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Abstract—Empowered by computing resources at the
network edge, data sensed from Internet of Things (IoT)
devices can be processed and stored in their nearby cloudlets
to reduce the traffic load in the core network, while various
IoT applications can be run in cloudlets to reduce the response
time between IoT users (e.g., user equipment in mobile networks)
and cloudlets. Considering the spatial and temporal dynamics
of each application’s workloads among cloudlets, the workload
allocation among cloudlets for each IoT application affects the
response time of the application’s requests. While assigning
IoT users’ requests to their nearby cloudlets can minimize
the network delay, the computing delay of a type of requests
may be unbearable if the corresponding virtual machine of the
application in a cloudlet is overloaded. To solve this problem,
we design an application aware workload allocation scheme for
edge computing-based IoT to minimize the response time of IoT
application requests by deciding the destination cloudlets for each
IoT user’s different types of requests and the amount of com-
puting resources allocated for each application in each cloudlet.
In this scheme, both the network delay and computing delay
are taken into account, i.e., IoT users’ requests are more likely
assigned to closer and lightly loaded cloudlets. Meanwhile, the
scheme will dynamically adjust computing resources of differ-
ent applications in each cloudlet based on their workloads, thus
reducing the computing delay of all requests in the cloudlet.
The performance of the proposed scheme has been validated by
extensive simulations.

Index Terms—Cloudlet, edge computing, Internet of Things
(IoT), resource allocation, workload allocation.

I. INTRODUCTION

IN the past few years, a tremendous number of smart devices
and objects, such as smart phones, wearable devices, indus-

trial and utility components, are equipped with sensors to sense
the real-time physical information from the environment [1].
Hence, Internet of Things (IoT) is introduced, where various
smart devices are connected with each other via the Internet
and empowered with data analytics. Various IoT applications,
such as smart transportation, smart health, smart city, and
smart home have been widely studied to improve our daily
life. Owing to the high volume and fast velocity of data
streams generated by IoT devices, the cloud that can provi-
sion flexible and efficient computing resources is employed
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as a smart “brain” to process and store the big data gener-
ated from distributed IoT devices [2]. However, as the data
streams generated from IoT devices are transmitted to the
remote cloud via Internet, the transferred data may consume a
huge amount of bandwidth and energy of the core network. On
the other hand, since the remote cloud is far from IoT users
which send application requests and await the results gener-
ated by the data processing in the remote cloud, the response
time of the requests may be too long, especially unbear-
able for delay sensitive IoT applications. Therefore, cloudlets,
which bring computing resources close to IoT devices and
IoT users, can be employed to alleviate the traffic load in
the core network and minimize the response time for IoT
users [3], [4].

Although provisioning cloudlets may reduce the network
delay, simply allocating all IoT users’ workloads to the clos-
est cloudlets is not enough to reduce the response time, which
consists of both the network delay and computing delay. Note
that we consider user equipments (UEs) in mobile networks
as IoT users, each of which can run several types of IoT
Apps. Owing to the UE mobility in the network, the workload
distribution exhibits spatial and temporal dynamics among
cloudlets. When the workload of a cloudlet is too heavy, the
computing resources available for an application is limited,
and thus the response time of the corresponding requests is
degraded correspondingly. In this case, although the cloudlet
in the proximity yields the minimum network delay, the bulk
of the response time is attributed to the computing delay. Thus,
the workload allocation of different types of requests greatly
impacts the response time of UEs’ requests. On the other hand,
for each cloudlet, the resource allocation for different types
of applications also affects the computing delay of different
types of requests. Since the computing size per request for
different applications are different, the computing capacity of
a cloudlet should be optimally allocated for different types
of applications in order to reduce the computing delay of all
Apps of UEs.

To solve the above problem, we propose an Application
awaRE workload Allocation (AREA) scheme for edge
computing-based IoT to minimize the total response time of
UEs’ Apps, where both the network delay and computing
delay are taken into account. Below are major contributions
of this paper.

1) We formulate the problem of minimizing the aver-
age response time of different types of IoT Apps
by offloading UEs’ different types of requests among
distributed cloudlets and allocating optimal computing
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resources for different applications in each cloudlet.
The response time of each type of requests consists
of both the network delay and computing delay. To
reduce the network delay, different types of requests
of a UE are favorably assigned to closer cloudlets.
On the other hand, each application is assumed to
be handled by a dedicated virtual machine (VM) in
each cloudlet, the capacity of which can be dynami-
cally allocated in each time slot [5]; when a cloudlet
is overloaded, the computing resources available for
each application are not enough to handle the type of
requests, and thus the computing delay becomes the
dominating factor of the response time. Hence, differ-
ent types of requests of a UE should be assigned to
other lightly loaded cloudlets to reduce their computing
delay.

