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Abstract— This paper presents an extensive study of linear and
logistic regression algorithms implemented with 1T1R memristor
crossbars arrays. Using a sophisticated simulation platform
that wraps circuit-level simulations of 1T1R crossbars and
physics-based models of RRAM (memristors), we elucidate the
impact of device variability on algorithm accuracy, convergence
rate and precision. Moreover, a smart pulsing strategy is proposed
for practical implementation of synaptic weight updates that
can accelerate training in real crossbar architectures. Stochastic
multi-variable linear regression shows robustness to memristor
variability in terms of prediction accuracy but reveals impact
on convergence rate and precision. Similarly, the stochastic
logistic regression crossbar implementation reveals immunity
to memristor variability as determined by negligible effects
on image classification accuracy but indicates an impact on
training performance manifested as reduced convergence rate
and degraded precision.

Index Terms—RRAM, crossbar array, variability, machine
learning, stochastic regression.

I. INTRODUCTION

ESISTIVE random access memory (ReRAM or RRAM)

technology is a great candidate for non-volatile mem-
ory (NVM) due to low power consumption, excellent scalabil-
ity, high speed functionality, CMOS compatibility, and analog
programmability (i.e., the ability to retain analog values)
compared to conventional digital memory circuits [1], [2].
RRAM cells (also referred to as memristors) are generally
two-terminal devices that consists of an insulating or switching
layer (e.g., an oxide) inserted between two metal layers
[3], [4]. RRAM operation for NVM applications typically
involves programming (and reading) cells into two dis-
tinct (binary) states, a low resistance state (LRS) or high
resistance state (HRS). Multistate storage has also been
demonstrated using RRAM for NVM [5]. Additionally,
RRAM analog-based implementations of in-memory comput-
ing and neuromorphic architectures rely on the ability to
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program a continuous range of states [6]. The programming
of different resistive states is achieved via the formation and
rupture of conductive filaments inside the oxide/switching
layer of the cell. RRAM is considered a great candidate
for training and inference applications [7], but the stochas-
tic essence of conductive filament activity [8]-[10], intro-
duces variability, programming abruptness, and non-linearity
that may present significant challenge for the implementa-
tion of RRAM-based in-memory computing applications and
machine-learning (ML).

In [19], reliability concerns for RRAM were identified
and metrics were discussed based on the impact on distin-
guishability of states and computing accuracy. As presented
in [19], the basic reliability metrics relate to endurance,
retention, noise, and write/read disturbs. Other “functional”
reliability metrics include non-linearity, variability, dynamic
range, precision, variation, asymmetry, etc. These reliability
metrics refer to functional properties of RRAM that can have
a severe impact on computing accuracy when degraded. The
paper summarizes results from [20]-[22] where degradation in
dynamic range [20], non-linearity [21], and asymmetry [22] in
the pulsed programming of RRAM can affect image classifi-
cation accuracy on crossbar implementations. Another exam-
ple [23], discussed how time-dependent drift and fluctuation
in programmed conductance states impacts the reliability of
neural network inference as determined by accuracy loss in
classification on MNIST handwritten datasets. In this paper,
we focus on another functional reliability concern, i.e., vari-
ability in RRAM characteristics, and its impact on neural
network training (convergence rate, accuracy, precision) based
on gradient descent algorithms.

Conductive bridging random access memory (CBRAM),
another filamentary-based resistive switching memory, is also
suitable for neuromorphic computing due to low power dis-
sipation and low transmission consumption [24], [25]. Vari-
ation between different devices (device-to-device) and within
individual devices (cycle-to-cycle) has been characterized and
presented in various previous works [11]-[18]. Chen and
Lin presented a collection of results on the variability of
LRS and HRS in different RRAM and CBRAM technolo-
gies [26]. A similar collection of LRS and HRS variabil-
ity from recent RRAM and CBRAM published results is
shown in Figure 1 [11]-[18]. These indicate that large vari-
ation is prevalent for newer generation of RRAM devices
as expected due to the stochastic nature of the resistive
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Fig. 1. Variability of resistive-switching characteristics in recent metal-oxide

RRAM and CBRAM technologies discussed in previous research. Intersection
for each device represents the mean value of HRS and LRS [11]-[18].

switching mechanisms. Thus, it is crucial to study the impact
of device variability on in-memory computing circuits to
gain insight on the viability of RRAM implementations.
This paper analyzes the effects of RRAM device variability
on accuracy and precision of gradient descent-based ML
algorithms (linear and logistic regression) using crossbar
architectures.

