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The use of spatial models for inferring members’ preferences from voting
data has become widespread in the study of deliberative bodies, such as leg-
islatures. Most established spatial voting models assume that ideal points be-
long to a Euclidean policy space. However, the geometry of Euclidean spaces
(even multidimensional ones) cannot fully accommodate situations in which
members at the opposite ends of the ideological spectrum reveal similar pref-
erences by voting together against the rest of the legislature. This kind of
voting behavior can arise, for example, when extreme conservatives oppose
a measure because they see it as being too costly, while extreme liberals op-
pose it for not going far enough for them. This paper introduces a new class
of spatial voting models in which preferences live in a circular policy space.
Such geometry for the latent space is motivated by both theoretical (the so-
called “horseshoe theory” of political thinking) and empirical (goodness of
fit) considerations. Furthermore, the circular model is flexible and can ap-
proximate the one-dimensional version of the Euclidean voting model when
the data supports it. We apply our circular model to roll-call voting data from
the U.S. Congress between 1988 and 2019 and demonstrate that, starting with
the 112th House of Representatives, circular policy spaces consistently pro-
vide a better explanation of legislators’s behavior than Euclidean ones and
that legislators’s rankings, generated through the use of the circular geometry,
tend to be more consistent with those implied by their stated policy positions.

1. Introduction. Spatial voting models (Davis, Hinich and Ordeshook (1970), Enelow
and Hinich (1984), Poole and Rosenthal (1985), Heckman and Snyder Jr. (1996), Jackman
(2001), Clinton, Jackman and Rivers (2004), Clinton and Jackman (2009)) are widely used to
estimate the preferences of legislators from roll-call voting records and have become an in-
valuable tool in the study of legislatures and other deliberative bodies. Spatial voting models
aim to scale binary and polychotomous responses into a continuous (potentially multidimen-
sional) linear scale and are related to traditional statistical tools for dimensionality reduction,
such as principal components and factor analysis. Spatial voting models are also intimately
related to item response theory (IRT) models (Fox (2010), Wilson and De Boeck (2004), van
der Linden and Hambleton (1997)) which are widely used in educational testing to estimate
abilities, attitudes or other unobserved features of respondents. In the context of voting data,
the latent space on which the responses are scaled is referred to as the policy space, while the
latent traits are referred to as the ideal points of the legislators.

Traditional spatial voting models rely on latent spaces endowed with Euclidean geome-
tries, and, therefore, tend to work best in political systems in which the parties are relatively
unified. Because of this, they struggle to explain voting patterns of legislatures in two-party
systems in which parties are “fractious.” In this kind of setting, it is common to see legislators
that most observers would consider to be at opposite ends of the ideological spectrum vote
together. Spirling and McLean (2007) and Spirling and Quinn (2010) consider one example,
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namely, the first Blair government (1997–2001) in the United Kingdom. This government
represented an uneasy alliance between a leadership that “had actively abandoned the ten-
ants of socialist policy making and that had received a landslide mandate to rule” and a
“historically and openly recalcitrant tranche of ‘Old’ Labour legislators, dismissive of the
modernizing project in its entirety” (Spirling and Quinn (2010)). In the United States the
conservative revolt led by the Tea Party movement during the 2010 election (Karpowitz et al.
(2011), Arceneaux and Nicholson (2012), Skocpol and Williamson (2016)) and the recent
rise of the Justice Democrats during the 2018 election (Lewis (2019a, 2019b)) represent two
more examples. Traditional spatial models fail in this setting where the “extremes vote to-
gether” because, under the Euclidean geometry, the “rebels” who sometimes vote with the
opposition must necessarily be placed somewhere in the middle of the scale. Neither increas-
ing the dimensionality of the latent space nor performing linear transformations of the latent
space can address this issue (see Section 2).

In order to gain insights into legislatures in which the extremes vote together, Spirling and
Quinn (2010) proposed a Bayesian nonparametric mixture model that identifies voting blocks
within the U.K. House of Common. In a similar spirit, Guimerà and Sales-Pardo (2011) and
Crane (2017) developed random partition models for studying the voting record of the U.S.
Supreme Court. While this kind of clustering models can provide valuable insights into the
functioning of a deliberative body, they do not yield the kind of fine-grained ranking that
has made spatial voting models so useful in practice. There is also an interesting literature
focusing on the effect of the underlying utility functions on the estimates of the ideal points
in Euclidean settings. For example, Carroll et al. (2013) describe a model in which the form
of the utility function (quadratic or Gaussian on the Euclidean distance between points) is
estimated from the data and conclude that extreme legislators are generally more sensitive to
policy changes than their more centrally located counterparts, while Humphreys and Laver
(2010) discuss the use of the “city-block” (i.e., L1) instead of L2 distances in multidimen-
sional spatial models and Eguia (2013) considers the general case of Minkowski (i.e., Lq )
distances, where q is a parameter that is to be estimated from the data. More recently, Duck-
Mayr and Montgomery (2020) develop a model with nonmonotone utility functions to ex-
plain the phenomenon of extremes voting together against the center. As an alternative, this
paper proposes a novel spatial voting model that relies on a circular policy space and de-
velops Bayesian inference procedures for it. An appealing feature of our model is that it can
approximate the IDEAL model (Jackman (2001), Clinton, Jackman and Rivers (2004)), when
the variance of the ideal points is small, yielding a measure of the “circularity” of the policy
space that can be very helpful in characterizing historical voting patterns.

This paper is motivated by the study of contemporary voting patterns in the U.S. House
of Representatives, where the “extremes voting together” phenomenon has become increas-
ingly common. For that reason our focus is on one-dimensional models voting models. In-
deed, although there is evidence that, historically, voting patterns in the U.S. Congress were
well explained by two-dimensional (Euclidean) models, it is widely accepted that, starting
in the mid-to-late 1970s, the U.S. Congress has become increasingly unidimensional (e.g.,
see McCarty, Poole and Rosenthal (2016), Hare and Poole (2014), Poole and Rosenthal
(1991, 1997), Moser, Rodriguez and Lofland (2021)). In one-dimensional policy spaces, the
ideal points generated by spatial voting models are often interpreted as capturing the ideol-
ogy of the legislator on a liberal-conservative scale (e.g., see Poole and Rosenthal (1985) and
Jessee (2012)) with the ranking of the legislators in this scale typically becoming a key metric
of interest.

The idea that circular policy spaces might be appropriate for representing political pref-
erences dates back at least to Weisberg (1974), who provides a number of examples and
notes that “circular shapes may be expected for alliance structures and for vote coalitions
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where extremists of the left and right coalesce for particular purposes.” Our model can also
be understood as operationalizing the so-called “Horseshoe Theory” (Pierre (2002), Taylor
((2006), page 118)), which asserts that the far-left and the far-right are closer to each other
than they are to the political center, in an analogous way to how the opposite ends of a horse-
shoe are close to each other.

There is a rich literature on methods for embedding data into data-driven, non-Euclidean
manifolds. Examples include autoencoders (e.g., Kramer (1991) and Kingma et al. (2019)),
locally-linear embeddings (Roweis and Saul (2000)), Isomap (Tenenbaum, De Silva and
Langford (2000)), Laplacian eigenmaps (Belkin and Niyogi (2002)), local tangent space
alignment (Zhang and Zha (2004)) and Gaussian process latent variable models (Lawrence
(2005)). These approaches are very flexible in capturing the geometry of the underlying
manifold on which the data lives and can produce very compact representations of high-
dimensional data using a very small number of latent dimensions. However, for the most
part they have been designed for continuous observations rather than multivariate binary
data, making their use in voting data suspect. More importantly, interpreting and quantify-
ing the uncertainty associated with the embeddings generated by most of these methods can
be quite difficult. Indeed, note that, when performing nonlinear embeddings, invariance to
affine transformations is not enough to ensure identifiability of the latent features. When the
goal is prediction, this rarely matters. However, when the goal is scaling categorical data,
identifiability becomes a key issue for both interpretation and uncertainty quantification. Our
approach is different from the ones listed above in that we consider a fixed but more general
manifold on which to project the data so that the model is more flexible than its Euclidean
counterpart but identifiability issues can be easily addressed. A similar philosophy has been
recently adopted in the network modeling literature; for example, see and Smith, Asta and
Calder (2019) and McCormick and Zheng (2015).