2) Since different applications require different QoS con-
straints in terms of the maximum allowed computing
delay, we will allocate different types of requests of
each UE to suitable cloudlets to guarantee that their
corresponding QoS constraints are satisfied.

3) To solve the AREA problem in each time slot, we design
the novel AREA algorithm that decomposes the problem
into two subproblems and solve them sequentially. First,
we design a heuristic algorithm to allocate each UE’s
different types of requests to suitable cloudlets accord-
ing to the workloads of cloudlets and the network delays
between the UE and cloudlets. Afterward, when different
types of requests of each UE have been assigned among
cloudlets, the above problem becomes a resource allo-
cation problem in each cloudlet that has been proved
to be a convex problem, and thus we can optimally
allocate the computing resources of each cloudlet to
different types of applications by solving the convex
problem.

The remainder of this paper is organized as follows. In
Section II, we briefly review related works. In Section III,
we illustrate the cloudlet network architecture and describe
the system model. In Section IV, we formulate and ana-
lyze the AREA problem. In Section V, the AREA algorithm
is proposed to obtain the suboptimal solution of the AREA
problem. Section VI shows the simulation results, and con-
cluding remarks are presented in Section VII.

II. RELATED WORKS

Mobile edge computing, by moving computing resources
close to UEs, has been proposed to improve UE experience for
mobile applications. Tong et al. [6] proposed a workload place-
ment algorithm in a hierarchical edge cloud network, which
selects the cloudlet and allocates the computing resources for
each task to minimize the response time for all offloaded
tasks. Fan et al. [7] proposed to migrate UEs’ VMs among
distributed cloudlets to reduce the brown energy consump-
tion of cloudlets by considering the green energy generation
among cloudlets and energy consumption of VM migrations.
Some works [8], [9] look into placing a certain number

of cloudlets among a given set of available sites and then
assigning workloads to the cloudlets.

Owing to the proximity of edge computing resources to IoT
devices and IoT users, some studies have focused on integrat-
ing IoT with mobile edge computing. Chiang and Zhang [10]
summarized the opportunities and challenges of edge com-
puting in the networking context of IoT and advocated
that edge computing can fill the technology gaps in IoT.
Sun and Ansari [11] proposed the IoT architecture (EdgeIoT)
to handle the data streams from IoT devices at the mobile
edge. Moreover, Jutila [12] proposed adaptive edge computing
solutions for IoT networking in order to optimize traffic flows
and network resources. Deng et al. [13] proposed an algo-
rithm to balance the power consumption and service delay
by allocating workloads among fog nodes and the cloud.
Yousefpour et al. [14] proposed a delay aware policy for the
IoT–fog–cloud network to minimize the service delay for IoT
applications. Zhang et al. [15] proposed an edge IoT frame-
work to allocate the limited computing resources of fog nodes
to IoT users to achieve the optimal and stable performance
in the IoT-based network. Fan and Ansari [16] proposed a
workload allocation scheme, referred to as WALL, in a hier-
archical edge network to optimize the response time of task
requests. Jia et al. [17] proposed to place a certain num-
ber of cloudlets and allocate workloads among cloudlets to
minimize the response time. Yang et al. [18] studied the
joint optimization of application service placement and load
dispatching among cloudlets where all users’ workloads are
the same, and then designed a set of efficient algorithms to
achieve various tradeoffs among the average latency of users’
requests and the cost of service providers. As we know, the
computing size per request for different applications is hetero-
geneous while their QoS requirements are different. However,
all the above works assume that application requests are homo-
geneous and then allocate the workloads among cloudlets
to minimize the response time of requests. Considering the
diverse computing sizes and QoS requirements of different
types of requests, we formulate the problem of minimizing the
average response time of different types of Apps by assign-
ing UEs’ different types of Apps to distributed cloudlets and
allocating optimal computing resources for different applica-
tions in each cloudlet. The problem is formulated such that the
QoS constraint of each application in terms of the maximum
allowable computing delay is satisfied individually.

