
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 4, DECEMBER 2021 1021
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Abstract—Fog-aided Internet of Drones (IoD), where massive
training data are collected by drones and analyzed in the fog
node, can leverage machine learning to provision various services.
Aggregating all data in the fog node may incur huge network
traffic and drone data privacy leakage. Federated learning (FL)
is hence proposed to preserve drone data privacy by performing
local training in drones and sharing training model parameters in
the fog node without uploading drone raw data. However, drone
privacy can still be divulged to ground eavesdroppers by wiretap-
ping and analyzing uploaded parameters during the FL training
process. In this paper, we investigate the power control of all
drones to maximize the FL system security rate constrained by
drone battery capacities and the quality of service (QoS) require-
ment (i.e., FL training time). We formulate this problem as a
non-linear programming problem and design an algorithm to
obtain the optimum solutions with a low computational com-
plexity. Extensive simulations are conducted to demonstrate the
performance of our proposed algorithm.

Index Terms—Federated learning, Internet of Drones (IoD),
security, fog computing, power control, energy consumption,
quality of service (QoS).

I. INTRODUCTION

INTERNET of Drones (IoD) utilizes drones as the Internet
of Things (IoT) devices to provision services such as traffic

surveillance, object tracking and disaster rescue [1], [2]. In IoD
networks, multiple drones are deployed to collect information
(e.g., images and videos) and send them to the IoD gateway
for further processing. Fog-aided IoD networks provide fast
service response by equipping the IoD gateway with a fog node
where data can be analyzed and processed instead of being
sent to the remote cloud [3], [4]. With the rapid development
of machine learning technologies, fog-aided IoD becomes a
promising architecture to provide novel services such as virtual
reality, traffic prediction and object recognition [5].

To enable machine learning services in fog-aided IoD
networks, the training data collected by drones are all sent to
the fog node to train the machine learning models (e.g., traf-
fic prediction and object recognition models) [6]. However,
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massive data transmission injects huge network traffic and
degrades the quality of service (QoS) because of wireless
bandwidth limitations. On the other hand, the data collected
by drones may be sensitive and contain private information
(e.g., military areas and human faces). Hence, aggregating all
data in the fog node may pose the risk of privacy leakage [7].

Federated learning (FL) [8] is proposed to address the chal-
lenges of both the bandwidth limitation and privacy leakage in
fog-aided IoD networks. Instead of sending the training data
to the fog node in the conventional machine learning services,
FL enables local training at each drone on its own data and
then shares machine learning model parameters with the fog
node. In this way, FL learns a shared global model in the fog
node by aggregating the local model parameters derived from
distributed drone data in a privacy preserved manner. Much
wireless bandwidth can also be saved by avoiding the massive
wireless data transmission [9].

The FL performance is usually determined by the FL train-
ing time which is composed of the local computation time
for model training and the wireless transmission time for
transmitting the local model parameters [10]. Hence, the FL
performance depends on the drone computing resources and
the wireless channels between drones and the fog node. There
is a tradeoff between the FL training time and drone energy
consumption [11]. To reduce the FL training time, more energy
is required to reduce the computation time and wireless data
transmission time. Therefore, the FL performance is also lim-
ited by the drone batteries, which are used for local training
computation, wireless data transmission, and drone hovering
in the air. Drone wireless transmission power determines the
wireless transmission time and energy consumption for wire-
less data transmission, and hence is an important factor to be
investigated in order to improve the FL performance [9].

As compared with conventional machine learning tech-
nologies, FL alleviates the privacy concern by local train-
ing. However, security concerns still exist because of data
eavesdropping. The ground eavesdroppers may wiretap the
local model parameters when drones upload them to the fog
node [12]. If the uploaded model parameters are inferred by a
malicious eavesdropper, they may leak the private information
by model inversion attack [12]. It is hence critical to improve
the security of FL communications. Security rate is a key met-
ric to measure the security level of wireless communications,
and it is defined as the rate of reliably transmitted information
without eavesdropping (i.e., the difference of the data rate
between a drone to the fog node and that between the drone
and an eavesdropper) [13]. Wireless power control, which
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determines the data rates to the fog node and an eavesdropper,
is an option to improve the FL system security rate [14].

Utilizing power control to secure FL in IoD networks has
not been readily addressed, and we hence investigate the
power control problem for FL in fog-aided IoD networks to
exploit the tradeoff among FL system security rate, FL training
time, and drone energy consumption. Specifically, we optimize
each drone’s wireless transmission power to maximize the
system security rate constrained by the FL training time
requirement and each drone’s battery capacity. We theoreti-
cally demonstrate the FL convergence bounds, based on which
we formulate our power control problem and design an algo-
rithm to solve it. The major contributions of our work are
summarized below.

• We investigate the power control problem for FL in a
fog-aided IoD network to counteract eavesdroppers.

• We theoretically demonstrate the convergence property of
FL in the IoD network.

• We formulate the power control problem for secure FL
in IoD as a non-linear programming model to maximize
the system security rate constrained by the drone battery
capacities and FL time requirement.

• We design the Power Control in Secure FL (PCSF)
algorithm to solve the power control problem in our work.

• We demonstrate that our proposed algorithm performs
better than the existing works by extensive simulations.

The rest of this paper is organized as follows. The related
works are presented in Section II. In Section III, we describe
the architecture of FL in IoD networks, the FL process, the
FL convergence analysis, the FL training time, drone energy
consumption, and the system security rate. We formulate the
power control problem of FL in IoD networks in Section IV.
We then design an algorithm to solve the problem in Section V.
The performance of our proposed algorithm is evaluated in
Section VI. This paper is finally concluded in Section VII.

II. RELATED WORKS

Fog-aided IoD networks have been investigated to provision
services such as object tracking, traffic surveillance, and disas-
ter rescue [15]. Gharibi et al. [16] proposed an IoD system to
provide navigation services and described how to implement
the IoD system. Motlagh et al. [17] surveyed various appli-
cations, the implementation, and challenges of IoD networks.
Wazid et al. [18] proposed a user authentication scheme to
access the data from drones in IoD networks. However, they
do not consider utilizing FL in IoD networks.