2. A motivating example: Ranking “The Squad”. The November 2018 midterm elec-
tion saw the Democratic Party win a new majority in the House of Representatives on the
back of a record number of women, young and minority candidates. Particularly notable
among them is a group of four new members (Alexandria Ocasio-Cortez of New York, Ilhan
Omar of Minnesota, Ayanna Pressley of Massachusetts and Rashida Tlaib of Michigan, all
women of color under 50 supported by the Justice Democrats political action committee),
who often refer to themselves as “The Squad.” As discussed in Lewis (2019a, 2019b), The
Squad is widely understood to belong to the left wing of the Democratic party, supporting
policies such as the green new deal, reparations for slavery and abolishing the Immigration
and Customs Enforcement Agency. Partly because of their support for these policies, they
have shown a willingness to challenge the leadership of their party and to vote against it on
some issues.

Table 1 presents the rank order of the members of the Squad on a liberal-conservative scale
based on their voting record during the first session of the 116th Congress (extending between
January 3, 2019 and January 3, 2020). These rankings, in which lower numbers correspond
to more liberal legislators, were obtained by fitting one- and two-dimensional versions of the
Euclidean model described in Jackman (2001) and Clinton, Jackman and Rivers (2004) (see
also Section 3 below). Counterintuitively, all members of The Squad are ranked toward the
center of the political spectrum under both models. Most importantly, note that the addition of
a second dimension does not dramatically affect the original surprising conclusion that they
all appear to belong to the moderate wing of the Democratic party. As we discussed in the
Introduction, this counterintuitive result is a direct consequence of the Euclidean geometry
underlying these models: If a legislator votes with the opposite party against the majority of
its own, the only possible explanation is that the legislator is a moderate.
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TABLE 1
Median rank of the members of “The Squad” during the first session
of the 116th U.S. House of Representatives according to two scaling
models: A one-dimensional Euclidean model and a two-dimensional

Euclidean model. In the case of the two dimensional model, the
ranking provided is along the first (highest variability) dimension of
the policy space. Lower numbers for the ranks correspond to more

liberal legislators. Numbers in parentheses correspond to 95%
credible intervals

Rank order

Euclidean (1D) Euclidean (2D)

Pressley (D MA-7) 172 (131,196) 168 (113,200)
Omar (D MN-5) 176 (135,198) 160 (98,195)
Tlaib (D MI-13) 180 (146,200) 169 (108,200)
Ocasio-Cortez (D NY-14) 203 (185,215) 197 (172,213)

To further investigate the voting behavior of The Squad, we also fitted the nonparametric
mixture model described in Spirling and Quinn (2010) to these data. The model identifies
three groups of Democrats that appear to have distinct behavior: a small group of 18 leg-
islators representing some of the districts that were flipped by Democrats during the 2018
election and whose seats are widely understood to be at most risk in the 2020 election (we
could call these the vulnerables), a medium sized group of 61 legislators that include most
of the remaining representatives from flipped districts as well as a number of legislators with
relatively short tenures in the House (we could call them the pragmatists) and a large group of
155 legislators that includes the leadership as well as most representatives with a long tenure
in the House (call them the establishment). Interestingly, for our purposes the members of
The Squad are not split off into a separate group that includes left-wing activists but are, in-
stead, clustered with the establishment. Note that, because of the structure of the Spirling and
Quinn (2010) model, no further rankings of the legislators are possible within each block.

3. Bayesian spatial voting models with Euclidean policy spaces. This section briefly
reviews the Bayesian model introduced of Jackman (2001) and Clinton, Jackman and Rivers
(2004), whose framework serves as motivation for our approach. Let yi,j ∈ {0,1} be the
vote of legislator i = 1, . . . , I on question j = 1, . . . , J , where yi,j = 1 if legislator i voted
“Yea” on question j and yi,j = 0 if the legislator voted “Nay.” Each legislator is assumed
to have a preferred policy outcome, which is represented by a position on a (possibly q-
dimensional) latent policy space, βi ∈R

q . Similarly, each question that is posed to legislators
has associated with it two positions in the same policy space: one associated with a “Yea”
answer, denoted ψj ∈ R

q , and one associated with a “Nay” answer, denoted ζ j ∈ R
q . Then,

given these positions, legislators make their choice about how to vote independently from
one another and from other questions based on the value of two random utilities (e.g., see
McFadden (1973)),

(1) UYea(ψj ,βi ) = −‖ψj − βi‖2 + εi,j , UNay(ζ j ,βi ) = −‖ζ j − βi‖2 + νi,j ,

where εi,j and νi,j represent random shocks to the utilities. Under these assumptions a ra-
tional actor will vote “Yea” if and only if UYea(ψj ,β i) > UNay(ζ j ,βi ). Further assuming
that the difference between the random shocks νi,j and εi,j are independent and follow a
distribution with cumulative distribution Gj(x) = G(x/σj ), we have

(2) Pr(yi,j = 1 | βi ,ψj , σj , ζ j ) = G
(
μj + αT

j βi

)
,
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where αj = 2(ψj − ζ j )/σj can be interpreted as the discrimination ability of question j

(i.e., its ability to distinguish between “liberals” and “conservatives”) and μj = (ζ T
j ζ j −

ψT
j ψj )/σj controls the baseline probability of an affirmative vote. For computational sim-

plicity it is common to use (hierarchical) Gaussian priors for the μj s, αj s and βis so that
computation can proceed using well-established Markov chain Monte Carlo algorithms (e.g.,
see Bafumi et al. (2005)).

Note that (2) corresponds to a generalized linear model with link function G. In particular,
when G corresponds to the cumulative distribution function of the normal distribution, we
obtain a probit model. On the other hand, the case in which G corresponds to a logistic
distribution leads to the a logit model. Furthermore, because both αj and β i are unknown,
this is just an instance of a factor analysis model for binary data. Additionally, note that the
parameters are not all identifiable in this model. For example, the scale of the link function,
σj , cannot be separately identified from the scale associated with the policy space. Hence, it
is common to set σj = 1 for all j = 1, . . . , J . Furthermore, the model is invariant to affine
transformations of the latent space. In political science applications this is usually dealt with
by either fixing the position of q + 1 legislators (such as the party whips, e.g., see Clinton,
Jackman and Rivers (2004)) or by fixing the location and scale of the ideal points, along
with constraints on the matrix of discrimination parameters (e.g., see Geweke and Singleton
(1981)).

4. Bayesian spatial voting models with circular policy spaces. The framework de-
scribed in Section 3 lends itself naturally to extensions to policy spaces with more general
geometric properties. In particular, we can embed the latent positions β i , ψj and ζ j on a
Riemannian manifold D and then replace the Euclidean distance used in the definition of the
utility functions in (1) with the geodesic distance ρ on D so that

(3) UYea(ψj ,βi ) = −ρ(ψj ,βi )
2 + εi,j , UNay(ζ j ,βi ) = −ρ(ζ j ,βi )

2 + νi,j .

