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Abstract—Multi-messenger astrophysics is amongst the most
promising approaches to astronomical observations. A significant
challenge, however, is the fact that many instruments have a
narrow field of view, so transient events are often missed by
these instruments. The Advanced Particle-astrophysics Telescope,
currently under development, promises to provide low-latency
detection and localization for an important class of astronomical
events, thereby enabling the full observational capabilities of
narrow field-of-view instruments to be brought to bear. We
examine the computational pipeline for detection and localization
of Compton events utilizing computational accelerators, both
FPGAs and GPUs.

Index Terms—Advanced Particle-astrophysics
(APT), Compton scattering, FPGA, GPU

Telescope

I. INTRODUCTION

The Advanced Particle-astrophysics Telescope (APT) is a
future gamma-ray/cosmic-ray mission that will combine a
pair tracker and Compton telescope in a single monolithic
design [1]. One of the major features of APT is that by
incorporating multiple Compton imaging over a very large
effective area, the instrument will achieve orders of magnitude
improvement in sensitivity to photons of energies of one to a
few MeV compared to existing experiments. The multilayer
design also makes it possible to achieve a much larger field
of view (FoV) than conventional Compton telescopes. This
feature is particularly beneficial in the newly emerging area of
multi-wavelength and multi-messenger astrophysics, in which
transient signals from multiple modalities are combined to
learn more about the physical universe.

The information carried by photons, gravitational waves,
and neutrinos about individual cosmic sources is inherently
complementary [2]. In addition, many of the instruments used
to acquire signals in these modalities are limited to a narrow
field of view (e.g., sub-1° FoV is common), while large FoV
instruments (such as gravity wave detectors) provide limited-
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Fig. 1. Top: APT in Falcon-9 faring. Bottom: Detection modes. [1]

precision localization of detected signals. APT is intended to
support sub-1° localization precision in the MeV energy range.

This combination of wide instantaneous field of view and
narrow localization capability makes APT an important com-
ponent in the detection of ~y-ray transients such as neutron-
star mergers. Fast detection and localization of these events
— ideally within less than one second of their light arriving
at the detector — is crucial to capture sufficient data about
their evolution. The ability to urgently respond to events and
re-task terrestrial instruments therefore dramatically increases
the fraction of the available observation window of opportunity



that is utilized, which increases the quality of the resulting
science.

The full APT instrument will have a cross-sectional area of
3 m X 3 m and a height of 2.5 m, consisting of 20 xy tracker
and imaging CslI calorimeter (ICC) layers (see Figure 1). Two
such 3 m modules fit in the faring of a Falcon 9 rocket. With a
Falcon-heavy rocket, it should be possible to lift the instrument
into a sun-earth Lagrange orbit, where the obscuration of the
sky by the earth is minimized and the benefit of the large
(nearly 4m-steradian) FoV can be exploited.

NASA has recently funded a full suborbital mission, the
Advanced Demonstration of the APT (ADAPT), targeting a
long-duration flight on a 60 million-cubic-foot balloon flight
from Antarctica in 2024-2025. ADAPT will validate the APT
technical approach while potentially providing prompt degree-
scale localization of several bright GRBs that occur during the
long-duration Antarctic flight.

In this paper, we evaluate the benefits of using compu-
tational accelerators, specifically Field-Programmable Gate
Arrays (FPGAs) and Graphics Processing Units (GPUs), in
the computational pipeline of Compton event detection, re-
construction, and localization within APT [3]. These tasks
are budgeted for no more than 1 s of latency in the original
instrument plans; however, further latency improvement will
translate directly into improved scientific observations. Here,
we report estimated latency of 200 ms for the entire compu-
tational pipeline.

II. APT MISSION AND COMPTON PIPELINE
A. Advanced Particle-astrophysics Telescope (APT)

The APT mission is intended to have a broad impact on
astroparticle physics; including the following primary science
drivers [1]:

1) probing weakly interacting massive particle (WIMP)
dark matter across the entire natural mass range and
annihilation cross section for a thermal WIMP;

2) providing a nearly all-sky instantaneous FoV, with
prompt sub-degree localization and polarization mea-
surements for gamma-ray transients such as neutron-star
mergers; and

3) making measurements of rare ultra-heavy cosmic ray nu-
clei to distinguish between n-star merger and supernovae
r-process synthesis of the heavy elements.