The algorithm-level analysis presented in this paper uses
Spice (Synopsys HSpice) circuit-level simulations that incor-
porate a compact memristor model previously developed and
verified with experimental data [27]. The primary goal of
this paper is to investigate the impact of device variability
on the performance of gradient-descent-based machine learn-
ing algorithms. Therefore, device-to-device and cycle-to-cycle
variations are introduced into key model parameters. The
approach involves randomly sampling the model parameters
from an experimentally verified distribution. Additional details
of the compact model and simulation approach are presented
in Section II.

For the ML algorithm analysis, a modified gradient-descent
approach is used to train the crossbar array, similar to that
presented in previous work by Nair and Dudek [28]. In that
previous work, a single programming voltage pulse of fixed
amplitude and width is used to adjust the memristor conduc-
tance (i.e., the synaptic weights) independent of the magnitude
of the required update. The polarity of the pulse (positive
vs. negative amplitude) is selected based on the sign of the
update as determined by the algorithm. In this work, we extend
the approach by allowing a discrete number of programming
pulses to update memristors in accordance with the necessary
update. Based on this new approach, we study the convergence
rate and performance of gradient-descent ML algorithms in the
presence of large variation in memristor devices. Section III of
this paper explores the improvements of the updated gradient
descent approach on ML algorithm convergence rate and
performance.
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The results of our ML algorithm analysis provide insight on
convergence rate, accuracy, and precision of pattern classifica-
tion experiments on RRAM crossbars [29]-[33] and the effects
of memristor variability. The paper is structured as follows:
Section II identifies and analyzes the effects of variability on
the resistive-switching characteristic of 1-transistor-1-resistor
(ITIR) RRAM cells and describes the simulation approach
for crossbar arrays. Section III presents the implementation
of linear and logistic regression on memristor crossbars and
establishes the impact of device variability on algorithm per-
formance. Finally, Section IV provides conclusions and sum-
marizes the main contributions of this work. Mainly, despite
large RRAM cell variability, the crossbar implementation of
regression algorithms achieves convergence (as indicated by
clear improvements in accuracy with training), but with notice-
able degradation on precision (fluctuation in the accuracy of
trained arrays).

II. MODELING APPROACH
A. Modeling RRAM ITIR Crossbars

Various works have presented memristor models for sim-
ulations of memory and neuromorphic computing applica-
tions [34]-[39]. In this work we use a compact model for
HfOx-based RRAM devices [27]. The bipolar switching char-
acteristics achieved in the model are based on fundamen-
tal physics related to filamentary operation and have been
experimentally verified with HfOx devices [40]-[42]. A key
parameter in the model that captures the internal state of the
RRAM cell is the gap (g), specified as the distance between
the top electrode and conductive filament as illustrated in
Figure 2(a). The memristor conductance is directly related
to this parameter. The dynamic process of resistive switching
and current flow are modeled by the two general memristor
equations shown in Figure 2(a). To model RRAM variation,
the model fitting parameters Iy, vg and yo (related to fila-
mentary formation/dissolution and conductance) are allowed
a dispersion 30/u of 30%, 10% and 10%, respectively.
These values were extracted to fit experimental HRS and
LRS distributions in TiN/Hf/HfOx/TiN-based RRAM devices
(cf. Figure 5 in [27]). As described in [27], dispersion in
all three parameters should be included to account for the
actual (experimental) variability in RRAM characteristics and
measured distribution in LRS an HRS. The RRAM model
is implemented in Verilog-A and circuit-level simulations are
conducted using Synopsys HSpice. For simulating 1T1R cells
we use a 65 nm n-type CMOS transistor model based on
the Predictive Technology Model (PTM) from Arizona State
University [43]. Figure 2(b) shows the schematic of the ITIR
cell, indicating the pulsing approach to increase or decrease the
conductance of the memristor (i.e., set/reset the memristor).
The n-MOS transistor acts as a selector device and the gate
voltage is used to modulate or limit the amount of current that
flows through the cell. The 1T1R configuration helps eliminate
sneak path currents and improves analog programmability
by reducing abrupt changes in conductance from set/reset
pulses [27], [44]. Finally, Figure 2(c) is a schematic of the
RRAM ITIR crossbar arrays simulated in this work.
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Fig. 2.
1TIR RRAM cell and crossbar array simulated with Synopsys HSpice.
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(a) Filamentary operation and top-level mathematical representation of the physics-based RRAM model used in this work. (b), (¢) Schematic of the
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Fig. 3. (a) Simulation of DC resistive-switching current-voltage (I-V) characteristics of 1TIR RRAM cell considering joint effects of dispersion in model