In this paper we focus on the special case where D corresponds to the unit circle so that
βi,ψj , ζj ∈ [−π,π ] can be interpreted as angular positions on the circle, and ρ(a, b) =
arccos(cos(a − b)) is just the smallest angle separating a and b. Because of the conditional
independence among votes, this formulation leads to a likelihood function of the form

(4) Pr(Y | ψ, ζ ,β) =
I∏

i=1

J∏
j=1

[
Gκj

(
ei,j (ψj , ζj , βi)

)]yi,j
[
1 − Gκj

(
ei,j (ψj , ζj , βi)

)]1−yi,j ,

where Y is the I × J data matrix with entries yi,j , ψ = (ψ1, . . . ,ψJ )T , ζ = (ζ1, . . . , ζJ )T

and β = (β1, . . . , βI )
T are the vectors of unknown positions for all legislators and questions

in the policy space, Gκj
is the cumulative distribution function associated with νi,j − εi,j and

ei,j (ψj , ζj , βi) = {
arccos

(
cos(ζj − βi)

)}2 − {
arccos

(
cos(ψj − βi)

)}2
.

Figure 1 provides some intuition for the additional flexibility intrinsic to the circular voting
model and, in particular, for its ability to accommodate situations in which “the extremes vote
together.” The left panel depicts a situation in which the outcome of a vote follows along party
lines. This type of situation, in which the “Yea” and “Nay” positions fall close to the center of
mass of opposite parties, represents the most typical type of question in most legislatures and
is well modeled using traditional Euclidean policy spaces. In particular, it captures situations
in which moderates from one party vote with the other party. In contrast, the right panel
depicts a situation in which moving the “Yea” and “Nay” positions to the upper and lower
poles leads, with the same ideal points as before, to an outcome in which the “extreme”
members of each party join forces in voting against the question.
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FIG. 1. Two configurations in a circular policy space. Check marks and crosses correspond to the ideal points
of legislators voting in favor and against a question and are the same on both panels. Circles correspond to the
“Yea” and “Nay” positions for the questions. The left panel, in which the bill positions are located in the upper
hemisphere, corresponds to a vote along party lines. The right panel, in which the “Yea” and “Nay” positions fall
in the upper and lower poles, corresponds to a question in which the extremes vote together.

4.1. Link function. Selecting a link function for the model is nontrivial. Note that, un-
like the Euclidean distance in R

q , the geodesic distance on the circle takes values in the
interval [0, π]. This means that the difference between two squared distances takes values
in [−π2, π2], and our link function must account for this. We propose to define Gκj

as the
cumulative distribution function of a scaled and shifted symmetric beta distribution with den-
sity,

(5) gκj
(z) = 1

2π2

�(2κj )

�(κj )�(κj )

(
π2 + z

2π2

)κj−1(
π2 − z

2π2

)κj−1
, z ∈ [−π2, π2]

.

The use of this transformed symmetric beta distribution has two advantages in this setting.
First, the parameter κj has a direct interpretation as a precision parameter. Indeed, the vari-
ance of a random variable with density (5) is equal to π4/(2κj + 1). This provides a direct
analogy with the scaling parameter σj introduced in Section 3. Second, note that

(6) lim
κj→∞

gκj
(z)√

2κj+1
2π5 exp{−2κj+1

π4 z2}
= 1,

that is, as the concentration parameter increases, the density gκj
resembles that of a normal

distribution with zero mean and variance π4/(2κj + 1). This limit behavior will play an
important role when discussing the relationship between our circular model and traditional
Euclidean models (see Section 4.4).

4.2. Identifiability. As mentioned in the Introduction, the goal of our circular model is
scaling rather than prediction. Thus, the identifiability of the latent traits β1, . . . , βI is crucial.
We discuss here the constraints required to make all model parameters identifiable.

To start, notice that the likelihood in equation (4) remains constant if the same shift is
applied to all βis, ψj s and ζj s. We address this location invariance through a careful selec-
tion of the prior distribution on the βis (see Section 4.3). Furthermore, the likelihood also
remains constant if any angle is independently increased or decreased by 2π . This invariance
to “wrappings around the circle” is easily addressed by mapping all angles to the [−π,π ]
interval. Finally, note that the model is invariant to reflections of the policy space, just like
the one-dimensional Euclidean model. We address this by fixing the sign of the ideal point of
one particular legislator (e.g., the whip of one of the parties).
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A key difference between the Euclidean and circular models, however, is that the positions
in the circular model are not invariant to changes in scale. As a consequence, the parameters
κ1, . . . , κJ controlling the variance of the link function in (4) are identifiable and can be
estimated separately from the βis, ψj s and ζj s. In fact, because the geodesic distance ρ is
bounded, learning κj s from the data and allowing them to vary across questions is key to
accommodate the full variety of voting behaviors and, in particular, unanimous votes (see
Section 6 for some illustrations).

4.3. Prior distributions. Since βi , ζj and ψj represent angles, it is natural to use inde-
pendent von Mises distributions for these parameters:

(7)

βi | ωβ, τβ ∼ vonMis(τβ,ωβ),

ψj | ωψ, τψ ∼ vonMis(τψ,ωψ),

ζj | ωζ , τζ ∼ vonMis(τζ ,ωζ ).

A random variable Z follows a von Mises distributions with mean τ and concentration ω,
Z ∼ vonMis(τ,ω), if it has density

p(z) = 1

2πIo(ω)
exp

{
ω cos(z − τ)

}
, z ∈ [−π,π ],

where Ik(ω) is the modified Bessel function of order k. When ω = 0, the von Mises distri-
bution becomes the uniform distribution on the circle. On the other hand, as ω grows, the
distribution behaves as a normal distribution with variance 1/ω, that is,

(8) lim
ω→∞

1
2πIo(ω)

exp{ω cos(z − τ)}√
ω

2π
exp{−ω

2 (z − μ)2}
= 1.

In fact, we can think about the von Mises as being the circular analogue of the Gaussian
distribution.

To elicit the hyperparameters of the model, we rely on the intuition provided by Figure 1.
Since we want the question’s positions to potentially be located anywhere on the circle, we
set ωψ = ωζ = 0 (leading, as we mentioned before, to uniform priors on the circle for these
two parameters). On the other hand, the ideal points are assigned a zero mean, that is, τβ = 0
and a nonzero precision, that is, ωβ > 0. This structure ensures (weak) identifiability of all
latent positions to location shifts (recall our discussion from Section 4.2). In particular, we let
ωβ be an exponential hyperprior with mean θ = 10 so that Pr(−π/2 < βi < π/2) ≈ 0.95 and
perform a sensitivity analyses. This choice for ωβ reflects our prior belief that a Euclidean
model is reasonable in most cases, and, therefore, most ideal points will be concentrated
on the upper hemisphere (see discussion in Section 4.4). Finally, we assume that the κj s
are independent and identically distributed a priori from an exponential prior with mean λ

which is, in turn, assigned a (conditionally conjugate) inverse Gamma prior with one degree
of freedom and rate parameter 25 (i.e., 1/λ follows an exponential distribution with mean
ξ = 1/25). Again, we investigate the impact of this choice in our applications through a
sensitivity analysis.

4.4. Relationship with traditional Euclidean models. Under certain circumstances our
spherical model can behave similarly to the probit version of the one-dimensional Euclidean
model described in Section 3. To understand this relationship, consider projecting the latent
angles that describe the circular model onto the tangent space at 0 (see Figure 2). Two points
need to be made about such projection. First, note that, if the latent positions concentrate
around the northern pole, the projection of the angles βi , ψj and ζj onto the tangent space
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FIG. 2. The circular manifold and its projection on the tangent space at the origin (located in our graphs at the
upper pole). The values βi , ψj and ζj correspond to the coordinates in the circular policy space (measured as
angles with respect to vertical axis), while the values of β ′

i , ψ ′
j and ζ ′

j are their projections on the tangent space.

