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We present a quantitative, near-term experimental blueprint for the quantum simulation of topological insula-
tors using lattice-trapped ultracold polar molecules. In particular, we focus on the so-called Hopf insulator, which
represents a three-dimensional topological state of matter existing outside the conventional tenfold way and
crystalline-symmetry-based classifications of topological insulators. Its topology is protected by a linking number
invariant, which necessitates long-range spin-orbit-coupled hoppings for its realization. While these ingredients
have so far precluded its realization in solid-state systems and other quantum simulation architectures, in an
accompanying Letter [T. Schuster et al., Phys. Rev. Lett. 127, 015301 (2021)], we predict that Hopf insulators
can arise naturally from the dipolar interaction. Here, we investigate a specific polar molecule architecture, where
the effective “spin” is formed from sublattice degrees of freedom. We introduce two techniques that allow one
to optimize dipolar Hopf insulators with large band gaps, and which should also be readily applicable to the
simulation of other exotic band structures. First, we describe the use of Floquet engineering to control the range
and functional form of dipolar hoppings and, second, we demonstrate that molecular AC polarizabilities (under
circularly polarized light) can be used to precisely tune the resonance condition between different rotational
states. To verify that this latter technique is amenable to current-generation experiments, we calculate, from first
principles, the AC polarizability for o* light for “°K 8"Rb. Finally, we show that experiments are capable of
detecting the unconventional topology of the Hopf insulator by varying the termination of the lattice at its edges,

which gives rise to three distinct classes of edge mode spectra.
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I. INTRODUCTION

The rich internal structure of ultracold polar molecules
has led to intense interest for their use in a wide range
of applications, ranging from quantum simulation and com-
putation to ultracold chemistry and precision measurement
[1-16]. Understanding and controlling this structure has led
to the development of a host of techniques enabling the
preparation and manipulation of rovibrational states in polar
molecules [16-25]. From the perspective of quantum simula-
tion, polar molecules enjoy a unique advantage compared to
their neutral atom cousins, owing to the presence of strong,
anisotropic, long-range dipolar interactions; these interac-
tions have proven useful for theoretical proposals aiming
to realize a number of exotic phases, including disordered
quantum magnets [26-28], Weyl semimetals [29], and frac-
tional Chern insulators [28,30]. Motivated, in part, by these
prospects, the last decade has seen tremendous experimental
progress, advancing from rovibrational ground-state cool-
ing [16] to the recent realization of a Fermi degenerate
molecular gas [24]. Moreover, from a geometric perspective,
molecules can either be loaded into optical lattices [22] or
optical tweezer arrays [25]. As in other quantum simulation
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platforms, Floquet engineering [31,32]—high-frequency, pe-
riodic time modulation—can further sculpt the molecules’
interaction, broadening the scope of accessible phases [33,34].

In this article, we provide an explicit experimental
blueprint for realizing another unobserved phase of matter,
the Hopf insulator, in polar molecules. The Hopf insulator is
a particular topological insulator, characterized by a linking
number topological invariant arising from the unique topology
of knots in three dimensions and the Hopf map of mathe-
matics [35,36]. Notably, it exists only in two-band systems,
falling outside the traditional “tenfold way” classification of
topological insulators [37,38] and suggesting that it might
possess different physics than the most well-known examples
of these phases. Despite much interest in both the Hopf insula-
tor [36,39-50] and the physics associated with the Hopf map
more generally [51-54], experimentally realizing the Hopf
insulator has remained an open challenge, and even proposed
implementation platforms (e.g., in either conventional quan-
tum materials or cold atomic quantum simulators) remain few
and far between [41,45]. The key challenges arise directly
from the nature of the Hopf map. In particular, realizing
the Hopf insulator requires two essential ingredients: (1) the
presence of long-range hoppings and (2) strong spin-orbit

©2021 American Physical Society
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coupling, manifested in hoppings whose phase is spatially
anisotropic.

In an accompanying Letter [55], we predict that combin-
ing the dipolar interaction with Floquet engineering [31,32]
can naturally give rise to the Hopf insulator in interacting
spin systems. Here, we build upon this result by provid-
ing a quantitative blueprint using lattice-trapped ultracold
polar molecules, focusing for concreteness on 40 87Rp
[16,18-22]. Our approach takes advantage of the full tool
set of controls developed for polar molecular systems. In
particular, we envision a deep, three-dimensional optical lat-
tice, so that the molecules’ rotational motion constitutes the
fundamental degrees of freedom in the system. Rotational
excitations are exchanged between lattice sites via the dipolar
interaction, which simulates the hopping of hard-core bosons
on the lattice. The two-band, or “spin,” degrees of freedom
of the Hopf insulator are formed from two sublattices, distin-
guished from each other by the lattice light itself—different
intensity light forming the two sublattices induces different
level structures in the trapped molecules, according to the
molecules’ polarizability [23].

In contrast to prior studies [28,30,56], we utilize this
polarizability to isolate the Am = +1 angular-momentum-
changing component of the dipolar interaction, which pre-
cisely induces the requisite spin-orbit coupling of the Hopf
insulator [36]. To complete our construction, we demonstrate
that Floquet engineering can be implemented using ampli-
tudes of applied laser light and DC electric fields, which
are easily accessible in current-generation experiments; more-
over, we show that this engineering can tune the system’s
hoppings into the Hopf insulating phase with large band
gaps 20.26t,, (in units of the nearest-neighbor hopping, ),
enabling easier experimental observation. Finally, a partic-
ularly simple way to achieve the requisite rotational level
structure (Fig. 1) is to utilize circularly polarized optical ra-
diation in conjunction with the molecule’s AC polarizability.
To this end, in order to demonstrate quantitative feasibility, we
provide detailed calculations of the relevant circular polariz-
abilities for “°K 8’Rb.

Direct experimental verification of the Hopf insulator is
most simply achieved through spectroscopy of its gapless
edge modes. In the accompanying Letter [55], we demonstrate
that these edge modes are robust at any smooth boundary of
the Hopf insulating phase, while for sharp boundaries, their
presence or absence signifies the existence of an underlying
crystalline symmetry [44]. We will show that all three of these
qualitatively distinct boundary spectra can be manufactured
and probed in ultracold polar molecule simulations. Since the
Hopf insulator’s edge behavior is a direct result of it being
outside the conventional tenfold way, this serves as a direct
experimental probe of the Hopf insulator’s unique topological
classification.