In this paper, we are primarily interested in the second driver
listed above. In particular, the goal is to detect and localize
short-term gamma-ray bursts (GRBs) so that the source di-
rection can quickly be communicated to other instruments,
specifically those with a limited field of view.

Multi-messenger astrophysics seeks to learn about gravi-
tational collapse of end-of-life massive stars, neutron stars
and neutrino emission, supernova and supernova remnants,
pulsars and pulsar wind nebulae, stellar mass black holes, and
other physical phenomena [4]. The core idea is that different
observational modalities teach us different things about each
of these phenomena.

The range of observational modalities is quite large, includ-
ing optical telescopes, radio telescopes, X-ray telescopes, -
ray telescopes, neutrino telescopes, and gravity wave detec-
tors [4]. While some of these instruments have a wide FoV
(e.g., the gravity wave detectors), many do not. For example,
optical telescopes with a wide aperture often have a very
limited FoV (typically < 1°) [5].

Huerta et al. [6] recently published a set of recommenda-
tions for maximizing the potential for scientific discovery that
includes substantial computational requirements, particularly
for processing of the resultant data sets in real time [7]. The
sooner we can localize the source of a GRB, the faster we
can target other instruments to the same source. It is this rapid
targeting capability that we are working to realize with APT.

B. Compton Pipeline

Figure 2 illustrates the detection mechanism in the APT
instrument [1]. Incident photons strike thin (~5 mm) CsI:Na
crystal tiles, generating scintillations from Compton scatter-
ings that deposit some of the photon’s energy. Wavelength
shifting (WLS) fibers (2 mm square) covering the tiles are
used to collect and shift the UV/blue re-emission of deposited
energy from the Csl:Na and pipe a fraction of the isotropically
re-emitted light to silicon photomultipliers (SiPMs) on the
periphery.
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Fig. 2. (a) Imaging Csl detector principle of operation. (b) End-on view of
fibers. TIR is totally internally reflected light. From [1]

Centroiding the light collected by the orthogonal WLS fibers
bonded to either side of the CsI crystals provides the xy
coordinates of the interaction. Which layer detects the energy
deposition provides the z coordinate. The instrument will use
analog-pipeline waveform digitizers [8], which enable only
triggered events to be digitized. This dramatically decreases
overall energy requirements, as the instrument is not digitizing
unused noise.



In the Compton regime, the computational pipeline that
follows digitization is comprised of event detection (determin-
ing the nominal xyz coordinates of each energy deposition),
reconstruction (determining the sequence of energy deposi-
tions by each photon), and localization (estimating the origin
direction from a burst of photons). Each of these is described
in turn in the sections below.

III. EVENT DETECTION USING AN FPGA

When the analog waveform digitizer ASICs trigger an event,
the information that is passed into the event detection stage
is the collection of contiguous fibers that have a signal, with
the ith fiber represented by f;, and the intensity signal on
each of these fibers, represented by s;. This happens in both
the  and y dimensions. In this stage of the computation, we
must determine the centroid in each dimension of each energy
deposition. Adapting the techniques from Hyde [9], here we
investigate the use of high-level synthesis (HLS) to perform
the centroid computation, which is shown in Figure 3 and
expressed in Equation (1).
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Fig. 3. Centroiding computation.
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Here, c is in units of fibers, but that is easily converted to
mm as the width for each fiber is 2 mm (see Figure 2).

Given that an FPGA will be used to interface with the analog
ASICs, we are interested in performing the centroiding com-
putation on the same FPGA. Flight hardware has not yet been
chosen, so we utilize a desktop card for evaluation purposes
(a Xilinx Alveo U250 accelerator card, which includes an
UltraScale+ architecture FPGA). The number of contiguous
fibers with a signal for each energy deposition can vary. In
this work, we explore a maximum of 24 contiguous fibers,
guided by the simulation models of Chen et al. [10].

The area limitations are completely dominated by DSP
blocks (see Table I). For 12 instances of a 24-fiber version
of Figure 3, 864 DSP blocks are required, comprising 7% of
the FPGA. This corresponds to 3 DSP blocks per fiber. All
other resources are underutilized by comparison.

(D

TABLE I
FPGA RESOURCE USAGE
Instances | LUTs | BRAM | (Registers | DSPs
2 | 25529 (15%) | 23 (0.9%) | 67,528 (2.3%) | 864 (71.0%)

The 12-instance design can be clocked at 300 MHz
and completes a single event computation in 68 cycles, or
0.23 ps. This design therefore supports an event throughput
of 53 Mevents/s, well above the anticipated photon arrival rate.