Machine learning imparts intelligence into IoT networks by
analyzing the data, which are collected by all IoT devices, in
the fog node. Meidan et al. [19] collected the network traf-
fic data from IoT devices to train a classification model to
distinguish the traffic generated by IoT and non-IoT devices.
Yao and Ansari [20] constructed a deep reinforcement learn-
ing model for the content placement problem in dynamic
cache-enabled IoT networks. They also utilized a deep rein-
forcement learning model to optimize the wireless power
control in energy harvesting aided time-varying IoD networks
to minimize the average system energy cost [21].

Fig. 1. Federated learning in a fog-aided IoD network with eavesdroppers.

FL has been investigated in wireless networks.
Tran et al. [22] formulated FL over wireless networks
as an optimization problem to balance the tradeoff of
the FL learning time, accuracy level, and energy cost.
Wang et al. [23] designed an intelligent framework to
implement an FL system by utilizing the collaboration among
devices and edge nodes and exchanging the learning model
parameters. Yang et al. [24] formulated an optimization
problem to minimize a weighted sum of the FL completion
time, local computation energy, and transmission energy
for FL in wireless communication networks. However, the
above works do not consider the security issue nor the
implementation of FL in IoD networks.

The security issue of FL has been studied in several works.
Song et al. [7] explored the user-level privacy leakage in
FL and proposed a multi-task generative adversarial network
(GAN) framework to identify the anonymized updates of the
clients. Xu et al. [25] proposed a secure federated train-
ing protocol to verify the correctness of results returned
from the global aggregator while protecting user data pri-
vacy. Wei et al. [26] proposed a differential privacy based
framework, which adds artificial noise to the uploaded model
parameters, to prevent information leakage in FL.

Utilizing power control to alleviate the FL’s privacy leak-
age, which is caused by the ground eavesdroppers during the
learning parameter uploading in IoD networks, has not been
investigated yet. To fill this gap, we optimize the drone wire-
less transmission powers to maximize the FL system security
rate with the consideration of the QoS requirement (i.e., FL
training time) and drone battery capacities.

III. SYSTEM MODEL

In a fog-aided IoD network (Fig. 1), N drones are hovering
in the air in the flying plane to collect local data samples
and provide the FL service in concert with the fog node to
IoD users. We denote N = {1, . . . ,N } as a set of indexes
for indexing drones. The aim of the FL service is to obtain
a global machine learning model (e.g., traffic prediction and
object recognition). In FL, each drone iteratively downloads
the global FL model parameter, updates the parameter with
its own local data by local training, and sends it back to the
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Fig. 2. Federated learning process.

fog node, while the fog node iteratively gathers all updated
local parameters and aggregates them to a new global model.
The local training is based on the local data samples Dn =
{(xk , yk )} where xk is sample k’s input (e.g., image pixels)
and yk is the output (e.g., label of the image). A loss function
fk (w) is defined to measure the error of the local model based
on data sample k, where w is the parameter of the local model.
Then, drone n’s local training process is to minimize the local
loss function [11]

Fn(w) =
1

|Dn |
∑

k∈Dn

fk (w), ∀n ∈ N , (1)

where |Dn | is the number of data samples. For simplicity,
we define Dn = |Dn | thereafter. Common examples of loss
function fk (w) include fk (w) = 1

2‖xTk w − yk‖2 for linear
regression and fk (w) = {0, 1 − ykx

T
k w}, yk ∈ {−1, 1} for

support vector machine [27].
Note that M eavesdroppers on the ground aim to steal

information from the drones. We denote M = {1, . . . ,M }
as the set of indexes for indexing eavesdroppers. Locations
of all eavesdroppers are assumed known, and they can be
detected by the leaked power of their radio frequency (RF)
front ends [28]. All drones adjust their wireless transmission
powers to reduce the possibility of information leakage of the
local model parameters.

A. Federated Learning Process

There are global FL iterations and local FL iterations in
the FL process (Fig. 2). In a global iteration, each drone
downloads the global parameter from the fog node, trains
the model with its local data, and sends the updated local
parameter to the fog node. The fog node finally aggregates
all updated local parameters into a new global model param-
eter. The local model parameters are updated by the gradient
descent algorithm [29]. In each local iteration, the local param-
eter is updated according to the gradient of the loss function
and learning rate. The relationship between the global iteration
and local iteration is shown in Fig. 2.

The objective of FL is to minimize the global loss function
F(w). In the t-th global iteration, all the drones first download
the global parameter w t from the fog node, and calculate the
gradients of their local loss function ∇Fn (w

t ). Then, the fog
node collects all local gradients and calculates the gradient of
the global loss function

∇F
(
w t) = 1

N

∑

n∈N
∇Fn

(
w t), (2)

which is broadcast to all the drones for local trainings.

Each drone n solves the local training problem

min
w

G t
n (w) = Fn(w)− [∇Fn

(
w t)− η∇F

(
w t)]�w , (3)

where G t
n (w) is the modified loss function of drone n in the

t-th global iteration, and η is a positive constant to control the
FL convergence rate [29]. The local training problem is solved
by the gradient descent algorithm. We define w t ,i

n as drone n’s
local model parameter at global iteration t and local iteration i,
and w t ,∗

n as the local model parameter after convergence, i.e.,

w t ,∗
n = argmin

w
G t
n (w). (4)

In the i-th local iteration, the local model parameter w t ,i
n is

updated according to the gradient of G t
n (w) and the learning

rate δ, i.e.,

w t ,i+1
n = w t ,i

n − δ∇G t
n

(
w t ,i
n

)
, (5)

where w
t ,0
n = w t because it is downloaded from the fog node.