parameters, (b-d) Simulation of DC resistive-switching I-V characteristics of ITIR RRAM cell considering individual effects of dispersion in model, (e) Plot
of conductance vs. voltage (G-V) characteristics. (f) Pulse-programming of memristor conductance (multiple cycles and average), average is solid blue line
with circles. (g) Contour plot of the cumulative distribution function (CDF) for change in conductance (AG) vs. conductance (G). CDF plot illustrates the

non-linear and abrupt response of pulse AG programming.

B. Simulating the Effects of Variability on 1TIR Cells

The impact of RRAM variability on the ITIR cell
resistive switching properties is summarized in Figure 3.
Figures 3(b-d) show the effects of model parameter dispersion
individually (lp, vo and yp), and Figure 3(a) shows the
combined effects on the resistive switching current-voltage
(I-V) characteristics. Figure 3(e) plots the conductance-voltage
(G-V) characteristics including dispersion in all three model
parameters. Figure 3(f) reveals the impact of variability on the
pulsed characteristics (change in conductance with consecutive

pulses). In Figure 3(f), 100 cycles are shown, each cycle
consisting of 100 positive and 100 negative consecutive pulses.
A different visualization for the impact of variability on the
resistive-switching properties is provided in Figure 3(g). This
plot shows contours for the cumulative distribution func-
tion (CDF) of change in conductance (AG) as a function
of conductance (G). It provides a graphical representation
of the non-linear and abrupt response of AG resulting from
the programming pulses (only shown for positive pulses)
[45], [46]. At low levels of G (starting with a weak filament),
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the CDF shows that most pulses will result in large changes in
conductance (abrupt). As G increases, the distribution shifts to
smaller changes in conductance (less abrupt) and distribution
is narrower (less variation for AG).

C. Simulation Approach for Regression Algorithms

The implementation and analysis of regression algorithms
presented in this work uses MATLAB scripts that organize and
execute Synopsys HSpice circuit-level simulations of RRAM
ITIR crossbars. In this simulation platform, the initialization
of RRAM devices as well as the functions of the peripheral
circuits (e.g., normalization of inputs and outputs, calculations
of prediction/classification error, activation functions, etc.) are
conducted in MATLAB software. However, crossbar functions
including vector matrix multiplications (VMM) and pulsed
programming of RRAM 1T1R cells are directly implemented
with HSpice circuit simulations using the compact models
described in section II-A. A detailed description of the simu-
lation approach is provided in the supplementary material.

D. Smart Pulsing Strategy for Weight Updates

This paper presents a new weight update strategy for
accelerated training in ML algorithms. The proposed strategy
selects the number of programming pulses for each memristor
at each training step not only based on the sign of the
required update, but also on its magnitude. For practicality,
the number of pulses is discretized to three different ranges of
required weight update (see Figure 4(c)). For example, a large
conductance update requirement leads to more consecutive
pulses compared to a smaller update requirement. This leads
to larger weight (conductance) changes during early training
steps, and smaller changes in later steps to help fine tune
and maximize accuracy as the training advances. We note
that this technique does not affect the frequency of updates,
as an update is still done at every training step. In section III,
we demonstrate how this strategy results in higher convergence
rate, as well as improved precision and accuracy for the
crossbar implementation of multi-variable linear and logistic
regression algorithms compared to existing techniques based
on fixed update pulsing methods.