Figure 4 shows a scatter plot of the positional error (sep-
arately for z and y) that results from the above technique.
Incident y-ray photon interactions and ground-truth positions
are provided by [10]. The large majority of the errors are less
than 2 mm, the width of a single WLS fiber.
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Fig. 4. Positional error as a function of position.

When used in a different context (a microscope design),
Hyde [9] reported significant positioning errors near the
boundaries of the sensor. The geometry of our instrument is
sufficiently different that, at least qualitatively, we do not see
this issue in our application. Our current investigation is fo-
cused on the few outliers with large positioning errors — both
understanding their cause and mitigating their downstream
impact.

IV. RECONSTRUCTION ON A MULTICORE PROCESSOR

Reconstruction takes the Compton scattering events detected
from one incident v-ray photon by the centroiding stage,
including both their locations and their deposited energies, and
infers the order in which they occurred in the detector. The
goal of this inference is to discover the locations of the most
likely first and second scatterings in order, which are used
along with the first scattering’s deposited energy to constrain
the direction in the sky from which the photon arrived at
the detector. The time between scatterings is too small to
directly observe their sequence; instead, we consider every
possible ordering, each implying a trajectory of the photon in
the instrument, and select the trajectory that best explains the
observed locations and energy depositions.

Our basic approach to trajectory reconstruction from Comp-
ton scatterings follows Boggs and Jean [11], who described a
figure of merit for a putative trajectory based on agreement
between the angles at which the photon scatters (given the
trajectory) and the corresponding energy deposits, which pro-
vide independent estimates of each scattering angle via the
Compton law. In [3], we describe an algorithmic approach
to accelerate the testing of all possible trajectories over a
set of scattering events. To eliminate redundant computation
and ensure rapid analysis even of photons with multiple



scatterings, we implement a tree search over possible photon
trajectories, which merges the computations for trajectories
sharing a common ordered prefix of scatterings as shown in
Figure 5, to find one with the highest figure of merit. Further
acceleration is obtained by pruning the search tree to eliminate
trajectories that cannot or are unlikely to have the highest
mertit.
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Fig. 5. A subtree for an event with N = 4 scatterings, representing
all permutations that begin with scattering 1. The x> terms are com-
ponents of the figure of merit, each computed from three successive
scatterings.

We implemented reconstruction on a four-core ARM
Cortex-AS53 processor, specifically a Raspberry Pi 3B+, to
mimic the kind of low-power embedded processor that meets
the power requirements of APT and ADAPT. We simulated
~-ray burst events resulting in thousands to hundreds of thou-
sands of incident photons input to reconstruction and found
that reconstruction of all photons for such events typically
took 10 ms or less, as shown in Figure 6. Our high observed
efficiency arises partly from algorithmic improvements as
described above and partly from accelerating the computation
using four cores to process different photons in parallel.

V. LOCALIZATION USING A GPU

Localization of a y-ray burst combines information from
multiple reconstructed photons to infer the most likely di-
rection in the sky from which the burst came. From each
reconstructed photon ¢, we obtain a unit vector ¢; parallel to
a line through the locations of its first two scatterings in the
detector, as well as an inferred angle ¢; between c¢; and another
unit vector s representing the burst’s source direction in the
sky. The pair (c;, ¢;) thus defines a circle on the unit sphere
centered on the detector, with the source s assumed to lie
somewhere on this circle. In practice, measurement uncertainty
leads to an uncertainty o2 in the angle ¢;, so that the circle
is in fact an annulus with a Gaussian cross section. Given a
collection of hundreds to thousands of such annuli, the goal
is to infer a single most plausible source direction s that gave
rise to them. The task is complicated by the fact that some
photon trajectories (perhaps even a majority) are reconstructed
incorrectly. Hence, s must be inferred robustly from a plurality
of annuli, with the remainder discounted as noise.

As described in [3], localization divides naturally into two
stages. First, a large number of candidate directions are tested,
and the best candidates are then combined to produce a
rough approximation to the correct source direction. Second,

this initial approximation is iteratively refined using a linear
least-squares approach. The final source direction is typically
accurate to within a few degrees of arc, though sub-degree
accuracy is desired in practice and is routinely achieved for
bursts that produce sufficiently many photons.