According to Eq. (3), ∇G t
n (w

t ,i
n ) can be calculated as

∇G t
n

(
w t ,i
n

)
= ∇Fn

(
w t ,i
n

)
−∇Fn

(
w t)+ η∇F

(
w t). (6)

Since w
t ,∗
n is the converged local model parameter, we have

∇G t
n

(
w t ,∗
n

)
= ∇Fn

(
w t ,∗
n

)−∇Fn
(
w t)+ η∇F

(
w t) = 0,

(7)

The local iteration continues until the local model accuracy εl
is reached, which is defined as

G t
n

(
w t ,i
n

)
−G t

n

(
w t ,∗
n

) ≤ εl
[
G t
n

(
w t)−G t

n

(
w t ,∗
n

)]
. (8)

After all local model parameters w
t ,∗
n are collected, the fog

node aggregates all of them into a new global model parameter
w t+1, i.e.,

w t+1 =
1

N

∑

n∈N
w t ,∗
n , (9)

The global iteration continues until the global model accuracy
εg is reached, which is defined as

F
(
w t)− F (w∗) ≤ εg

[
F
(
w0
)
− F (w∗)

]
. (10)

B. Federated Learning Convergence Analysis

It is generally impossible to know the exact number of FL
iterations, and hence we utilize the convergence bounds to
approximate both the local FL iterations and global FL iter-
ations [11]. To analyze the convergence rate of FL, the local
loss function Fn (w) of each drone n follows the following
assumptions [29]:

1) Fn(w) is α-strongly convex,
2) Fn(w) is β-smooth.
Assumption 1 implies that [30]

α
∥∥w − w ′∥∥ ≤ ∥∥∇Fn (w)−∇Fn

(
w ′)∥∥, ∀w ,w ′, (11)

and

Fn (w)− Fn
(
w ′)−∇Fn (w)�

(
w − w ′) ≤ −α

2

∥∥w − w ′∥∥2 (12)
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where ‖x‖ denotes the 2-norm of matrix x and x� is the
transpose of matrix x.

Assumption 2 implies that [30]
∥∥∇Fn (w)−∇Fn

(
w ′)∥∥ ≤ β

∥∥w − w ′∥∥, ∀w ,w ′, (13)

and

Fn(w)− Fn
(
w ′)−∇Fn

(
w ′)�(w − w ′) ≤ β

2

∥∥w − w ′∥∥2.
(14)

Lemma 1: F(w) is α-strongly convex and β-smooth.
Proof: According to Eq. (12), we can

derive 1
N

∑
n∈N Fn(w) − 1

N

∑
n∈N Fn (w

′) −
1
N

∑
n∈N ∇Fn(w)�(w −w ′) ≤ 1

N

∑
n∈N {−α

2 ‖w −w ′‖2}.
Combined with Eq. (2), we have F (w) − F (w ′) −
∇F (w)�(w − w ′) ≤ −α

2 ‖w − w ′‖2, which proves that F(w)
is α-strongly convex. Similarly, by combining Eq. (14) and
Eq. (2), we can prove that F(w) is β-smooth.

Lemma 2: If both F(w) and Fn (w) are α-strongly convex,
the following inequations hold:

∥∥∇F
(
w t)∥∥2 ≥ α

[
F
(
w t)− F (w∗)

]
, ∀t , (15)

and
∥∥∥∇G t

n

(
w t ,i
n

)∥∥∥
2 ≥ α

[
G t
n

(
w t ,i
n

)
−G t

n

(
w t ,∗
n

)]
, ∀i . (16)

Proof: See Appendix A.
Lemma 3: Local FL problem (4) of drone n with the local

accuracy εl can be solved by the gradient descend method
after I = 2

(2−δβ)δα
ln( 1εl ) iterations, if the local learning rate

δ < 2
β .

Proof: See Appendix B.
Lemma 4: The global FL algorithm converges after T =
2β2

(2α−βη)αη
ln( 1

εg
) iterations, if η ∈ (0, αβ ).

Proof: See Appendix C.

C. Drone Data Transmission Rate

A drone’s data transmission rate depends on the air-to-
ground channel between the drone and the fog node. We adopt
the widely used probability model where the signal between
the drone and the fog node is either Line-of-Sight (LoS) with
probability PrLoS or Non-Line-of-Sight (NLoS) with proba-
bility PrNLoS [31]. The probabilities of LoS and NLoS signals
are PrLoS = 1

1+a exp(−b[ 180
π

arcsin(H
d
)−a])

and PrNLoS =

1−PrLoS , where a and b are environment-related (e.g., rural
and urban) constants, H is the flying height, and d is the dis-
tance between the drone and the fog node. The path losses for
LoS and NLoS signals are PLLoS = 20 log10(

4πfcd
c ) +ψLoS

and PLNLoS = 20 log10(
4πfcd

c ) + ψNLoS , where ψLoS and
ψNLoS are environment-related constants, fc is the carrier
frequency, and c is the speed of light. Therefore, the path
loss between the drone and the fog node can be calculated as
PL = PrLoSPLLoS + PrNLoSPLNLoS . The wireless chan-
nel gain between drone n and the fog node is GD

n = 10−
PL
10 .

Hence, drone n’s wireless data transmission rate to the fog

node can be calculated as

rn = Bn log2

(
1 +

pnG
D
n

N0Bn

)
, (17)

where Bn is the allocated bandwidth to drone n, pn is
drone n’s wireless transmission power, and N0 is the noise
power spectrum density. Similarly, we can calculate the wire-
less data transmission rate from drone n to eavesdropper m
(i.e., eavesdropping rate):

πn,m = Bn log2

(
1 +

pnG
E
n,m

N0Bn

)
, (18)

where GE
n,m is the wireless channel gain between drone n and

eavesdropper m.