E. Discussion About Peripheral Circuits

Pulse updates can be generated by a simple CML
(current-mode logic) driver circuit where the circuit is tuned
to ensure enough drive voltage capability for loads presented
in terms of crossbar size (crossbar interconnect resistance
and memristors). The write voltages should be verified to
have enough margin above the memristor write threshold to
effectively drive the furthest memristor in the write path. More
specifically, for our proposed smart pulse update strategy,
a configurable ring oscillator can be used to ensure a specified
number of similar spaced pulses as discussed in [47]. Read
currents are accumulated at the end of crossbar and need to
be sensed prior to digital conversion and further processing.
The choices of voltage versus current mode sensing circuits
are described in [48]. In this solution, a current mode sensing
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Fig. 4. (a) Flow chart of implementation of stochastic multi-variable linear
regression algorithm on a memristor crossbar. (b) Schematic of the 3 x 1
1TIR crossbar array implemented in Synopsys HSpice for simulation of linear
regression. (c) Translation of AG into number of positive or negative voltage
pulses for realistic hardware implementation of the gradient-descent.

mechanism is preferred where a reference current is gen-
erated to compare against the accumulated output current.
This choice, while more area intensive, allows for trackability
of device variation mirrored in the reference crossbar array.
A detailed scheme of the current-mode sensing circuit is
described in [49].

III. LINEAR AND LOGISTIC REGRESSION
A. Stochastic Multi-Variable Linear Regression

This section presents the implementation of stochastic mul-
tivariable linear regression on a 3 x 1 1T1IR RRAM crossbar
array. This is a type of regression algorithm with multiple
independent variables (xg, X1, ...xn) combined into a linear
prediction function of the dependent variable (y). The term
stochastic comes from the stochastic gradient descent opti-
mization approach where a single sample or subset of the data
is randomly selected to update the model parameters during
each training step. In practice, we present one data sample
at a time to our crossbar array. The model prediction (h) is
given by the dot product of the input variables (xg, x1, ...Xn)
and the model parameters which are stored as the memristor
conductances (Go, G1, ...Gp). Mathematically, the prediction
h is given by:

X0 Go
h=x'G, x=|x1|, G=|G, (D)
X2 G)

Here, x is the normalized 3 x 1 input vector and G is
the 3 x 1 vector of the memristor conductances.

Figure 4(a) is a flowchart for the crossbar implementation
of stochastic multivariable linear regression. Figure 4(b) shows
the schematic of the 3 x 1 1TIR RRAM crossbar array as
implemented in the simulation. The smart pulsing strategy
used in this demonstration is illustrated in Figure 4(c). This
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discretized approach would be a practical implementation of
gradient-descent on a real memristor crossbar. When training,
the initial steps will typically require larger updates in conduc-
tance (AG) because the error () is initially large, prompting
a larger number of pulses. As the training advances and the
error is reduced, the required update is also reduced leading
to a smaller number of applied pulses. In Figure 4(c), three
different versions of the pulsing strategy are shown. These
correspond to different sets of programming pulses (positive
or negative) used to update conductance based on the value
of AG;. For example, in the pulsing strategy labeled 1-2-4,
one, two or four programming pulses are applied depending
on whether the required update in conductance is between
0 and 0.5 S, 0.5 and 1 S, or above 1 uS.