While both reconstruction and localization can be imple-
mented on a multicore, we found that these two parts of
our computation exhibited very different performance char-
acteristics. As Figure 6 illustrates, when run on our four-core
ARM Cortex-A53 processor, the time spent in reconstruction
is almost negligible compared to that spent in localization.
Hence, we sought to further accelerate localization using
wide-SIMD parallelism — specifically, targeting a graphics
processor (GPU). We note that low-power devices exist (e.g.,
the NVIDIA Jetson family) that combine a GPU with an ARM
multicore, so targeting different parts of the burst detection to
heterogeneous resources is eminently practical for our applica-
tion. In what follows, we describe our parallelization strategy
and estimate the performance of the resulting computation on
a representative low-power GPU device.

Time (ms)
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Fig. 6. Pipeline stage execution times on a four-core ARM Cortex-
AS53 CPU for a range of input sizes. Fluence is a measure of energy
density in the sample and is proportional to input size; for our
instrument, a fluence of 0.03 MeV/cm? corresponds to 5000 incident
photons. [3]

A. Approximation

In order to derive meaning from the potentially large
number of annuli produced from reconstruction, we seek a
candidate source direction where multiple photons’ annuli
overlap. We first sample a small number of annuli (c;, ¢;)
from the input and, for each annulus, construct a set of equally-
spaced directions s, on the circle of radius ¢; around center
¢j, as illustrated in Figure 7. We hypothesize that sampling
sufficiently many input photons results in a high probability
of picking at least one correctly reconstructed photon; for this
photon, some direction on its implied circle should be close
to the true source direction.

We evaluate each candidate source direction s;, using an
estimated likelihood of all photons’ annuli given this direction.



Specifically, we compute
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where f3; = arccos(s; - ¢;). The overall likelihood of sy, is
simply the product of its likelihoods given each input annulus.
This product is computed in the log domain for efficiency,
with an additional “short-circuiting” optimization to rapidly
discard as noise annuli that do not pass anywhere near s ;. For
each sampled annulus (c;, ¢;), we retain the single most likely
source direction s; from among the tested s;i, then average
these directions, weighted according to their likelihoods, to
obtain the approximate source direction s.

Approximation involves a large number of likelihood com-
putations, all of which can be performed independently. In
practice, we sample 20 input annuli and test 720 directions
sj, per annulus. For each annulus, we must then perform
an argmax reduction over the likelihoods for all its tested
directions to find the most likely candidate, before finally
computing a weighted average of these candidates. A natural
SIMD decomposition of this work is to divide the sampled
annuli evenly across GPU blocks (i.e., across processors of the
GPU), and within each block to divide individual directions
sj, evenly among threads. For one annulus, each thread
sequentially computes likelihoods for its assigned directions,
maintaining the most likely direction found. Finally, all SIMD
threads in a block collaboratively compute the argmax re-
duction for the annulus. The candidates s; for each sampled
annulus are returned to the host processor, where the weighted
average is performed sequentially.

Fig. 7. For initial approximation, candidate source directions are
evenly spaced around a randomly selected annulus.

In contrast to our ARM multicore implementation, whose
parallelism is limited to the number of available cores (less
than ten), the GPU allows computation of many tens of
likelihoods in parallel per processor core, with additional
performance obtained from hiding the latency of the data
accesses associated with each likelihood computation.

B. Refinement

After obtaining our initial guess at the source direction s,
we seek to refine it. In principle, given three circles (c;, ¢;)
that meet at a common point, it is possible to trilaterate, that

is, to infer a source direction by solving for the unit vector s
that satisfies

5-¢j = COS @

for all j. In practice, however, we are given many more
than three annuli, each with some uncertainty, so the problem
is both overdetermined and impossible to solve exactly. We
therefore seek a unit vector s that solves this system in a
least-squares sense, with the constraint for annulus (c;, ¢;)
weighted by 1/0;. The unit-vector constraint makes the prob-
lem nonlinear, but this particular nonlinear constraint can
be accommodated efficiently by reducing the problem to a
quadratic eigenvalue problem [12], [13].

Fig. 8. At refinement step ¢, only annuli (shown in green) within three
standard deviations of the current estimated source vector s; are used
as constraints for the least-squares problem. Other annuli (shown in
red) are ignored.