D. Security Rate

We utilize the security rate to measure the system security
level, which is defined as the difference between the drone data
transmission rate and the maximum eavesdropping rate [32].
Hence, drone n’s security rate is

RSEC
n =

[
rn − max

∀m∈M
πn,m

]+
, (19)

where [x ]+ � max{x , 0}, rn is drone n’s data transmission
rate, and πn,m is the eavesdropping rate from drone n to eaves-
dropper m. Note that we intend to maximize the security rates
of all drones, and we hence define the system security rate
RSEC as the summation of all drones’ security rates, i.e.,

RSEC =
∑

n∈N
RSEC
n =

∑

n∈N

[
rn − max

∀m∈M
πn,m

]+
. (20)

E. Federated Learning Training Time

The FL time in each global iteration consists of both the
local computation time for local training and the wireless
transmission time to transmit the updated local parameters.
Note that we neglect the global parameter download time
because it is usually very small. We denote the number of
CPU cycles to process one data sample of drone n as Cn ,
which can be measured offline [33]. The number of drone n’s
data samples is denoted as Dn . Hence, the number of CPU
cycles for a local iteration is CnDn . Drone n’s local compu-
tation time for one local iteration can then be calculated as
CnDn
fn

, where fn is the CPU computation capacity in CPU
cycles per second [33]. Hence, drone n’s local computation
time is

τcn = I
CnDn

fn
=

2 ln(1/εl )

(2− δβ)δα

CnDn

fn
. (21)

Each drone uploads the updated local parameter to the fog
node, and the wireless data transmission time for uploading
parameters of drone n can be calculated as τwn = sn

rn
. Note

that the global model parameters can only be aggregated until
all local model parameters are received in a global iteration.
The duration of a global iteration is hence determined by the
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longest local FL time among all drones. Hence, the FL time
of a global iteration can be calculated as

τ l = max
n∈N

{τcn + τwn }

= max
n∈N

⎧
⎨

⎩τ
c
n +

sn

Bn log2

(
1 +

pnGD
n

N0Bn

)

⎫
⎬

⎭. (22)

In summary, the total FL time of all global iterations is

τ = T τ l = T max
n∈N

⎧
⎨

⎩τ
c
n +

sn

Bn log2

(
1 +

pnGD
n

N0Bn

)

⎫
⎬

⎭. (23)

F. Drone Energy Consumption

The drone’s energy is consumed for local model training,
wireless data transmission, and hovering in the air.

1) Local Computation: We utilize the widely used energy
consumption model which assumes that drone n’s energy con-
sumption for processing a single CPU cycle is γf 2n , where γ
is a constant related to the switched capacitance [34]. Then,
drone n’s energy consumption for local computation in each
global iteration is

E c
n = ICnDnγf

2
n =

2 ln(1/εl )

(2− δβ)δα
CnDnγf

2
n , (24)

where CnDn is the total number of CPU cycles for one local
iteration, and I is the number of local iterations.

2) Wireless Data Transmission: Drone n’s energy consump-
tion for uploading the updated local model parameter can be
calculated as

Ew
n = pnτ

w
n =

pnsn
rn

=
pnsn

Bn log2

(
1 +

pnGD
n

N0Bn

) . (25)

3) Drone Hovering Energy: The energy consumed for hov-
ering is used for the drone to remain stationary in the air. The
drone’s generated hovering power is expressed as [35]

Phov =

√
(mg)3

2πr2pnpρ
, (26)

where m is the drone’s weight, g is the earth gravitational
acceleration, rp is the radius of the propellers, np is the num-
ber of propellers, and ρ is the air density. We assume that
these parameters of all drones are the same. Drone n’s hov-
ering time τ l in each global iteration depends on the longest
local FL time among all drones. Hence, drone n’s hovering
energy can be calculated as

Ehov
n = Phov τ l = Phov max

n∈N
{τcn + τwn }. (27)

In summary, the total energy consumption of all drones is

En = T (Ew
n + E c

n + Ehov
n ) = T

pnsn
rn

+ TE c
n + Phov τ.

(28)

IV. PROBLEM FORMULATION

We formulate the power control problem for secure FL in a
fog-aided IoD network that maximizes the system security rate
constrained by the QoS requirement and battery constraint, as
problem P0.

P0: max
p

∑

n∈N

[
rn − max

∀m∈M
πn,m

]+
(29)

s .t . 0 ≤ pn ≤ Pm
n , ∀n ∈ N , (30)

τ ≤ Q th , (31)

En ≤ Bmax
n , ∀n ∈ N , (32)

where τ and En are defined in Eq. (23) and Eq. (28), respec-
tively. The objective in Eq. (29) is to maximize the system
security rate. Equation (30) imposes the wireless transmis-
sion power to be positive and less than the maximum value
Pm
n . Equation (31) is the QoS requirement for the FL service

which imposes the FL time not to surpass the requirement
Q th . Equation (32) implies that drone n’s energy consumption
should be less than its battery capacity Bmax

n . It is challenging
to solve problem P0 because of its non-convexity.

To simplify constraint Eq. (31), we combine it with
Eq. (22) and (23), and we have T maxn∈N {τcn +

sn

Bn log2(1+
pnGD

n
N0Bn

)
} ≤ Q th , which can be transformed into

T (τcn + sn

Bn log2(1+
pnGD

n
N0Bn

)
) ≤ Q th , ∀n ∈ N . Hence, the

lower bound of drone n’s wireless transmission power pn can

be calculated as pn ≥ N0Bn

GD
n

[2

sn

Bn (
Qth

T −τcn ) − 1]. We denote

p̃n = N0Bn

GD
n

[2

sn

Bn (
Qth

T −τcn )−1] for simplicity. Then, pn satisfies

pn ≥ p̃n . (33)

To simplify the objective function Eq. (29), we have

∑

n∈N

[
rn − max

∀m∈M
πn,m

]+

=
∑

n∈N
Bn log2

⎛

⎜⎝
1 +

pnGD
n

N0Bn

1 +
pn max

∀m∈M
GE

n,m

N0Bn

⎞

⎟⎠,

if GD
n ≥ max

∀m∈M
GE
n,m . (34)

We denote γn =
GD

n
N0Bn

, γ′n =
max

∀m∈M
GE

n,m

N0Bn
, and N ′ = {n|n ∈

N ,GD
n ≥ max

∀m∈M
GE
n,m}. Then, the objective becomes

∑

n∈N

[
rn − max

∀m∈M
πn,m

]+
=
∑

n∈N ′
Bn log2

(
1 + γnpn
1 + γ′npn

)

(35)

Problem P0 can then be transformed into problem P1:

P1: max
pn

∑

n∈N ′
Bn log2

(
1 + γnpn
1 + γ′npn

)
(36)

s .t . p̃n ≤ pn ≤ Pm
n , ∀n ∈ N , (37)
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T
pnsn

Bn log2(1 + γnpn )
+ TE c

n

+ Phov τ ≤ Bmax
n , ∀n ∈ N , (38)

τ = T max
n∈N

{
τcn +

sn
Bn log2(1 + γnpn )

}
, (39)

where T is the number of FL global iterations defined in
Lemma 4, E c

n , defined in Eq. (24), is drone n’s energy con-
sumption for computation in each global iteration, and τcn ,
defined in Eq. (21), is drone n’s computation time in each
FL global iteration. It is still difficult to solve problem P1
because of its non-convexity. Approaches such as exhaustive
search and branch-and-bound are computationally expensive.
We hence design an algorithm to tackle this problem with a
much lower computational complexity in the next section.