Our demonstration of multivariable linear regression is
based on an artificial data set for the price of a pizza as a
function of two independent variables, x; and x», where x|
represents the number of ingredients, and x, represents the
size of the pizza. Note that the same approach can be easily
extended to N independent variables on an (N + 1) crossbar
array. In the hardware implementation, the input variables are
presented as voltage signals (x;j — vi) on each row of the
crossbar (see Figure 4(b)), and the prediction is represented
by the current flowing on the crossbar array as given by
Kirchhoff’s law: h— I = > v;Gj. To ensure the accuracy of
the prediction in this hardware implementation, the amplitude
of the input voltage signals is normalized to a range between
0 and 0.25 V. This range results in good linearity (i.e., current
is directly proportional to voltage, or equivalently conductance
is independent of voltage) as shown in Figure 3(e). In the
optimization process that occurs during training, a cost func-
tion J proportional to the mean square error is minimized
through the update of the conductance values. The error is
determined by the difference in the predicted and actual values
as 0" = A" - y", where the superscript indicates the n data
sample (also n™M training step). At each training step, each
device requires a conductance update given by AG; = -ad"v";.
Here, o is a learning rate. In practice, it is not feasible (or
required) to perfectly update the conductances by exactly AGj.
The goal is to minimize the error (or cost function). Therefore,
the approach is to use a discrete number of programming
pulses (positive or negative) to approximate the change in
conductance state of each memristor according to the value
of AG;. This approach is referred to as the smart pulsing
strategy.

B. Demonstration of Stochastic Linear Regression

In our demonstration, a dataset of size 1000 is artificially
generated to be used as training of the crossbar array network.
The conductance values are randomly initialized within a
range from 10 to 60 uS. The learning rate o is initially set
to 1, and for improved convergence is reduced by 3% after
each training step. Each iteration corresponds to presenting a
single sample from the dataset followed by the adjustment of
the conductance for each memristor based on the calculated
AG;. Figure 5(a) summarizes the results of the memristor
crossbar implementation of the stochastic multivariable linear

regression algorithm (without variation). In Figure 5(a), the
blue dots are the dataset corresponding to price of pizza
plotted as a function of two independent variables, x|, number
of ingredients, and x;, size of the pizza. The algorithm is
conducted five different times and for each case the initial and
final conductance states are recorded. The red mesh surfaces
represent the model prediction based on the initial (random)
state of memristor conductances in the crossbar. The green
mesh surfaces represent the prediction after 1000 training
steps (i.e., after all data samples have been presented to the
array). The different final predictions for each case results
from the different random initial states along with random
shuffling in the sampling process. The results show a sig-
nificant improvement in the model prediction of the data
set after training as indicated by the green mesh surfaces
overlapping the data points. Figure 5(b) plots the evolution of
conductance for each memristor in the array as a function of
the algorithm iteration step during training. It indicates larger
updates in conductance during the initial steps and a settling
as convergence is achieved.

Figure 5(c) compares the convergence as indicated by the
prediction mean squared error (MSE) as a function of iteration
number for the three different versions of the pulsing strategy.
It is clear from the slope of MSE vs. iteration number that the
pulsing strategy with larger number of pulses (i.e., 1-4-16) has
a faster initial convergence rate (can reach lower MSE with
fewer iterations during the initial training steps). However,
as training advances, the convergence rate slows down and
eventually all three pulsing strategies achieve small MSE.
We note that a fast initial convergence rate may be desirable for
specific training applications. The proposed pulsing approach
can achieve a fast initial convergence rate without compro-
mising high prediction accuracy of the fully trained crossbar
array. Finally, we examine the impact of variability on the
stochastic multivariable linear regression algorithm memristor
crossbar implementation. Figure 5(d) plots the prediction mean
squared error (MSE) as a function of iteration number for
a pulsing strategy of 1-4-16, with and without memristor
variation. For the case of no variation (shown in green),
we include the average MSE vs. iteration from 10 simulations
(solid line) and the range between maximum and minimum
MSE (shaded green region). For the case with variation,
we only show the average MSE vs. iteration number (solid
red line). While the convergence is still good even with
memristor variability, we note the following effects: 1) The
results indicate that the convergence is slower (error is reduced
at a slower rate with training), 2) The accuracy is degraded
(average error after training is slightly larger than what was
obtained when neglecting variation), 3) The most significant
issue appears to be an impact on precision. The results in
Figure 5(d) show noticeable fluctuation in average error when
variation is included. We interpret these fluctuations as an
impact on the algorithm precision resulting from variabil-
ity in the programming of memristor conductance states.
It should be noted that even with these detrimental effects of
memristor variability, the prediction error is still converging
(i.e., error reduces with training) to about 3-5%. This is
a promising result for memristor crossbars implementations
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(a) Results of stochastic multi-variable linear regression algorithm on a memristor crossbar (5 simulations). The blue dots are the dataset, the red mesh