The iterative nature of the computation arises from the
desire for robust estimation of s in the presence of noise. Given
an initial candidate s from the approximation stage, we discard
all annuli for which s lies at least three standard deviations
from their circles, i.e., for which |arccos(s - ¢;) — ¢;| > 30},
as illustrated in Figure 8. We solve the resulting reduced
least-squares problem as described, producing a new source
estimate s’, then again discard annuli passing too far from
s’ and compute a new least-squares estimate. This process is
iterated 20 times.

The dominant costs of each iteration of refinement are,
first, the selection of which annuli to retain, and second,
reduction of the resulting least-squares problem to a quadratic
eigenvalue problem. If the first step retains N annuli, then
the second involves forming an N x 3 matrix A and an N-
vector b from the centers c; and angle cosines cos ¢; from all
retained annuli, respectively, and then computing AT A and
ATb. The resulting eigenvalue problem has small constant
size. We first parallelize selection of annuli across as many
threads as possible, distributed over enough blocks to occupy
all GPU processors. We then perform a device-wide parallel
scan and compaction to form A and b and finally parallelize
the multiplications needed to form the eigenvalue problem,
which we solve on the ARM using the Eigen library [14].

We relied on CUDA’s CUB library for scans and reductions
but otherwise coded all GPU portions of the computation



explicitly in CUDA. We attempted to use the cuBLAS library
for the linear-algebraic computations but found that it was
substantially slower than our own naive multiplication kernel
for the problem sizes tested (/N of several thousand).

C. Performance

We estimate the performance of our GPU implementation of
localization on an NVIDIA Jetson Xavier NX board, a 10-watt
device whose GPU has six processors (SMs) built on the Volta
architecture. Because we do not have access to a Xavier NX
device, we extrapolate from performance measurements taken
on an NVIDIA RTX 2080, which has 46 processors built on
the newer Turing architecture. We conservatively estimate that,
due to differences in clock rate and architecture, one processor
of the RTX 2080 may run up to twice as fast as one processor
of the Xavier NX, implying that, if (as is the case) the GPU
time dominates the overall computation time, the Xavier will
run roughly 46,/6 x 2 ~ 15.33 times slower than the RTX 2080.

We tested our code on a dataset of 10° ~-ray photons from a
long GRB simulated in [15], with additional instrument noise
modeled with APTSoft [10]. We measured execution times
for both localization stages across a range of input sizes. For
each input size in our domain, we randomly sampled 200
subsets of photons, performed reconstruction, then measured
execution time for both the the initial source approximation
and the iterative refinement stages of our pipeline.

Figure 9 illustrates the estimated times for approximation
and refinement on the Xavier NX’s GPU compared to the
measured times on our four-core ARM Cortex-A53. For the
initial approximation stage, we observe significant speedup
with GPU acceleration. For the iterative refinement stage, our
estimated times on the GPU demonstrate significant constant-
time overhead, but execution times increase more slowly with
fluence on the GPU compared to the CPU. Since running
time is dominated by the CPU-bound eigenvalue problem and
memory copies between the CPU and GPU (which are less
expensive on a shared-memory platform like the Xavier NX),
we expect the constant-time overhead to be closer to that of
the CPU implementation. Overall, we expect a 2.5 — 3.5x%
speedup by moving localization to the GPU.

VI. CONCLUSIONS AND FUTURE WORK

For multi-messenger astrophysics, directing terrestrial tele-
scopes with a narrow field of view onto transient celestial
events is an urgent task. For many such events (e.g., neutron-
star mergers), y-ray burst detection in the Compton regime is
a promising approach to provide early detection and localiza-
tion of these events, and the Advanced Particle-astrophysics
Telescope is being designed for this very purpose.

Utilizing FPGAs for event detection, low-power processor
cores for reconstruction, and GPUs for localization, our initial
investigations indicate that the entire computational pipeline
can be performed with an estimated latency of under 200 ms,
well under the 1 s budget postulated in the initial telescope
proposals.
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Fig. 9. Comparison of execution times between the ARM Cortex-A53 CPU
and the NVIDIA Jetson Xavier NX board (estimated) for a range of input
sizes. Error bars denote the standard deviation over 200 trials.