V. PROBLEM SOLUTION

We propose the Power Control in Secure FL (PCSF) algo-
rithm in this section to solve problem P0. The basic idea of
PCSF is to enumerate each possible FL time, optimize all
drones’ wireless transmission powers, and then choose the
best FL time and its corresponding power control policy which
achieves the largest system security rate.

A. Subproblem Transformation

Note that the difficulty of problem P1 lies in the total
FL time τ which couples all pn together. In order to
solve this challenge, we propose to enumerate each τ =

T τcj +
Tsj

Bj log2(1+γj pj )
, ∀j ∈ N and then compare all

derived objective values by different τ . Since τ is deter-
mined, all drones’ pn are independent. It can be observed
that Bn log2(

1+γnpn
1+γ′npn

) is an increasing function with regard

to pn when GD
n ≥ max

∀m∈M
GE
n,m . Then, maximizing the

summation of Bn log2(
1+γnpn
1+γ′npn

) is equivalent to maximizing

each pn when the condition GD
n ≥ max

∀m∈M
GE
n,m is satis-

fied. Otherwise, if the drones do not satisfy the condition,
their security rates are always zero and do not contribute to
the system security rate. To minimize the FL training time,
we can choose the maximum wireless transmission power.
In summary, all drones try to maximize their wireless trans-
mission power pn to maximize the system security rate.
Therefore, problem P1 can be transformed into solving N
drones’ subproblems P2:

P2: max
pn

pn (40)

s .t . p̃n ≤ pn ≤ Pm
n , (41)

T
pnsn

Bn log2(1 + γnpn )
+ TE c

n

+ Phov τj ≤ Bmax
n , (42)

τj = T τcj +
Tsj

Bj log2
(
1 + γj pj

) , (43)

where Eq. (43) means drone j incurs the largest FL time.

B. FL Time Calculation

Since τj is related to variable pj , we first solve the subprob-
lem of drone j. Then, τj can be calculated according to pj and
help determine the solutions of other drones’ subproblems. By
combining constraints Eq. (42) and Eq. (43), we have

(
Bmax
j

T
− E c

j − Phov τcj

)
Bj log2

(
1 + γj pj

)− sj pj

− Phov sj ≥ 0. (44)

We define function g(pj ) = (
Bmax

j

T − E c
j −

Phov τcj )Bj log2(1 + γj pj ) − sj pj − Phov sj ≥ 0. Therefore,
the subproblem P2 of drone j is to find the maximum pj
which satisfies g(pj ) ≥ 0, p̃j ≤ pj ≤ Pm

j . We can calculate
the derivative of g(pj ) as

g ′
(
pj
)
=

(
Bmax
j

T
− E c

j − Phov τcj

)
Bj

γj log2 e

1 + γj pj
− sj . (45)

Then, we can observe that g(pj ) monotonically increases

(i.e., g ′(pj ) < 0) when pj < (
Bmax

j

T −E c
j −Phov τcj )Bj

log2 e
sj

−
1
γj

, and g(pj ) monotonically decreases (i.e., g ′(pj ) > 0) when

pj > (
Bmax

j

T −E c
j −Phov τcj )Bj

log2 e
sj

− 1
γj

. Hence, to satisfy
g(pj ) ≥ 0, we have pj ∈ [λ, u], where g(λ) = 0, g(u) = 0.
Meanwhile, the constraint p̃j ≤ pj ≤ Pm

j should also be
satisfied. We then have pj ∈ [ max{λ, p̃j },min{u,Pm

j }].
Therefore, the solution of pj can be expressed as pj =

min{u,Pm
j }. Since g(pj ) decreases when pj > (

Bmax
j

T −
E c
j − Phov τcj )Bj

log2 e
sj

− 1
γj

, we utilize the binary search
method [36] to calculate u which makes g(u) = 0.

The basic idea of the binary search method is to repeatedly
dividing the search interval in half. Initially, we choose the
search interval [λ1, λ2], where g(λ1) > 0 and g(λ2) < 0. If
the value in the middle of the search interval g(λ1+λ2

2 ) = 0,
then we find u = λ1+λ2

2 and stop the search. Otherwise, if
g(λ1+λ2

2 ) > 0, we narrow the search interval to [λ1+λ2
2 , λ2]

and continue the search. If g(λ1+λ2
2 ) < 0, we narrow the

search interval to [λ1,
λ1+λ2

2 ] and continue the search. By
the binary search method, we can obtain the value u and
pj = min{u,Pm

j }. Based on pj , the FL time τj = T τcj +
Tsj

Bj log2(1+γj pj )
can be calculated.

C. Subproblem Solution

We then calculate the subproblems of drone n (n ∈ N \ j )
based on τj . Combining Eqs. (42) and (43) yields

(
Bmax
n − TE c

n − Phov τj

)
Bn log2(1 + γnpn )

− Tsnpn ≥ 0. (46)

We define function ξ(pn ) = (Bmax
n − TE c

n −
Phov τj )Bn log2(1 + γnpn ) − Tsnpn ≥ 0 and hence
ξ(pn ) ≥ 0. The derivative of ξ(pn ) is

ξ′(pn ) =
(
Bmax
n − TE c

n − Phov τj

)
Bn

γn log2 e

1 + γnpn
− Tsn .