surface is the prediction based on the initial memristor conductance, and the green mesh surface is the final prediction after 1000 iterations. (b) Conductance
evolution for each memristor from the 3 x 1 crossbar as a function of iteration (training step). (c) Comparison of convergence rate (error vs. iteration) for
three different cases of the smart pulsing strategy. (d) Convergence rate (with and without variation) for the 1-4-16 pulsing strategy. Solid green line is average
error from 10 simulations, shaded region indicates the range of maximum and minimum values from all 10 individual cases.

of regression algorithms that appears to indicate some level
of immunity to device variability at the algorithm-level. The
same simulation was repeated to compare the individual
effects of dispersion in model parameters Iy, and yo on the
algorithm performance (not shown). We discover that the
observed impact on precision is due mainly to dispersion in Iy,
correlating with variation in conductance, and not to dispersion
in yo which mostly correlates to dispersion in set/reset voltages
(see Figure 3(a-d)). This observation is reasonable as the algo-
rithm implementation is based on pulsed programming where
the amplitudes of the applied voltage pulses (+1.8 V/—1.5 V)
have sufficient margins above/below the set/reset thresholds.

C. Stochastic Logistic Regression

This section describes the implementation of stochastic
logistic regression in a memristor crossbar for classification
of 5 x 5-pixel binary images that represent characters °S’,
‘M’, ‘R’, and “T’. Figure 6(a) is a flowchart describing the
logistic regression implementation. The data set is artificially
generated and includes “noisy” samples or images where two
of the binary pixels have been flipped (see Figure 6(b)).
Separate data were generated for training and to test the

classification accuracy at fixed training intervals (i.e., after a
fixed amount of training images have been presented to the
network). Figure 6(c) is a graphical representation of the neural
network that is being implemented by the memristor crossbar
for this classification task. The crossbar schematic is shown
in Figure 6(d). Here, each synaptic connection is implemented
by a memristor differential pair. The effective conductance
for each differential pair is given by: G;; = G;; - Gl;
This enables negative weights to be implemented with the
crossbar array (all conductances are positive). To perform
the classification of the 5 x 5 images, a 25 x 8 memristor
crossbar is simulated. During training, images that correspond
to different characters (S, M, R, or T) are randomly presented
to the array, so all 4 neurons are simultaneously trained to
recognize their assigned character.

As discussed in the previous section, the linear range for the
I-V characteristics of the memristors falls between the range of
—0.25 to0 0.25 V. Thus, during the “read” operation, each pixel
from the binary image is mapped to a crossbar input voltage
signal of 0.1 V for white pixels and —0.1 V for black pixels.
The output current on each neuron is essentially a dot product
of the input voltage vector and the effective conductance
vector from the corresponding column pair. Mathematically,
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Image classification experiment (physical-level description). (a) flow chart for the stochastic logistic regression algorithm memristor crossbar

implementation. (b) The 5 x 5 input binary images (original image following the noisy ones). (c) Graph representation of the neural network implementation
for classification image classification. (d) partial schematic of the 25 x 8 memristor crossbar simulated using HSpice + Verilog-A showing memristor

differential pair.

the output currents are given by I; = zlzi 10iG;j where
G;; are the adjustable effective conductance and v; are the
input voltages. The output current is normalized and then
goes through the sigmoid activation function which returns the
value of f; = . Here, I " is the normalized output current

of each column In thls normahzatlon the original current (/)
is simply divided by a constant factor and presented to logistic
function as 7 j’ The sigmoid function gives an output ranging
between O and 1. In this implementation, the classification
error (d;) is calculated for each neuron as: d; = f; — yj,
where y; is determined by the label in the training data set
(equals 1 for the neuron that corresponds to the training image
and zero for other neurons).