(labeled β ′
i , ψ ′

j and ζ ′
j in the figure) satisfy β ′

i = tanβi ≈ βi , ψ ′
j = tanψi ≈ ψi and ζ ′

j =
tan ζi ≈ ζi for large values of ωβ . Furthermore, under those circumstances, ρ(ψj ,βi) ≈ |ψj −
βi | ≈ |ψ ′

j − β ′
i | and ρ(ζj , βi) ≈ |ζj − βi | ≈ |ζ ′

j − β ′
i |, that is, the geodesic distance between

the points in the manifold is very close to the Euclidean distance between their projections
on the tangent space. Second, recall from (6) that, as κj → ∞, the link function Gκj

we
have chosen for the circular model will resemble the cumulative distribution of the normal
distribution with variance π4

2κj+1 . As a consequence of these two features, if we let both ωβ →
∞ and κj → ∞, while keeping π4ωβ

2κj+1 = 1, the value of the likelihood function for the circular
model can be expected to be very similar to the value of the likelihood of a one-dimensional
Euclidean model with a probit link constructed on the tangent space at 0. Furthermore, under
these circumstances the von Mises prior on the circular coordinates maps onto the widely
used Gaussian prior on the tangent space (recall equation (8)).

The previous discussion suggests that we can use the variance of the ideal points to mea-
sure the level of circularity in the policy space of a given dataset. In particular, small values
for this variance indicate that the policy space might be approximately Euclidean. We will
make use of this observation in Section 6.3.

Another useful interpretation of our model that arises from this connection is as an inter-
polator between the one-dimensional and the two-dimensional Euclidean models. Indeed, in
addition to the natural geometric argument that arises from embedding the circle into a two-
dimensional Euclidean space, we note that the likelihood associated with the 1D Euclidean
model involves o(I + 2J ) parameters, the one for the circular model involves o(I + 3J ) pa-
rameters and the one for the two-dimensional Euclidean involves o(2I + 4J ). This means
that the circular model provides slightly more degrees of freedom to fit the data than a one-
dimensional Euclidean model but less than a two-dimensional Euclidean.

4.5. Ranking legislators under the circular model. The unit circle is not endowed with a
total order which represents a challenge if our goal is to rank legislators using the latent scale.
We get around this issue by unwinding the circle into a traditional linear scale in (−π,π ].
Breaking the circle at the bottom pole is natural if we consider the fact that the prior on the
ideal points is centered at 0 (which corresponds to the middle of this interval) as well as the
behavior of the prior when ωβ → ∞.

Unwinding the circle might seem somewhat ad hoc after our heavy emphasis on the circu-
lar nature of the policy space. A formal justification is as follows: if the ideal points β1, . . . , βI

all lie on the interval (−π/2, π/2) (i.e., the upper semicircle in Figure 1), the ranking of the
projection of the ideal points on the tangent space at 0 (given by β ′

i = tanβi , recall Figure 2)
is identical to the ranking generated by unwinding the circle (since the tangent is a monotonic
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function when restricted to this domain). This scenario (all βis in the (−π/2, π/2) interval)
is not a contrived one: it is an assumption that underlies the construction of our priors and
one that seems to be supported in most of the examples discussed in Section 6, including
some of those in which there is evidence that the circular model dominates the Euclidean
one. Nonetheless, it is important to remember that, if the ideal point of any legislator is very
close to either −π or π , the ranks generated by this procedure might be very sensitive to
small perturbations and, potentially, misleading.

5. Computation. The posterior distribution for the model, which takes the form

(9)

p(β, ζ ,ψ,κ,ωβ,λ | Y )

∝
[

I∏
i=1

J∏
j=1

{
Gκj

(
ei,j (ψj , ζj , βi)

)}yi,j
{
1 − Gκj

(
ei,j (ψj , ζj , βi)

)}1−yi,j

]

×
[

I∏
i=1

exp{ωβ cos(βi)}
2πI0(ωβ)

][
1

θ
exp

{
−ωβ

θ

}][
J∏

j=1

1

λ
exp

{
−κj

λ

}][
1

ξλ2 exp
{
− 1

ξλ

}]
,

is analytically intractable. Hence, inference for the model parameters is carried out using
Markov chain Monte Carlo (MCMC) algorithms.

The algorithm we propose is a hybrid that combines Gibbs sampling, random walk
Metropolis–Hastings and Hamiltonian Monte Carlo (HMC) steps to sample from the con-
ditional distributions of each parameter. The simplest steps correspond to sampling the pa-
rameters λ, ωβ and κ1, . . . , κJ . More specifically, we sample λ from its inverse-Gamma full
conditional posterior distribution and sample ωβ as well as each of the κj s using random
walk Metropolis–Hastings with log-Gaussian proposals. The variance of these proposals are
tuned so that the acceptance rate is roughly 40%. On the other hand, for sampling the latent
positions we employ the geodesic Hamiltonian Monte Carlo (GHMC) algorithm described
in Byrne and Girolami (2013). This class of algorithms provides a scalable and efficient way
to obtain samples from target distributions defined on manifolds that can be embedded in a
Euclidean space. In our particular setting, GHMC samplers work by mapping angles into a
two-dimensional coordinate system and operating over the associated Hausdorff measure.

As an example, consider the step associated with updating each of the βis. From equation
(9), the density (with respect to the Lebesgue measure on [−π,π ]) of its full conditional
distribution takes the form

p(βi | · · · ) ∝ exp
{
ωβ cos(βi)

}

×
J∏

j=1

{
Gκj

({
arccos

(
cos(ζj − βi)

)}2 − {
arccos

(
cos(ψj − βi)

)}2)}yi,j

× {
1 − Gκj

({
arccos

(
cos(ζj − βi)

)}2 − {
arccos

(
cos(ψj − βi)

)}2)}1−yi,j ,

while the density of the associated Hausdorff measure in R
2 is given by

p(xβi
| · · · ) ∝ exp

{
ηT

β xβi

} J∏
j=1

{
Gκj

({
arccos

(
zT
ζj

xβi

)}2 − {
arccos

(
zT
ψj

xβi

)}2)}yi,j

× {
1 − Gκj

({
arccos

(
zT
ζj

xβi

)}2 − {
arccos

(
zT
ψj

xβi

)}2)}1−yi,j , xT
βi

xβi
= 1,

where ηT
β = (ωβ,0), zT

ψj
= (cosψj , sinψj), zT

ζj
= (cos ζj , sin ζj ) and the mapping from βi

to xβi
is xT

βi
= (cosβi, sinβi)

T . Given tuning parameters ε (the step size) and L (the number
of steps), the GHMC sampler takes the form:
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1. Map the current value of the chain, β
(c)
i onto the embedding space R

2 by setting x
(c)
βi

=
(cosβ

(c)
i , sinβ

(c)
i )T , and initialize xβi

= x
(c)
βi

.
2. Initialize the auxiliary momentum variable φ by sampling φ ∼ N(0, I 2).
3. Project the momentum onto the tangent space at xβi

by setting φ ← (I 2 − xβi
xT

βi
)φ, and

then set φ(c) = φ.
4. For each of the L leap steps:

(a) Update the momentum by setting φ ← φ + ε
2∇ logpH(xβi

| · · · ).
(b) Project the momentum onto the tangent space at xβi

by setting φ ← (I 2 −
xβi

xT
βi

)φ, and then set the angular velocity of the geodesic flow ν = ‖φ‖.
(c) Update xβi

and φ jointly according to the geodesic flow with step size of ε,

xβi
← xβi

cos(νε) + φ

ν
sin(νε), φ ← φ cos(νε) − νxβi

sin(νε).