(47)
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Algorithm 1: PCSF

1 Initialize the candidate vector V = ∅;
2 for each j ∈ N do
3 Calculate pj according to the binary search method

in Section V-B;

4 Calculate FL time τj = T τcj +
Tsj

Bj log2(1+γj pj )
;

5 for each n ∈ N \ j do
6 Calculate pn according to the binary search

method in Section V-C;
7 end
8 if Candidate condition Eq. (48) is satisfied then
9 Calculate the system security rate RSEC ;

10 Assign V [j ] = RSEC ;
11 else
12 Assign V[j] = 0;
13 end
14 end
15 Choose j that achieves the largest V[j];
16 Choose the FL time τj and its corresponding pn as the

optimum solution.

It can be observed that ξ(pn ) monotonically increases
(i.e., ξ′(pn ) > 0) when pn < (Bmax

n − TE c
n −

Phov τj )Bn
log2 e
Tsn

− 1
rn

and monotonically decreases
(i.e., ξ′(pn ) < 0) when pn > (Bmax

n − TE c
n −

Phov τj )Bn
log2 e
Tsn

− 1
rn

. Hence, when ξ(pn ) ≥ 0, pn
falls within the interval [λ̃, ũ], where ξ(λ̃) = 0 and ξ(ũ) = 0.
Note that Eq. (41) should also be satisfied, and then
pn ∈ [ max{λ̃, p̃n},min{ũ,Pm

n }].
To calculate ũ , we utilize the binary search method simi-

lar to that in Section V-B. Specifically, we first initialize the
search interval [λ̃1, λ̃2], where ξ(λ̃1) > 0 and ξ(λ̃2) < 0. If

ξ( λ̃1+λ̃2
2 ) = 0, we stop the search and assign ũ = λ̃1+λ̃2

2 . If

ξ( λ̃1+λ̃2
2 ) > 0, we change the search interval to [ λ̃1+λ̃2

2 , λ̃2]

and continue the search. If ξ( λ̃1+λ̃2
2 ) < 0, we change the

search interval to [λ̃1,
λ̃1+λ̃2

2 ] and continue the search. Since
we try to maximize pn , we have pn = min{ũ,Pm

n }.
Note that we assume that τj = T maxn∈N {τcn +

sn
Bn log2(1+γnpn )

} = T τcj +
Tsj

Bj log2(1+γj pj )
. Hence, we have

τn = T τcn + Tsn
Bn log2(1+γnpn )

≤ τj , which indicates that

pn ≥ 1
γn

[2
sn

Bn (τj /T−τcn ) − 1]. By combining with the QoS
requirement Eq. (33), pn should satisfy

pn ≥ max

{
1

γn

[
2

sn

Bn(τj /T−τcn) − 1

]
, p̃n

}
, ∀n ∈ N \ j ,

(48)

to denote the candidate condition on checking whether the
assumption that drone j has the longest FL training time leads
to a feasible solution of problem P1.

D. Proposed Algorithm

The detailed process of our proposed algorithm is delin-
eated in Algorithm 1. Lines 2-14 enumerate each possible FL

time. Lines 3-4 calculate the FL time τj . Lines 5-7 calcu-
late pn of all other drones. Lines 8-13 check whether the
derived solutions by the current FL time satisfy the can-
didate condition. Lines 15-16 choose the best solution by
comparing all the FL time possibilities. Note that the run-
ning time of PCSF is dominated by the binary search in line
6 in the nested loop. The computational complexity of the
binary search is O(log2(λ

− − λ+)), where [λ+, λ−] is the
initial interval of the binary search and satisfies ξ(λ+) > 0
and ξ(λ−) < 0. Therefore, PCSF yields a computational
complexity of O(N 2 log2(λ

− − λ+)).

VI. PERFORMANCE EVALUATION

We set up simulations to evaluate the performance of
our proposed algorithm PCSF in this section. We compare
PCSF with the existing algorithm (denoted as “Delay-aware”)
inspired by [10] which minimizes the FL training time. We
also use the existing algorithm (denoted as “Energy-aware”)
as the comparison algorithm which is inspired by [9] where
the energy consumption for wireless data transmission is
minimized.

In our simulations, there are N = 16 drones hovering in the
flying plane within a 1000 m × 1000 m area to provide the
FL service. The drones’ locations are randomly distributed in
this area and the height of the flying plane is H = 100 m.
The fog node is located in the center of this area to com-
municate with all drones. There are M = 3 eavesdroppers
randomly distributed in this area. To calculate wireless chan-
nels between drones and the fog node, the environment-related
constants a and b are respectively 9.6 and 0.28, the speed of
light c = 3 × 108 m/s, the carrier frequency fc = 2 GHz,
and the environment-related constants ψLoS = 1 dB and
ψNLoS = 20 dB. The allocated wireless bandwidth B = 2 MHz
and the noise power density N0 = −174 dBm/Hz. The above
parameters related to drone wireless communications are con-
sistent with [31]. The maximum wireless transmission power
Pm = 3 W. To calculate drones’ hovering power, each drone’s
mass m = 500 g and the earth gravitational acceleration
g = 9.8 m/s2, constants rp , np and ρ in Eq. (26) are 20 cm, 4,
and 1.225 kg/m3, respectively. The above parameters related
to drone hovering power are consistent with [37]. Each drone
updates the local model by its local training data, and the num-
ber of data samples Dn is randomly chosen from 300 to 500.
Each data sample requires Cn , randomly chosen from 30 to
50, CPU cycles for computation. The computation capacity of
each drone f = 2× 109 CPU cycles per second. The constant
γ which contributes to the CPU energy consumption of drones
is 10−28 [34]. The battery capacity of each drone Bmax

n = 1 J.
Drone n’s uploaded local model parameter sn = 5 Kb and the
QoS requirement of the FL service Qth = 200 ms. To analyze
FL convergence, the loss function is α = 2 strongly convex
and β = 4 smooth, constant η = 1

3 in Eq. (3), and the learn-
ing step size of the gradient descent algorithm δ = 1

4 . The
above parameters for FL convergence analysis are consistent
with [24]. Note that the above parameters are default values
and may change as needed.
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Fig. 3. Key performance metrics vs number of drones.

