement of AL strategies in the ML

community can be leveraged to significantly augment plant

phenotyping efforts through state-of-the-art AL techniques.

As a first step, there is a need to perform a comparative evalu-

ation of the available sophisticatedAL strategies in the context

of canonical plant phenotyping applications.We compare four

active learning methods defined by different acquisition func-
tions: least confidence (Culotta &McCallum, 2005), entropy

Core Ideas
∙ Active learning methods reduce the amount of

expert annotation needed in challenging image-

based plant classification tasks.

∙ Most acquisition functions built on uncertainty-

based sampling perform better than simple random

sampling.

∙ However, random sampling is a good baseline for

easy (for example, images under constant illumina-

tion conditions, i.e., less noisy data) classification

tasks.

(Shannon, 1948), Deep Bayesian Active Learning (Gal et al.,
2017), and core-set (Sener & Savarese, 2017) on two disparate

plant phenotyping problems – soybean stress identification

(Ghosal et al., 2018) and weed species classification (Olsen

et al., 2019).

2 MATERIALS AND METHODS

2.1 Datasets

2.1.1 Soybean stress dataset

The dataset consists of 16,573 RGB images of soybean

[Glycine max L. (Merr.)] leaves across nine different classes

(i.e., eight different soybean stresses, and the ninth class

containing healthy soybean leaf). Details on the dataset

can be found in (Ghosal et al., 2018). Briefly, these

classes cover a diverse spectrum of biotic and abiotic foliar

stresses in soybean. Figure 1 illustrates the nine differ-

ent soybean leaf classes used in this study. The entire

data set of 16,573 images consisted of bacterial blight

(caused by Pseudomonas syringae pv. glycinea; number of

images = 1,524), Septoria brown spot (caused by Septo-
ria glycines; number of images = 1,358), Frogeye leaf spot

(caused by Cercospora sojina; number of images = 1,122),

Healthy (number of images = 4,223), Herbicide injury (num-

ber of images = 1,395), iron deficiency chlorosis (num-

ber of images = 1844), Potassium deficiency (number of

images = 2,186), bacterial pustule (caused by Xanthomonas
axonopodis pv. glycines; number of images= 1,674), and sud-

den death syndrome (caused by Fusarium virguliforme; num-

ber of images = 1,247).

2.1.2 Weed species dataset

The data set consists of 17,509 RGB images of weed

species across nine different classes (eight weed classes

and one non-weed class). Figure 2 illustrates the nine
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F IGURE 1 The nine classes of data (eight stress, and one healthy) collected on soybean leaflets, which comprised the first data set

F IGURE 2 The nine classes of second data set consisting of eight weed species, and one weed free class (labelled as Negatives). Images taken

from publicly available dataset associated with (Olsen et al., 2019)

different classes used in this study, and the full descrip-

tion can be found in Olsen et al., 2019). The entire data

set of 17,509 images consisted of Chinee apple (Ziziphus
mauritiana; number of images = 1,125), Lantana camara
(number of images = 1,064), Parkinsonia aculeata (num-

ber of images = 1,031), Parthenium hysterophorus (number

of images = 1,022), Prickly acacia (Acacia nilotica; num-

ber of images = 1,062), Rubber vine (Cryptostegia grandi-
flora; number of images = 1,009), Siam weed (Chromolaena
odorata; number of images = 1,074), Snake weed (Stachy-
tarpheta; number of images = 1,016), and weed free (number

of images = 9,106).
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2.2 Experimental setup

We trained a neural network-based classification model for

identifying the class labels for input images in the two data

sets, with the goal to achieve maximum classification per-
formance for a fixed labeling budget. We evaluated each of

the four active learning strategies (core-set, DBAL, entropy,

and least confidence) based on how well the neural network

performed – i.e., using the classification accuracy on the com-

plete dataset. We used MobileNetV2 (Sandler et al., 2018)

architecture for data set #1 (soybean stress classification) and

ResNet-50 (He et al., 2016) architecture for dataset #2 (weed

species classification). These networks were specifically cho-

sen because of their well-documented popularity and con-

sistent performance, as well as to test the capability of AL

on two distinct and well-used networks. MobileNetV2 is a

smaller, more compact network, while ResNet-50 is a large

network, and were appropriate for dataset #1 (controlled con-

dition imaging) and data set #2 (field-based imaging), respec-

tively.

Each data set was analyzed separately. The AL approach

was repeated 10 times for each dataset. While 10 runs are

excessive due to the time taken for execution; however, they

provide statistical robustness in comparison metrics that is

useful for other practitioners. We randomly selected and

labeled 5% of the samples from the complete data to create

a fixed size validation set before starting the active learning

experiment (ideally, this initial random sampling should be

well-balanced in terms of samples per class. However, in prac-

tice, this is tough to guarantee, as no label information is avail-

able initially). The validation dataset (829 images for soybean

dataset, and 876 images for the weed dataset) remained the

same for the different labeling budgets and was kept fixed for

all the 10 repetitions of the experiment. Each run starts with

an initial random batch of 1,000 samples spread across differ-

ent classes, which was used for the evaluation of all four active

learning methods. After training the neural network model for

100 epochs, we used the best performing model on the vali-

dation datasets to query a batch of 1,000 samples from the

remaining unlabeled dataset. This selection was performed

using the acquisition function of each of the four active learn-
ing algorithms (so each AL approach will potentially select

distinct set of 1,000 samples to next annotate). These 1,000

samples were added to the labeled dataset, to retrain the neural

network model. This process was repeated until the labeling

budget was exhausted (labeling budget was 9,000 samples for

the soybean stress classification, and 10,000 samples for the

weed species classification). We saved the model with best

validation accuracy. The model was retrained from scratch

after every selection of new labeled samples for 100 epochs

with a batch size of 16. We used dropout for regularization

with probability value of 0.001 for the MobileNetV2 model.

F IGURE 3 Illustration of the pool-based active learning cycle for

the soybean stress and weed stress classification datasets. The four

method of active learning included: Least Confidence, Entropy, Deep

Bayesian Active Learning, and Core-set

A dropout layer with probability 0.5 was added after the last

fully connected layer for the ResNet-50 model. We optimized

the model using the Adam (Kingma & Ba, 2014) optimizer

with the default learning rate of 0.001. We used Keras (Chol-

let, 2015) with a Tensorflow (Abadi et al., 2016) backend for

the implementation. A schematic of the approach is shown in

Figure 3.

2.3 Evaluated methods

Formally, let 𝑥𝑖 be the input and 𝑦 ε (1, … , N) be the output
of the classification model in the active learning setup. The

neural network was trained using labelled set𝐿𝑝𝑜𝑜𝑙. The active

learning methods selects a batch of b points [x∗1,… , x∗b] from
the unlabeled pool𝑈𝑝𝑜𝑜𝑙 for expert annotation according to an

acquisition criterion and add these b points to the labeled set

𝐿𝑝𝑜𝑜𝑙. The four active learning methods are described below:

2.3.1 Random

Principle behind the acquisition function
: The samples are chosen at random from the unlabeled data.

This represents the baseline if AL methods are not used.

2.3.2 Least confidence

Principle behind the acquisition function
This is an uncertainty sampling-based active learningmethod.

The samples that have the lowest value for its most confi-

dent output label have the highest uncertainty in prediction.

The unlabeled samples are sorted in ascending order accord-

ing to maximum predicted classification probability, and the
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samples with the lower rank are chosen for labeling (Culotta

& McCallum, 2005).

[
x*1,… , x*

b

]
= argmin

[𝑥1,…,𝑥𝑏] ⊆ 𝑼𝒑𝒐𝒐𝒍

max
𝑘=1…𝑁

𝑝

(
𝑦 = 𝑘

𝑥𝑖

)
. (1)

2.3.3 Entropy

Principle behind the acquisition function
This is an uncertainty sampling-based active learningmethod.

The entropy of the soft-max score measures how much the

predicted probabilities for each class differ from each other.

The samples that have the highest output label entropy have

the highest uncertainty in prediction. The unlabeled samples

with highest entropy H of the predicted classification proba-

bility distribution p are chosen for labeling (Shannon, 1948).

𝐻

(
𝑦

𝑥
,𝑳𝒑𝒐𝒐𝒍

)
= −

𝑁∑
𝑘=1

𝑝

(
𝑦 = 𝑘

𝑥

)
𝑙𝑜𝑔

(
𝑝

(
𝑦 = 𝑘

𝑥

))
. (2)

[
x*1,… , x*

b

]
= argmax

[𝑥1,…,𝑥𝑏]⊆𝑼𝒑𝒐𝒐𝒍

𝐻

(
𝑦

𝑥
,𝑳𝒑𝒐𝒐𝒍

)
(3)

2.3.4 Deep bayesian active learning (DBAL)

Principle behind the acquisition function
This is an uncertainty sampling-based active learningmethod.

The Monte Carlo dropout (MC-dropout) (Gal & Ghahra-

mani, 2016) based uncertainty estimation is combined

with Bayesian Active Learning by Disagreement (BALD)

(Houlsby et al., 2011) acquisition framework for selecting the

samples in DBAL (Gal et al., 2017). The MC-dropout based

uncertainty estimates are computed by averaging the outputs

of T different forward stochastic passes of the input through

the trained neural network model with weights𝑤𝑡 for the pass

t during the test time. A new dropout mask with probability

value of 0.5 is applied to the fully connected layer before the

output soft-max layer during each of the T forward passes.

During each forward pass, the dropout layer in themodel turns

off the output of the neurons with probability 0.5. In the other

three uncertainty-based active learning methods we assumed

the output of the soft-max layer as the classification proba-

bility, whereas in DBAL the classification probability is cal-

culated as the average of T different soft-max scores of the

model for a given input. The BALD acquisition function cal-

culates the mutual information between the data samples and

themodel weights. Unlabeled data samples with larger mutual

information between the predicted label and model weights

were selected for labeling. The uncertainty estimate p is:

𝑝

(
𝑦 = 𝑘

𝑥
, 𝐿𝑝𝑜𝑜𝑙

)
= 1

𝑇

𝑇∑
𝑡 = 1

𝑝

((
𝑦 = 𝑘

𝑥

)
, 𝑤𝑡

)
(4)

The acquisition criterion I is:

𝐼

(
𝑦; 𝑤

𝑥
,𝐿𝑝𝑜𝑜𝑙

)
= 𝐻

(
𝑦

𝑥
, 𝐿𝑝𝑜𝑜𝑙

)
− 1

𝑇

𝑇∑
𝑡 = 1

𝑁∑
𝑘 = 1

−𝑝
((

𝑦 = 𝑘

𝑥

)
, 𝑤𝑡

)

× log
(
𝑝

((
𝑦 = 𝑘

𝑥

)
, 𝑤𝑡

))
(5)

[
x∗1,… , x∗b

]
= argmax

[𝑥1, …,𝑥𝑏]⊆𝑈𝑝𝑜𝑜𝑙

𝐼

(
𝑌 ; 𝑤

𝑥
,𝐿𝑝𝑜𝑜𝑙

)
(6)

2.3.5 Core-set

Principle behind the acquisition function
A set of diverse samples that best represents the distribution

of the entire dataset in the representation space learned by the

neural network model are chosen for labeling. We used the

output of the layer (convolution layer for MobileNetv2 model

and global average pooling layer for ResNet-50 model) before

the soft-max layer as the representation vector. The greedy

approximation method was used to implement the core-set

selection (Sener & Savarese, 2017).

3 RESULTS AND DISCUSSION

3.1 AL methods performance

Mean accuracy for different active learning methods for the

two canonical problems on soybean stress classification and

weed species classification are presented in Figures 4 and 5,

respectively.

For the soybean stress classification dataset, we clearly

observe that all the uncertainty sampling-based active learn-

ing methods outperform the diversity (core-set) and ran-

dom sampling. Whereas, for the weed species classification

dataset, all four active learning algorithms (uncertainty and

diversity sampling) outperform random sampling. The per-

formance gain due to AL methods over random sampling for

plant domain datasets is similar to the improvement observed
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F IGURE 4 (a) MobileNetV2 accuracy plots of different active learning algorithms for soybean stress classification dataset. The results were

averaged over 10 experiments. (b) We show the coefficient of variation for the classification accuracy (mean /std) from 10 repetitions

F IGURE 5 (a) ResNet-50 accuracy plots of different active learning algorithms for weed species classification dataset. The results were

averaged over 10 experiments. (b) We show the coefficient of variation for the classification accuracy (mean / std) from 10 repetitions

in other domain datasets like MNIST and CIFAR10 (Beluch

et al., 2018). The overall performance gains of active learn-

ing algorithms were higher for the weed species dataset than

the soybean stress dataset. One reason for this could be the

challenging nature of the weed species dataset, which was

collected under diverse field conditions whereas the soy-

bean dataset was collected under indoor conditions with pri-

marily constant illumination. Additionally, the field images

for the weed data set had more background objects and

obscurity compared to the soybean dataset, which consisted

of images under more controlled conditions (Ghosal et al.,

2018). Hence, the random sampling-based annotation method

provides a stronger baseline for the soybean stress dataset. The

dip in accuracy at 2,000 samples for the soybean dataset was

due to high class-imbalance in the expert annotated dataset

after sample selection. The coefficient of variation of the clas-

sification accuracy for the soybean dataset followed a similar

decreasing trend for all the active learning methods as shown

in Figure 4b. For the weed dataset, the coefficient of variation

was initially high (until annotation 4,000 samples) and then

followed a decreasing trend for all the active learning meth-

ods as shown in Figure 5b. The challenging nature of the weed

dataset might have caused higher fluctuations in model accu-

racy (high coefficient of variation) when only a small number

of labelled samples (up to 4,000 samples) are used for train-

ing.

To identify the best active learning method for each dataset,

we rank ordered the active learning methods-based on the

classification accuracy from 1 to 5 (1 for the highest accu-

racy and 5 for the lowest accuracy) for each repetition of

the experiment. The mean of the ranks from 10 different

repetitions is shown in Figure 6 for the soybean and weed
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F IGURE 6 We rank ordered the active learning methods-based on the classification accuracy from 1 to 5 (1 – highest accuracy, 5- lowest

accuracy) obtained in each repetition of the experiment. The average of the ranks from 10 repetitions are shown in (a) soybean dataset, and (b) weed

dataset. The overall mean rank performance of active learning methods across different labeling budgets is shown in the bottom row of (a) and (b)

datasets. The mean rank of the active learning methods across

all labeling budgets is shown in the last row of Figures 6a

and 6b for the soybean and weed dataset, respectively. We

observed that Least Confidence sampling was the best per-

forming active learning method for both the datasets consid-

ering all the different labeling budgets. However, DBAL was

the best performing method when the labeling budget was

small (up to 4,000 samples for the soybean dataset and 2,000

samples for the weed dataset). Although the computational

time of Least Confidence is negligible compared to DBAL,

its overall performance was better when considering perfor-

mance across all labeling budgets. The overall rank order of

the active learning methods followed similar trend for these

two datasets. The uncertainty sampling-based methods (Least

Confidence, Entropy and DBAL) performed better than diver-

sity sampling-based core-set method. All the active learning

methods performed better than the baseline random sampling

for the soybean and weed datasets.

3.1.1 Which samples are selected?

A random selection strategy is expected to blindly pick new

samples for annotation, therefore the distribution of selected

points is expected to be uniform (Figure 7 last row). In con-

trast, we anticipate the AL-based methods to pick fewer sam-

ples from classes that are well predicted, and instead pick

more points from classes that are not well predicted. We

visualize this expected behavior in Figures 7a (for soybean

stress classification) and 7b (for weed classification). The per-

class classification accuracy of different active learning meth-

ods and random sampling is shown in the first column of

Figures 7a and 7b.

We also plot how many additional samples are selectively

chosen to achieve this differential per-class accuracy. This is

shown in the second column in Figures 7a and 7b. The per

class sample selection percentage, i.e., how many samples are

used per class (calculated as the number of samples selected

from a class/total number of samples available in a class) of

different active learning algorithms are presented in the sec-

ond column of Figures 7a and 7b. The accuracy plot of the

random method indicates the classes that are hard and easy

to predict. The clear inverse relationship between the perfor-

mance of individual classes shown in the accuracy plot of ran-

dom and the number of samples chosen is apparent across all

uncertainty-based AL methods. This is in stark contrast to a

naive random sampling.

3.1.2 Soybean dataset sample selection

Classes ‘0’ and ‘7’ have low per-class classification accuracy

from random sampling-based annotation (Figure 7a). Least

Confidence, Entropy and DBAL methods chose more sam-

ples from the classes ‘0’ and ‘7’ and obtained better per-class

accuracy than random sampling. These results are consistent

with previous work (Ghosal, et al, 2018), where class ‘0’,

Bacterial blight and class ‘7’ bacterial pustule were reported
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F IGURE 7 (a) An example of per class classification accuracy of MobileNetV2 model on the soybean stress classification dataset using

different active learning algorithms from a single experiment for a labeling budget of 9,000 samples. (b) Per class sample selection percentage

(Number of sample selected from a class/Total number of samples available in a class) of different active learning algorithms for the results shown in

(a). The nine classes are as following: 0 = bacterial blight, 1 = Septoria Brown Spot, 2 = Frogeye Leaf Spot, 3 = Healthy, 4 = Herbicide Injury,

5 = Iron Deficiency Chlorosis, 6 = Potassium Deficiency, 7 = Bacterial Pustule, 8 = Sudden Death Syndrome. (b) An example of per class

classification accuracy of ResNet50 model on the weed dataset using different active learning algorithms from a single experiment for a labeling

budget of 10,000 samples. (b) Per class sample selection percentage (Number of samples selected from a class/Total number of samples available in

a class) of different active learning algorithms for the results shown in (a). The nine classes are as following: 0 = Chinee apple, 1 = Lantana,
2 = Parkinsonia, 3 = Parthenium, 4 = Prickly acacia, 5 = Rubber vine, 6 = Siam Weed, 7 = Snake Weed, 8 = Negatives. The best way to look at this

plot is bottom up, i.e., first look at that random sampling approach (which is the baseline) and compare how the accuracy of specific classes are

improved via AL approaches

to be the most confusing (i.e., least discriminative between

the two) bacterial diseases among the 9 classes, causing even

expert raters rating challenges during manual classifying due

to similarity of disease symptoms. Least confidence, Entropy

and DBAL do an excellent job in choosing more samples

from stresses that are highly confusing when compared to

less confusing stresses. This is very promising from a domain

perspective because confounding symptoms classes are more

extensively sampled by these three AL methods. These

uncertainty-based methods sampled only a small percentage

of samples from classes that have high per-class accuracy

for random sampling (classes ‘3’, ‘5’, ‘6’, and ‘8’) method.

Uncertainty-based AL algorithms adaptively sampled more

from the low accuracy classes of the random samplingmethod

(classes ‘0’, ‘1’, and ‘7’) and sampled less from the high accu-

racy classes of random sampling methods (classes ‘6’ and

‘8’), contrasting it with the diversity-based core-set method.

In contrast to the uncertainty-based acquisition functions of
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LC, Entropy, and DBAL, core-set uses a diversity based sam-

pling. Its comparatively poor performance can be explained

by the fact that it chooses less samples from classes exhibiting

less diversity, even if that class is difficult to classify.

3.1.3 Weed dataset sample selection

Classes ‘0’ and ‘7’ have low per-class classification accu-

racy from random sampling-based annotation (Figure 7b).

Least Confidence, Entropy and DBAL methods chose more

samples from the classes ‘0’ and ‘7’ compared to random

sampling method and obtained better per-class accuracy than

random sampling method. Classes ‘6’ and ‘8’ have high per-

class classification accuracy from random sampling-based

annotation. Uncertainty-based AL algorithms adaptively

sampled less from the high accuracy classes of random

sampling method (classes ‘6’ and ‘8’).

The AL methods show promising results for plant sciences

problems where extensive data are needed to train useable

models. These include diverse applications including com-

plex phenotype extracting workflows like the cluttered image

problem for soybean cyst nematode egg detection (Akintayo

et al., 2018), hyperspectral imaging (Nagasubramanian et al.,

2019; Roscher et al., 2016), abiotic stress disease rating (Naik

et al., 2017; Zhang, Naik, et al., 2017), and root imaging (Falk,

Jubery,Mirnezami, et al., 2020; Falk, Jubery, O’Rourke, et al.,

2020).

4 CONCLUSIONS

In this work, we explore the usefulness of active learning

methods for reducing the labeling needed for two differ-

ent classification tasks. We observed that uncertainty-based

active learning methods consistently outperformed random

sampling-based annotation for both the soybean stress clas-

sification and weed classification task. Least confidence sam-

pling method was the best performing active learning method

for both the datasets. We believe that active learning meth-

ods can be quite helpful in reducing the amount of labeling

needed for image-based plant phenotyping tasks like clas-

sification, detection, and segmentation. We note that recent

theoretical developments place active learning methods on

firmer grounds [especially considerations of how discrepancy

in training distribution vs original distribution can be fixed,

see Farquhar et al. (2021)], cementing their utility. There

are several promising avenues in which the power of AL

methods can be combined with methods with complementary

strengths. Specifically, we advocate for integrating AL meth-

ods with transfer learning, semi-supervised and unsupervised

representation learning methods to further increase the label-

ing efficiency for the challenging phenotyping tasks.
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