(d) Update φ ← φ + ε
2∇ logpH(xβi

| · · · ).
(e) Project the momentum onto the tangent space at xβi

by setting φ ← (I 2 −
xβi

xT
βi

)φ.

5. Set the proposed values as x
(p)
βi

= xβi
, φ(p) = φ and β(p) = arctan2(xβi,2, xβi,1). The

proposed value β(p) is accepted with probability

min
{

1,
pH(x

(p)
βi

| · · · ) exp{−1
2 [φ(p)]T φ(p)}

pH(x
(c)
βi

| · · · ) exp{−1
2 [φ(c)]T φ(c)}

}
.

Detailed expressions for the Hausdorff measures associated with the full conditional dis-
tributions of the βi ’s, ψj ’s and ζj ’s, as well as their gradients, can be seen in the Appendix.
In our implementation of the algorithm, we periodically vary the value of the tuning param-
eters ε and L by randomly sampling them from predetermined distributions. These changes
are done independently of the current value of the parameter, thereby preserving the Marko-
vian structure of the algorithm. This approach, sometimes called “jittering” in the litera-
ture (e.g., see Gelman et al. ((2014), page 306)), greatly improve the mixing of the algo-
rithm in our experiments. The specific range in which ε and L move for each parameter
and dataset is selected to target an average acceptance probability between 60% and 90%
(Beskos et al. (2013), Betancourt, Byrne and Girolami (2014)). The source code for the
methods implemented in this paper is available in the Supplementary Materials (Yu and Ro-
driguez (2021b)) and the algorithm has also been implemented in an R package available at
https://github.com/Xingchen-Yu/SLFM1D.

6. Circular voting in the modern U.S. Congress. In this section we analyze roll-call
voting data from the modern U.S. House of Representatives (1987–2019). There is broad
agreement in the literature that, during this period, the U.S. Congress can be considered to
be unidimensional (McCarty, Poole and Rosenthal (2016), Hare and Poole (2014), Poole
and Rosenthal (1991, 1997), Moser, Rodriguez and Lofland (2021)). Hence, our focus is
on understanding the geometry of this intrinsically unidimensional spaces. We first present
legislator-level results for two specific Houses (the 116th and the 112th) and then show a
longitudinal analysis of chamber-level summaries covering the 100th to the 116th Houses.
In all of these analyses, the number of leaps used in the HMC steps is randomly selected
from a discrete uniform distribution between one and 10 every 50 samples. Similarly, the
leap sizes are drawn from uniform distribution on (0.01,0.04) or (0.005,0.04) for each βi

and from a uniform distribution on (0.01,0.105) for each ζj and ψj . All inference presented

https://github.com/Xingchen-Yu/SLFM1D
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in this section are based on 20,000 samples obtained after convergence of the Markov chain
Monte Carlo algorithm. The length of the burn in period varied between 20,000 and 80,000
iterations, depending on the dataset, with a median around 30,000. Convergence was checked
by monitoring the value of the log-likelihood function, both through visual inspection of the
trace plot and by comparing multiple chains using the procedure in Gelman and Rubin (1992).
Details on the convergence and mixing analysis can be seen in Section 1 of the Supplementary
Materials (Yu and Rodriguez (2021a)). Roll-call data for the U.S. House of Representatives
was obtained from https://voteview.com/. For each House, we excluded legislators who are
absent for more than 40% of the votes. Missing values were treated as if missing completely
at random. While this assumption is not completely accurate (e.g., see Rodríguez and Moser
(2015)), it is commonly made in most applied settings, and we do not expect it to dramatically
affect our analyses. In addition to the analyses of the U.S. Congress, we present in this section,
Section 3 of the Supplementary Materials (Yu and Rodriguez (2021a)) includes results of a
simulation study that corroborate our observations about the performance of the method.

6.1. The Squad, revisited. First, we revisit the voting record of the first session of the
116th Congress discussed in Section 2. Table 2 reports the posterior median rank order and
associated 95% credible intervals for the members of The Squad according to our circular
model. The difference between these and those we reported in Table 1 is dramatic with the
circular model clearly placing Presley, Omar, Tlaib and Ocasio-Cortez among the most liberal
members of the Democratic party. As we discussed before, such placement agrees much
better with expert’s understanding of The Squad’s ideological stances, including the fact that
Presley is perhaps the least liberal of the four.

More generally, Figure 3 compares the rank order of legislators estimated using the one-
dimensional Euclidean model to the rank order estimated by the circular model. On the
Democratic side we can see some substantial differences in the ranks estimated by the Eu-
clidean model vs. those estimated by the circular model. However, it is clear that the largest
differences correspond to the four members of The Squad. In contrast, on the Republican
side the ranks estimated by both models are generally in close agreement. The three main
exceptions are representatives Justin Amash (MI-3), Thomas Massie (KY-4) and Matt Gaetz
(FL-1), who are estimated to be more extreme by the circular model (see also Table 3). An
inspection of their record suggests that the ranking generated by the circular model is much
more sensible. Consider first Justin Amash and Thomas Massie. Justin Amash is a libertarian-
leaning conservative first elected in 2010 as a Republican. He has received high scores from
from right-leaning interest groups, such as the Club for Growth, Heritage Action for America
and Americans for Prosperity, and praise from conservative think tanks and nonprofit organi-
zations. He was also a founding member of the House Freedom Caucus, a group of hard-line

TABLE 2
Median rank of the members of “The Squad” during

the first session of the 116th U.S. House of
Representatives according to our circular model.
Lower numbers for the ranks correspond to more

liberal legislators. Numbers in parenthesis correspond
to 95% credible intervals

Rank order (Circular)

Pressley (D MA-7) 5 (1,21)
Omar (D MN-5) 2 (1,8)
Tlaib (D MI-13) 2 (1,9)
Ocasio-Cortez (D NY-14) 3 (1,11)

https://voteview.com/
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FIG. 3. Posterior median of the rank-order in the first session of the 116th U.S. House of Representatives under
the one-dimensional Euclidean (horizontal axis) and the circular (vertical axis) models.

conservative Republicans in the House of Representatives. However, he is also widely known
for his contrarian views and for voting with Democrats in certain issues. For example, he
was the only Republican to vote against the “In God We Trust” House Resolution passed in
November 2011 and the House Resolution supporting the officers and personnel of Immigra-
tion and Customs Enforcement (ICE) in July 2018. Furthermore, he cosponsored a bill by
Democrat Ayanna Pressley (one of the members of The Squad) that would abolish the death
penalty at the federal level. In fact, Amash left the Republican party in July 2019 to become
an independent and became the only non-Democrat in the House to vote in favor of an im-
peachment inquiry into the activities of President Trump and of either of the two articles of
impeachment. Thomas Massie is another libertarian-leaning Republican who is often associ-
ated with the House Liberty Caucus of Tea Party Republicans. However, he is also know for
often being the only member of the House to vote against a number of resolutions. For ex-
ample, on March 27, 2020, Massie forced the return to Washington of members of the House
(who were sheltering in place in the midst of the Covid-19 crisis) by withholding unanimous
consent on the passage of the The Coronavirus Aid, Relief and Economic Security (CARES)
Act. On the other hand, consider representative Gaetz. Matt Gaetz is a well-known “Trump-
ist” firebrand, (in)famous for wearing a gas mask on the House floor during the vote on the

TABLE 3
Median rank of three selected Republican legislators during the

first session of the 116th U.S. House of Representatives according
to two models: a one-dimensional Euclidean voting model and our
circular model. Higher numbers for the ranks correspond to more

conservative legislators. Numbers in parenthesis correspond to
95% credible intervals