We first evaluate PSCF’s performances in Fig. 3(a) with
different numbers of drones ranging from 10 to 20. Fig. 3(a),
Fig. 3(b), and Fig. 3(c) depict the performances of the system
security rate, FL training time, and all drones’ energy con-
sumption, respectively. In Fig. 3(a), more drones lead to a
larger system security rate for all three algorithms because the
system security rate is the summation of all drones’ security
rates. PCSF provides a larger system security rate than those
of Delay-aware and Energy-aware. In Fig. 3(b), the FL train-
ing time does not change much when the number of drones
increases because all drones’ computations are operated in
parallel. PCSF achieves similar FL training time as that of
Delay-aware and performs better than Energy-aware. From
the objective function of problem P1, we can observe that
a larger wireless transmission power leads to a larger system
security rate. Hence, PCSF prefers larger wireless power to
maximize the system security rate. Delay-aware maximizes
the transmission power to minimize the FL training time.
Therefore, Delay-aware performs close to PCSF as shown
in Fig. 3(a) and Fig. 3(b). Delay-aware performs better than
Energy-aware because Delay-aware prefers higher transmis-
sion powers to minimize the FL training time and thus to help
improve the system security rate, while Energy-aware prefers
lower transmission powers to minimize the energy consump-
tion. In Fig. 3(c), the energy consumption increases when
the number of drones increases because more drones con-
sume more energy. Counterintuitively, Energy-aware incurs
the most energy consumption because Energy-aware mini-
mizes the energy consumption for wireless data transmission,
while a drone’s energy consumption is mostly composed of
the hovering energy consumption which is determined by
the FL training time. Since Energy-aware incurs the largest
FL training time, it incurs the most drone energy consump-
tion. Similarly, Delay-aware achieves the smallest FL training
time and hence the least energy consumption. Note that the
performance of drones’ energy consumption is determined by
the FL training time, and we hence only show the performance
of FL training time and ignore that of the energy consump-
tion thereafter. In summary, PCSF achieves the largest system
security rate and also a small FL training time.

Fig. 4 illustrates the performances of three algorithms with
different numbers of eavesdroppers ranging from 2 to 7.
In Fig. 4, the system security rates of all three algorithms
decrease when the number of eavesdroppers increase because

Fig. 4. System security rate vs number of eavesdroppers.

Fig. 5. Key performance metrics vs QoS requirement.

more data can be wiretapped. PCSF provides the highest
system security rate and Delay-aware the second. Energy-
aware achieves the smallest system security rate because of
the similar reason as that in Fig. 3(a).

We then investigate the impact of the QoS requirement
(i.e., FL training time requirement), ranging from 60 to
110 ms, on our proposed algorithm in Fig. 5. The perfor-
mances of system security rate and FL training time are shown
in Fig. 5(a) and Fig. 5(b), respectively. In Fig. 5(a), the system
security rates of all three algorithms decrease with the increase
of the QoS requirement. When the QoS requirement is small
(i.e., strict), higher transmission powers are required to satisfy
the QoS requirement and hence the system security rate is
higher. Delay-aware tries to minimize the FL training time and
does not increase much when the QoS requirement is larger
than 70 ms in Fig. 5(b). Similar to Fig. 3(a) and Fig. 4, PCSF
achieves the largest system security rate as shown in Fig. 5(a)
and a small FL training time 5(b).
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Fig. 6. Key performance metrics vs drone battery capacity.

Fig. 7. Key performance metrics vs global training accuracy.

Fig. 6 evaluates the performances of PCSF with different
drone battery capacities ranging from 1 to 2 J. The perfor-
mances of system security rate and FL training time are shown
in Fig. 6(a) and Fig. 6(b), respectively. The system security
rate in Fig. 6(a) and the FL training time in Fig. 6(b) of
PCSF and Delay-aware do not change with the increase of
the drone battery capacity because the drone battery capac-
ity restricts the minimum wireless transmission power while
PCSF and Delay-aware tend to choose the largest transmis-
sion power. Energy-aware’s system security rate decreases in
Fig. 6(a) and its FL training time increases in Fig. 6(b) when
the drone battery capacity increases, because Energy-aware
prefers lower transmission powers which are affected by the
increasing drone battery capacity. Moreover, PCSF performs
the best among the three algorithms in Fig. 6(a) and achieves
a small FL training time in Fig. 6(b).

We explore the performances of PCSF with different global
training accuracy ranging from 2×10−4 to 7×10−4 in Fig. 7.
Fig. 7(a) and Fig. 7(b) illustrate the performance of the system
security rate and FL training time, respectively. In Fig. 7(a),
the system security rate of all three algorithms decreases when
the global training accuracy becomes large. This is because a
larger global training accuracy means less global iterations is
required and more time and energy consumption are allowed
to finish one global iteration, hence reducing the wireless
transmission power to meet the QoS and battery capacity con-
straints. PCSF provides the largest system security rate among
the three algorithms. In Fig. 7(b), the FL training time of PCSF
and Delay-aware decreases with the increase of the global
training accuracy while Energy-aware does not change much.
Since the transmission power becomes smaller, all three algo-
rithms have larger FL time in one global iteration. Meanwhile,
the number of global iterations decreases. Therefore, the FL
time in one global iteration increases more than those of
PCSF and Delay-aware, and hence the FL training time of
Energy-aware remains almost the same while those of PCSF

Fig. 8. System security rate vs number of eavesdroppers.

and Delay-aware decrease. We can also observe that PCSF
performs close to Delay-aware.

Note that PCSF assumes that the locations of eavesdroppers
are perfectly known by detecting their leaked power [28]. In
practice, eavesdroppers may hide their positions, and hence
the channel power gain from a drone to an eavesdropper is
considered as a random parameter. The average channel gain
is usually adopted to calculate the system security rate [38].
Fig. 8 compares the performances of our proposed algorithm
with perfectly known and imperfectly known channel mod-
els (denoted as PCSF and PCSF-imperfect, respectively). In
PCSF-imperfect, the locations of eavesdroppers are randomly
chosen within the region 100 × 100 m2 of those in PCSF,
and we average the system security rate of PCSF-imperfect
over 1000 simulations. Similar to Fig. 4, the system security
rate decreases when the number of eavesdroppers increases
in Fig. 8. We can also observe that PCSF-imperfect performs
close to PCSF because PCSF-imperfect averages all system
security rates with different eavesdropper locations; averages
of these locations can be considered as the eavesdropper
locations of PCSF.

