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Abstract. We study linear stability of solutions to the Navier-Stokes equations with
stochastic viscosity. Specifically, we assume that the viscosity is given in the form of
a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-
Stokes equation and then leads to a generalized eigenvalue problem, from which we wish
to characterize the real part of the rightmost eigenvalue. While this can be achieved by
Monte Carlo simulation, due to its computational cost we study three surrogates based on
generalized polynomial chaos, Gaussian process regression and a shallow neural network.
The results of linear stability analysis assessment obtained by the surrogates are compared
to that of Monte Carlo simulation using a set of numerical experiments.
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1. INTRODUCTION

Models of mathematical physics are typically based on partial differential equations
and they are often solved numerically using finite element methods. The models use

parameters as input data, although exact parameter values are often not known and
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they are modeled using random variables. This approach leads to so-called partial
differential equations with uncertain data: given stochastic parameters, we wish to
characterize their stochastic solutions. Probably the most popular method for solving
these problems is Monte Carlo simulation, which is based on sampling: samples of
input parameters give a set of independent deterministic problems, which are solved,
and then the statistical moments of solution are obtained from ensemble averaging.
This method is known to be slow (with errors for n samples behaving like n~1/ 3,
and since each sample requires solution of the full model, its computational costs will
be high. Significant effort has been devoted to designing computationally cheaper
alternatives to the full model called surrogates in order to decrease the overall com-
putational cost. Arguably the most popular surrogate types are based on generalized
polynomial chaos (gPC) in the engineering community [15], [37], and Gaussian pro-
cess (GP) regression in the statistics community [29], [34].

Our focus is on linear stability analysis of parameterized dynamical systems.
A steady solution w is stable if with a small perturbation of u, used as initial data in
a transient simulation, the simulation reverts to u; otherwise it is unstable. This is
of fundamental importance in studying dynamics, since unstable solutions may lead
to turbulent flows or other inexplicable dynamic behavior [6], [30]. Linear stability
analysis entails computing the rightmost eigenvalue of the Jacobian matrix at wu; if
this eigenvalue has positive real part, then u is unstable. In this study, we explore
this issue using the parameterized Navier-Stokes equations. This is a challenging
task, because it entails solving a nonlinear PDE close to a bifurcation point followed
by solving of a nonsymmetric eigenvalue problem. Since it is also computationally
intensive, we wish to find a less expensive surrogate. The Navier-Stokes equations
with stochastic viscosity were studied, e.g., by [18], [28], [32], and techniques based
on gPC for parameterized eigenvalue problems were studied, e.g., by [2], [4], [19].
A stochastic collocation method for linear stability analysis was studied in [10]. Most
recently, an algorithm for solving nonsymmetric eigenvalue problems with uncertain
data using an embedded (intrusive) stochastic Galerkin method and the same appli-
cation as in the present study was proposed in [33].

Specifically, we design and compare several surrogates. There is only a handful of
studies comparing gPC approaches and GP regression, see, e.g., [25], [26], [38]. One of
our goals is to contribute to the discussion with this particularly challenging problem.
For the construction of the gPC surrogate we use the stochastic collocation method,
and in particular the variant based on the pseudospectral (nonintrusive) stochastic
Galerkin method, see [3], [36], and for the GP surrogate we use the MATLAB function
fitrgp. We note that it seems quite common to use software packages for GP
regression, and very different results among the packages have been reported [12].

Therefore, in our numerical experiments we compare both gPC and GP surrogates
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with results obtained from Monte Carlo simulation. Finally, following recent trends
in using neural networks for solving PDE-based models, see, e.g., [27], [31], we study
a surrogate based on a shallow neural network. We compare the performance of
the surrogates using two benchmark problems, and we also compare the results with
those of Monte Carlo simulation.

The paper is organized as follows. In Section 2 we recall the Navier-Stokes equa-
tions and the finite element discretization, in Section 3 we discuss the linear stability
of the model, in Section 4 we formulate the Navier-Stokes equations with stochastic
viscosity and introduce the surrogates, in Section 5 we present results of numerical
experiments, and in Section 6 we summarize our work.

2. STEADY-STATE NAVIER-STOKES EQUATIONS

We begin by defining the model and notation for the deterministic steady-state
Navier-Stokes equations, following [11]. We wish to find velocity # and pressure p
such that

(2.1) —vV2%i+ (@ V)i +Vp=f,
(2.2) V-i=0,

in a spatial domain D, satisfying boundary conditions
(2.3) 4=g onlIpy, vVU-7—pn= 0 on I'Neu,

where 0D = I'pi; U 'neu, 7 denotes the normal vector, v denotes the kinematic
viscosity and f is a vector of external forces, and we assume sufficient regularity of

the data. Properties of the flow are usually characterized by the Reynolds number

UL
(24) Re = 7,

where U is a characteristic velocity and L a characteristic length.
In the mixed variational formulation of (2.1)—(2.2) we wish to find (@,p) €
(Ve,Q@p) such that

(2.5) /DuVﬁ:V17+/D(E-Vﬁ)-1’)‘—/Dp(V-17):/ij-17 V7€ Vp,
(2.6) [ av-iy=0 vacan.

where (Vp,Qp) is a pair of spaces satisfying an inf-sup condition and Vg is an
extension of Vp containing velocity vectors that satisfy the Dirichlet boundary
conditions [16].
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Let ¢(2;4,0) = [, (Z- V@) ¥. Because problem (2.5)—(2.6) is nonlinear, it is solved
using a linearization scheme in the form of Newton or Picard iteration, derived as

—

follows.! Consider a solution (#,p) of (2.5)—(2.6) to be given as @ = @" + éa"
and p = p" 4 dp™. Substituting into (2.5)—(2.6) and neglecting the quadratic term
c(6u™; 6u™, V) gives

(2.7) /DVV&]’" : VU + e(da™; 4", v) +c(d’”;512”,17)—L5p”(V-17) = R"™(?),
(2.) [ av s =),

where

(2.9) R"(ﬁ):/l)f-ﬁ—[DuVW:Vﬁ—c(«l’”;ﬁ",ﬁ)+/Dp”(V-ﬁ),
(2.10) (0) = = [ (v

Step n of the Newton iteration obtains (64", dp™) from (2.7)—(2.8) and updates the
solution as

(2.11) atl =an +san, pttl=p" 4 &pt.

Step n of the Picard iteration omits the term c(é4™; @™, %) in (2.7), giving

(2.12) /D vVou" : Vi+ c(a™; 64", 7) — /D op™(V - ¥) = R"™ (),
(2.13) /D q(V - 6a™) =r"™(q).

Next, let us consider the discretization of (2.1)—(2.2) by a div-stable mixed finite
element method, and let the bases for the velocity and pressure spaces be denoted
by {¢i}, and {p;};",, respectively, n, > n,, and let us denote by n, = n, +n,

the number of velocity and pressure degrees of freedom. In matrix terminology, each
nonlinear iteration entails solving a linear system

F» BT] [éu” R"
2.14 =
o2 5 %ol []-[w ]
which corresponds to (2.7)—(2.8), followed by an update of the solution

(2.15) u"tl = u" 4 6u”, p"t! =p"+sp".

! This gives direct computation of the steady solution. It is also possible to find such
solutions by integrating to steady state; see, for example [1], [21].
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For Newton’s method, F™ is the (nonsymmetric) Jacobian matrix, a sum of the
vector-Laplacian matrix A, the vector-convection matrix N", and the Newton deriva-
tive matrix W",

(2.16) F" = A+N"+W",

where

A =laaw], G = / vVop : Vo,
D
N" = [n%), nl, = /D (W - Vén) - bu,

W = [wly), wl = /D (65 Vu") - b

For Picard iteration, the Newton derivative matrix W™ is dropped, and F*=A +N".
The matrices are sparse and n, is typically large. The divergence matrix B is
defined as

(217) B= [bcd]a beq = L ¢d(v : (Pc)

The residuals R™ and r™ at step n of both nonlinear iterations are given by dis-
cretization of (2.9)—(2.10), and they are computed as

(2.18) R*| _[f] [P" BT][u®
' | g B 0 p" |’
where P® = A + N" and f is a discrete version of the forcing function of (2.1).2

3. LINEAR STABILITY OF THE NAVIER-STOKES EQUATIONS

Following [8] let us consider, in a general setup, the dynamical system
(3.1) Mu, = f(u,),

where f: R™ x R — R"™ is a nonlinear mapping, v € R" is the state variable and

uy is its time derivative, M € R™*"

is the mass matrix, and v is a parameter. For
a fixed value of v, linear stability of the steady-state solution is determined by the

spectrum of the eigenvalue problem

(3.2) Jv = AMu,

2 We use the convention that the right-hand sides of discrete systems incorporate Dirichlet
boundary data for velocities.
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where J = %(u(v), v) is the Jacobian matrix of f evaluated at v. The eigenvalues

have a general form A = a + i3, where a = Re A and 8 = Im A, and there are two
cases: if @ < 0, the perturbation decays with time, and if & > 0, the perturbation
grows. Therefore, a change of stability can be detected by monitoring the rightmost
eigenvalues of (3.2).

We consider a special case of (3.1), the time-dependent Navier-Stokes equa-
tions (2.1)—(2.2),

(3.3) iy = vV2i — (@ - V)il — Vp,

subject to appropriate boundary and initial conditions. Mixed finite element dis-
cretization of (3.3) gives the following Jacobian and the mass matrix, see [8] and [11],
Chapter 8 for more details:

-G 0

(3.4) 0 o

F BT
J:
5 %o

:| ERnIXnI, M = [ :| ERnIxnI,
where F is defined as in (2.16) using the steady-state solution of (3.3), B is defined
by (2.17), and G is the velocity mass matrix defined as

G = [gab]a Jab = L b Pa;

which is symmetric positive definite. Since the mass matrix M is singular, prob-
lem (3.2) has an infinite eigenvalue. As suggested in [5], we replace the mass ma-

trix M with the nonsingular, shifted mass matrix

(3.5) M; = [_G 5BT] :

/B 0

which maps the infinite eigenvalues of (3.2) to 6! and leaves the finite ones un-
changed. Then the generalized eigenvalue problem (3.2) can be replaced by

(3.6) Jv = A\Mjv.

Efficient methods for estimating the rightmost pair of complex eigenvalues of (3.2)
(or (3.6)) were studied in [8]. Here, our goal is different. We consider parametric
uncertainty in the sense that the parameter v = v(§), where £ is a set of random
variables.

6 Online first



4. THE NAVIER-STOKES EQUATIONS WITH STOCHASTIC VISCOSITY

Let (92, F,P) represent a complete probability space, where €2 is the sample space,
F is a o-algebra on € and P is a probability measure. We will assume that the ran-
domness in the model is induced by a vector of independent, identically distributed
(1id.) random variables £ = (£1,...,&m,)" such that £: Q@ — ' C R™<. Let B(I')
denote the Borel o-algebra on I' induced by &, and let ¢ denote the induced probabil-
ity measure for £. The expected value of the product of measurable fuctions v and v
that depend on ¢ determines a Hilbert space T = L?(T', B(T'), ¢) with inner product

(11) (u,0) = Efur] = [ u(€u(©)ede,
where the symbol E denotes mathematical expectation.

In computations, we use a finite-dimensional subspace Tp C TT spanned by a set
of polynomials {1;(£)} that are orthogonal with respect to g, that is, (¢, ;) = 0x-
This is referred to as the gPC basis; see [15], [37] for details and discussion. For Tp, we
will use the space spanned by multivariate polynomials in {¢; };njl of total degree p,
me + D

p
that the viscosity v is given by a stochastic expansion

which has dimension ne = ( . We follow the setup from [32] and assume

Ny

(4.2) v(E) = 3 (@),

=1

where {v;(z)} is a set of given deterministic spatial functions. We note that this is
tantamount to taking the Reynolds number (2.4) to be stochastic.

4.1. Stochastic linear stability and Monte Carlo simulation. We are inter-
ested in a stochastic counterpart of the generalized eigenvalue problem (3.6), that is,

(4.3) J(&)v(&) = MEMsv(8),

where J(£) is the nonsymmetric Jacobian matrix, which along with the eigenvalues
A(§) € C and eigenvectors v(£) € C™= depends on the vector £. The rightmost eigen-
value can be studied by Monte Carlo simulation, which entails the solution of a num-
ber of mutually independent deterministic problems at a set of sample points £,
i =1,...,nyc. The sample points are generated randomly following the distribu-
tion of the random variables £, and they give realizations of the viscosity by evaluat-

ing (4.2). A realization of viscosity gives rise to deterministic functions (-, £®*)) and
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p(-, €M) that satisfy the deterministic steady Navier-Stokes equations, and to finite-
element approximations u(® and p(*). The vector u(® is used to set up the Jacobian
J(¢®) and solving (4.3) provides a realization of the rightmost eigenvalue A(¢(")).

In Monte Carlo simulation this procedure is thus performed for every sample
i = 1,...,nuvc, and the moments of the eigenvalue are obtained from ensemble
averaging. We will also use the term simulator and denote it by 7 for the computer
code computing the rightmost eigenvalue of (4.3) for given input parameters £. Since
using the simulator is in general computationally expensive, we are interested in
constructing an emulator, which is a computationally cheap surrogate of the full
model that can be easily evaluated for any value of the input parameters. We will
denote use of an emulator by A, (§) = n.(£), where the symbol x stands for any of
the three approaches to emulation and surrogate construction discussed next.

4.2. Polynomial chaos surrogate. Both Monte Carlo and stochastic colloca-
tion methods are based on sampling. For stochastic collocation, the sample points
€D g =1,... , Mg, consist of a set of predetermined collocation points. This ap-
proach derives from a methodology for performing quadrature or interpolation in
multidimensional space using a small number of points, a so-called sparse grid [13],
[24]. There are two ways to implement stochastic collocation, either by constructing
a Lagrange interpolating polynomial, or, in the so-called pseudospectral approach,
by performing a discrete projection into Tp [3], [36]. We use the second approach.
In particular, we will search for expansions of the eigenvalue A(£) in the form

ng
(4.4) AE) =D Mevn(8),
k=1
where Ay € C are coefficients corresponding to the basis {13} defined by a discrete
projection
(4.5) /\k = <)\,¢k>, k= 1,...,’FL§.

The coefficients in (4.4) are determined by evaluating (4.5) (see (4.1)), using numer-
ical quadrature as

(4.6) \p = i,\(g(@)wk(f(q))w(q),
q=1

where ¢(9) are the quadrature (collocation) points and w(@ are quadrature weights.
That is, the evaluations of coefficients in (4.5) entail solving a set of independent
deterministic eigenvalue problems at a set of sample points. Details of the rule we
use in our numerical experiments are discussed in Section 5, and we refer, e.g., to
monograph [20] for more details.

8 Online first



Once the coefficients in (4.5) have been determined, the stochastic collocation
emulator ngc is

(4.7) Asc(€) = msc(€) = Y Mk (£)-
k=1

See [2] for analysis showing convergence of this approximation for self-adjoint prob-
lems.

4.3. Surrogate based on Gaussian process regression. In Gaussian process
regression we assume that if the process depends on n, inputs in m¢ dimensions,

then the output is an n,-dimensional vector. Specifically, the output is modeled as

(4.8) Aap(§) = nap (&) = p+ 2(§),

where we consider p as a constant, which is also common in practice, and z is
a Gaussian process to be determined. The distribution of the output is multivariate
normal with mean p. For the covariance function R we consider the so-called squared
exponential kernel function, and we note that it is proportional to a correlation (or
kernel) matrix C by a constant of proportionality 012@ called the variance (o is the
standard deviation) via R = O'J%C . Specifically, the correlation function C has the
entries given by

_¢eNT ¢!
C(e.€) = exp]-LE 5>m<§ ),

where o is the correlation length. The prior for the simulator is

o (€) ~ N(u, R(£,€)),

where A denotes the multivariate normal distribution. The parameters p, ¢ and o;
are estimated from the simulator runs at the experimental design points £¢®), ¢t =
1,...,nq, with results collected in a vector )\dG p. Let us define the correlation ma-
trix Cq with entries ¢;; = C(&;,€;), where i,j = 1,...,n4, and let us denote by H
a vector of ones with length ng. Assuming a standard noninformative prior for
variance parameters following [26], we estimate

f=(H'C;'H) 'H'C;'\Nep, G5 = (Mgp — BH)"Cy ' (\ep — H).

The correlation length is estimated by maximizing the logarithm of the likeli-
hood L as
7, = argmax[log L(o| A\dp)],
ol

where the likelihood for the correlation length is
L(ou|MEp) oc (67) a2 Cy| T R H T O T HI TV,

where |-| is the determinant, and we use n,, = 1, since we consider constant 4 in (4.8).
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After the parameters have been determined, the Gaussian process emulator nap is
specified by a posterior distribution, which is a Student’s ¢-distribution with ng —n,
degrees of freedom

(4.9) nep(€) ~ tng—n, (M ()R (£, £)).

The posterior mean and covariance functions in (4.9) are defined, respectively, as

M*(&) =+ R(E)C7' (\p — BH),
~2

%Mg,m ~REC'RE) +QOEHT O H)TQE)],

g

R*(£,€)

where ﬁ(f) is a (row) vector of correlations between £ and the experimental design
points, and Q(¢) = 1—R(§)C’;1H . In implementation, we use the MATLAB functions
fitrgp and predict with more details given in discussion of numerical experiments
in Section 5. We also note that even though the emulator ngp readily provides
uncertainty information through the posterior distribution (4.9), we explore ngp by
evaluating it directly so that it is treated in a manner consistent with the other
emulators ngc and nnn, the latter of which is discussed next.

4.4. Neural network surrogate. The final surrogate is based on a shallow (as
opposed to deep) neural network with a single hidden layer and hyperbolic tan-
gent sigmoid transfer function tansig, which is mathematically equivalent to tanh,
see [35]. The goal is to develop an emulator

AnN(€) = man (€),

based on nonlinear regression and supervised learning. The network is trained as
follows. We are given a training set of inputs and targets in the form {£®), A(6®)},
t=1,...,ns, and the training data is split into groups used for training, testing and
validation. The neural network emulator 7y is initialized randomly, and the task
of the training is to produce a network that produces small errors on the training
set but also responds well to additional inputs. In that case we say that the net-
work generalizes well. The process of training a neural network entails tuning the
values of the weights and biases of the network to optimize network performance by

minimizing the sum of squared errors
LSS0 ()2
o 2L (MEM) = (€D,
t=1

The specific algorithm we use for the training is the Bayesian regularization back-
propagation, in which the weight and bias values are updated according to Levenberg-
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Marquardt optimization, see [7], [22] for details. In implementation, we use MATLAB
functions fitnet, train and net with more details given in Section 5.

4.5. Validation and assessment of the surrogate models. After the surro-
gates are built, we would like to assess and compare their quality. Our strategy is
similar to that used by [26]. Specifically, for the validation of the surrogates con-
structed using the emulators we used Monte Carlo simulation, for which the input
parameters £, i = 1,...,nyc, are distinct from the input parameters used to

build the surrogates. The validation metric is then given by root mean square error
(RMSE) defined as

nMmc

1 ; ;
= | = E @) — X(E@D))2
RMSE o 2 (A (€)= A(E™))2,

where the symbol x denotes any of the SC, GP or NN emulators. We used the
Monte Carlo sample points £, i =1,..., nyc. Since RMSE represents the distance
between a surrogate and the Monte Carlo simulator across the input parameters
space, low RMSE values are favorable.

Next, we compute the mean and variance of each surrogate, u, and o, respectively,
and we estimate those provided by the emulators using empirical formulas given as

nMc nMC
1 1

= SOED), gy = SO (ED) — )2,

nMc nMme o

Although for stochastic collocation both quantities above could be calculated directly
from the gPC coefficients, here we used the above formulas also with 7ng¢. Since we
want to detect instability, we also use the surrogates to estimate the probability that

the rightmost eigenvalue is nonnegative as

nMc
1

Pr( > 0)~ — 3 1 1(A(Y) > 0),

Me 5o

where 1 denotes the indicator (1 or 0) function. Finally, we also test the ability of
the surrogate to reconstruct the probability density function of the simulator output,
which we do using a kernel density estimator with Gaussian kernel provided by the
MATLAB function ksdensity.

Remark 4.1. We note that only one of these, the neural network emulator, ex-
actly fits within the paradigm of “machine learning” methods in the sense that it con-
structs a neural network. However, we view all of them as methods based on learning,

in the sense that the surrogate is built from data obtained from a training set, where
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for stochastic collocation the learning process is the construction of the solution at
the collocation points, and for Gaussian process regression, it is the construction of
the mean, variance and correlation length from the simulation at the design points.

5. NUMERICAL EXPERIMENTS

We implemented the Navier-Stokes solver in MATLAB version 9.7.0.1190202
(R2019b) using the IFISS 3.5 package [9], and we tested the simulator and the
emulators using two benchmark problems: flow around an obstacle and an expan-
sion flow around a symmetric step. These are representative examples that exhibit
important types of bifurcation, a Hopf bifurcation for the first (where the criti-
cal eigenvalues are a complex conjugate pair) and a pitchfork bifurcation for the
second (with a real critical eigenvalue) [6], [17]. For both examples, we consider
perturbations of mean viscosities that are near the values leading to bifurcations.

For the solution of the steady Navier-Stokes problem in the simulator we used
a hybrid strategy in which an initial approximation is obtained from the solution of
the stochastic Stokes problem, after which several steps of Picard iteration are used
to improve the solution, followed by Newton iteration. The convergence test was for
the Euclidean norm of the algebraic residual (2.18) to satisfy

Il < =Ll

Next, the eigenvalue problems (3.6), in which M is defined by (3.5) with § = —10~2
as in [8], were solved using the function eigs in MATLAB. The 300 eigenvalues

with the largest real part of the deterministic eigenvalue problem with mean viscos-
ity v1 for each of the two examples are displayed in Figure 3. The viscosity (4.2)
is parameterized using m¢ = 2 random variables. For the Monte Carlo method we
used 10° sample points generated randomly following the distribution of the random
variables £. For stochastic collocation we used Smolyak sparse grid and grid level 4.
With these settings, there were n, = 29 points on the sparse grid, and this set of
quadrature points was used to design all three emulators ngc, ngp and 7nN, that is
ng = ng = n;. For the GP regression (and also for the training of the neural network)
we standardize the data before the regression. To this end let u? and o denote the
mean and standard deviation of the rightmost eigenvalues A(¢ (q)) calculated using
the simulator at the quadrature points £9), ¢ = 1,..., ng. The data points passed
to the GP regression function fitrgp in MATLAB are scaled as

@) _
. MEY) p?

od

(5.1) A(E@)

) q:17"'7nq7
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and the results Agp(€) of the emulator function predict are descaled as

(5.2) Ap(€) + o®Aap(€) +p.

For the neural network emulator we use function fitnet in MATLAB to construct
a neural network with one hidden layer of 20 neurons, and we set the training al-
gorithm to use Bayesian regularization. The training parameters used in the actual
training function train are divided in the following way: 80% for training, 10% for
testing and 10% for validation. While we do not have a general strategy to find the
optimal size of the neural network, we empirically tried to find as small a network
as possible that would still match the Monte Carlo simulation reasonably well. We
used scaling (5.1) for the training, and descaling (5.2) for the emulator predictions
given by the function net in MATLAB.

1

-1

1
0 2 4 6 8

Figure 1. Finite element mesh for the flow around an obstacle problem.

5.1. Flow around an obstacle. For the first example, we consider flow around
an obstacle in a similar setup as studied in [32]. The domain of the channel and the
discretization are shown in Figure 1. The spatial discretization uses a stretched grid
with 1008 Q2 — Q1 (Taylor-Hood) finite elements. There are 8416 velocity and 1096
pressure degrees of freedom. The viscosity v(z,£) was taken to be a truncated lognor-
mal process transformed from an underlying Gaussian process [14]. That is, 1;(£),
l=1,...,n,, is a set of Hermite polynomials, which also specifies the expansion
of viscosity (4.2) used in the simulator. Denoting the coefficients of the Karhunen-
Loeve expansion of the Gaussian process by g;(z) and ¢; =& —g;, j = 1,...,mg,
the coefficients in expansion (4.2) are computed as

v(z) = % exp [go + % Z(w(@f] -

=1

The covariance function of the Gaussian process, for points X; = (z1,%1) and X, =
(z2,y2) in D, was chosen to be

2 |z2 — 1 ly2 — 1]
(5.3) Crt(X1, Xo) = 0, exp(— . I ),
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where L, and L, are the correlation lengths of the random variables &;, ¢ = 1,...,mg,
in the z and y directions, respectively, and o, is the standard deviation of the
Gaussian random field. The correlation lengths were set to be equal to 25% of the
width and height of the domain. The coefficient of variation CoV of the lognormal
field, defined as CoV = o, /v1, where o, is the standard deviation and v, is the
mean viscosity, was 1% or 10%. According to [23], in order to guarantee a complete
representation of the lognormal process by (4.2) the degree of polynomial expansion
of v(z,€) should be twice the degree of the expansion of the solution. We follow
the same strategy here. Therefore, the values of n¢ and n, are, see, e.g., [15], p. 87
or [36], Section 5.2, ng = (me + p!)/(mep!), ny, = (m + 2p)!/(m!(2p)!). For the gPC
expansion of eigenvalues (4.4), the maximal degree of gPC expansion is p = 3, so
then n¢ = 10 and n, = 28. We assumed that the random variables {61}751 follow
a normal distribution and used Smolyak sparse grid with Gauss-Hermite quadrature
points for collocation. For the solution of the Navier-Stokes problem we used the
hybrid strategy with 6 steps of Picard iteration followed by at most 15 steps of
Newton iteration. We used mean viscosity v; = 5.36193 x 10~3, which corresponds
to Reynolds number Re = 373, and the rightmost eigenvalue pair is 0.0085 &+ 2.2551i,
see the left panel in Figure 3. Table 1 presents the results of validation and assessment
of the surrogates using the indicators from Section 4.5. It is evident that for both
CoV 1% and 10% the values of RMSE are small for all surrogates with the smallest
value for the stochastic collocation, where we note that we used the same values
of £ in the Monte Carlo simulation and also for sampling the gPC surrogate (4.7).
All values of u and o are in close agreement, and in particular, all values of RMSE
are smaller than the corresponding values of p (and o) by at least two orders of
magnitude. Also, all emulators indicate reliably the probability of the rightmost
eigenvalue being nonnegative. Finally, Figure 4 displays the probability density
function (pdf) estimates of the rightmost eigenvalue. The estimates were obtained
using MATLAB function ksdensity for sampled gPC expansions. In all cases, we see
an excellent agreement of the plots in the left panel corresponding to CoV = 1% and
in the right panel corresponding to CoV = 10%.

1
0
-1

0 5 10 15 20 25 30

Figure 2. Finite element mesh for the expansion flow around a symmetric step.

5.2. Expansion flow around a symmetric step. For the second example, we
consider an expansion flow around a symmetric step. The domain and its discretiza-
tion are shown in Figure 2. The spatial discretization uses a uniform grid with 976

Q2 — P_; finite elements, which provide a stable discretization for the rectangular
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Figure 3. An image of the complex plane and 300 eigenvalues with the largest real part of
the deterministic eigenvalue problem with mean viscosity (i.e., v = vy in (4.2))
for the two examples: flow around an obstacle (left) and expansion flow around
a symmetric step (right). The rightmost eigenvalues are indicated by a red cross.
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Figure 4. Plots of the pdf estimate of the real part of the rightmost eigenvalue obtained
using Monte Carlo (MC), stochastic collocation (SC), Gaussian process regression
(GP) and neural network (NN) for the flow around an obstacle with CoV = 1%
(left) and CoV = 10% (right).

grid [11], p. 139. There are 8338 velocity and 2928 pressure degrees of freedom. For
the viscosity we considered a random field with affine dependence on the random

variables £ given as

(5.4)

Ny

v(@,8) = +0, Yy (@)1,

=2

where 1 is the mean and o, = CoV - v, the standard deviation of the viscosity,
n, = me + 1, and vip1 = V3 wi(z) with {(A, v(z))},25 are the eigenpairs of the
eigenvalue problem associated with the covariance kernel of the random field. As in
the previous example, we used the values CoV = 1% and 10%. We considered the
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MC SC GP NN

CoV =1%
RMSE - 4.1859 x 10~% 2.1709 x 10—% 5.0301 x 10~ 7
1 8.3579 x 103 8.3579 x 10~ 8.3571 x 103 8.3579 x 10~3
o 6.5356 x 10~3 6.5356 x 10~3 6.5355 x 103 6.5356 x 10~3
Pr() > 0) 89.8%
CoV = 10%
RMSE - 9.4232 x 1075 3.9827 x 10~% 2.9063 x 10~5
L 11279 x 1072 1.1277 x 1072 1.1235 x 10~2 1.1277 x 10~2
o 6.5819 x 102 6.5818 x 10~2 6.5789 x 10~2 6.5813 x 102
Pr(A > 0) 56.5% 56.4% 56.5%

Table 1. Flow around an obstacle: validation of the surrogate models by Monte Carlo (MC)
simulation using root mean square error (RMSE), their assessment using estimates
of the mean p, standard deviation o, and probability that the rightmost eigenvalue
is nonnegative. The surrogates are based on stochastic collocation (SC), Gaussian
process regression (GP) and neural network (NN), and the measures are defined
in Section 4.5.

covariance kernel (5.3), with correlation lengths set to 12.5% of the width and 25% of
the height of the domain. We assumed that the random variables {},"% follow a uni-
form distribution over (—1,1). Note that (5.4) can be viewed as a special case of (4.2),
which consists of only linear terms of £. For the parametrization of viscosity by (5.4),
which then specifies the simulator, we used the same stochastic dimension m, and de-
gree of polynomial expansion p as in the previous example: mg = 2 and p = 3, so then
ng = 10 and n, = m¢ +1 = 3. We used a Smolyak sparse grid with Gauss-Legendre
quadrature points for collocation. For the solution of the Navier-Stokes problem we
used the hybrid strategy with 20 steps of Picard iteration followed by at most 20 steps
of Newton iteration. We used mean viscosity v; = 4.5455 x 10~3, which corresponds
to Reynolds number Re = 220, and the rightmost eigenvalue is 5.7963 x 10~* (the
second largest eigenvalue is —8.2273 x 10~2), see the right panel in Figure 3. Table 2
presents the results of validation and assessment of the surrogates using the indica-
tors from Section 4.5. The trends are similar to those for the flow around an obstacle
problem. For both CoV 1% and 10% the corresponding values of p and o are in close
agreement. The values of RMSE are small for all surrogates and again, they are
smaller than the corresponding values of u (and o) by at least two orders of magni-
tude. Finally, Figure 5 displays the probability density function (pdf) estimates of the
rightmost eigenvalue. We note that both pdf estimates in this figure are “narrower”
comparing to the pdf estimates for flow around an obstacle in Figure 4. Nevertheless

there is an excellent agreement of all estimates in both left and right panels.
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MC SC GP NN

CoV =1%
RMSE - 8.8129 x 1010 4.0545 x 10~7 1.5824 x 10~8
m 5.7982 x 10™* 5.7982 x 10™* 5.7987 x 10~* 5.7982 x 10~*
o 2.9150 x 10~% 2.9150 x 10~% 2.9151 x 10~* 2.9149 x 10~*
Pr(\A > 0) 98.4% 98.5% 98.4%
CoV = 10%
RMSE - 2.6183 x 10~7 2.7106 x 10~ 4.2076 x 10~7
U 4.9677 x 107%  4.9676 x 10™* 4.9711 x 10~* 4.9685 x 10~*
o 2.9048 x 1072 2.9048 x 103 2.9050 x 10~3 2.9048 x 103
Pr(\ > 0) 57.5%

Table 2. Expansion flow around a symmetric step: validation of the surrogates by Monte
Carlo (MC) simulation using root mean square error (RMSE), their assessment
using estimates of the mean p, standard deviation o, and probability that the
rightmost eigenvalue is nonnegative. The surrogates are based on stochastic collo-
cation (SC), Gaussian process regression (GP) and neural network (NN), and the
measures are defined in Section 4.5.

B = MC |
1200 4 120 - 5¢
- —>= —
1000 - 4 100 < NN
800 - 41 8o ]
600 - 41 60 ]
400 - 4 40p .
200 | 4 20Ff .
0 & 0 & L ! . &
-5 15 —0.010 —0.005 0 0.005  0.010

x1074

Figure 5. Plots of the pdf estimate of the real part of the rightmost eigenvalue obtained
using Monte Carlo (MC), stochastic collocation (SC), Gaussian process regression
(GP) and neural network (NN) for the expansion flow around a symmetric step

with CoV = 1% (left) and CoV = 10% (right).

Computational time. We briefly mention our experience with running the M AT-
LAB functions on a MacBook Pro laptop with a 3.5 GHz Intel Core i7 processor and
16 GB RAM. The computation of the rightmost eigenvalue for one sample of £ us-
ing the simulator took at least 30s, depending on the value of £ and settings of the
inner solvers for the nonlinear iteration and call of the eigenvalue solver. On the

other hand, a run of the emulators to evaluate the three surrogates took only be-

Online first 17



tween 0.02s and 0.04s for all 10° sample points, which were used for validation and
assessment. The learning part (construction of an emulator) took 0.18s in the case
of ngp using the function fitrgp, and 1.25s in the case of nnN using the function
train. The construction of nsc was implemented as a part of the simulator, however
it can be seen, comparing (4.6) to (4.7), that if n, ~ n¢, the construction of ngc is
inexpensive, and in particular the timings of the construction of 7g¢ and its use are
similar. Finally, we note that all three emulators were trained using only n, = 29
samples that require run of the simulator. Therefore, since the overhead associated
with the training and use of the emulators is very small, the computational savings
provided by the emulators are dramatic.

me 1 2 3 4 5
ne 4 10 20 35 56
ng 4 29 69 137 241

Table 3. Sizes of the gPC bases ng and numbers of the quadrature points nq for stochastic
dimensions m¢ and gPC degree p = 3.

MC M 8.8125 x 10~3
o 7.1136 x 1072
Pr(\ > 0) 89.7%

GP ng (~na/ng) 6 (~20%) 8 (~30%) 29 (100%)
RMSE 5.7386 x 106 3.8676 x 10~° 2.4706 x 10~

m 8.8134 x 10~3 8.8103 x 10~3 8.8117 x 103
o 7.1124 x 1073 7.1135x 103 7.1135 x 103
Pr(A > 0) 89.7%

NN n (R m/ng) 6 (~20%) 8 (= 30%) 29 (100%)
RMSE  6.1469 x 10~% 7.7102 x 10~5 1.4824 x 10~7

U 13.6704 x 1072 8.8029 x 10~3 8.8125 x 1073
o 4.8058 x 1073  7.1469 x 10~3 7.1135 x 1073

Pr(A = 0) 100% 89.4% 89.7%

SC Ng 29
RMSE 3.0072 x 10~8

M 8.8125 x 1073
o 7.1136 x 1073

Pr(\ > 0) 89.7%

Table 4. Effect of reducing the number of training points on the GP and NN surrogates
for the flow around an obstacle problem with the channel of length 12 and with
mg = 2. The same quantities are used as in Table 1, and they were defined in
Section 4.5.
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MC I 8.7886 x 1073
o 9.3753 x 103
Pr(\ > 0) 82.4%
GP ng4 (=na/n,) 13 (=5%) 25 (~10%) 241 (100%)
RMSE 1.7554 x 1073 1.2636 x 105 1.2535 x 10~°

m 8.8913 x 10™3 8.7898 x 10~3 8.7914 x 1073
o 9.1899 x 1073 9.3740 x 10~3 9.3742 x 1073
Pr(\ > 0) 83.0% 82.4%

NN n; (Rne/n,) 13 (=5%) 25 (=10%) 241 (100%)
RMSE  7.6909 x 10~3 9.3273 x 10~ 5.1869 x 10~°

m 9.3639 x 10~3 8.7848 x 10~° 8.7886 x 103
o 1.7564 x 102 9.3215 x 102 9.3717 x 10~3

Pr(\ > 0) 100% 82.3% 82.4%

SC Ng 241
RMSE 1.7987 x 107

m 8.7886 x 1073
o 9.3754 x 10~3

Pr(\ > 0) 82.4%

Table 5. Effect of reducing the number of training points on the GP and NN surrogates
for the flow around an obstacle problem with the channel of length 12 and with
mg = 5. The same quantities are used as in Table 1, and they were defined in
Section 4.5.

5.3. Effect of larger stochastic dimensions. We also studied the effect of re-
ducing the number of training (or design) points for the Gaussian process (GP)
regression and neural network (NN) surrogates using a problem with increasing
stochastic dimension. We do not drop any quadrature (collocation) points from
the stochastic collocation (SC) method, since it would yield an incorrect quadra-
ture rule. In particular, we considered the flow around an obstacle problem in a
similar setup as in Section 5.1 except with a channel of length 12 (instead of 8,
cf. Figure 1). There are then 12,640 velocity and 1640 pressure degrees of free-
dom, and the rightmost eigenvalue corresponding to the problem with the mean
viscosity is a pair 0.0090 + 2.2550i. We considered a sequence of stochastic di-
mensions m¢ = 2,3,4,5. Sizes of the gPC bases and numbers of the quadra-
ture points are given in Table 3. Other settings were the same as in Section 5.1.
We selected a fraction of the quadrature points to train the two surrogates for
each of the stochastic dimensions in order to test the robustness in training of
the Gaussian process regression and neural network surrogates. For example, we

selected every 10th quadrature point to be included in the training set, so that
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then the ratio n;/ng = 10%. Tables 4 and 5 summarize the results for mg = 2
and m¢ = 5, respectively. From Table 4 it can be seen that by using only 6
training points, i.e., reducing the ratio n,/n, to approximately 20%, the GP sur-
rogate already provides relatively a quite accurate estimate compared to the re-
sults of the Monte Carlo simulation, whereas the results of the NN surrogate are
not satisfactory. Increasing the number of the training points to 8 leads to a dra-
matic improvements of the NN surrogate. Nevertheless, by including all quadra-
ture points into the training set, the approximation provided by the NN appears to
be slightly more accurate then the one provided by the GP regression, but over-
all the most accurate is the result provided by the stochastic collocation. The
same trends can be observed also from Table 5 for the case with ms = 5, except
that in this case only approximately 5% of the quadrature points are needed for
the GP regression to provide a reasonable surrogate, and approximately 10% are
needed for the NN. Therefore it appears that either of the GP or NN surrogates
may provide an attractive alternative to the stochastic collocation for the high-
dimensional problems.

6. CONCLUSION

We studied linear stability of Navier-Stokes equations with stochastic viscosity.
This leads to a generalized eigenvalue problem, and we are interested in charac-
terization of the rightmost eigenvalue. We designed three emulators for construct-
ing the rightmost eigenvalue surrogate. The first surrogate was based on general-
ized polynomial chaos, and it was constructed using stochastic collocation, or its
pseudospectral variant (sometimes called nonintrusive stochastic Galerkin method),
which uses integration on Smolyak sparse grid and numerical quadrature. For the
second and third surrogates we used functions available in MATLAB. The second
surrogate was based on Gaussian process regression, and we used function fitrgp.
The third surrogate was based on shallow neural network, and we used function
fitnet with Bayesian Regularization backpropagation. We found that the set of
quadrature points used for the generalized polynomial chaos surrogate is also suit-
able for training the other two emulators (based on Gaussian processes and neural
network), and we also found that certain scaling of the learning data points, and
subsequent descaling of the predictions, proposed by these emulators, improves the
quality of the surrogates. Finally, for the benchmark problems, all three surrogates
were in excellent agreement with the Monte Carlo simulation, and we also found
that the number of training points used for the Gaussian process regression and
the neural network can be further reduced without compromising the quality of the
surrogates.
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