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Abstract—For soft continuum arms, visual servoing is a popular
control strategy that relies on visual feedback to close the control
loop. However, robust visual servoing is challenging as it requires
reliable feature extraction from the image, accurate control models
and sensors to perceive the shape of the arm, both of which can be
hard to implement in a soft robot. This letter circumvents these
challenges by presenting a deep neural network-based method to
perform smooth and robust 3D positioning tasks on a soft arm by
visual servoing using a camera mounted at the distal end of the arm.
A convolutional neural network is trained to predict the actuations
required to achieve the desired pose in a structured environment.
Integrated and modular approaches for estimating the actuations
from the image are proposed and are experimentally compared.
A proportional control law is implemented to reduce the error
between the desired and current image as seen by the camera. The
model together with the proportional feedback control makes the
described approach robust to several variations such as new targets,
lighting, loads, and diminution of the soft arm. Furthermore, the
model lends itself to be transferred to a new environment with
minimal effort.

Index Terms—Modeling, control, and learning for soft robots,
visual servoing, soft robot applications.
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I. INTRODUCTION

A. Motivation

SOFT continuum arms (SCA) [1] have received growing
attention due to their superiority in dexterous manipulation

and safe interaction with the environment. Their inherent flex-
ibility with high degrees of freedom endows soft robots with
good adaptability but raises challenges for accurate position
control. The challenges in SCA control can be attributed mainly
to the difficulties in modeling and sensing [2] its deformed shape.
Current modeling methods are either simplistic with a constant
curvature assumption that work in 2D plane or valid for SCAs
with short lengths [3]. On the other hand, Cosserat models [4]
require expert knowledge for their implementation and therefore
have been less explored by the community. In addition, even with
effective models, there aren’t cost-effective sensors [5], [6] to
get the spatial position feedback of SCAs.

Recent advances in visual servoing and deep learning in
robots can be effectively used to overcome the limitations in
both sensing and modeling of SCA. With a camera (eye-in-hand
configuration) at the distal tip of the SCA acting as a feedback
sensor, the pose errors can be reduced. Visual servoing using
Neural Networks (NN) in conventional robotic arms has been
well studied but not extensively validated on SCA because of its
complex behavior. This letter proposes the use of NN for visual
servoing in SCA using two approaches: integrated and modular.

B. Related Work

Visual servoing by its name is to control a system using
vision. Classical visual servoing extracted features like points
or lines using early computer vision techniques, and control
was designed based on these features as seen in [7], [8]. This
limited the types of objects that can be used, the environment
lighting conditions, and are heavily dependent on the reliability
of feature extraction methods. The introduction of using lu-
minance of all pixels in the image [9] addresses the issue of
object limitations, but still requires camera calibration. [10] on
the other hand, represented images with principal component
analysis that greatly reduces the dimensions and [11] used a
moments-based approach to extract features. All these methods
still require fine-tuning for different applications.

As feature extraction techniques in computer vision improved
with the advent of neural networks, so did their applicability
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Fig. 1. Experimental setup: (a) BR2 SCA attached to a rotating servo that can move in X and Y direction in the gantry along with the targets and the wireless
receiver to receive the tip camera image. (b) Four new targets (not seen in training) along with the targets used for training. (c) BR2 SCA with the camera attached
to the tip using a 3D printed casing. (d) SCA with uniform loads distributed along its length (inset: silicone cast ring weighing 1.4 grams). (e) SCA with the central
region constrained with a rigid 3D printed part. (f) Four sample images used for the training with first background and (g) four sample images used for the training
with the second background.

in visual servoing. A related letter in this area [12] made use
of deep neural networks like AlexNet [13] and VGG [14] to
learn the relative pose that is fed into the control policy. Our
work is primarily inspired by this approach. More advanced deep
learning models like LSTMs [15], GANs [16] are seen in [17],
[18] respectively. [19] on the other hand implemented a hybrid
control policy where open-loop odometry was used as a coarse
policy and a visual feedback policy was used to close the final
error gaps to reach the targets. However, the above-mentioned
works focused mainly on rigid arm visual servoing for which
the system model is already known.

Visual servoing for SCAs has gained a lot of traction recently,
due to their difficulty in modeling and pose control. Works
like [20], [21] used a fixed camera (eye-to-hand) to capture the
pose and curvature of the soft-arm to perform image-based visual
servoing. Additional sensor assistance-based visual servoing
was performed in [22] in order to track the camera motion
but was limited to 2D space. In this letter, we are interested
in eye-in-hand image-based visual servoing in a 3D framework.
We rely on neural-networks to handle the feature extraction and
mapping to actuation. The control policy then computes the error
between the predicted actuations of current and target images.

C. Overview

We propose two approaches, integrated and modular, to esti-
mate the pose of the soft manipulator, and control it using visual
servoing in a structured environment. The integrated approach
predicts the actuation directly for a given input image, which is
useful when the environment is changed. The modular approach
on the other hand, first predicts the pose for the given image and
then maps the predicted pose to actuation which is particularly
useful when the SCA is changed. Both these frameworks take a
single RGB image, I, and predict the control inputs (actuations)
required to reach the corresponding pose of the soft arm (current
pose). Using this information we calculate the error in the
geometrical features of the current and target images, as well as
the error between the current and target actuations. These errors
are reduced by using visual feedback to estimate the control

commands needed to reach the desired target pose. Through
experiments, we show that both the approaches perform well,
with the integrated approach being robust to various changes
such as light intensity, diminution of SCA, added weights, etc.
Fig. 2(a) shows the overall workflow of the proposed approach.

II. METHODS

A. Experimental Setup

The experimental setup consists of five connected systems:
Soft Continuum Arm (SCA), gantry, electrical control board,
computers, and magnetic sensor. The SCA (Fig. 1(c)) is made
of three Fiber Reinforced Elastomeric Enclosures (FREE) [23]
- one bending, two rotational (one clockwise(CW) and another
counterclockwise (CCW)) and is referred to as a BR2 [24]. It has
an individually controllable pneumatic actuator for each FREE.
The gantry (Fig. 1(a)) adds three degrees of freedom (DOF)
to the SCA via an X and Y rail and a rotational mount (θ)
for the SCA. The X and Y rails are belt driven by stepper
motors (NEMA 17) and have an X travel of 45 cm and a Y
of 42 cm with the origin defined by limit switches. Positioning
on the gantry is open loop and was reset between tests and data
collection runs to reduce error accumulation. A servo motor
(DS3218MG, DSSERVO) joins the SCA to the gantry and
controls θ(±90◦). Together the SCA and gantry provide five
DOF: bending, rotation, theta, x and y translation. Note that
rotation is treated as one DOF as the two rotating FREEs are
never actuated simultaneously. The CW and CCW rotations are
distinguished by positive or negative value.

The electrical control board contains a pressure regulator
(ITV0031-2UBL, SMC) for each FREE in the SCA, a PWM
control board (PCA9685, Adafruit) for the servo and two stepper
drivers (Big Easy Driver, SparkFun) to control the gantry trans-
lation. These devices are operated by a Raspberry Pi 4 (8 GB)
and an Intel NUC (NUC7i7), both running Ubuntu 18.04 with
ROS Melodic. The Raspberry Pi is used to interface with the
electrical control board while the NUC is used for the computa-
tionally intense control loop. The two computers communicate
via ROS multimaster. A magnetic sensor (micro sensor 1.8,
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Fig. 2. (a) Workflow of our method to reach the target image given current image. (b) Two different approaches (modular and integrated) for obtaining a mapping
from image to actuations (Img2Act) (c) Network architecture of VSBaseNet and (d) Network architecture used for the pose to actuation mapping (P2ANet).

Patriot SEU, Polhemus), attached to the SCA, provides pose
information about the tip of the SCA relative to a fixed source
(TX1, Polhemus) origin that is placed at the center of gantry
base.

B. Data Collection

We mounted a 1200 TVL camera (Caddx Firefly, Micro FPV
Camera w/ VTX), which is a low-cost, lightweight (4.2 grams),
small form-factor camera on the distal tip of the SCA and
collected images from the camera at various views by moving the
soft arm and gantry. The setup of the soft arm is given in Fig. 1(c).
The process is automated and the inputs are given in the form of
actuations, such as pressures (b, r),x, y and angle (theta). Images
of the scene are captured at discrete configurations throughout
the workspace while state data (actuations and sensor readings)
is collected to self-annotate the images. A few examples of
images taken by the camera are shown in Fig. 1(f) and Fig. (g).
The images have a resolution of 640x480 pixels.

C. Network Architecture

Due to the ability of Deep Convolutional Neural Networks
(CNNs) to automatically extract features from large training
datasets, they have shown to be effective in various computer
vision applications, such as image recognition [13], segmenta-
tion and also have been studied to estimate the pose of a robot
manipulator given image inputs [12]. Inspired by this, we use
VGG16 [14], to estimate the input actuation values required to
reach a specific pose of the soft manipulator arm using image
inputs. VGG16 [14] is originally trained for classification task
on 1.2 million ImageNet images that has around 138 million
parameters. Since our task is not exactly similar to the im-
age classification, we modified the final few layers, performed
transfer learning by using previously trained VGG16 weights
on some layers and fine-tune it on our data which effectively
helped the network to learn new features pertaining to our task.

We also found that freezing the first 12 layers of the network and
retraining the remaining layers gave optimal results in terms of
loss and error. In addition to this, we added 2 fully connected
layers (with 64, 32 units, respectively) with ReLU non-linearity.
To aid regularization, we added batch normalization layers,
dropout layers after the dense layers and also applied l1 and
l2 regularizers to all the dense layers to decrease overfitting
with 0.0001 and 0.0005 as their respective regularization factors.
We call this network VSBaseNet. Fig. 2(c) shows the complete
network architecture of the base network, VSBaseNet.

Two different approaches namely, integrated approach and
modular approach, were used to predict the actuations from the
input image. These two approaches were implemented and tested
in order to see their effectiveness in various scenarios as shown
in section III. The workflows of both the approaches are given in
Fig. 2(b) and their network architectures details are given below.

Integrated Approach: In the integrated approach, the net-
work directly outputs the actuations given an input image, I .
Here, the network used is VSNet1 which consists of the base
network, VSBaseNet, along with a dense output layer with
sigmoid activation. Since we were dealing with a regression
task, the final dense layer consists of five units that output 5
floats corresponding to the five input actuations: bending (b),
rotation (r), theta (t), and the gantry (x and y). The details of
VSNet1 are given in Fig. 2(b) and (c).

Modular Approach: For the modular approach, we divided
the image-to-actuation step in two parts (modules): image-
to-pose, and pose-to-actuation. The image-to-pose (Img2Pose)
module takes in a single image (taken at the current arm pose), I ,
and outputs the pose information. The VSNet2 network is used
to take an input image and output the pose in the form of a vector
comprised of the position and orientation (quaternion) informa-
tion, [px, py, pz, q0, q1, q2, q3]. This pose information is fed as
input to the P2ANet network which predicts the corresponding
mapping of actuation inputs in the form of another vector con-
sisting of actuation values [b, r, t, x, y]. The network architecture
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of VSNet2 is similar to VSNet1 (it uses the same base network,
VSBaseNet), except the last (output) layer, which has 7 units
corresponding to the 7 output floats. The P2ANet consists of
3 dense layers with 256, 128, and 5 units respectively along
with ReLU non-linearity in the first dense layer and sigmoid
activation the last layer. We also added batch normalization and
dropout layers to aid regularization. The network architecture of
VSNet2 and P2ANet is given in Fig. 2(b), (c) and (d).

D. Training

1) Dataset: Using our self-annotated data collection method,
a total of 7980 images corresponding to different poses were
collected. The absolute pose data with respect to the initial
configuration was also noted for each of the images. We used
electromagnetic tracking (Patriot SEU, Polhemus) with a short-
range source (TX1, tracking area 2 to 60 cm) to get the ground
truth absolute pose. This sensor is flexible, lightweight (< 2 g),
has a positional accuracy of less than 1 mm and does not hinder
or alter the performance of the soft arm. The signal from the
sensor provides the real-time spatial coordinates of the soft arm
end in the form of [x, y, z, quaternion], while [theta, r1, r2, b]
come from the requested actuations.

In our approaches, we used image data to predict the actua-
tions (integrated approach) or pose (modular approach) of the
soft arm. The range of values for each of the 5 actuations were
as follows: Bending (b): 14 to 22 psi (discrete values with steps
of 2 psi) (96.5 to 151.7 kPa in 13.8 kPa steps); Rotation (r): -18
to 18 psi (discrete values with steps of 2 psi)(-124.1 to 124.1 kPa
in 13.8 kPa steps); Theta (t): +6 to -6 degrees (discrete values
with steps of 2); x: 14, 16 and 18 cm (discrete values); y: 14,
16, 18, and 20 cm (discrete values).

The dataset is divided into training, validation and testing
sets with 4910, 1676, and 2394 images respectively. The ground
truth values for the integrated approach consist of the absolute
actuation values corresponding to the pose of the soft arm for
each image. A CSV file containing 5 columns corresponding to
each of the actuation values was created, and then split into train-
ing, validation and testing label files for training purposes. This
method was repeated for the image-to-pose part of the modular
approach where the ground truth values consisted of the pose
information. This entire data collection process is automated.

E. Loss Function and Optimization

Our network takes in a single image (taken at the current
arm pose), I , and outputs the absolute actuation values re-
quired to reach that pose. Since this is a regression problem,
the last layer of the network outputs floats. The output of the
network is in the form of a vector comprising of either the
pose (px, py, pz, q0, q1, q2, q3) or the 5 actuations (b, r, t, x, y).
To regress absolute values of pose or actuations, we use the
mean-squared error (MSE) loss function which computes the
mean of squared errors between the ground truth values and the
predictions.

loss(I) =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

Here, Yi corresponds to the ground truth actuations whereas,
Ŷi corresponds to the predicted actuations of the input images.
We experimented with SGD and Adam optimizer for training
and found that Adam optimizer converged faster and with less
oscillation. We achieved best results using a time based learning
rate scheduler with an initial learning rate of 0.01 and number
of epochs as 150. The learning rate at each epoch was calculated
as:

ηn = ηn−1 ∗ 1

1 + decay ∗ n (2)

where ηn−1 is the learning rate of the previous epoch, and n
is the current epoch number. The value of decay is normally
implemented as:

decay =
η0
N

(3)

where η0 is the initial learning rate and N is the total number
of epochs. We trained the model for 150 epochs after saturation
is reached. We used a batch size of 128 to help generalizing the
model better. Using a lower or a higher batch size caused the
validation loss to fluctuate.

F. Control Architecture

There are two possible sources for open loop errors in the
system, (i) Non repeatability due to hysteresis could lead to a
different end effector position for the same input actuations,
which could also be dependent on the path taken by the manip-
ulator [24]. (ii) Inaccuracies in the trained model to fit the pose
to actuations could also lead to large deviations from the target.
To overcome these inherent errors, we integrated the following
control update, where the error between the current predicted
actuations and the target actuations at various iterative steps are
fed back into the input until the tip converges to the target image
(IT ) within reasonable accuracy, as shown in the Fig. 2(a):

ARC(k + 1) = ARC(k)− λ(APC(k)−APT ) (4)

where ARC(k), APC(k) and APT are the current actuations
to the soft arm, predicted actuations for the current image and
predicted actuations for the target image at step k.It must be
noted that the arm operates in a quasi-static manner in each
iteration step and at the end of each step k, it is made to reach
static equilibrium where all the external forces are balanced by
the actuation forces. The current image for the next iteration is
taken only after this equilibrium is reached after 6 seconds and
hence the wait after system actuations as shown in figure 2(a).
As the error between the predicted actuations for the current
image and target image reduces to zero, the SCA tip reaches its
target position (or the tip camera views the target image). λ is
the proportional gain (> 0) used for efficient convergence. The
overall gain λ used is decoupled to two different gains, λr for
the x, y and θ variable and λs for the b, r variables in order for
efficient and smooth convergence.

III. RESULTS

In this section, we describe the different scenarios used to
validate the approaches detailed in Section II on the SCA.
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Fig. 3. Results (for one case each): (a) The target, current images at different iterations (denoted by N) and the final image when the stopping conditionMSEa < 5
was reached and (b) the corresponding position and rotation error over iterations for integrated, modular, new targets, light intensity, diminution and uniform load.

A. Formulation of Normalized, Unitless MSEa Metric

A normalized MSE metric that is scale-invariant and unit-less
is formulated in order to represent the accuracy of the system
is shown in (5). In this equation, each term is divided by the
resolution i.e., the minimum change a state can undergo. Here,
N = 5 corresponds to the 5 actuations - b (kPa) (i = 1), r
(kPa) (i = 2), t (radians) (i = 3), x (m) (i = 4), y (m) (i = 5);
aobserved is observed actuation, atarget is target actuation and
aik = 0.1 is the scaling factor ∀i ∈ {1, 2, 3, 4, 5}. All states are
rounded off to their first decimal point and hence 0.1 (0.1 kPa,
0.1, radians, 0.1 m) is the scaling used. Based on this metric,
we define the stopping condition for all the tests conducted to
be MSEa < 5 or when the number of iterations (N) reaches
15. These values were empirically decided with two criteria: a)
reduce the translation and rotation error and b) reach the target
image in a reasonable number of iterations.

MSEa =
1

N

5∑
i=1

(
aiobserved − aitarget

aik

)2

(5)

B. Estimation of λs and λr

The different actuations have a disproportionate effect on the
SCA tip position. For example, a small change in x or y position
will have a larger effect on the SCA tip than a similar change
of the pressure in the SCA. The tip position is also dependent
on the current shape of the SCA. It is empirically obtained that
the number of iterations required to reach a test image to obtain
the actuation error (MSEa) less than 5 is faster for values of λr

and λs in the range of [0.5, 0.7] and [0.6, 0.8]. Based on this test
case, the values of λ for all the following validation tests is set
to [λr, λs] = [0.6, 0.7].

TABLE I
COMPARISON BETWEEN INTEGRATED AND MODULAR APPROACH

C. Integrated Approach

Thirty (n = 30) random points in the operating
range/workspace of the SCA system were collected and their
pose (x, y, z, q0, q1, q2, q3) information is recorded with the
Polhemus magnetic sensor. VSNet1 (shown in Fig. 2(b)) is used
for reaching the desired target images. For each test, the SCA
system starts with a random initial configuration.

The target image, current images at different iterations, and
the final image (when the stopping condition ofMSEa < 5was
reached) for one of the test cases is shown in Fig. 3(a). It took
eleven iterations for it to reach the desired stopping condition.
From the position and rotation error plots in Fig. 3(b), it can
be observed that the error was reduced to less than 2 cm in six
iterations. In the remaining iterations, the system transitions to
further reduce the error. The accuracy of this approach is also
shown with the quantitative metrics of average MSE in actu-
ations, average Euclidean distance error, and average rotation
error between the final and target image for all the 30 tests as
reported in Table I. We would like to highlight that for two of
the test cases where the arm looks at the ground with no features
initially, it reached with 77 and 30.7 MSEa at the 15th iteration
leading to average MSEa = 5.587 > 5.

Fig. 4(a) shows the histogram of translation and rotation
errors for the 30 test points. Translation error is calculated using
the Euclidean distance between the ground truth (px, py, pz)
position (obtained from the Polhemus magnetic sensor) of the
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Fig. 4. Histogram of translation and rotation errors obtained for the test cases of (a) Integrated (30 points), (b) Modular (15 points), (c) New Targets (6 points),
(d) Change in light intensity (10 points), (e) Diminution of SCA functionality (10 points), and (f) Uniform load (n = 10 points).

target image and final image for each test. Rotation error on the
other hand is obtained using Euler’s Axis-angle representation
where R1, R2 are rotation matrices at the target and final images
respectively. The quaternion pose information obtained by the
Polhemus sensor is first converted to rotation matrix in order to
use the Eq.6.

e(R1, R2) = cos−1

(
trace(R1R

T
2 )− 1

2

)
(6)

D. Modular Approach

The modular approach (as in Fig. 2(b)) was tested on fifteen
random points (n = 15) in the workspace within the range
of the SCA and the gantry. The pose information for all the
test images was recorded using the Polhemus magnetic sensor.
VSNet2 predicts the pose given an input image and the P2ANet
outputs the corresponding actuations for the predicted pose. The
quantitative metrics using the 15 tests is given in Table I. The
target image, current images at different iterations, and the final
image (when the stopping condition ofMSEa < 5was reached)
for one of the test cases is shown in Fig. 3(a). As seen in Fig. 3(a),
the final image obtained after converging in 12 iterations is a little
farther from the desired target image, however the orientation
is much closer to the desired orientation using this method. We
also observed that two of the tests withMSEa of 172.3 and 44.7
at the 15th iteration, resulting in average MSEa = 6.489 > 5.
Fig. 4(b) shows the translation and rotation errors for the 15 test
points.

E. New Targets

The integrated approach is tested new targets (as shown in
Fig. 1(b)) inserted in the workspace. Six target images (n = 6)
were randomly collected, out of which three images contained
the new target alone, and remaining three images contained both
new and old targets (included during training). The target image,
current images at different iterations, and the final image (when
the stopping condition of MSEa < 5 was reached) for one of
the test cases is shown in Fig. 3(a). As seen in the position error

TABLE II
RESULTS OF EXPERIMENTS (INTEGRATED APPROACH)

plot in Fig. 3(b), the error reduced to less than 2 cm in three
iterations and converges to the new target image in 11 iterations.
The quantitative metrics using the six tests are given in Table II.
Fig. 4(c) shows the histogram of translation and rotation errors
for the six test points.

F. Robustness to Light Changes

The robustness of our integrated approach against light ex-
posure changes was tested with an extra light source in the
environment, thus making it brighter. Tests were conducted at an
average illuminance of 341.4 lx compared to 155.4 lx for training
and other testing (Light Meter Model R8130, Reed Instruments).
The results for one case are shown in Fig. 3(a)–(b). For this case
the target image was reached in six iterations. The quantitative
metrics using the ten tests are given in Table II. Fig. 4(d) shows
the histogram of translation and rotation errors for the ten test
points (n = 10).

G. Effect of Diminution

For this experiment, we restricted the functionality of the SCA
by attaching 3D printed clips to its mid section as shown in
Fig. 1(e). These clips restrict the bending functionality of the
SCA in the sealed section of the arm. The integrated approach
was tested on 10 different random images. The results of one test
case are shown in Fig. 3(a) and (b). As seen in the Fig. 3(b), the
SCA reached the target image in 12 iterations. The quantitative
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Fig. 5. Results: (a) Validation set MSE trend for original data trained on
VSNet1, and new data retrained on VSNet1 and (b) The initial, target and the
final image when the stopping condition MSEa < 1 was reached.

metrics using the 10 tests are given in Table II along with the
histogram of translation and rotation errors for the 10 test points
(n = 10) in Fig. 4(e).

H. Uniform Load

Six uniform rings of 1.4 grams each were added on to the
SCA equidistantly along the length as shown in Fig. 1(d). The
rings were fabricated with silicon and thus owing to flexibility
of silicon, these rings don’t affect the functionality of the SCA at
the added locations. A total of ten experiments were conducted.
The integrated approach was used for this experiment, where
results of one of the tests with stopping condition MSEa < 5 is
shown in Fig. 3(a). The target was reached accurately with loads
in six iterations. The total added weight is around 25% of the
total weight of the SCA. The quantitative metrics using the ten
tests (n = 10) are given in Table I along with the histogram of
translation and rotation errors for the ten test points in Fig. 4(f).

IV. ADAPTABILITY TO A NEW ENVIRONMENT

In order to test the transferability and adaptability of the
system to new environments, we changed the background of our
structured environment. We added previously unseen images in
the background of our setup and additionally included images
on the ground (bottom of the environment). With the new back-
ground, data was recollected as described in Section IID. Our
model was retrained on the new background data, with weights
initialized as the trained weights from the original VSNet1. Five
experiments were conducted using the retrained model in the
new environment, keeping the stopping condition asMSEa < 1
and maximum iterations as 15. The results of two cases are
shown in Fig. 5(b) which took 27 and 23 iterations respectively,
to reach the stopping condition. The average number of iterations
to reach the stopping condition for all the tests was 23. The mean

translation error was 1.4212 cm and the mean rotation error was
0.1252 radians. We also observed that retraining VSNet1 took
fewer steps and converged faster than before (converged in 110
epochs as opposed to 150 epochs from before). This can be seen
from the validation set MSE graph in Fig. 5(a).

V. DISCUSSION

In this letter, we demonstrate that visual servoing using
deep neural networks leads to accurate and robust control of
a soft continuum arm, which is otherwise known to be hard
to control using model-based techniques. We showcased two
approaches for deep-learning based visual servoing of SCAs,
the first utilizing an integrated (image to actuation) approach,
and the second utilizing a modular approach (image to pose
and pose to actuation). In the integrated approach as seen in
Fig. 4(a), 90% of the data has less than 2 cm translation error
(approximately the diameter of the SCA) and 80% less than 0.24
radians for the rotation. The test cases with higher error occurred
on the extremities of the workspace (edge of the gantry in this
case). Such errors are likely a result of no features in background
in two different parts of the workspace causing the model to get
confused between them. In these cases, the gantry bottom had
a plain background and the model was confused for a similar
image on the other corner of the gantry. This can be addressed
by having a non-plain background on all sides of the operating
region. Excluding these outliers reduces the average translation
error to less than 1.4 cm.

The modular approach can be useful when either the SCA
is changed (by retraining P2ANet alone) or the background
is changed (retraining VSNet2 alone). Although the modular
approach does a reasonable job in reducing the errors for more
than 50% of the data, from Fig. 4(a) and (b) it was found to
be less accurate compared to the integrated approach. This may
be due to errors that accumulate due to the intermediate pose
estimation step. We do note here that in both approaches our
architecture directly computes the control actuation, as such, this
indicates that deep learning based visual servoing can be directly
utilized in a control architecture with a simple linear control
law. The reasonable tracking from our architecture indicates
that further optimization of control was not necessary for our
problem setup which was focused on the static reach problem.
However, optimization and learning-based-control could be in-
teresting directions for future work in problems like dynamic
tracking, or trying to reach objects that are not reachable with
static actuation by using the arm’s momentum.

From the histogram plots for different cases Fig. 4(c)–(f),
the integrated approach is robust to several changes the SCA
may encounter (such as loads, disturbances and diminution) for
performing different real-world tasks. The approach is able to
reach the target positions with errors less than 1.5 cm for more
than 80% of tests in all cases. In addition, unlike the previous
work on the control of the BR2 SCA [25], the image based
method also controls the orientation of the SCA where the rota-
tion errors were less than 0.24 radians for 100% of the data and
no abrupt changes in actuations were noticed leading to smooth
convergence of the end effector to the target. Furthermore,
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the system worked satisfactorily well in a new environment,
considering the model was not fine-tuned to the new dataset.
The data collection was efficient for a new background since
it’s automated. We observed that retraining VSNet1 took fewer
steps and converged faster. Since we had retrained the model
with images where the ground is visible, the system was able
to converge upon encountering the ground during testing. We
performed experiments on the new background with a more rigid
stopping condition (MSEa < 1) and found that our method is
capable of performing more accurately with a stricter stopping
condition. We also tested a few points in the new background
with the previous model (trained on the original dataset), but it
did not converge. This ascertains that retraining the VSNet1 with
new data was required. Since we have a self-supervised system,
collecting data and retraining on a new background can be done
in a few hours.

VI. CONCLUSION

To conclude, we demonstrated that visual servoing with deep
learning-based architectures leads to a reliable reach-control of
soft continuum arms, which are otherwise known to be difficult
to control. Our method includes a feedback controller, on top
of our modified VGG16-based image-to-actuation predicting
model, to accommodate for hysteresis present in the soft-arm
as well as the inaccuracies in the actuation predictions. We
demonstrated our method in static reach problems in structured
non-changing environments, which captures a large operational
set for such arms. In these environments, we showed the ro-
bustness of our approach through various types of experiments
ranging from change in environment lighting, new targets in the
environment, restricting the functionality of the arm to adding
uniform load. Additionally, we not only control the position of
the arm but also the orientation as compared to [25]. We also
verified the transferablility of our neural network model to a new
environment by changing the background images coupled with
retraining. As a result, a huge advantage is that the users can
easily re-purpose our system for various settings without any
need for manual labeling since the data collection for training
the prediction model is automated.

While we limited this investigation to the quasi-static response
of the SCA, in the future we will explore visual servoing in
dynamic environments for which we will leverage the recent
advances in spatio-temporal neural networks [15]. In future
work, we would like to validate the effectiveness of the modular
approach by changing the SCA that has a different architecture
than the BR2 SCA used in this work. Furthermore, acquiring
a target image is limited to random exploration or a teaching
policy method currently. In future work, we would like to give a
query object as the target to which the arm should reach [26]. We
also acknowledge that this work is restricted to controlling the
soft arm moving with zero collisions with its environment. With
obstacles, the data collection process will no longer be automatic
as shown in this work. Therefore, in our future work, we intend
to investigate visual servoing in cluttered environments where
the soft arm leverages its flexibility and interaction with the
obstacles in reaching desired regions.
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