VII. CONCLUSION

In this paper, we have proposed the secure FL in fog-
aided IoD networks to counteract eavesdroppers. The FL
convergence has been analyzed and demonstrated. We have
investigated the wireless transmission power control problem
to maximize the system security rate constrained by the FL
training time requirement and drone battery capacities. This
problem has been formulated as a non-linear programming
problem to optimize each drone’s wireless transmission power.
We have designed an algorithm PCSF to obtain the solution of
this problem. Simulation results have demonstrated that PCSF
performs better than two existing algorithms and achieves both
a high system security rate and a small FL training time.

APPENDIX A
PROOF OF LEMMA 2

Since w∗ and w t ,∗
n are the optimal solution of F(w) and

G t
n (w) respectively, we can derive that ∇F (w∗) = 0 and
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∇G t
n (w

t ,∗
n ) = 0. We then have

∥∥∇F
(
w t)∥∥2 =

∥∥∇F
(
w t)−∇F (w∗)

∥∥2

(11)
≥ α

∥∥∇F
(
w t)−∇F (w∗)

∥∥∥∥w t − w∗∥∥2

= α∇F
(
w t)�(w t − w∗)

(12)
≥ α

[
F
(
w t)− F (w∗) + α

2

∥∥w t − w∗∥∥2
]

≥ α
[
F
(
w t)− F (w∗)

]
, (49)

which proves Eq. (15). Meanwhile, we have

∥∥∥∇G t
n

(
w t ,i
n

)∥∥∥
2
=
∥∥∥∇G t

n

(
w t ,i
n

)
−∇G t

n

(
w t ,∗
n

)∥∥∥
2

(7)
=
∥∥∥∇G t

n

(
w t ,i
n

)∥∥∥
∥∥∥∇Fn

(
w t ,i
n

)
−∇Fn

(
w t ,∗
n

)∥∥∥
(11)
≥ α

∥∥∥∇G t
n

(
w t ,i
n

)∥∥∥
∥∥∥w t ,i

n − w t ,∗
n

∥∥∥
(6)
= α

[
∇Fn

(
w t ,i
n

)
−∇Fn

(
w t)+ η∇F

(
w t)]�

×
(
w t ,i
n − w t ,∗

n

)

= α

{
∇Fn

(
w t ,i
n

)�(
w t ,i
n − w t ,∗

n

)

−[∇Fn
(
w t)− η∇F

(
w t)]�(w t ,i

n − w t ,∗
n

)}

(12)
≥ α

{
Fn

(
w t ,i
n

)
− Fn

(
w t ,∗
n

)

− [∇Fn
(
w t)− η∇F

(
w t)]�(w t ,i

n − w t ,∗
n

)}

(6)
= α

[
G t
n

(
w t ,i
n

)
−G t

n

(
w t ,∗
n

)]
, (50)

which proves Eq. (16).

APPENDIX B
PROOF OF LEMMA 3

We demonstrate the relationship between G t
n (w

t ,i
n ) −

G t
n (w

t ,∗
n ) and G t

n (w
t ) − G t

n (w
t ,∗
n ). The demonstration pro-

cess is inspired by [24].

G t
n

(
w t ,i+1
n

)
(3)
= Fn

(
w t ,i+1
n

)

− [∇Fn
(
w t)− η∇F

(
w t)]�w t ,i+1

n

(5),(14)
≥ Fn

(
w t ,i
n

)
− δ∇Fn

(
w t ,i
n

)�∇G t
n

(
w t ,i
n

)

+
δ2β

2

∥∥∥∇G t
n

(
w t ,i
n

)∥∥∥
2

+
[∇Fn

(
w t)− η∇F

(
w t)]�w t ,i+1

n

(3),(5)
= G t

n

(
w t ,i
n

)
− δG t

n

(
w t ,i
n

)�
G t
n

(
w t ,i
n

)

+
δ2β

2

∥∥∥∇G t
n

(
w t ,i
n

)∥∥∥
2

= G t
n

(
w t ,i
n

)
− (2− δβ)δ

2

∥∥∥∇G t
n

(
w t ,i
n

)∥∥∥
2

(16)
≤ G t

n

(
w t ,i
n

)
− (2− δβ)δα

2

[
G t
n

(
w t ,i
n

)
−G t

n

(
w t ,∗
n

)]
.

Based on the above analysis, we have

G t
n

(
w t ,i
n

)
−G t

n

(
w t ,∗
n

)

≤
[
1− (2− δβ)δα

2

][
G t
n

(
w t ,i−1
n

)
−G t

n

(
w t ,∗
n

)] ≤ · · · ≤

≤
[
1− (2− δβ)δα

2

]i [
G t
n

(
w t)−G t

n

(
w t ,∗
n

)]

≤ e−i
(2−δβ)δα

2
[
G t
n

(
w t)−G t

n

(
w t ,∗
n

)]
,

where the last inequality holds because 1 − x ≤ e−x , x ≥ 0.

If we assign the local accuracy el = e−i
(2−δβ)δα

2 , i.e., I =
2

(2−δβ)δα
ln( 1εl ), the local convergence definition (Eq. (8))

holds. Therefore, Lemma 3 is proved.

APPENDIX C
PROOF OF LEMMA 4

We demonstrate the relationship between F (w t ) − F (w∗)
and F (w0)− F (w∗).

F
(
w t+1

)
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Then,
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Based on the above analysis, we have

F
(
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We assign the global accuracy εg = e
−t

(2α−βη)αη

2β2 , i.e., T =
2β2

(2α−βη)αη
ln( 1

εg
), the global FL problem is converged.

Therefore, Lemma 4 is proved.
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