There is substantial additional work to be done before we
can confidently launch even the prototype instrument on our
upcoming balloon flight. In the event detection stage, we
need to interface the FPGA logic with the analog-pipeline
waveform digitizer ASICs and assess the importance of the
outliers that are clearly present in Figure 4. Between event
detection and reconstruction, we need to insert a compute
stage that distinguishes Compton events from pair-production
events that occur at higher energies. Algorithmic approaches to
perform this task are currently under investigation. Within the
reconstruction stage, we are investigating whether a maximum-
likelihood formulation would give better results than the cur-
rent algorithm due to Boggs and Jean [11]. For the localization
stage, we need to measure the performance on flight-capable
hardware (this is true for event detection as well).

Throughout the entire pipeline, we need to further investi-
gate both the sources of noise in the instrument and assess
mechanisms for mitigating that noise. This includes stray -
rays that are not part of the burst, other sources that can
trigger stray scintillations in the Csl layers or the fibers, dark
photon counts in the SiPMs, and electronics noise in the
analog subsystem. While early assessments are quite positive,
significant work remains before the instrument flies.
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Appendix: Artifact Description

SUMMARY OF THE EXPERIMENTS REPORTED

The localization algorithms were run on a Washington
University server that has a Intel(R) Xeon(R) CPU E5-2620 v4
for the CPU and an NVIDIA RTX 2080 for the GPU. CUDA
11.4, Eigen Version 3.3.9 and gcc (GCC) 9.2.1 20191120 (Red
Hat 9.2.1-2) were used on this machine for testing.

ARTIFACT AVAILABILITY
Software Artifact Availability

All author-created software artifacts are maintained in a
public repository under an OSI-approved license. The URL
is below.

Hardware Artifact Availability
There are no author-created hardware artifacts.

Data Artifact Availability
The data artifacts are not yet publicly available.

Proprietary Artifacts
None of the associated artifacts, author-created or otherwise,
are proprietary.
List of URLs and/or DOIs where artifacts are available
https://sbs.wustl.edu/ADAPTsoftware.html
BASELINE EXPERIMENTAL SETUP AND MODIFICATIONS
MADE FOR THE PAPER
Relevant hardware details

Server - see details below.

Operating Systems and Versions
Rocky Linux 8.4 (Green Obsidian)

Compilers and Versions
gce (GCC) 9.2.1 20191120 (Red Hat 9.2.1-2), nvce 11.0

Libraries and Versions
CUDA 11.4, Eigen 3.3.9

Key Algorithms
GEMM, Linear Least-Squares

Output from scripts that gather execution environment infor-
mation

+ uname -a

Linux lotus.engr.wustl.edu 5.10.16-1.¢el8.
elrepo.x86_64 #1 SMP Thu Feb 11
17:44:06 EST 2021 x86_64 x86_64 x86_64
GNU/ Linux

+ lscpu
Architecture : x86_64
CPU op-mode(s): 32-bit , 64-bit

Byte Order: Little Endian
CPU(s): 32

On-line CPU(s) list: 0-31
Thread(s) per core: 2

Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 2
Vendor ID: Genuinelntel
CPU family: 6
Model: 79

Model name: Intel (R) Xeon(R) CPU
E5-2620 v4 @ 2.10GHz

Stepping: 1

CPU MHz: 1494.107
CPU max MHz: 3000.0000
CPU min MHz: 1200.0000
BogoMIPS : 4199.94
Virtualization : VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 20480K
NUMA node0O CPU(s): 0-7,16-23
NUMA nodel CPU(s): 8-15,24-31

Flags: fpu vme de pse tsc
msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush dts acpi mmx
fxsr sse sse2 ss ht tm pbe syscall nx
pdpelgb rdtscp Im constant_tsc
arch_perfmon pebs bts rep_good nopl
xtopology nonstop_tsc cpuid aperfmperf
pni pclmulqdq dtes64 monitor ds_cpl
vmx smx est tm2 ssse3 sdbg fma cx16
xtpr pdcm pcid dca ssed4_1 ssed_2
x2apic movbe popcnt tsc_deadline_timer
aes xsave avx fl6c rdrand lahf_Im abm
3dnowprefetch cpuid_fault epb cat_13
cdp_13 invpcid_single pti intel_ppin
ssbd ibrs ibpb stibp tpr_shadow vnmi
flexpriority ept vpid ept_ad fsgsbase
tsc_adjust bmil hle avx2 smep bmi2
erms invpcid rtm cqm rdt_a rdseed adx
smap intel_pt xsaveopt cqm_llc
cqm_occup_llc cqm_mbm_total
cgqm_mbm_local dtherm ida arat pln pts
flush_11d