Rank order

Euclidean (1D) Circular

Amash (R MI-3) 249 (244,255) 432 (432,432)
Massie (R, KY-4) 356 (334,375) 431 (430,431)
Gaetz (R FL-1) 314 (297,332) 418 (412,423)
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FIG. 4. Two examples of circular voting patterns during the 116th House of Representatives. Graphs on the left
column depict the posterior mean ideal point for the legislators (which are the same on both plots), along with
the “Yea” and “Nay” positions (represented through a check mark and a cross, respectively). The names in the
graphs correspond to the legislators that voted against the measure. The right columns presents a histogram of
samples of the posterior distribution of the corresponding κj . The vertical line corresponds to 1/E(1/λ | data).

first coronavirus response package in March 2020. He ostensibly did so to ridicule the need
for such bill, in spite of the fact that it had broad bipartisan support. Even just from this short
description, it should be no surprise that our circular model ranks him as being more ex-
treme than the Euclidean model. In fact, in some ways Gaetz makes a better argument for the
spherical models than Massie and Amash. (Real) Libertarians are “conservative” in economic
issues but “liberal” in social ones, so they make a good intuitive argument for 2D Euclidean
models. That is not the case for Gaetz.

To complete this illustration, we provide specific information about various bills in which
both circular and Euclidean voting patterns are present. First, Figure 4 provides two examples
of circular voting in the 116th House of Representatives. The first one, HRES246, opposed
the global boycott, divestment and sanctions movement as well as other efforts targeting
Israel. This resolution: (1) urged both sides in the Israel-Palestinian conflict to return to di-
rect negotiations, (2) expressed support for a solution resulting in the State of Israel exist-
ing alongside a democratic Palestinian state and (3) reaffirmed the right of U.S. citizens to
free speech, including the right to protest or criticize U.S. or foreign government policies.
HRES246 was opposed by a group of 16 Democrats (including three members of The Squad)
as well as by Representative Massie. Massie opposed the measure because it “calls for Is-
rael to implement a so-called two-state solution. Rather than dictate to Israel what the U.S.
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believes is best for Israel, Congress should instead refrain from interfering with Israel’s own
decisions regarding its foreign and domestic policy.” He also stated that he “do[es] not sup-
port federal efforts to condemn any type of private boycott, regardless of whether or not a
boycott is based upon bad motives. These are matters that Congress should properly leave to
the States and to the people to decide.” Both of these are traditional “libertarian” arguments.
On the other hand, the main driver for Democrats voting against this resolution was support
for Palestine. For example, in her floor speech, representative Tlaib invoked her Palestinian
grandmother in opposing the resolution, which she said “attempts to delegitimize a certain
people’s political speech and send a message that our government can and will take action
against speech it doesn’t like.” While there seems to be some ideological common ground be-
tween both positions (in particular, a shared desire to limit government impingement on free
speech), it is clear that the underlying ideology is completely different, seemingly making
this an instantiation of the Horseshoe Theory in the context of the U.S. House of Representa-
tives. The second example in this category is S1790, the National Defense Authorization Act
for Fiscal Year 2020. S1790 authorized FY2020 appropriations and set forth policies for De-
partment of Defense (DOD) programs and activities, including military personnel strengths.
S1790 was opposed by two Democrats (Tlaib, who is one of the members of The Squad,
and Blumenauer) as well as by two Republicans (Massie and Amash, whom we have already
discussed). Note that, for both HRES246 and S1790, the “Nay” position is roughly located
opposite to the (circular) average of all ideal points, while the “Yea” position is located close
to the (circular) average of the ideal points of the legislators that voted in favor of the mea-
sure. This matches the intuition captured in Figure 1. Furthermore, the posterior distribution
of κj indicates moderate to low concentration values for the link function for this kind of
votes.

On the other hand, Figure 5 shows two examples of Euclidean voting, HRES5 and HR135.
HRES5, which sets forth the rule for consideration of HRES6 (adopting the Rules of the
House of Representatives for the 116th Congress), was voted strictly along party lines. We
see in this case that the “Yea” and “Nay” positions are located at either side of the parties and
that the posterior distribution of κj favors relatively large concentration values. This config-
uration is very similar to the one that is obtained by fitting a Euclidean model to the data.
On the other hand, HR135, the Elijah E. Cummings Federal Employee Antidiscrimination
Act of 2019, requires each federal agency to establish a model Equal Employment Opportu-
nity Program that is independent of the agency’s Human Capital or General Counsel office,
and it establishes requirements related to complaints of discrimination and retaliation in the
workplace. HR135 was voted unanimously (except for eight abstentions). Note that the “Yea”
and “Nay” positions in this case are similar to those estimated for the circular votes, but the
corresponding value of κj is much higher for the fully unanimous vote.

6.2. The conservative revolt of 2010. The election in November 2008 of Barack Obama
as President of the United States generated a strong conservative backlash that has had a pro-
found impact on U.S. politics in general and on the Republican party in particular (Skocpol
and Williamson (2016)). This backlash influenced the results of the 2010 midterm election
(Karpowitz et al. (2011)). The 112th Congress had a large Republican majority (in fact, had
the largest Republican majority since the 80th Congress in the late 1940s). It was also the
first Congress in over 150 years in which the Republican party held the House but not the
Senate and the first Congress to begin with the House and the Senate controlled by different
parties since the 99th Congress (1985–1987).

Among the 242 Republican legislators elected to the 112th House of Representatives was
a large group of insurgent candidates, many of them backed by a loose grassroots coali-
tion ostensibly built on the principles of fiscal responsibility, adherence to the Constitution
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FIG. 5. Two examples of Euclidean voting patterns during the 116th House of Representatives. Graphs on the
left column depict the posterior mean ideal point for the legislators (which are the same on both plots), along
with the “Yea” and “Nay” positions (represented through a check mark and a cross, respectively). The right
columns presents a histogram of samples of the posterior distribution of the corresponding κj . The vertical line
corresponds to 1/E(1/λ | data).

and limited government that has become known as the Tea Party movement (Arceneaux and
Nicholson (2012)). Many of these insurgent legislators went on to form congressional mem-
ber organizations such as the Tea Party Caucus and the House Liberty Caucus (both founded
during the 112th Congress, the first in July 2010 and the second in March 2011) as well as the
House Freedom Caucus (founded in 2015 during the 114th Congress). These three caucuses
are all considered to represent the most extreme wing of the Republican party, and some re-
cent evidence suggests that their members vote like a significantly farther-right third party
in Congress (e.g., see Ragusa and Gaspar (2016)). However, as we will see shortly, many of
their members are ranked by traditional spatial voting models as mainstream or even centrist
Republicans.