D. Demonstration of Logistic Regression

Similar to the linear regression demonstration, a smart
pulsing strategy is used where different number of pulses are
applied at each iteration based on the required conductance
update given by AG;; = —a x J;v;. For AG;; greater than
£0.01 uS, five positive/negative pulses are applied, for AG;;
between £0.005 and £0.01, two positive/negative pulses are
applied and for AG;; Smaller than +0.005 xS, a single pulse
is applied. This pulsing strategy is illustrated in Figure 7(a).

In this demonstration, the programming pulses have ampli-
tudes of +1.4 V and —1.35 V, and widths of 20 ns and 10 ns
respectively, and the learning rate, «, is constant with the value
of 0.5. A single image from the dataset is presented to the

network during each training step, followed by an adjustment
of the effective conductance through the application of consec-
utive voltage pulses determined based on AG;;. For example,
if the effective conductance (AG;;) needs to be increased,
positive pulses are applied to the positive memristor (G?]T) and

negative pulses are applied to the negative memristor (Gi_j) in
the differential pair. This increases the effective conductance.
Similarly, if the effective conductance needs to be decreased,
negative pulses are applied to the positive memristor and
positive pulses are applied to the negative memristor in the
differential pair. The accuracy of the prediction is evaluated at
fixed training intervals using a separate dataset that consists of
400 5 x 5 binary images (100 noisy images for each character).

Figure 7 summarizes the results of the classification algo-
rithm. We first compare the smart pulsing strategy against
the constant pulse update approach described in [28] and
implemented in a real crossbar in [29]. The constant pulsing
approach is indicated by the dashed blue line in Figure 7(a),
where a single pulse is applied independent of the value of
AG;;. Figure 7(b) shows the number of mismatched patterns
for character “S” in the evaluation set as a function of
training steps. With increasing training steps, the percentage
of mismatched patters decreases. Red lines indicate the smart
pulsing strategy proposed in this paper whereas blue shows the
results for the constant pulsing method [28], [29]. The solid
red line corresponds to the average mismatch from 5 different
trials with different initial states and without variation. The
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Fig. 7. (a) Pulsing strategy for the logistic regression algorithm implementation. Solid red line is the smart pulsing strategy, and blue dashed line is the

constant pulsing. (b) Number of mismatched patterns (out of 100 test images) for neuron “S” during 200 initial training steps. Solid red line is the average
number of mismatched patters from 5 different simulation runs for smart pulsing strategy without variation. Shaded region indicates the range of maximum
and minimum values. The dotted red line is average with variation for smart pulsing. Constant blue line is the number of mismatched for the constant pulsing
with variation. (c) Evolution of convergence for each output neuron for smart pulsing. Data represent output of sigmoid activation function (range between
0 and 1) for each output neuron. Scattered dots correspond to simulation without variation, and solid line corresponds to simulation with variation (average
from 5 simulation runs with random initial states). (d) Histogram for the distribution of the initial and final effective conductance (weight) states for smart
pulsing strategy with variation (iteration 1000) for neuron “S” (e) Confusion matrix for neuron “S” before training with effective conductance value initialized
randomly for smart pulsing. (f) Confusion matrix for neuron “S” after training showing the final values of f; for each neuron for smart pulsing.