Our manuscript is structured as follows. We begin with
an overview of the Hopf insulator, with a specific focus on
the requirements—a two-band system, and long-range, spin-
orbit-coupled hoppings. We then turn to the setting of our
proposal, outlining precisely how the rotational excitations
of polar molecules can simulate spin-orbit-coupled particles
hopping on a lattice. Next, we demonstrate how particular
patterns of Floquet driving can provide tremendous control

FIG. 1. Schematic geometry depicting a three-dimensional (3D)
optical lattice of polar molecules with two layered sublattices A and
B. Orbital motion of the molecules is frozen by the optical lattice.
The level structure of the J = 0, 1 rotational states on the A (left) and
B (right) sublattices. The purple highlighted states form the hard-core
bosonic doublet for each sublattice, and their energy splitting A is
tuned by external fields to be degenerate between sublattices.

over these hoppings, and numerically verify that these can be
used to tune the system into a large band-gap, Hopf insulator
phase. We present the edge modes of the polar molecular Hopf
Hamiltonian and show that they display three qualitatively
distinct spectra, dependent on the lattice termination. Finally,
we conclude by providing a detailed description of all aspects
of the proposal’s implementation in a three-dimensional opti-
cal lattice of “°K ¥’Rb.

II. THE HOPF INSULATOR

We begin with an introduction to the Hopf insulator, seek-
ing to motivate the connection between the linking number
interpretation of the Hopf invariant and the long-range spin-
orbit coupling required for its physical realization.

The Hopf insulator is a particular type of topological in-
sulator [57-64], a class of phases of matter most notable
for exhibiting conducting surface states despite an insulat-
ing bulk. They are differentiated from conventional insulators
by a nonzero topological invariant associated with their un-
derlying spin-orbit-coupled band structure; moreover, their
surface states are unusually robust to the detrimental effects of
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impurities. Their organization was first captured via the so-
called tenfold way classification [37,38], and consists of a
wide landscape of phases dependent on a system’s dimen-
sionality and symmetries. Nevertheless, more recent work has
exposed topological insulators that exist beyond this clas-
sification framework; notable examples include topological
crystalline insulators [65], higher-order topological insulators
[66], and our insulator of interest, the Hopf insulator [36,39—
41,43-45].

The Hopf insulator exists in three dimensions in the
absence of any symmetries, for which the tenfold way clas-
sification [37,38] would nominally predict only an ordinary
insulator. In our context, it will consist of hard-core boson
degrees of freedom hopping on a three-dimensional lattice
(although one is accustomed to thinking of topological insu-
lators in terms of fermions, their single-particle nature also
enables a hard-core bosonic realization). The bosons come in
two “pseudospins,”’ A and B, which will form the two bands of
the system. These may be formed from physical spins, but are
not required to be—in our realization, they will correspond to
two sublattices of the three-dimensional lattice. In real space,
the Hopf insulator Hamiltonian takes the generic form

1 .
Heff - E Z [tl(‘)(ﬁaiwtr.aa“ﬂ + H‘C'] +Z Maav,aaVva’ (1)
v.r#0, v,
a, B

where af , is the creation operator for a hard-core boson
at lattice site v of pseudospin « € {A, B}. The Hamiltonian
consists of both pseudospin-preserving (tA4 and t58) and
pseudospin-flipping (tA2 and t24) hoppings, as well as a
pseudospin-dependent chemical potential p*.

The topology of the Hopf insulator is most easily seen in its
momentum-space representation, governed by the two-by-two
matrix H*? (k) = Yoo Boikr 4 u¥8%#. This is conveniently
decomposed as H(k) = np(k)1 + n(k) - o, where the Pauli
matrices o act on the pseudospin degrees of freedom, which
form the two bands of the Hopf insulator, and the condition
that the bands are gapped requires |n(k)| > 0. We can view
this Hamiltonian as a map that takes vectors k in the Brillouin
zone to points fi = n/|n| on the Bloch sphere. To see the Hopf
insulator’s topology, consider the pre-images of two different
Bloch sphere points i, fi’ in the Brillouin zone, i.e., the set of
momenta Kk such that fi(k) = i, or fi(k) = /. Since the Bril-
louin zone is three dimensional—one dimension higher than
the Bloch sphere—these pre-images are generically 1D loops
in the Brillouin zone. The Hopf invariant / of the Hamiltonian
H (k) is precisely equal to the linking number of these two
loops, for any choice of i, ft’ [Fig. 2(a)]. The invariant can be
calculated from the Bloch Hamiltonian via the Chern-Simons
form [36],

h= / d’k (KA, (K), )
BZ

where j*(K) = ée““ﬁ - (O, B x 0, ) is the Berry curvature
and A, (k) its associated vector potential.

The linking number interpretation leads to two observa-
tions, one which explains the need for long-range hoppings
and the other which justifies the required form of spin-
orbit coupling. First, the rapid variation in n(k) required

FIG. 2. The Hamiltonian of the Hopf insulator maps closed loops
in the Brillouin zone to points on the Bloch sphere, with the unique
property that any two loops have linking number equal to the Hopf
invariant. The above loops are solved for using the proposed exper-
imental dipolar spin Hamiltonian specified in the text—their linking
provides a visual verification of the Hopf insulating phase. The fi =
X, § pre-images (blue, black tubes) are 90° rotations of each other
about the k, axis (vertical black line) due to the spin-orbit-coupled
hopping 48 ~ ¢'¢.

for pre-image linking necessitates the presence of strong
long-range hoppings, which contribute oscillations ~e’*T to
n(k), at a frequency proportional to their range r. Specif-
ically, no nearest-neighbor Hamiltonian is known for the
Hopf insulator; the prototypical Hopf insulator Hamiltonian
[36] features as far as next-next-nearest-neighbor hoppings.
Second, pre-image linking, by definition, requires a strong
coupling between the pseudospin degree of freedom and the
momentum, much as is true for other topological insulators.
Inspired by the model of Ref. [36], in this work we re-
alize a specific form of this spin-orbit coupling, generated
via pseudospin-flipping hoppings with a direction-dependent
phase 148 ~ ¢, where ¢ is the azimuthal angle of the hopping
displacement r (Fig. 3). This form of hopping locks the n,, n,
components of the pseudospin to the k,, k, components of the
momentum, such that the pre-image of, e.g., i = X, is exactly
a 90 degree rotation about the k, axis of the pre-image of
n =§. As illustrated in Fig. 2, this simple correspondence

FIG. 3. Depiction of the intersublattice  “hopping”
[0,0)4]1, 1) — |1,0)4]/0,0)p, in which a hard-core bosonic
excitation on sublattice B hops to sublattice A. This is induced
by the dipolar interaction, and occurs with a hopping matrix
element 2% ~ ¢ with phase equal to the azimuthal angle ¢
between the dipoles. This phase profile arises from the spherical
harmonic C?,,,_, (8, ¢), since the hopping changes the total angular
momentum of the system by Am = —1. Sublattice B molecules are
depicted as spinning to indicate their nonzero z-angular momentum
in the excited state.
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leads naturally to linking of the two pre-images. While this
simple argument applies only to pre-images related by 90 or
180 degree rotations about the z axis (due to the cubic lattice
symmetry), this is, in fact, sufficient: in a gapped model, the
linking number is constant for all pairs of pre-images. We note
that this same phase profile of the hoppings is also present
in two-dimensional realizations of Chern insulating physics,
both in the prototypical Qi-Wu-Zhang model [67] as well as
in positionally disordered systems [68].