Figure 6 compares the rank order of legislators estimated using a one-dimensional model
to the rank order estimated by our circular model. For the Democratic Party the ranking
generated by both models are reasonably similar. The main outlier is Dennis Kucinich (OH-
10), who is ranked as much more liberal by the circular model: his posterior median rank is 2
under the circular model with a 95% credible interval of (1,6), but it is 76 under the Euclidean
model with a 95% credible interval (62,97). This more extreme ranking fits better with the
widely-held perception that Kucinich was was one of the most liberal members of the U.S.
House of Representatives during this period. In contrast, on the Republican side we see some
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FIG. 6. Posterior median of the rank-order in the 112th U.S. House of Representatives under the one-dimen-
sional Euclidean (horizontal axis) and the circular (vertical axis) models.

very large differences between the rankings generated by both models. In particular, we see
a large group of legislators that are ranked as much more conservative by the circular model.
Figure 7 provides additional details for the 15 Republican legislators for whom the difference
in posterior median rankings between the one-dimensional Euclidean and the circular models
is largest. It is interesting that, in all cases, the ranks assigned by the circular model are more
extreme and that 12 out of the 15 legislators in this list either were members of the Tea Party
or the Liberty Caucuses during this Congress or later joined the Freedom Caucus when it

FIG. 7. Posterior median ranks and associated 95% credible intervals for the 15 Republican legislators in the
112th House for whom the difference in posterior median rankings between the one-dimensional Euclidean and
the circular models is largest. Bolded names indicate that the legislator was a member of either the Liberty
Caucus, the Freedom Caucus or the Tea Party Caucus at some of point of their career.
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FIG. 8. HR915, one example of circular voting during the 112th House of Representatives. Panel (a) depicts the
posterior mean ideal point for the legislators, along with the “Yea” and “Nay” positions (represented through
a check mark and a cross, respectively). The names in the graph correspond to the legislators that voted against
the measure. Panel (b) presents a histogram of samples of the posterior distribution of the corresponding κj . The
vertical line corresponds to 1/E(1/λ | data).

was formed. In particular, we must highlight that classifying Ron Paul, Justin Amash (who
we already discussed in the previous section) or Jimmy Duncan as centrist (which is the
implication from their rank under the Euclidean model) would be very hard to justify based
on their stated political positions.

Finally, Figure 8 presents one example of circular voting in the 112th House of Repre-
sentatives. HR915 is the Jaime Zapata Border Enforcement Security Task Force Act which
amended the Homeland Security Act of 2002 to establish the Border Enforcement Security
Task Force (BEST). It aimed at facilitating collaboration among federal, state, local, tribal and
foreign law enforcement agencies to execute coordinated activities in furtherance of border
and homeland security, as well as to enhance information-sharing, including the dissemina-
tion of homeland security information among such agencies. Note that HR915 was opposed
by representative Kucinich (according to our model, the most extreme Democrat in the House
at the time) as well as by both Amash and Massie (in turn, the most extreme Republicans in
the House according to our model) and by representative Louie Gohmert (whose ranking also
significantly shifts under the circular model). As in Figure 4, the “Nay” position is roughly
located opposite to the (circular) average of all ideal points, the “Yea” position is located
close to the (circular) average of the ideal points of the legislators that voted in favor of the
measure and the posterior distribution of κj indicates moderate to low concentration values
for the link function.

6.3. A longitudinal analysis of the contemporary U.S. House of Representatives. The
previous two sections presented two very recent examples of circular voting behavior in the
U.S. House of Representatives. We are interested now in understanding how pervasive this
behavior has been in modern history. As we mentioned in Section 4.4, the (circular) variance
of the ideal points

χ0 = 1 −
{(

1

I

I∑
i=1

cosβi

)2

+
(

1

I

I∑
i=1

sinβi

)2} 1
2
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FIG. 9. Circularity χ0 for the 100th to the 116th U.S. House of Representatives. Light gray background indicates
a Democratic majority, while dark gray indicates a Republican majority. Results for the 116th House include only
the first session.

provides a natural metric to measure the “circularity” of voting on a given Congress. It is
important to note that this metric is useful in this context because, unlike the analogous metric
for Euclidean models, it is comparable across Congresses (recall that the utility functions that
underlie our formulation are not invariant to rescalings of the policy space).

Figure 9 shows the posterior mean and 95% credible intervals for χ0 between the 100th
House (1987–1988) and (the first session of) the 116th House (2019). We start the analysis
from the mid 1980s because this period sits comfortably after the reforms of the mid-1970s
(which included the introduction of electronic voting, leading to a dramatic increase in the
number and nature of roll call votes recorded in the chamber). Note that χ0 was relatively
stable in the late 1980s and early 1990s but then jumped when the control of the chamber
switched from Democrats to Republicans with the election of the 104th Congress. It then re-
mained more or less stable during the later half of the 1990s and the 2000s, to then fall during
the 111th House and then jump up again to historically high levels from the 112th House on.
While the overall increasing trend on χ0 agrees with well-known patterns of increasing polar-
ization in Congress, these results also suggest that such an increase in polarization has been
accompanied by an increase in the frequency of “extremes voting together,” a phenomenon
that has not yet been fully documented or explored in the modern U.S. Congress.

In order to better understand how circular voting has affected each party, we present in
Figure 10 the circular variance associated with the ideal of points of both Democrat and
Republican legislators, χD and χR , respectively. While some of the fluctuations in these
metrics roughly match those we observed in Figure 9, it is clear that the overall trend has
been for χD to decrease and for χR to increase over time. The divergence is particularly
stark after the 112th, with the Republican party showing an all-time-high level of intraparty
disagreement. Put another way, these results suggest that the Republican party has steadily
become more fractious while the Democratic party has tended to unify, particularly over the
last 10 years. This pattern is consistent with well-known political processes. On one hand,
the steady decrease in χD between the 100th and the 107th Houses might be seen as the
upshot of the the migration of the remaining former Southern Democrats to the Republican
party. On the other hand, the large increase in χR starting in the 112th can be understood as
a consequence of the rise of the Tea Party movement (recall our discussion in Section 6.2).

To conclude this section, we present in Table 4 the value of the Watanabe–Akaike infor-
mation criteria (WAIC, see Gelman, Hwang and Vehtari (2014), Watanabe (2010), Watanabe
(2013)) associated with both the circular and one-dimensional Euclidean models fitted to the
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FIG. 10. Within-party circular variances, χD and χR , for the 100th to the 116th U.S. House of Representatives.
Light grey background indicates a Democratic majority, while dark grey indicates a Republican majority. Results
for the 116th House include only the first session.

data from the 100th to the 116th U.S. House of Representatives. Similarly to the well-known
Akaike information criteria (AIC) and the Bayesian information criteria (BIC), WAIC bal-
ances goodness of fit against model complexity. However, unlike the AIC and the BIC, the
WAIC is well suited for hierarchical models where the number of effective parameters can
be much smaller than the headline number. Compared to the deviance information criteria
(DIC), the WAIC has the advantage of being invariant to reparameterizations of the model
(Spiegelhalter et al. (2014), Gelman, Hwang and Vehtari (2014)). We employ here the so-
called “grouped” WAIC in which the the vector of all votes for a given legislator are treated
as one observation (e.g., see Gelman, Hwang and Vehtari ((2014), page 1009)).

The results in Table 4 are extremely interesting and further reinforce the observation that
there has been a fundamental change in the American political environment since 2010. In-

TABLE 4
Grouped WAIC for the the circular and Euclidean model
fitted to the 100th to 116th U.S. House of Representatives.
Results for the 116th House include only the first session

House I J Euclidean (1D) Circular

100th 425 939 −94,801 −98,634
101th 429 879 −103,745 −106,598
102th 431 901 −103,952 −108,156
103th 430 1094 −114,457 −117,125
104th 428 1321 −132,138 −135,108
105th 426 1166 −114,196 −115,590
106th 432 1209 −109,537 −110,554
107th 428 990 −71,230 −70,242
108th 430 1218 −73,137 −73,143
109th 430 1210 −86,808 −86,721
110th 424 1865 −97,252 −98,775
111th 426 1647 −74,435 −74,976
112th 428 1602 −120,633 −120,313
113th 424 1202 −75,718 −75,249
114th 431 1322 −68,118 −67,198
115th 450 1207 −56,104 −54,994
116th 432 700 −33,131 −31,403
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deed, note that between the 100th and the 111th Houses, the Euclidean model tends to dom-
inate our circular model, and, in the cases in which that is not the case (the 107th and 109th
Houses), the advantage of the circular model is relatively modest. On the other hand, since
the 112th House, the circular model is clearly preferred by the data. This roughly coincides
with the pattern observed for χ0 in Figure 9, suggesting that the circular variance of the ideal
points is indeed a good metric of “circularity” in voting patterns.

6.4. Sensitivity analysis. In order to understand the effect of the priors on our results, we
conducted a sensitivity analysis by refitting the model under three alternative priors for each
of the 112th and 116th Houses. First, we consider a Gamma prior with shape parameter 7 and
scale parameter 1 for ωβ (so that Pr(−π/2 < βi < π/2) ≈ 0.995 a priori) and set the mean
of 1/λ to 1/100. Relatively speaking, this prior favors configurations that are closer to those
generated by the one-dimensional Euclidean model. Second, we consider an exponential prior
with mean 2 for ωβ (so that Pr(−π/2 < βi < π/2) ≈ 0.80 a priori) and set the mean of 1/λ

to 1/25. Compared to the first hyperprior, this second one favors circular configurations.
Finally, we consider a combination of an exponential prior with mean 10 for ωβ (just as in
our original prior) and a second exponential prior with mean 2 for 1/λ.

Figure 11 presents histograms of 100,000 samples simulated from the (marginal) prior dis-
tribution on υi,j = Gκj

(ei,j (ψj , ζj , βi)) (the probability of a positive vote) induced by these
three alternative hyperparameter combinations as well as our original set of hyperparameters.
These marginal distributions (which, a priori, are identical for every i and j ) are a useful tool
to understand how the priors on the latent space impact the model. In this case, note that the
first two alternative sets of hyperparameters lead to priors on υi,j that look look similar to
our original one. These priors place high probability on values close to 0 and 1, a behavior
that would be expected in roll votes, especially in legislative bodies with a high level of po-
larization, such as the U.S. House of Representatives (see, e.g., Spirling and Quinn (2010)).
On the other hand, our third alternative set of hyperparameters yields a very different prior
for υi,j , one that places most of its mass on values close to 1/2. In spite of these differences,
posterior inferences seem to be robust across all four priors we considered. Detailed results
can be seen in Section 2 of the Supplementary Materials (Yu and Rodriguez (2021a)).

7. Discussion. Our results suggest that the circular voting model developed in this paper
provides a better explanation for voting patterns in the modern U.S. House of Representatives
than traditional one-dimensional voting models. In particular, we find a pattern of increasing
circularity driven by the raise of extreme ideological factions willing to vote against the main-
stream of the party (especially among Republicans) which seems to have gone hand in hand
with increasing polarization in the chamber.

One referee astutely wondered whether there were any instance of the circular model mis-
placing a legislator by assigning a moderate a more extreme position than the Euclidean
model. Across the two Houses that we studied in detail (the 112th and 116th), the only leg-
islator for whom this appeared to be the case is representative John Campbell (R CA-48) in
the 112th (see Figure 7). Most analysts would not consider Campbell a Republican firebrand.
Therefore, having him appear in our list of largest changes was a bit of a surprise. However,
representative Campbell did have a history of voting with (sometimes extreme) liberals on
some issues. Relevant examples include being one of 15 Republican House members to vote
in favor of repealing the United States military’s “Don’t Ask, Don’t Tell” ban on openly gay
service members on December 2010 and voting against the FY12 National Defense Autho-
rization Act in protest against a controversial provision allowing the military to indefinitely
detain American citizens and others without trial. In fact, the placement of Campbell under
the circular model serves to illustrate how our model works. Unlike the Euclidean model, our
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FIG. 11. Marginal prior distribution on υi,j = Gκj (ei,j (ψj , ζj , βi)) (the probability of a positive vote) induced
by our original prior distribution as well as those induced by three alternative hyperparameter values used in our
sensitivity analysis.

circular model treats legislators that vote with centrists of the other party differently from how
it treats those that vote with their extreme partisans. In the former case, the relative position
of the legislator can be expected to be very similar under both models. In the latter, the po-
sition of the legislator can be expected to be more extreme under the circular model. Hence,
what ours results reveal about representative Campbell is that, in spite of whatever policy po-
sitions he publicly expressed, his voting record is nonetheless consistent with sporadic votes
in coalition with liberal Democrats.

In our interactions with various colleagues, one criticism that has been leveled at times is
whether the circular assumption makes mechanistic sense ex ante and, in particular, whether
the Horseshoe Theory can be applied in the context of the U.S. House of Representatives.
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We view this criticism as a reflection of the type deductive thinking that tends to dominate in
political science. In contrast, this paper posits an inductive approach to the problem in which
we use data to evaluate the empirical support for the Horseshoe Theory. The main contribu-
tion of this paper is to provide a solid statistical methodology that enables this kind empirical
explorations, under the much laxer assumption that a circular voting space is at least mini-
mally plausible. We recognize that taking an inductive approach begs the question of whether
there are alternative explanations (e.g., heavy-tailed random shocks to the latent utilities or
nonmonotonic utilities functions) for the “extremes voting together” phenomenon. We agree
that further exploration of these questions is key but also see such endeavors as beyond the
scope of this particular paper which is focused on introducing the basic methodology needed
to fit and assess evidence related to models that rely on circular policy spaces. Furthermore,
the fact that our results partially challenge the ex-ante opinion that the Horseshoe Theory
might not be a good fit in the U.S. that some experts might hold should be seen as a find-
ing worth further investigation rather than a reason to discard the underlying methodology
enabling those conclusion.

Because our motivation comes from the study of the U.S. Congress, our focus has been
solely on investigating the impact of geometry on intrinsically unidimensional models. How-
ever, for other applications, learning the dimensionality of the latent spherical space and
understanding the trade-offs between dimensionality and geometry might be critical tasks.
Addressing these questions is, however, nontrivial. In particular, priors on the latent space
need to be constructed very carefully, particularly if dimension selection is important. This is
part of our current work in progress.

The Markov chain Monte Carlo algorithm devised in Section 5 seems to perform quite
well in the examples we considered. However, there are a number of possible improvement,
from implementing joint HMC steps for blocks of parameters rather than for individual ones,
to adapting the ideas behind the No-U-Turn sampler of Hoffman and Gelman (2014) to the
context GHMC algorithms in order to minimize the amount of tuning required. We will ex-
plore some of these alternative computational approaches in the future as we improve our
software.

Our model makes no attempt to explicitly model how or whether the voting patterns of in-
dividual legislators have evolved over time, neither within a given House, nor across Houses.
In the case of Euclidean models, such questions have been addressed before for (e.g., see
Martin and Quinn (2002) and Lofland, Rodríguez and Moser (2017)). We will explore simi-
lar extensions of our circular models in our future work.

APPENDIX: HAUSDORFF MEASURES AND THEIR GRADIENTS

The density of the full conditional distribution for βi is given by
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×
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where ηT
β = (ωβ,0), zT

ψj
= (cosψj , sinψj), zT

ζj
= (cos ζj , sin ζj ) and the mapping between

βi and xβi
is given by xT

βi
= (cosβi, sinβi). Hence, the gradient of the Hausdorff measure is

simply
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where
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SUPPLEMENTARY MATERIAL

Supplementary Material A (DOI: 10.1214/21-AOAS1454SUPPA; .pdf). We discusses
our convergence, mixing analyses and sensitivity analysis for the MCMC runs on which
the results in Sections 6.1 and 6.2 are based. In addition, we report the outcomes of two
simulation studies designed to illustrate that it is possible to differentiate between a circular
and a 2D Euclidean latent space, and to illustrate the connection between circular and higher-
dimensional Euclidean models.

Supplementary Material B (DOI: 10.1214/21-AOAS1454SUPPB; .zip). R and Rcpp
source code for the models implemented in this paper and data obtained from https:
//voteview.com/.
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