shaded region indicates the range of maximum and minimum
mismatch from all 5 individual runs. The red dotted line is
the average mismatch with variation. As observed, it takes
longer for the case with variation to reach almost perfect
classification (zero mismatched patterns). The blue line is
the average mismatch including memristor variability for the
constant pulsing approach. Compared to the smart pulsing
strategy, convergence rate and accuracy are reduced. For the
smart pulsing strategy, Figure 7(c) shows the evolution of
convergence based on the average output of the sigmoid func-
tion (f;) at each of the neurons and for each of the different
characters in the evaluation data set (100 noisy images for each
character). For example, for the neuron assigned to character
‘S’ (labeled “Neuron S” in Figure 7(c)), f; converges to a
value close to 1 for images corresponding to the character
‘S’ and to values close to O for others. In Figure 7(c), the
results shown with open circles are the average of 5 different
trials (each up to 1000 training steps) without memristor
variation. For comparison, solid lines plot the case with
variation (only shown for results from images that match
the assigned character to each neuron). These results indicate
that memristor variation appears to have minimal impact on
classification accuracy but affects precision by introducing
more fluctuations as a function of training step (consistent with

results from linear regression). Figures 7(e) and 7(f) show the
confusion matrix corresponding to f; values for each neuron
before and after training. Before training, the f; values for
each neuron are randomly distributed around 0.5 based on
the initial random effective conductances (see Figure 7(d) for
distribution of initial and final effective conductance). The
final values of f;, after the training is complete (1000 steps),
are shown in Figure 7(f). The results are in accordance with
Figure 7(c), where corresponding neurons converge towards
1 and the non-corresponding neurons approach 0.

Our results indicates that with memristor variability, which
is the realistic case for actual physical crossbars, more iter-
ations are necessary to converge to a desirable classifica-
tion accuracy. For more complex patterns, this gap may be
large. From Figure 7(c), it can be concluded that because
of the nature of logistic regression, where the output current
(weighted sum of inputs) goes through the logistic function (in
this case), the variation does not have outstanding impact in
the learning process. It is important to point out that in some
cases, small levels of device variation (noise) can help achieve
improvements in accuracy as it may act as a form of regular-
ization to prevent overfitting to the training set. This has been
demonstrated in [50] for MNIST datasets where small levels
of variability improved accuracy but was ultimately degraded
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for larger levels of variation. Another technique to prevent
overfitting and overreliance on individual devices is dropout
regularization and is commonly used in multi-layer neural
networks and was recently proposed to alleviate stuck-at-faults
in memristor crossbar implementations [51]. Moreover, the
work in [52]-[54] pointed out in the context of spiking neural
networks that noise symmetrically distributed about a mean
of zero will integrate out when trained across many samples.
Another well-known source of noise that is neglected in the
present analysis results from quantization of bit-line currents
as typical implementations of the logistic function use digital
circuits [47].

IV. CONCLUSION

A circuit-level analysis of 1TIR crossbar implementation
of linear and logistic regression algorithms using a physics-
based, variation-aware, and experimentally verified compact
model for memristors is presented in this paper. The analysis
includes the impact of device variability on convergence,
as well as on prediction/classification accuracy and preci-
sion. The algorithm implementations are based on crossbar
vector matrix multiplication, which is the core operation of
typical neuromorphic computing platforms [29]. Moreover,
this work presents an improved gradient-descent approach
that is compatible with realistic hardware. This approach can
achieve a fast initial convergence rate without compromising
high prediction accuracy of the fully trained network. The
results of this work indicate that our proposed smart pulsing
strategy can be adjusted to accelerate training in real crossbar
architectures. Our analysis regarding the impact of memristor
variability on algorithm performance revealed the following:
In linear regression, memristor variability does not appear to
significantly affect prediction accuracy (can still achieve high
accuracy), but convergence rate (how fast accuracy improves
with training) and precision are noticeably degraded. The
impact on precision is readily observed from fluctuations in the
prediction error as a function of training steps (algorithm itera-
tions). Similarly, in logistic regression, classification accuracy
is not significantly affected by the memristor variability but a
slower convergence rate and fluctuations in error as a function
of algorithm iteration (impact on precision) were observed.
We have also compared our proposed pulsing strategy to
previous methods [28], [29] where a single positive or negative
pulse is applied based on the sign of required update at each
iteration. The proposed technique achieves faster convergence
and better accuracy on classification of noisy binary images
even in the presence of memristor variability. The findings of
this paper are important to understand the impact of device
variability algorithm performance and on the viability of
memristor crossbars for prediction and classification tasks.
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