III. SYSTEM MODEL

A distributed cloudlet network architecture is illustrated in
Fig. 1, where cloudlets are co-located with some base stations
(BSs). The software defined network (SDN), which consists
of an SDN controller and open flow switches, is employed as
the cellular core network, thus enabling flexible routing and
communications resource among BSs. All BSs are equipped
with two interfaces (i.e., NB-IoT and LTE) to offer the seam-
less coverage for both IoT devices and IoT users (UEs). Thus,
the sensed data of IoT devices can be stored at their clos-
est cloudlets and the remote cloud, which act as brokers.
Meanwhile, a resource directory (RD) is located at the SDN
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Fig. 1. Cloudlet network architecture.

TABLE I
LIST OF SYMBOLS

controller to help each IoT application discover the location
of its required IoT data. On the other hand, each UE can
access different cloudlets through its BS and the SDN-based
cellular core network. Within one cloudlet, we assume that
each VM only processes the workloads of one application, i.e.,
each application is mapped to a dedicated VM. Note that each
IoT application has only one VM in a cloudlet. Considering
the diversity of applications, the computing capacities of VMs
are heterogeneous in a cloudlet and can be adjusted dynam-
ically [5]. We define an IoT App as the software program
running on a UE that requests the specific type of application
service. As a UE may run multiple IoT Apps, each type of
application requests of the UE can be offloaded to a cloudlet
having the corresponding type of VMs. Thus, when an appli-
cation VM in a cloudlet receives an application request, it
quickly retrieves the required IoT data from other brokers
under the direction of RD and then processes the request to
get the result.

Note that each UE may have several types of IoT Apps. As
each App in a UE is assigned to only one cloudlet individually,
the size of the set of Apps in the network can be derived as:
|Z| = ∑

j∈J |Kj|, in which the variables are defined in the list
of symbols shown in Table I.

A. Computing Delay

Assume that type k requests of UE j are generated according
to a Poisson process with the average arrival rate λjk. Thus,
the workload of type k VM in cloudlet i can be expressed as

λik =
∑

j∈J

xijkλjk (1)

and it also follows a Poisson process. On the other hand, the
computing capacity (in terms of CPU Hz) of type k VM in
cloudlet i (i.e., μik) is fixed in each time slot; the comput-
ing size of a type k application request (in terms of the CPU
cycles) follows an exponential distribution with the average
value of lk. Thus, we can derive the service time for type k
requests running in a cloudlet’s VM as lk/μik, which also fol-
lows an exponential distribution. Since the arrival rate of each
VM of a cloudlet follows a Poisson process while the corre-
sponding service time follows an exponential distribution, each
VM of a cloudlet can form an M/M/1 queuing model to pro-
cess its corresponding application requests. Note that to keep
the queue stable, the average arrival rate of the VM (i.e., λik)
should be smaller than its average service rate (i.e., μik/lk),
and thus we can derive that μik/lk − λik > 0. We define the
computing delay of type k requests in cloudlet i, tik, as the
average system delay of type k VM’s queue (i.e., including
the waiting delay and service time)

tik = 1

μik/lk −∑
j∈J xijkλjk

∀i ∈ I, k ∈ K. (2)

B. Network Delay

When a request of a UE is sent to a cloudlet, the request
goes through its BS and the SDN-based cellular core network.
Therefore, the E2E delay between a UE’s App and its cloudlet
consists of two parts: first, the E2E delay between the UE and
its associated BS, i.e., the wireless delay; second, the E2E
delay between its BS and its assigned cloudlet. However, the
cloudlet selection for a UE does not affect its wireless delay,
which only depends on the UE’s service plan and the mobile
provider’s bandwidth allocation strategy [19]. Thus, we just
consider the E2E delay between the BS and cloudlet in this
paper. Denote τri as the E2E delay between BS r and cloudlet
i, and Y as a given indicator matrix to reflect the UE-BS
association at the beginning of each time slot, in which yrj ∈ Y
represents whether UE j is covered by BS r or not. Note that
the value of τri can be measured and recorded by the SDN
controller [20], [21]. Thus, the network delay between UE j
and cloudlet i ∈ I can be expressed as

dij =
∑

r∈R
yrjτri ∀i ∈ I, j ∈ J . (3)

IV. PROBLEM FORMULATION

The response time of a UE’s App consists of both the com-
puting delay and network delay. In the workload allocation,
both of them should be taken into account. On one hand,
owing to the dynamic distribution of workloads among differ-
ent cloudlets, the overloaded cloudlets incur remarkably higher
computing delay than other lightly loaded cloudlets. Thus, if
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the closest cloudlet of a UE is overloaded, the requests of each
App of the UE should be allocated to alternative cloudlets to
reduce the response time. On the other hand, offloading an
App’s requests from its closest cloudlet to other cloudlets will
increase the network delay. The main goal of this paper is to
minimize the response time of all IoT Apps in the network
by assigning the requests of each App among cloudlets and
flexibly allocating the computing resource of each cloudlet to
different types of VMs to serve the assigned Apps. Thus, we
can formulate the AREA problem in each time slot as follows:

P1: min
xijk,μik

∑

i∈I

∑

j∈J

∑

k∈Kj

xijk

(

dij + 1

μik/lk −∑
j∈J xijkλjk

)

(4)

s.t.
∑

k∈K
μik ≤ Ci ∀i ∈ I (5)

∑

i∈I
xijk = 1 ∀j ∈ J ; ∀k ∈ Kj (6)

xijk

(
1

μik/lk −∑
j∈J xijkλjk

)

≤ xijkDk (7)

∀i ∈ I; ∀j ∈ J ; ∀k ∈ Kj

μik/lk −
∑

j∈J
xijkλjk > 0 ∀i ∈ I; ∀k ∈ K (8)

xijk ∈ {0, 1} ∀i ∈ I; ∀j ∈ J ; ∀k ∈ Kj (9)

μik ∈ [0, Ci] ∀i ∈ I; ∀k ∈ K. (10)

Here, Ci is the computing capacity of cloudlet i and Dk

is the maximum allowed computing delay of application
k. Constraint (5) indicates that the aggregated computing
resources of all VMs in a cloudlet should be no larger than the
cloudlet’s computing capacity. Constraint (6) ensures that each
App of a UE is assigned to only one cloudlet. Constraint (7)
imposes the computing delay for each UE’s type k APP to
meet the QoS requirement of the application in terms of
the maximum allowed computing delay Dk. Constraint (8)
imposes the average service rate of VM k in a cloudlet to
be smaller than the VM’s average task arrival rate, in order to
keep the queue of the VM stable.

Lemma 1: The problem of AREA (i.e., P1) is NP-hard.
Proof: Suppose there is only one IoT application; the

capacity of VM k equals to the capacity of a cloudlet, i.e.,
μik = Ci. Meanwhile, we assume that the computing delay
threshold Dk = +∞. Therefore, both Constraints (5) and
(7) can be relaxed from P1. Then, to prove that P1 is an
NP-hard problem, we can demonstrate that its corresponding
decision problem is NP-complete. The decision problem of P1
can be expressed as: given a positive value of b, is it possi-
ble to find a feasible solution X = {xijk|i ∈ I, j ∈ J } such
that

∑
i∈I
∑

j∈J xijk(dij + [1/(μik/lk −∑
j∈J xijkλjk)]) ≤ b,

and Constraints (6), (8), and (9) are satisfied?
In order to prove that the above decision problem

is NP-complete, only two cloudlets are considered and
the average service rate of either cloudlet is set to be
the same, i.e., μ1/lk = μ2/lk = (1/2)

∑
j∈J λjk +

ε, where ε is a very small positive value, i.e., ε �
(1/2) min{λjk|j ∈ J }. Moreover, assume that b → +∞.

Thus,
∑

i∈I
∑

j∈J xijk(dij + [1/(μik/lk −∑
j∈J xijkλjk)]) ≤ b

is always satisfied for all solutions of X and can be relaxed. To
satisfy Constraint (8) (i.e., μik/lk−∑j∈J xijkλjk > 0, ∀i ∈ I),
we need to guarantee that

∑
j∈J λjkx1jk = ∑

j∈J λjkx2jk =
(1/2)

∑
j∈J λjk. Consequently, the decision problem can be

transformed into a partition problem, i.e., whether the UEs
can be partitioned into two sets to make the average request
arrival rates of the two sets the same. Hence, the partition
problem is reducible to the decision problem of P1. As the
partition problem is a well-known NP-complete problem, the
decision problem of P1 is also NP-complete, and thus P1 is
NP-hard.

V. AREA ALGORITHM

Since P1 is NP-hard, which is challenging to achieve the
optimal solution, we propose the heuristic AREA algorithm
to effectively allocate different types of workloads among
cloudlets as well as flexibly allocate computing resources
for different VMs in each cloudlet, with low computational
complexity. