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Optimal two-photon excitation of bound states in non-Markovian waveguide QED
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Bound states arise in waveguide QED systems with a strong frequency-dependence of the coupling between
emitters and photonic modes. While exciting such bound-states with single-photon wave-packets is not possible,
photon-photon interactions mediated by the emitters can be used to excite them with two-photon states. In this
Letter, we use scattering theory to provide upper limits on this excitation probability for a general non-Markovian
waveguide QED system and show that this limit can be reached by a two-photon wave packet with vanishing
uncertainty in the total photon energy. Furthermore, we also analyze multi-emitter waveguide QED systems with
multiple bound states and provide a systematic construction of two-photon wave packets that can excite a given
superposition of these bound states. As specific examples, we study bound-state trapping in waveguide QED
systems with single and multiple emitters and a time-delayed feedback.
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I. INTRODUCTION

Waveguide quantum electrodynamics (wQED) [1–5] stud-
ies the interaction of quantum emitters with one-dimensional
bosonic waveguide fields. While traditional analysis of wQED
systems assumes a Markovian (frequency-independent) cou-
pling of emitters and the waveguide mode [6–10], there
has been recent theoretical interest in exploring physics of
non-Markovian wQED systems [11–24]. Furthermore, there
have been proposals as well as experimental implementa-
tions of non-Markovian systems with circuit QED [25–28]
and cold atoms [29]. Several recent works have attempted to
understand the dynamics of wQED systems with time-delays
comparable to or larger than the lifetime of the emitters.
Such non-Markovian wQED systems support a rich variety
of physical phenomena including existence of bound states
in continuum [17,30–32], superradiance and subradiance in
the presence of time delays [18–21] as well as generation of
highly entangled photonic states [23,24,33,34]. Furthermore,
there is a possibility of using these physical phenom-
ena for quantum technology applications such as quantum
memory [17] and quantum computation with cluster states
[34].

Of particular interest in non-Markovian wQED is the ex-
istence of single-excitation polaritonic bound states, which
are normalizable eigenstates of the wQED Hamiltonian. Such
bound states have been extensively studied in systems where
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the waveguide mode has a band gap, with the bound-state
energy lying in this band gap [16,35,36]. However, a num-
ber of non-Markovian wQED systems can support bound
states at frequencies that can propagate in the waveguide,
i.e., they support a bound state in the continuum [17,30–
32]. While these bound states cannot be excited with sin-
gle waveguide photons, the emitter-mediated photon-photon
interactions can allow two (or more) waveguide photons to
excite them [17,30,37,38]. From a technological standpoint,
this opens up the possibility of storing quantum information
being carried by two-photon wave packets into the bound
states. Consequently, several authors have performed analyt-
ical and numerical studies to design the two-photon wave
packet that can optimally excite the bound state in a vari-
ety of non-Markovian systems [17,30]. However, it remains
unclear what the limits on bound-state trapping probabilities
are, and if there is a systematic design procedure for the
optimal incident two-photon wave packet that reaches this
limit.

In this paper, we use quantum-scattering theory to rig-
orously answer this question for a general non-Markovian
wQED system. Our approach relies on an analytical calcula-
tion of the two-photon scattering matrix element capturing the
bound-state trapping process. Using this scattering matrix, we
provide an upper limit on the bound-state trapping probability.
Furthermore, we show that this limit is asymptotically tight,
i.e., it is reached by a two-photon wave packet with vanishing
uncertainty in the total photon energy. Finally, as storage
protocols for quantum information encoded in the incoming
two-photon wave packets, we consider multi-emitter wQED
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FIG. 1. (a) Schematic of the non-Markovian waveguide QED
system with N emitters. The frequency-dependent coupling constant
Vn(ω) capture the non-Markovian nature of the emitter-waveguide
interactions. (b) An equivalent picture of the waveguide QED system
when expressed in terms of the scattering state modes and the bound-
state modes which are coupled to each other due to the two-particle
repulsion at the qubit modes.

systems that can support more than one bound states and
systematically outline the design of two-photon wave packets
to excite superpositions of these bound states. As specific
examples, we study bound-state trapping in waveguide QED
systems with single and multiple emitters and a time-delayed
feedback.

This paper is organized as follows: the two-photon scat-
tering matrix is analytically calculated in Sec. II, and the
theoretical and numerical analysis of the bound-state trapping
process is presented in Sec. III.

II. SCATTERING THEORY

The wQED system under consideration is shown
in Fig. 1(a)—N emitters modeled as anharmonic os-
cillators at frequencies ω1, ω2, . . . , ωN with annihilation
operators σ1, σ2, . . . , σN couple with coupling constant
V1(ω),V2(ω), . . . ,VN (ω) to a waveguide mode with annihi-
lation operator sω. The frequency dependence of the coupling
constants, in either magnitude or in phase or both, gives rise
to non-Markovian effects in the dynamics of the emitters.
For instance, a Lorentzian frequency dependence of the cou-
pling constant corresponds to non-Markovianity induced due
to a single mode cavity coupling to the emitters [39], while
a frequency dependent phase [Vn(ω) ∼ eiωxn ] corresponds to
non-Markovianity due to retardation effects [40,41].

The dynamics of this system can be described by a Hamil-
tonian expressible as H = H0 +V where H0 is a quadratic
form that describes the interaction of the emitters with the
waveguide:

H0 =
∫ ∞

−∞
ωs†ωsωdω +

N∑
n=1

ωnσ
†
n σn

+
∫ ∞

−∞

N∑
n=1

[Vn(ω)sωσ †
n +V ∗

n (ω)σns
†
ω]

dω√
2π

, (1)

and V captures the anharmonicity of the emitters:

V =
N∑

n=1

U0

2
(σ †

n )
2σ 2

n . (2)

It can be noted that two-level emitters are obtained in the limit
of infinite anharmonicity (U0 → ∞).

The quadratic Hamiltonian H0 can be diagonalized into
the sum of a continuum of scattering states with annihila-
tion operators ψω at frequencies ω ∈ R and discrete bound
states with annihilation operators φ1, φ2, . . . , φNb at frequen-
cies ω1, ω2, . . . , ωNb [Fig. 1(b)]:

H0 =
Nb∑

α=1

ωαφ†
αφα +

∫ ∞

−∞
ωψ†

ωψωdω. (3)

These modes, by definition, satisfy the commutation re-
lations [ψω,ψ†

ν ] = δ(ω − ν), [φα, φ
†
β ] = δα,β, [ψω, φ†

α] = 0.
Physically, the bound states mode in waveguide QED systems
would correspond to quantum states whose overlap with the
waveguide mode vanishes at distances away from the emit-
ter. The scattering state modes, on the other hand, are plane
waves propagating towards and away from the emitters when
examined at large distances from the emitters.

The scattering state modes and the bound-state modes,
while decoupled in the HamiltonianH0, are coupled due to the
anharmonicity of the emitters [Eq. (2)]. Furthermore, the anni-
hilation operators σn for the emitters can be expressed in terms
of the bound-state operator and scattering state operators:

σn =
Nb∑

α=1

εα
nφα +

∫ ∞

−∞
ξn(ω)ψωdω, (4)

where εα
n captures the overlap of the αth bound-state mode

with the nth emitter and ξn(ω) captures the overlap of the
scattering state mode at frequency ω with the nth emitter.

Consider now the process of exciting the emitters with an
incident two-photon state and trapping one photon in a bound
state. The probability amplitude associated with this process
is captured by the scattering matrix element Sα (ω; ν1, ν2),
which is the probability amplitude of trapping a photon in
the αth bound-state and scattering the second photon in a
scattering state at frequency ω on excitation with two photons
at frequency ν1 and ν2:

Sα (ω; ν1, ν2) = lim
ti → −∞
t f → ∞

〈G| φαψωUI (t f , ti )ψ
†
ν1

ψ†
ν2

|G〉 , (5)

where UI (·, ·) is the interaction picture propagator for the
Hamiltonian H with respect to H0 and |G〉 is the ground
state of the wQED system. An exact analytical expression
relating this scattering matrix to εα

n and ξn(ω) can be
derived by following a procedure similar to Ref. [13]. Since
UI (t f , ti ) = eiH0t f e−iH (t f −ti )e−iH0ti , Sα (ω; ν1, ν2) can be ex-
pressed in terms of Heisenberg picture operators with respect
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to the Hamiltonian H0:

〈G|φαψωUI (t f , ti )ψ
†
ν1

ψ†
ν2

|G〉 = 〈G| T
[
φα (t f )ψω(t f ) exp

(
− iU0

2

∫ t f

ti

N∑
n=1

σ †2
n (τ )σ 2

n (τ )dτ

)
ψ†

ν1
(ti )ψ

†
ν2
(ti )

]
|G〉 , (6)

where T is the time-ordering operator. A Dyson series expansion of the exponential then yields

Sα (ω; ν1, ν2) =
∞∑
k=1

1

k!

(
− iU0

2

)k

Gk
α (ω; ν1, ν2), (7)

where

Gk
α (ω; ν1, ν2) = lim

ti → −∞
t f → ∞

eiθ (t f ,ti )
∫ t f

τ1,...,τk=ti

〈G| T
[
φα (t f )ψω(t f )ψ

†
ν1
(ti )ψ

†
ν2
(ti )

k∏
n=1

N∑
m=1

σ †2
m (τn)σ

2
m(τn)

]
|G〉 dτ1 · · · dτk,

= lim
ti → −∞
t f → ∞

eiθ (t f ,ti )k!
∫ t f

τ1>τ2···>τk=ti

N∑
m1,m2,...,mk=1

〈G| φα (t f )ψω(t f )

[
k∏

n=1

σ †2
mn
(τn)σ

2
mn
(τn)

]
ψ†

ν1
(ti )ψ

†
ν2
(ti ) |G〉 dτ1 · · · dτk,

(8)

with θ (t f , ti ) = (ωα + ω)t f − (ν1 + ν2)ti. We point out that in
order to use the Dyson series expansion to nonperturbatively
compute the scattering matrix, it is necessary to clarify
its regime of convergence. Unlike most problems dealt
with in scattering theory, we note that the problem that we
consider is simpler in the sense that the operator appearing
in the exponential in Eq. (6) is a bounded operator (when
restricted to the two-excitation subspace, which is the setting
considered in this paper). Consequently, the Dyson expansion
of the propagator converges for arbitrarily large U0 at finite
ti and t f . Furthermore, the analytical result derived in this
section is confirmed with numerical simulations in Sec. III.
However, our analysis does indeed fall short of a rigorous
proof of the existence and convergence of a scattering theory
for this problem, and this is an issue we seek to resolve more
generally for such models in future work.

To evaluate Gk
α (ω; ν1, ν2), we note that since the operators

φα and ψω diagonalize the Hamiltonian H0, φα (t ) = φαe−iωαt

and ψω(t ) = ψωe−iωt . Furthermore, it follows from Eq. (4)
that

σn(t ) =
Nb∑

α=1

εα
nφαe

−iωαt +
∫ ∞

−∞
ξn(ω)e−iωtψωdω. (9)

The evaluation of the expectation in Eq. (8) can now easily be
done by using the commutators for φα,ψω:

〈G| φα (t f )ψω(t f )

[
k∏

n=1

σ †2
mn
(τn)σ

2
mn
(τn)

]
ψ†

ν1
(ti )ψ

†
ν2
(ti ) |G〉

= e−iθ (t f ,ti )2k+1εα∗
m1

ξ ∗
m1
(ω)ξmk (ν1)ξmk (ν2)

× e−i(ω+ωα )τ1ei(ν1+ν2 )τk

[
k−1∏
n=1

G2
mn,mn+1

(τn − τn+1)

]
, (10)

where

Gm,n(t ) = [σm(t ), σ
†
n (0)]

=
Nb∑
n=1

εα
mεα∗

n e−iωαt +
∫ ∞

−∞
ξm(ω)ξ ∗

n (ω)e−iωt dω. (11)

Using this result along with (8), we obtain

Gk
α (ω; ν1, ν2) = 2k+2πδ(ω + ωα − ν1 − ν2)

N∑
m,n=1

εα∗
m ξ ∗

m(ω)

× [Tk−1(ω + ωα + i0+)]m,nξn(ν1)ξn(ν2),

(12)

where T(�) is a N × N matrix whose elements are given by

[T(�)]m,n =
∫ ∞

0
G2

m,n(t )e
i�t dt . (13)

Finally, substituting this expression for Gk
α (ω; ν1, ν2) into the

series expansion in Eq. (7) and taking the limit U0 → ∞, we
obtain

Sα (ω; ν1, ν2) = �α (ω; ν1, ν2)δ(ω + ωα − ν1 − ν2), (14a)

where in the limit ofU0 → ∞,

�α (ω; ν1, ν2)

= −4π
N∑

m,n=1

(
εα∗
m ξ ∗

m(ω)[T−1(ω + ωα + i0+)]m,n

× ξn(ν1)ξn(ν2)
)
. (14b)

HereT−1(�) is the matrix inverse ofT(�) defined in Eq. (13).
The δ function singularity in Eq. (14a) constrains the output
photon frequency ω given input photon frequencies ν1 and ν2
as required by energy conservation. Furthermore, the matrix
T(�) captures the two-excitation dynamics of the multi-
emitter wQED system. Finally, Eq. (14b) relate the scattering
amplitude �α (ω; ν1, ν2) to this matrix and the overlap of the
bound states and scattering states with the emitters.

III. BOUND-STATE EXCITATION

A. Optimal trapping of a single bound state

We now consider exciting the system with a two-photon
state described by a wave function ψin(ν1, ν2) when expressed
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FIG. 2. Optimal excitation of bound states in time-delayed feedback system. (a) Schematic of a time-delayed feedback system with a
single emitter connected to a waveguide mode terminated by a mirror. (b) Overlap of bound state with the emitter as a function of time
delay td . (c) Overlap of the scattering state at frequency ω with the emitter for different time delays td . (d) Upper bound on the two-photon
excitation probability (dashed black line) as a function of the delay as well as the probability obtained on using two-photon wave packets for
different uncertainties in the two-photon energies. (e) Finite-difference time-domain simulations of the time-delayed feedback system with the
incident two-photon state showed as a function of photon positions. It can be seen that the bound state is excited with nearly unity trapping
probability with this incident two-photon state. The incident two-photon state is constructed from Eq. (19) with central two-photon energy
�0 = 2ω0 + 0.95γ and energy uncertainty � = 0.1γ .

in terms of the scattering state modes:

|ψin〉 = 1√
2

∫ ∞

ν1,ν2=−∞
ψin(ν1, ν2)ψ

†
ν1

ψ†
ν2

|vac〉 dν1dν2. (15)

Using the scattering matrix element in Eq. (14a), we can
obtain the bound state trapping probability:

Pα[ψin]

= 1

2

∫ ∞

−∞
d�

∣∣∣∣
∫ ∞

−∞
�α (�− ωα; ν,�−ν)ψin(ν,�−ν)dν

∣∣∣∣
2

(16)

We can now upper bound the trapping probability—from the
Cauchy-Schwarz inequality, it follows that

Pα[ψin] �
1

2

∫ ∞

−∞
d�

( ∫ ∞

−∞
|�α (� − ωα; ν,� − ν|2dν

×
∫ ∞

−∞
|ψin(ν,� − ν)|2dν

)

� Pub
α , (17)

where

Pub
α = max

�∈R

(
1

2

∫ ∞

−∞
dν|�α (� − ωα; ν,� − ν)|2

)
. (18)

Furthermore, it follows from Eq. (16) that an energy entan-
gled two-photon wave packet can get arbitrarily close to this
bound provided that the uncertainty in the total photon energy

is sufficiently small. More specifically, consider a family of
photon wave packets ψα,�(ν1, ν2) defined by

ψα,�(ν1, ν2) = Nα,� f�,�0 (ν1 + ν2)�
∗
α (�0 − ωα; ν1, ν2),

(19)

where f�,�0 (ν) = (π�2)−1/4 exp[−(ν − �0)2/2�2] deter-
mines the distribution of two-photon energy, �0 is the central
two-photon energy chosen as the frequency that maximizes
the right-hand side of Eq. (18) andNα,� is chosen to normalize
the wave packet. It then follows from Eq. (16) that as � → 0,
Pα[ψα,�] → Pub

α . Physically, � is the uncertainty in the total
photon energy of the wave packet, and consequently governs
the spatial spread in the center of mass of the two photons, i.e.,
a lower�would imply a larger spread of the two-photon wave
packet in space. The two-photon energy �0 that is needed to
optimally excite the bound state, obtained by maximizing the
function in Eq. (18), is typically different from the resonant
frequency of the emitter. This can be attributed to the nonzero
lamb-shift that the emitter frequency in the presence of a
frequency dependent coupling to the waveguide mode.

As a concrete example, we consider a wQED system with
time-delayed feedback as shown in Fig. 2(a). This system is
equivalent to a non-Markovian waveguide QED system with
one emitter and V (ω) = 2i

√
γ sin(ωtd ). If the qubit transition

frequency ω0 satisfies ω0td = nπ for some integer n, then
this system supports one bound-state mode. Furthermore, the
overlap of the qubit mode with the bound state (ε) and the
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scattering state ξ (ω) can be computed by diagonalizing the
quadratic part of the system Hamiltonian (refer to Appendix
for details):

ε = 1√
1 + 2γ td

and ξ (ω) = 2i
√

γ sin (ωtd )

ω − ω0 + 2γ sin (ωtd )e−iωtd
.

(20)

In the short delay regime (γ td 
 1) the bound state is com-
pletely localized to the emitter [Fig. 2(b)]. Furthermore, in
this regime the system is Markovian with vanishing coupling
between the emitter and waveguide [V (ω) ≈ V (ω0) = 0] and
consequently the bound-state trapping probability vanishes
[Fig. 2(d)]. In the long-delay regime (γ td � 1), the overlap
of the emitter with the scattering states becomes significant
[Fig. 2(c)], while its overlap with the bound state vanishes.
For a fixed energy uncertainty �, we find that the trapping
probability decreases for large delays [Fig. 2(d)]—this can be
attributed to the vanishing overlap of the bound state with the
emitter mode which reduces the effective nonlinear interaction
between the bound state and the scattering states introduced
by the anharmonicity of the emitter mode. However, the upper
bound Pub on the trapping probability asymptotically increases
to 1 as γ td → ∞—we point out that to achieve this bound
with an incident two-photon wave packet, the required energy
uncertainty � scales inversely with td . This effectively makes
the incident wave packet increasingly unconfined in space,
and consequently increase its interaction time with the bound
state and compensates for the its reduced nonlinear interaction
with the scattering states. From a technological standpoint,
this implies the existence of a trade-off between the time taken
to trap the bound state and the probability with which the
bound state can be excited.

Figure 2(e) shows finite difference time domain (FDTD)
simulation of two-photon scattering [42] from this system for
γ td = 2, and we indeed see that the bound state can be excited
with near unity probability as predicted by the two-photon
scattering theory. Furthermore, it follows from Eqs. (14b)
and (19) that the spatial profile of the optimal wave packet
is governed by the inverse Fourier transform of ξ (ω), the
overlap of the emitter with the scattering state at frequency
ω. This can be interpreted as a physical consequence of the
incident two-photon wave packet, when expressed in terms of
the scattering state modes, needing to maximally excite the
emitter mode to nonlinearly couple into the bound state.

While our analysis suggests that there are no fundamental
barriers to exciting a bound state with near-unity trapping
probabilities, a concrete experimental implementation of the
bound-state trapping protocol would need emitters coupled to
the waveguide with high cooperativity, as well as a method
to generate the incident two-photon state. First, the tradeoff
between the bound-state trapping probability and excitation
times outlined above will likely place stringent constraints on
the emitter cooperativities, since the emitter should not have
significantly decayed into channels other than the waveguide
in the time it takes to trap the bound state. Such cooperativities
are conceivably achievable in circuit QED setups [27], and
might possibly be within the reach of quantum optical systems
in near future. Second, for an optimal excitation, the wave
packet needs to be an energy-entangled two-photon state—

this can be generated from a coherent state using a parametric
down conversion process, which is available in both circuit
QED [43,44] as well as in quantum optical systems using
optical nonlinearities [45]. We also point out that directly
exciting the system with a coherent state can also excite the
bound state [17], although this excitation will not be optimal.

B. Exciting bound-state superpositions

Multi-emitter non-Markovian wQED systems can support
more than one single-excitation bound states. An incident
two-photon wave packet will, in general, excite a superpo-
sition of bound states that is controllable by engineering the
two-photon wave packet. This opens up the possibility of
using such systems for large quantum memories, with the
number of bound states determining the size of the quantum
memory.

Since the scattering amplitude in Eq. (14b) suggests that
the superposition of the bound states being excited depends on
the overlap of ψin(ν1, ν2) with ξn(ν), we assume the following
ansatz for ψin(ν1, ν2):

ψin(ν1, ν2) = f�,�0 (ν1 + ν2)
N∑

n=1

cinn ξ ∗
n (ν1)ξ

∗
n (ν2), (21)

where f�,�0 (ν) = (π�2)−1/4 exp[−(ν − �0)2/2�2] deter-
mines the distribution of the two-photon energy and the
coefficients cinn specify the spectral distribution of the two pho-
tons. Under the assumption of negligible energy uncertainty
(� → 0), an application of the scattering matrix in Eq. (14a)
yields the following state:

|ψout〉 =
Nb∑

α=1

coutα

∫ ∞

−∞
f�,�0 (ω + ωα )ψ

†
ωφ†

α |G〉 dω, (22)

where cout = S(�0)cin with cin being a vector of cinn , cout being
a vector of coutα , and S(�) being a matrix given by

[S(�)]α,n = −2
√
2π

N∑
m=1

εα∗
m ξ ∗

m(� − ωα )

× [T−1(� + i0+)X(�)]m,n, (23a)

where

[X(�)]m,n =
∫ ∞

−∞
ξm(ν)ξm(� − ν)ξ ∗

n (ν)ξ
∗
n (� − ν)dν.

(23b)

The matrix S(�0) maps the quantum state of an incoming
two-photon wave packet expressed on the basis of the scatter-
ing state overlaps [ξ ∗

n (ν1)ξ
∗
n (ν2) for n ∈ {1, 2, . . . ,N}] to the

trapped state expressed on the bound-state basis—its inverse
allows us to design the incident two-photon state [Eq. (21)]
to excite a specific bound-state superposition. Furthermore,
if the bound states are degenerate, i.e., ωα = ωb for all α,
then |ψout〉, is separable into this bound superposition and
a single-photon in the scattering state mode with spectrum
f�,�0 (ω + ωb). This allows heralding of a successful trap-
ping process by detecting the scattered single-photon with a
photon-number resolving detector.
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FIG. 3. Excitation of bound-state superpositions in time-delayed feedback system. (a) Schematic of a time-delayed feedback system with
two emitters connected to a waveguide mode terminated by a mirror. (b) Overlap of the scattering states with the two emitters as a function
of the scattering state mode frequency. Finite-difference time-domain simulations showing trapping (c) first bound state, (d) second bound
state, and (e) equal superposition of the two with appropriately chosen two-photon wave packets (shown as insets). In all the simulations, the
time-delay td is assumed to be 0.5/γ , the central frequency �0 of the wave packet is chosen to be 2.4γ , and the two-photon energy uncertainty
� is chosen to be 0.15γ .

As a concrete example of exciting bound-state superposi-
tions, we consider a time-delayed feedback system with two
emitters [Fig. 3(a)]. As is shown in Appendix, assuming that
both the emitters have the same resonance frequency ω0 and
that ω0td = nπ for some integer n, this system supports two
bound states. Figure 3(b) shows ξ1(ω) and ξ2(ω), the overlap
of the scattering states with the two emitters. Figures 3(c)–3(e)
shows FDTD simulations of the response of this multi-emitter
system to two-photon wave packets that are designed using
Eqs. (21) and (23) to excite either of the two bound states
individually [Figs. 3(c)–3(d)] and an equal superposition of
the two bound states [Fig. 3(e)]. We point out that the prob-
ability of trapping the individual bound states are different
[Fig. 3(c)–3(d)] due to the different overlap of the bound states
with the waveguide field.

IV. CONCLUSION

Using a scattering matrix formalism, we comprehensively
studied the two-photon excitation of bound states in general
non-Markovian wQED systems. We provided upper limits
on the two-photon excitation probability of bound states, as
well as the wave packet that can achieve this upper limit.
Furthermore, we also considered systems with multiple bound
states and provided a formalism for constructing wave packets
that can excite various superpositions of the bound states. The
results in this paper not only further our understanding of
bound-state excitation in wQED systems but also provide con-
crete quantum memory storage protocols using these systems.
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APPENDIX: COMPUTING BOUND-STATE AND
SCATTERING-STATE OVERLAP FOR TIME-DELAYED

FEEDBACK SYSTEMS

In this section, we consider the calculation of bound states
and scattering states of multi-emitter time-delayed feedback
systems. We consider system shown in Fig. 4—N emitters
with lowering operators σ1, σ2, . . . , σN are coupled to the
forward- and backward-propagating modes of the waveguide
with decay rates γ1, γ2, . . . , γN . The waveguide mode is ter-
minated with a perfect mirror which is at a distance tn from
the nth emitter. The quadratic part of the Hamiltonian for this
system, H0, can be expressed as

H0 =
N∑

n=1

ωnσ
†
n σn +

∫ ∞

−∞
ωs†ωsωdω

− 2i
∫ ∞

−∞

N∑
n=1

√
γn sin(ωtn)(sωσ †

n − s†ωσn)
dω√
2π

, (A1)
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FIG. 4. Schematic of a multi-emitter waveguide-QED system with time-delayed feedback.

where ωn is the resonance frequency of the nth emit-
ter. Alternatively, this Hamiltonian can be expressed in
terms of the position domain annihilation operator, sx =∫ ∞
−∞ sωeiωxdω/

√
2π :

H0 =
N∑

n=1

ωnσ
†
n σn − i

∫ ∞

−∞
s†x

∂sx
∂x

dx

+
N∑

n=1

√
γn

[(
sx=−tn − sx=tn

)
σ †
n + H.c.

]
. (A2)

We first consider the calculation of the scattering states for
this system. We assume the following ansatz for ψω:

ψω =
N∑

n=1

βn(ω)σn +
∫ ∞

−∞
�ω(x)sxdx, (A3)

where βn(ω) and �ω(x) are to be determined. Using
[ψω,H] = ωψω, we obtain

i
∂�ω(x)

∂x
+

N∑
n=1

√
γn[δ(x + tn) − δ(x − tn)]βn(ω) = ω�ω(x),

(A4a)

ωnβn(ω) + √
γn[�ω(−tn) − �ω(tn)] = ωβn(ω). (A4b)

With the boundary condition �ω(x) → e−iωx/
√
2π as x →

−∞, the solution to Eq. (A4a) can be expressed as

�ω(x) = e−iωx

√
2π

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for x < −tN
C−
n for − tn+1 < x < −tn,

n ∈ {1, 2, . . . ,N − 1}
C0 for − t1 < x < t1
C+
n for tn < x < tn+1,

n ∈ {1, 2, . . . ,N − 1}
C+
N for tn+1 < x.

(A5)

Furthermore, at the discontinuities at x = ±tn, we can set
�ω(x) = [�ω(x+) + �ω(x−)]/2. Integrating Eq. (A4a) across
the discontinuities at x = ±tn we obtain

C−
n = 1 +

N∑
m=n+1

i
√

γmβm(ω)e−iωtm

for n ∈ {1, 2 . . . ,N − 1}, (A6a)

C0 = 1 +
N∑

m=1

i
√

γmβm(ω)e−iωtm , (A6b)

C+
n = 1 +

N∑
m=1

i
√

γmβm(ω)e−iωtm −
n∑

m=1

i
√

γmβm(ω)eiωtm

for n ∈ {1, 2, . . . ,N}. (A6c)

Finally, using Eq. (A4b), we obtain the following system of
equations for the coefficients β1(ω), β2(ω), . . . , βN (ω):

⎡
⎢⎢⎣

ω − ω1 + 2γ1 sin (ωt1)e−iωt1 2
√

γ1γ2 sin (ωt1)e−iωt2 . . . 2
√

γ1γN sin (ωt1)e−iωtN

2
√

γ2γ1 sin (ωt1)e−iωt2 ω − ω2 + 2γ2 sin (ωt2)e−iωt2 . . . 2
√

γ2γN sin (ωt2)e−iωtN

...
...

. . .
...

2
√

γNγ1 sin (ωt1)e−iωtN 2
√

γNγ2 sin (ωt2)e−iωtN . . . ω − ωN + 2γN sin (ωtN )e−iωtN

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β1(ω)
β2(ω)

...

βN (ω)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
2i

√
γ1 sin (ωt1)

2i
√

γ2 sin (ωt2)
...

2i
√

γN sin (ωtN )

⎤
⎥⎥⎦, (A7)

which can be solved to obtain β1(ω), β2(ω), . . . , βN (ω). Fi-
nally, we note from Eq. (4) that ξn(ω) = [σn, ψ

†
ω] = β∗

n (ω) for
n ∈ {1, 2, . . . ,N}—consequently, ξ1(ω), ξ2(ω), . . . , ξN (ω)
can easily be computed once β1(ω), β2(ω), . . . , βN (ω) are
known.

Next, we consider the bound states for this system. We will
restrict ourselves to time-delayed feedback systems where all
the emitters are at the same frequency ω1 = ω2 = · · · = ωN =
ω0 and the time-delays t1, t2, . . . , tN all satisfy ω0tk = nkπ for
some integer nk and for all k ∈ {1, 2, . . . ,N}. Under these
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conditions, as is shown below, this system supports N bound
states all at frequency ω0. We assume the following ansatz for
the bound-state annihilation operator φα:

φα =
N∑

n=1

vα
n σn +

∫ ∞

−∞
�α (x)ψxdx. (A8)

Since this is a bound-state at frequency ω0, using [φα,H0] =
ω0φα we obtain

i
∂�α (x)

∂x
+

N∑
n=1

√
γn[δ(x + tn) − δ(x − tn)]v

α
n = ω0�α (x).

(A9a)

�α (tn) = �α (−tn). (A9b)

Furthermore, �α (x) is zero as |x| → ∞ for it to be a bound
state, and consequently the solution to this equation can be
written as

�α (x) = e−iω0x

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < −tN
B−
n for − tn+1 < x < tn,

n ∈ {1, 2, . . . ,N − 1}
B0 for − t1 < x < t1
B+
n for tn < x < tn+1,

n ∈ {1, 2, . . . ,N − 1}
B+
N for x > tn+1,

(A10)

with �α (x) = [�α (x+) + �α (x−)]/2 at x = ±tn. It follows
from integration of Eq. (A9) across the discontinuities at
x = ±tn that

B−
n =

N∑
m=n+1

i
√

γmvα
me

−iω0tm for n ∈ {1, 2, . . . ,N − 1},

(A11a)

B0 =
N∑

m=1

i
√

γmvα
me

−iω0tm , (A11b)

B+
n =

N∑
m=1

i
√

γmvα
me

−iω0tm −
n∑

m=1

i
√

γmvα
me

iω0tm

for n ∈ {1, 2, . . . ,N}. (A11c)

We note that if ω0tk = nkπ , then B+
N = 0, indicating that

�α (x) 
= 0 only if |x| � tn. Furthermore, under the assump-
tion that all the emitters have frequency ω0, Eq. (A9) requires
that �α (−tn) = �α (tn) for n ∈ {1, 2, . . . ,N}. This condition
is already satisfied if �α (x) is given by Eqs. (A10) and (A11).
Therefore, any choice of vα

1 , vα
2 , . . . , vα

N will yield a valid
bound state—we thus obtain N (linearly independent) degen-
erate bound states at frequency ω0.
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