In the following two sections, we demonstrate that systems
of dipolar interacting spins provide a natural ground to re-
alize both of these key ingredients. We begin by describing
how a particular configuration of the spins’ level structures
leads to the effective hard-core boson Hamiltonian of Eq. (1),
including the desired spin-orbit coupling 28 ~ ¢/®. We then
augment the bare dipolar hoppings with a Floquet engineer-
ing scheme, which serves to decrease the relative strength of
nearest-neighbor hoppings and provides useful experimental
parameters for tuning into the Hopf insulating phase.

III. THE DIPOLAR HAMILTONIAN

We now turn to the setting of our proposal. We envision
a three-dimensional optical lattice filled with ultracold polar
molecules. We work in the deep lattice limit, so that the
molecules themselves do not hop between lattice sites, and the
molecules’ rotational states form the fundamental degrees of
freedom of our system [21]. As shown in Fig. 1, the lattice
is formed by alternating planes of two-dimensional square
lattices, stacked in the z direction. These form two sublattices,
A and B, which will play the role of the pseudospin in the Hopf
insulator.

The molecules are most strongly governed by the rotational
Hamiltonian Hy,, = AJ?, with eigenstates |J, m,) indexed by
their orbital (J) and magnetic (m;) angular momentum quan-
tum numbers, which have energies £ = AJ(J + 1) and wave
functions described by the spherical harmonic functions [69].
While naturally organized into degenerate manifolds of each
J, the m; eigenstates are split by both intrinsic hyperfine in-
teractions and funable extrinsic effects resulting from electric
fields, magnetic fields, and incident laser light. These extrinsic
effects (which set the molecules’ quantization axis, i.e., Z in
Fig. 1) enable a direct modulation of the rotational states’
energies in both space (to distinguish between the A and B
sublattices) and time (to implement Floquet engineering).

We now aim to use these rotational states to realize an
effective Hamiltonian of hard-core bosons, as in Eq. (1).
We focus on the lowest four rotational eigenstates (i.e., the
J = 0,1 manifolds), and use these to define two distinct
hard-core bosonic degrees of freedom. On the A sublat-
tice, we form a hard-core boson from the doublet {|04) =
|0, 0)4, |14) = |1,0)4}, while on the B sublattice, we utilize
{l0g) =0, 0)p, |15) = |1, 1)}, as illustrated in Fig. 1. The
hard-core bosons interact with each other through the dipolar
interaction [70],

ij _\/6 Z 2 2 (O 10))
Hdd = 4 }’3 ZC—A1711(9’¢)TA'"J(d ’d )’ (3)

€
0 AWI_[:-Z

where (7, 0, ¢) parameterizes the separation of the interacting
molecules i and j in spherical coordinates, and we compress
the unit and sublattice indices into a single index i = v, «.
The dipole moment operator d® = (", d9d\") is a rank-1
spherical tensor acting on the rotational states of the molecule
i, whose three components change the molecule’s magnetic
quantum number by (—1, 0, +1), respectively. The spher-
ical harmonics C?,, (6, ¢) capture the spatial dependence
of the interaction and are accompanied by the correspond-
ing component of TAzm, the unique rank-2 spherical tensor
generated from the dipole operators d®, d'/). Explicitly,
we have T2, = d"d”, 12, = (ddY +dDd?) /N2, T} =
@dPdY +2d9d? + dPai") /6.

A few remarks are in order. First, we will assume that the
dipolar interaction strength is significantly weaker than the
energy splittings within the / = 1 manifold. Second, we will
tune the splitting between the |04) and |1,4) states to be reso-
nant with that of the |0g) and | 1) states (Fig. 1). Conservation
of energy then dictates that the dipolar interaction can only
induce transitions within our prescribed hard-core bosonic
doublets, i.e., those that preserve boson number. These tran-
sitions take the form of hoppings in the bosonic Hamiltonian,
tij = (0,‘, lleééIl,‘, ()]>

These hoppings may occur either within a sublattice (t2
and #8%) or across sublattices (t%). With the prescribed ge-
ometry and level structure, we have

A d3 3cos’(0) —1
r 4 ey r3 ’
B8 _ d2, 3cos’(@)—1 @
r 87e€g r3 ’
AB _ ( BA)* _ 3 dyody; cos(f)sin() ot
r o 427 €y r ,

where (r, 0, ¢) parameterizes the displacement between sites
in spherical coordinates, equal to r for intrasublattice hop-
pings and r + bZ for intersublattice hoppings (where b is
the vertical distance between A and B planes), and dy,
do; are the dipole moments dy = (1, 0]|d,|0, 0) and dy; =
(1, £1]d+]0,0). Our choice of rotational states guarantees
that the intersublattice hopping #A2 arises solely from the
Amy = +1 term in Hyg, which gives rise to a hopping phase
tAB ~ ¢ via the C2, spherical harmonic. As illustrated in
Fig. 2, this naturally leads to linking between the Bloch sphere
pre-images. Finally, variations in the energy splitting between
sublattices naturally appear as effective chemical potentials
n®, completing the realization of the Hamiltonian given by
Eq. (1).

IV. FLOQUET ENGINEERING

While the dipolar interaction elegantly realizes the req-
uisite spin-orbit coupling, relatively strong nearest-neighbor
hopping as well as the slow asymptotic decay of the 1/R?
power law preclude numerical observation of the Hopf in-
sulator. To this end, we utilize Floquet engineering to two
effects: first, to decrease “odd” hoppings in the xy plane
(those with odd r, + r,) and, second, to truncate the dipolar
power law in the z direction [32]. We achieve each effect by

063322-4



FLOQUET ENGINEERING ULTRACOLD POLAR MOLECULES ...

PHYSICAL REVIEW A 103, 063322 (2021)

adding spatiotemporal dependence to the chemical potential
uy (t), and oscillating each py(f) at timescales much faster
than the hopping. Under certain conditions (specified below),
this leads to an effective time-independent Hamiltonian of the
same form as Eq. (1), but with modified hoppings,

2P — peP ek, Q)

where the damping coefficients ﬂfﬁ are determined by the
specific profiles of the oscillated chemical potentials, u$ (¢). In
what follows, we first derive this relation explicitly [Eq. (12)],
and then introduce two Floquet engineering schemes [i.e.,
explicit profiles for the spatiotemporal dependence of u$ (¢)]
that achieve the hopping modifications described above.

A. Overview of Floquet engineering

We begin with a broad introduction to Floquet engineer-
ing using a time-dependent chemical potential, following
Ref. [32] but modified to include sublattices and complex
hoppings. We consider a time-dependent Hamiltonian of the
form given by Eq. (1) where the chemical potential 1§ () now
varies with the lattice site v as well as periodically in time
t, with a period T. To calculate the effect of the driving, we
move into a rotating frame, defining the unitary

U(z):exp[—ifo dt’%%;,u‘j(t)of}, (6)

and the rotated wave function
W) = U O)W(@)), (7)
whose time evolution is governed by the Hamiltonian

H'@)=U"OHOU @) — iU (U (1)

1 . ! ! o / !
=5 2 (exp{—z/o dr’ [15, (1) — Wit )]}
v,r#0,
o, p
x 18 al ., gavp + Hc> 8)

At high frequencies, 1/T > [t&?], the rotated Hamilto-
nian is well approximated by replacing all quantities by their
average over a single period. This gives an effective time-
independent Hamiltonian

1

fr
H" =~ Z [,Bgfr’v 1P ai+r,aav,ﬂ +H.c.]

v,r#0,
a, B

+ Y ulal ava, ©)
v,o
with a static chemical potential

1 T
e = ;/ dt p (o), (10)
0

and hoppings suppressed by the dampings,

N 1 T ) t
vfr,v = ?/ dt exp {_l/ dt/ [Mg+r(t/) - Me(t/)]}
0 0

T '
:l f dt (cos {f dt’ [;,L$+r(t') — ,uv’g(t')]}
T Jo 0
—isin{ftdt' [Mg—kr(ﬂ)_l’be(i’)]})' (11)
0

For convenience, we will always choose u§ () to be an even
function of ¢, in which case the imaginary part of the damping
vanishes and we have

T t
ffrv = l/ dt cos {/ dt’ [u@‘ﬂ(t/) - ué(t’)]}. (12)
’ T Jo 0

In this case, the dampings modulate only the hoppings’ mag-
nitudes, and not their phase.

Since the modulation is generically inhomogeneous, care
must be taken to ensure that the dampings are in fact
translation invariant, By fr’v = B, if one desires translation
invariance in the effective Hamiltonian. This constraint re-
quires that cos { fé dr' [ug (') — ué (t")]} be independent of
v. For intrasublattice hoppings (o« = ), there are two ways
to achieve this: (1) with a “gradient” modulation, where
Wy (t) is linear in v, and (2) with an “even-odd” modulation
uE(t) = p(—1)svtantst: g e {0, 1}. (The latter is possi-
ble because we restrict to the cosine term of Eq. (11), which
is even in p and thus requires only the absolute value of
e (') — pug(t') to be independent of v). For intersublat-
tice hoppings (o # f), this constraint additionally requires
that the sublattices’ modulations differ only by a position-
independent function of time, namely,

Wo(t) = juy (1), p() = py(@) + ps (). (13)
These lead to damping coefficients,
1 T t
pit = B8 = —/ dt cos {/ dt’ [pyse (') — Mv(t/)]},
T Jo 0
1 T t
B’ =% / dt cos { / dr’ [py4e(t') = () = uSLa’)]},
0 0
14

for the intra- and intersublattice hoppings. We must also en-
sure that py is translation invariant, which requires only that
the average modulation is the same in each unit cell v.

B. Even-odd modulation in xy plane

The first scheme for Floquet engineering serves to suppress
the strength of nearest-neighbor hoppings relative to next-
nearest-neighbor hoppings in the xy plane. The modulation
takes the form of the even-odd modulation previously men-
tioned, with s, = s, = 1, 5, = 0. Specifically, we take

1 (1) = (=" Qg™ cos(Q7 1),
wep (1) = QVgg cos(2V1), (15)

where frequency Q* is 27 times the inverse period, and g
and g5 are parameters to be tuned. Performing the inte-

gral inside Eq. (14) and using %fOT dt cos[gsin(2nt/T)] =
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% fozn dx cos [gsin(x)] = Jy(g) gives damping coefficients

gt _ Jo(g™), ry +ry = odd
LA N ry +ry = even,
Jo (g"y + gg‘), ry + ry = odd

B = [ (16)

Jo(8s1)-
where Jy(g) is a Bessel function of the first kind. We
see that “odd” distance hoppings (including nearest neigh-
bor, 7, +r, =1) are reduced relative to “even” hoppings
(including next-nearest [r, = ry = 1] and next-next-nearest
neighbor [r, = 2, r, = 0, and vice versa] hoppings, both with
ry +ry = 2). The parameters ¢ and g5 give independent
control over the ratio of even to odd hoppings for both inter-
and intrasublattice hoppings.

ry +ry, = even,

C. Truncation in the z direction

The second use of Floquet modulation is to truncate hop-
pings from power law to short ranged in the z direction [32].
Unlike the previous xy modulation, we do not have an intuitive
explanation for why one needs such a truncation. Neverthe-
less, we observe numerically that it is necessary for realizing
the Hopf insulator phase. We take % () to be a gradient in the
z direction,

wy(0) = v Qg (1), g (1) = ggy (1), (17)

with frequency ©° in time. This gives dampings

2 x
B = L/ dx cos I:rZ / dx’gz(x’)j|,
27 Jo 0
2 X
BB = ZL dx cos { / dx' [rg (') — gZSL(x/)]}'
T Jo 0

(18)

These can be evaluated numerically once the functions
8(Q2;1), g5 (£21) are chosen. Reference [32] showed that the
modulation can be tuned to give hoppings that are effectively
nearest neighbor in the z direction, at the cost of some loss
of magnitude of the nearest-neighbor (|r;| = 1) hopping. For
experimental simplicity, we take the modulations to be piece-
wise constant in time,

(2g1 +2)v,, 0 <t <¢i/2
. (28> + v, 1 < Qt < /2
My (82:1)
S = { Qg+ D, o < Qut <7/2
) i (= Q) +4v, w/2<Qt <7
—,uf”(2n — Q,t), o< Qt <21,
2g1v; + 2g3°, 0< Q1 <1/2
5 () 2gv; + 283, $1 < Qt < /2
T = {2g3v, + 283, ¢ < Qt < 7/2
‘ — gy (T — Q1), w/2 < Qt <
—Wpy (2 — 1), T < Qt <21

) S R e, S £
| L 1 -
] : oN =60
o l ~ 199 en=70
. | ? ° # Band gap
) A .
. ! | o0 () iva
ZE :E:"’%’% : e 10.3 D Gapless
o, [ ]
| S N o (0.0 () Hopf
] | H ] Jose|
0.50 0.75 1.00 1.25

Floguet driving amplitude A

FIG. 4. Numerical evaluation of the Hopf invariant & for N x
N x N discretizations of momentum space (colored circles) and
the band gap E, (black diamonds; in units of the nearest-neighbor
hopping f,,) of the specified dipolar spin system as a function of the
strength A of the Floquet driving (defined in the main text), calculated
with hopping range R = 8. The Hopf insulating phase (blue, right
shaded) is observed across a range of A; outside this range, the system
transitions to gapless (white) and trivial insulating (gray, left shaded)
phases.

Note that p  (€2.7) is even about 7, guaranteeing that damp-
ing coefficients are real valued [see Eq. (12)]. The parameters
gi, &* can be tuned to achieve the desired hopping truncation.

D. Combining the two modulations

We now show that both of the above schemes can be
implemented simultaneously, by choosing the frequencies of
each to be well separated. Specifically, we take the modulation
to be the sum of two components,

py (1) = (1) + pg @), (20)

where ;"% (1) is periodic with frequency % and 3% (¢) with
frequency 2%, and the frequencies satisfy either Q% > QF or
QY « Q% Under this assumption, the dampings ,83‘8 factor-
ize into a product of the two individual damping coefficients
defined in Egs. (16) and (18),

ﬂgﬁ — ﬂ‘);ysaﬂ 13501/3’ 21

as desired. We verify that this assumption holds quantitatively
in Fig. 6.

V. NUMERICAL VERIFICATION OF THE HOPF
INSULATING PHASE

We now turn to a numerical exploration of the single-
particle band structures supported in our dipolar Floquet
system. By tuning the geometric and Floquet engineering
parameters, we find transitions from topologically trivial
band structures to the Hopf insulator and identify parameter
regimes where the Hopf insulator’s band gap can be as large
as E, 2 0.26t,, (see Figs. 4 and 5). This occurs with a spacing
a = 0.99 between adjacent planes of the same sublattice in
the z direction (in units of the nearest-neighbor spacing in
the xy plane), a spacing b = 0.66 between adjacent planes
of the opposite sublattice, a staggered chemical potential
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FIG. 5. Numerical evaluation of the Hopf invariant 4 for N x
N x N discretizations of momentum space (colored circles) and
the band gap E, (black diamonds; in units of the nearest-neighbor
hopping #,,) of the specified dipolar spin system as a function of
the vertical spacing b between sublattices (in units of the nearest-
neighbor spacing in the xy plane), calculated with hopping range
R = 8. The Hopf insulating phase (blue, right shaded) is observed
across a large range of b; outside this range, the system transitions
to gapless (white) and trivial insulating (gray, left shaded) phases.
Note that the Floquet modulation breaks the geometric symmetry
b — 1 — b, and hence the spectrum is not symmetric about b = 0.5.

u? — uP =2.28 (in units of the nearest-neighbor hopping
in the xy plane), and Floquet engineering parameters g~ =
1.2, gg =0.1, g1 =—0.6, g =0.1, g3 = 1.1, gi- =

0.7, g§L =—04, &S =16, ¢; =02, ¢, = 1.8. These
optimal parameters were found to optimize the Hopf
insulating band gap via the basin-hopping optimization
algorithm, a stochastic optimization algorithm that works
well in rugged, high-dimensional optimization landscapes
[71,72]. It consists of alternating steps of (i) performing local
optimization to find a nearby local minima in the nearby
energy landscape (i.e., the “basin”), and (ii) randomized
“hopping” to more distant basins, whose local minima are
then computed by repeating the first step. The Floquet
engineering amplitudes are quite robust and can be varied
together (replacing g — Ag for all amplitudes defined above)
by ~25% about their optimal values while preserving Hopf
insulating behavior (Fig. 4). The staggered chemical potential
can be varied by ~20% [55]. Performing similar calculations
for the lattice parameters, we find that the intrasublattice
distance is also relatively robust and can be varied between
0.5 and 0.9 (Fig. 5), while the z-lattice spacing is slightly
more sensitive, and should be kept within 0.92—1.08 in units
of the x/y-lattice spacing (note that the most natural value of
1 lies well within this range).

We compute the momentum-space Bloch Hamiltonian by
summing the Floquet engineered dipolar hoppings defined in
Egs. (4), (14), and (18). To truncate the infinite sum over the
hopping distance, we only include hoppings to sites that are,
at most, R unit cells away in each direction, i.e., |r,| <R
for each u = {x,y,z}. The Hopf invariant is computed by
evaluating the integral given by Eq. (2) on an N X N x N
grid in momentum space, solving V x A(k) = j(k) in the in-
verse Fourier domain to obtain the Berry connection [36]. The

computed invariant converges quickly to 1 as the discretiza-
tion N becomes large, e.g., h — 1 & 10°at N=70,R=4
(see, also, Figs. 5 and 4). We also see quick convergence
of the band gap when increasing R, observing quantitative
agreement within 10% for all 4 < R < 32 and within 1% for
all 8 <R < 32.

VI. EDGE MODES OF THE DIPOLAR FLOQUET
HOPF INSULATOR

In addition to its linking number invariant, the Hopf insu-
lator’s edge modes represent one of its key signatures and,
crucially, one which can be experimentally probed. Up to
now, these edge modes are only expected to appear at bound-
aries that are smooth at the scale of the lattice length, which
act as a continuous variation of the two-band momentum-
space Hamiltonian H (k) across the boundary region. In this
case, the Hopf insulator’s nontrivial homotopy classification
requires a gap closing in any edge between the Hopf in-
sulator and the trivial insulator. Nevertheless, gapless edge
modes have been observed numerically for “sharp” bound-
aries (i.e., open boundary conditions) [36] and, moreover,
for the (001)-edge, were even shown to be robust to certain
perturbations [39].

Meanwhile, recent work [44] has shown that the Hopf
insulator’s classification can be stabilized to higher bands by
a certain crystalline symmetry,

JH&)"'J ' = —H(k), (22)

where JJ* = —1, although its classification is reduced to a Z,
invariant for band number greater than 2. This symmetry is,
in fact, automatically satisfied in translationally invariant two-
band systems (taking J = oy), and can generally be viewed as
the composition of inversion and particle-hole symmetries.

Interestingly, we observe that—despite involving inversion
symmetry—this crystalline symmetry is also obeyed at the
edge of a two-band system, in the specific case of a sharp
boundary (open boundary conditions). To see this, note that
open boundary conditions are equivalent to an infinite é func-
tion potential barrier at the edge of the system, Hegee = 006,
p — 00, where o, acts on the sublattice degrees of freedom.
In momentum space, this potential induces real all-to-all cou-
plings between different values of k_, Hekd’k; = 008k, k Ok, k-
This is now easily seen to obey Eq. (22) with J = o,.

This observation suggests that the edge modes previously
observed at sharp boundaries of the Hopf insulator are, in
fact, protected by this “unintentional” crystalline symme-
try, and are therefore not robust to perturbations that break
the symmetry. To test this, we solve for the (100)-edge
modes of the dipolar Hopf insulator via exact diagonaliza-
tion for three different edge terminations: sharp, sharp with
a symmetry-breaking perturbation, and adiabatic. We observe
three qualitatively distinct spectra [Figs. 6(a)-6(c)]. The sharp
edge hosts a linear energy degeneracy, consistent with pre-
vious studies [36,39]. To break the crystalline symmetry, we
add a site-dependent chemical potential iy 1 localized on the
two unit cells v nearest the edge. This perturbation gaps the
edge mode, supporting our conjecture that the sharp edge
modes of the Hopf insulator are, in fact, crystalline symmetry
protected [73].
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FIG. 6. Spectra for the (100)-edge of the Hopf insulator along the diagonal k, = k, k, = 7 + k, calculated from the effective Hamiltonian
in Eq. (9). Color indicates a mode’s mean x position, from red (light gray; localized at left edge), to black (bulk), to blue (dark gray; localized
at right edge). Dashed lines mark the bulk band gap. A sharp edge (open boundary conditions) respects the symmetry given by Eq. (22) and
leads to a gapless Dirac cone spectrum (far left). Adding a symmetry-breaking perturbation—in this case, a chemical potential on the two
sites nearest the edge—gaps the Dirac cone (left center), demonstrating the nonadiabatic edge modes’ lack of protection. In the adiabatic
limit with edge termination smoothed over ~20 lattice sites, the edge spectrum is again gapless (right center). However, the Hopf invariant
now protects the edge modes against all smooth perturbations to edge, including a smoothed bump in the chemical potential in the edge
region (far right). For given transverse momenta k,, k., the spectrum is calculated by first Fourier transforming the Hamiltonian along the y
and z directions, and then performing exact diagonalization on the remaining 1D Hamiltonian. Sharp and smooth edge spectra are calculated
for a lattice with 80 and 160 unit cells in the x direction, and hoppings are truncated at a range R = 8. As a check on the high-frequency
approximation leading to the effective Hamiltonian given by Eq. (9), we also perform the same computation for the exact Floquet Hamiltonian,

Hr = iln{T exp[—i fOZ”/ @ g (t)dt1}, at driving frequencies Q, = 25,,, 2. = 6001t,,, and observe qualitatively identical edge spectra.

Finally, we consider smooth boundaries between the Hopf
insulator and the trivial insulator. To construct smooth bound-
aries, we take the hoppings to be constant throughout the
lattice, while an x-dependent staggered chemical potential
U0, tunes the Hamiltonian between the trivial phase at each
end of the lattice and the Hopf insulating phase in the center.
This interpolation occurs smoothly over two “edge regions”
on either side of the Hopf insulating phase, consisting of ~20
lattice sites each. Shown in Fig. 6(c), these smooth edges also
feature gapless edge modes. Importantly, the gaplessness of
these edge modes is robust to any smooth perturbation to the
lattice, including a “smoothed” version of the site-dependent
chemical potential that was observed to gap the sharp edge
mode [Fig. 6(d)].

VII. EXPERIMENTAL PROPOSAL

We now turn to our central result: a detailed blueprint
for realizing the dipolar Hopf insulator using ultracold po-
lar molecules. An explosion of recent experimental progress
has led to the development of numerous possible molecular
species [2—4,6,16], but for concreteness (and to demonstrate
that the requisite separation of energy scales can be quantita-
tively realized), here we focus on 40K 87Rb [16,18-22].

We begin with the geometry and rotational level diagram
illustrated in Fig. 1. The 3D optical lattice is generated using
four pairs of counterpropagating beams, with two forming
the xy lattice and two forming the A and B sublattices in the
z direction. For experimental convenience, we envision the
two sublattices to be formed by beams with orthogonal linear
polarizations of light. In this case, a birefringent mirror can

control the relative phase between the two reflected beams,
which in turn determines the separation between sublattices.

To realize the rotational level diagrams of Fig. 1, we first
propose to tune the rotational states |1,0) and |1, 1) of all
molecules to be approximately degenerate using applied DC
electric and magnetic fields, oriented in the z direction with
amplitudes 1650 V/m and —490 G, respectively [74]. The de-
generacy between the |1, 0) and |1, 1) states, and, in turn, the
sublattice symmetry between the A and B planes, can then be
broken by using different intensities of light to form each sub-
lattice. Owing to the AC polarizability of “°K 3"Rb, the lattice
beams not only trap the molecules in the designated geometry,
but also induce my;-dependent shifts in the molecules’ rota-
tional states proportional to the beams’ intensities [23]. The
individual intensities, Iy and I, can therefore be tuned such
that the transitions |1, 0)4 <> |0,0)4 and |1, 1)g <> |0, 0) 5 are
near resonant with each other, yet off resonant with all other
transitions. Specifically, we calculate that x-polarized light
with intensities I, = 0.43 and Iz = 0.54 kW/cm? leads to
the desired near resonance, with an energy gap 6 ~ 5 kHz
to the nearest rotational state outside the prescribed doublets.
Energy levels are calculated as in Ref. [23], and we assume
that the x and y lattices are formed with z-polarized light of
intensity 5 kW /cm?. The molecule “°K ®’Rb has a rotational
splitting A = 2.2 GHz and a measured dipolar interaction
strength r ~ 50 Hz when trapped in a 3D optical lattice with
1064 nm light [21]. This scheme therefore naturally leads to
the desired separation of energy scales, 1 < § < A.

With the energy levels in hand, let us turn to the imple-
mentation of the Floquet modulations (Fig. 7). To realize
the xy-plane modulation, we can again rely upon the AC
polarizability, using a two-dimensional intensity-modulated
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FIG. 7. Schematic of the proposed experiment, highlighting the
mechanisms for Floquet modulation. The lattice (light-gray waves)
is formed by three standing waves of laser light (beams not pic-
tured). Stable electric field gradients are controlled by an electrode
system of tungsten rods (dark-gray cylinders) and transparent plate
electrodes (tan rectangles), while coils (brown spirals) generate a
homogeneous magnetic field [75]. The xy-Floquet modulation is gen-
erated by z-polarized lasers forming a standing wave in the (X & )
directions (large orange arrows, left and right; polarization in small
black arrows), using the AC polarizability of **K ¥Rb. The z-Floquet
modulation is generated by a circularly polarized laser in the z direc-
tion (large purple arrow, bottom; polarization in small black arrow),
which forms an intensity gradient along its direction of propagation
due to the natural transverse spreading of a Gaussian laser beam.

standing wave to directly tune the molecules’ energy levels
nonuniformly in both space and time. The energy shifts of
the |1,0)4 and |1, 1)p states can be made equal [necessary to
ensure the modulation is of the form of Eq. (13)] by tuning
the polar angle of the light’s polarization to 6 = 0.96 rad,
owing to the anisotropic polarizability of “°K ’Rb [23]. An
additional stationary standing wave on the even sites can
cancel the site-dependent nonzero average of the modulation,
preserving translation invariance of the effective chemical
potential. At a modulation frequency, 2, ~ 500 Hz, much
greater than the dipolar interaction strength, #,, ~ 50 Hz, the
optimal modulation strength g* = 1.2 requires an intensity
~107%2 kW /cm?. An additional space-independent modula-
tion of the two beams enables a difference between the two
sublattices’ modulations, achieving a nonzero gg) .

This method does not work for the z-gradient Floquet
modulation, as a z gradient in the light’s intensity is nec-
essarily accompanied by a polarization in the orthogonal
xy plane. In addition to shifting the molecules’ energy lev-
els, such a polarization would also induce mixing between
rotational states, contaminating the desired hopping phase
structure. Rather, we propose to achieve the z-gradient Flo-
quet modulation by combining two independent sources of
modulation [Figs. 8(c)-8(e)]. First, we apply an oscillating

electric field gradient of the order of SE/§z ~ 1 kV/cm?.
This gradient alone is not sufficient to realize the modulation
of Eq. (13) because it shifts the energies of the the |1, 0)4
and |1, 1)p states differently, owing to their different polariz-
ability. We therefore combine this with a circularly polarized
beam tuned near, but off, resonant with the 3ITy+ electronic
excited state of “°K 8’Rb, which shifts the energy levels of
the low-lying rotation states of interest via the AC Stark shift
[Figs. 8(a)-8(c)]. We imagine the beam to be traveling in
the z direction, with the natural transverse spreading of the
beam along its propagation axis giving rise to a z gradient
in intensity 61(z)/8z ~ 1(z)/z [76]. To this end, we perform
calculations of the AC polarizabilities of *°K ¥’Rb with cir-
cularly polarized light as a function of detuning from the
b*Tly+ state [Fig. 8(b)] using experimentally adjusted poten-
tial energy curves [77,78] as well as parallel and perpendicular
electronic polarizabilities [23], which we expand on in detail
in the following section. For o light, the polarizabilities
have poles at the resonant transition frequency to the excited
J = 2 state, which allows the corresponding energy shifts to
be precisely controlled by the detuning over a large range.
Modulating the detuning about resonance (as a step func-
tion, to avoid any resonance-induced decay) precisely realizes
the desired Floquet modulation. Quantitatively, we find that
detunings Av ~ 1 GHz lead to AC polarizabilities «/h ~
1 kHz/(W /cm?), which in turn requires intensity gradients
81/8z ~5 W/(umcm?) to achieve the optimal Floquet pa-
rameters at modulation frequency . ~ 5SkHz > Q,,. Ata
distance z ~ 100 pum, the desired intensity gradient is thereby
achieved with a modest intensity 7 ~ 0.5 kW /cm? and power
P ~I(z) x 2> ~ 50 mW [76].

We do not expect our proposed Floquet modulations to
introduce substantial heating to the molecular system for a
number of reasons. First, the modulations occur at a frequency
that is significantly faster than the Hamiltonian energy scales,
which exponentially suppresses many-body energy absorption
[79]. Second, since the Hopf insulator’s topology is charac-
terized via its single-particle band structure, one only needs
to excite a small number of molecules at any given time. At
this single-particle level, the primary concern turns to heating
from parametric processes associated with the laser intensity
modulation. In this case, one can again utilize a separation
of energy scales by choosing the frequencies of the Floquet
modulation to be far removed from any trap resonances (i.e.,
the trap frequency and its harmonics) such that no parametric
heating will take place [23,80]. Typical values of the trap
frequency for “°K 3’Rb experiments are ~20 kHz with a qual-
ity factor ~20 [80]; resonances are therefore easily avoided
both in our simple order-of-magnitude estimate, 2, ~ 5 kHz
and Q,, ~ 500 Hz, as well as our more quantitative estimate
in Fig. 6, using Q. = 600t,, ~ 30 kHz and Q,, = 25t,, ~
1.25 kHz.

The edge modes of the dipolar Hopf insulator can be
probed experimentally via molecular gas microscopy [81,82].
Here, a tightly focused beam applied near the edge induces
local differences in the molecules’ rotational splittings, en-
abling one to spectroscopically address and excite individual
dipolar spins. The extent to which such an excitation remains
localized on the edge during subsequent dynamics can be read
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FIG. 8. Depiction of the two-component driving scheme used to implement the z-gradient Floquet modulation. (a) One component
is realized using circularly polarized (o) light tuned near, but off, resonant with the electronic transitions |[X'Z,v=0,J =1, my) —
BTy, v =0,J =2, my + 1), with detuning Av. Here, X'S, v =0 denotes the electronic ground-state manifold of the molecule, and
b*Ty+, v = 0 the relevant electronic excited-state manifold. This induces energy shifts in the electronic ground states of interest, |1, 0)4
and |1, 1), proportional to the AC polarizability & of “°K ®’Rb at the particular detuning. (b) AC polarizabilities under circularly polarized
ot light as a function of the detuning Av, calculated from first principles. Red dotted lines label two detunings that are oscillated between to
achieve a step-function Floquet modulation. Red arrows indicate the corresponding polarizabilities. (c) Simplified depiction of the detuning
and resulting polarizabilities as a function of time 7. In the dipolar simulations, we use a higher parameter step function, given by Eq. (19),
which allows greater flexibility to optimize the band gap of the Hopf insulating phase. The AC light intensity is held constant in time (not
depicted). (d) The other component of modulation consists of an electric field gradient § E oscillated in time according to the same step function.
The (DC) polarizabilities o of the |1, 0)4, |1, 1)5 states under this field are constant in time. (e) The polarizabilities and field amplitudes in
(c) and (d) multiply to produce oscillating energy shifts u° (dotted purple) of the |1, 0)4, |1, 1) states. While each individual component of the
z-gradient modulation produces a different magnitude shift for each state owing to the states’ differing polarizabilities, the linear combination

of both components can be chosen to produce equal shifts.

out using spin-resolved molecular gas microscopy. For polar
molecules separated by a distance of 1 um, single-molecule
addressing of the |0, 0) — |1, 0) transition has been estimated
to require a beam of radius 1 um and a reasonable power of
10 uW [82]. The width of the edge region, typically large
due to a wide harmonic confining potential, can be tuned via
a number of recently developed techniques, including box
potentials [83], additional “wall” potentials [84], or optical
tweezers [85], allowing one to realize the three scenarios
depicted in Fig. 6.

VIII. DETAILS OF AC POLARIZABILITIES FOR
z-DIRECTION MODULATION

To effectively implement the Floquet modulation along
the z direction, we use circularly polarized light tuned
near a narrow transition, which allows light shifts to
be precisely controlled by the detuning from the tran-
sition. Specifying to the molecule *’K®Rb, we choose
the dipole-forbidden transition |[X'X+, v =0,J = 1,my;) —
|b* Mo+, v =0,J =2, my + 1) with 1028.7 nm [86] o light,
where m; = 0 for the A sublattice and 1 for the B sublattice.
With relatively weak laser intensity (of the order of W /cm?),
the light shift can be characterized by the AC polarizability of
the molecular state of interest. The polarizability is calculated
from two different contributions. The first and more important
contribution comes from the resonant transition, which has a
strong dependence on the detuning, and the second contribu-
tion comes from all other transitions, that have a negligible
dependence on the detuning in the range we are interested in.
Here we assume the detuning is much larger than the spacings

between |X'St,v=0,J =1, m;) states with m; = 0 and
+1, and these spacings are much larger than the light shifts.

To characterize the contributions from the resonant tran-
sition, we follow the recipe in Refs. [87-89]. The generally
complex dynamic polarizability for an alkali-metal molecule
in a rovibrational state of the ground X'Z* potential is
given by

a(hv, &)
1 Ef — E; — ihy;/2

=— dR - 2]i))?
e 2 iy, 27 — G IR IF,

(23)

where & and v are the polarization vector and the frequency
of the light, respectively, ¢ is the speed of light, ¢y is the
electric constant, R is the orientation of the interatomic axis,
and d is the dipole operator. i denotes the rovibrational state
|i) of interest with energy E; in the ground X'+ potential,
and the summation over f denotes the summation over all
rovibrational states |f) other than i with energies E; in all
electronic potentials, and y; describe the natural linewidths
of [f).

When the laser frequency is very close to the narrow
dipole-forbidden transition, the most significant contribution
comes from that transition which has a pole at the resonant
frequency and weakens as the inverse function of the detun-
ing. We treat all transitions from |X12+, v=0,J =1,my)
to rovibrational states in the 5°TTy+ potential using Eq. (23).
The largest contribution by far comes from the transition
to the excited v = 0 state due to the similarity of its radial
wave function to those in the ground potential. We use the
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experimentally adjusted potential energy curves for both the
excited b*I1y+ state [77] and the ground X' &7 state [78], and
a spin-orbit modified transition dipole moment between them
[90]. Since the natural linewidths of the lowest rovibrational
states in the b*ITy+ potential are much smaller (of the order of
kHz [86]) than the detunings that we are interested in (of the
order of GHz), we take y; = 0.

The background contributions from all other transitions
have negligible frequency dependence close to the 1028.7 nm
transition due to the large detunings from the corresponding
excited states. Thus we treat the background polarizabilities as
constants throughout the detuning range. We use the method
in Ref. [91] with experimentally determined electronic
parallel and perpendicular polarizabilities [23] to calculate
the background polarizabilities at 1064 nm and assume
them to be the same near the 1028.7 nm transition. More
specifically, we use /A = 10.0(3) x 107> MHz/(W /cm?)
and o /h =3.3(1) x 1073 MHZ/(W/sz) determined for
the wavelength of 1064 nm and obtain the background
polarizabilities o 1,0)/h = 4.64 x 107>  MHz/(W/cm?)
and  ape11y/h =598 x 107> MHz/(W/cm?) for o
polarization.

Finally, we add the two parts together to arrive at the total
AC polarizabilities shown in Fig. 8(b).

IX. CONCLUSIONS

We have completed our specification of how Hopf in-
sulating phases can be realized and detected in near-term
experiments on ultracold polar molecules. As one of the few
known topological insulators to fall outside both the tradi-
tional tenfold way classification as well as its extension to
crystalline symmetries, the Hopf insulator is a particularly
interesting phase of matter with many open questions eager
for experimental input. For instance, we have proposed using
the presence of a gapless edge mode at a smooth boundary,
probed by spectroscopy, as a robust experimental diagnostic
of the Hopf insulating phase. Recent work suggests that at
the (001)-edge, this mode should feature a nonzero Chern
number associated with an unusual bulk-to-boundary flow of
Berry curvature [46]; numerous techniques to measure the
Chern number have been developed [53,92-94], which may
allow one to detect this physics. Looking to the future, an
experimental Hopf insulator would be a vital resource in the
search for a bulk response characterized by the Hopf invariant
(analogous to the Hall effect in a Chern insulator), which so
far remains unknown.

Our blueprint may also provide a basis from which to real-
ize various extensions of the Hopf insulator. In our proposal,
we have already seen that polar molecules can realize certain
crystalline-symmetry-protected extensions of the Hopf insu-
lator [44,46], which can be detected independently from the
ordinary (noncrystalline) Hopf insulator by looking at sharp
edge terminations that respect the crystalline symmetry. Polar
molecules might also be used to realize driven extensions of
the Hopf insulator, for instance, the Floquet Hopf insulator
[47]. Here, one subjects the system to periodic driving at a

timescale comparable to the hopping time, which can lead
to a new Floquet Hopf insulating phase, characterized by a
7 x 7, pair of topological invariants that underlie an even
richer spectrum of edge mode behavior than in the nondriven
case. The Floquet Hopf insulator can be realized by strobing
a flat band static Hopf insulator with periodic 7 /2 pulses
of a staggered chemical potential [47]—the latter would be
easily realized via a ~100 Hz oscillation of the lattice light
intensity. Realizing a sufficiently flat band Hopf insulator is
a less trivial task, but the bandwidth could be optimized via
standard optimization techniques depending on the specific
set of available experimental parameters. More speculatively,
a flat band Hopf insulator might also be a natural launching
ground into many-body generalizations of the Hopf phase
(much as a flat band Chern insulator is a key ingredient for
the fractional Chern insulator [95]).

In the context of polar molecules, our work applies a
number of tools developed for controlling and cooling polar
molecules towards quantum simulation. We hope that some
selection of these tools may find broader utility. For instance,
our use of a sublattice-dependent lattice light intensity to re-
alize (pseudo)spin-orbit coupling via the Am = 1 component
of the dipolar interaction may prove fruitful in realizing other
topological phases as well. As a simple example to demon-
strate wider applicability, the exact same form of spin-orbit
coupling (28 ~ ¢) in 2D gives rise to Chern insulating
physics [67]. In polar molecule setups limited by the ability
to fill only a (random) fraction of the full set of lattice sites,
the Chern insulator might therefore provide a disorder-robust
[68] stepping stone to realizing the Hopf insulator. We have
also provided implementations of two independent Floquet
engineering schemes: an even-odd patterning utilizing the
molecules’ AC polarizability under lattice light, and a trun-
cation of the power-law dipolar interaction in the z direction
via a single circularly polarized Gaussian laser beam. Floquet
engineering has proven critical in other quantum simulation
platforms, and these techniques may serve as building blocks
for its use in polar molecules. At a higher level, our work
provides yet another piece of evidence for the power of dipolar
interaction, and the potential of polar molecules as a quantum
simulation platform.
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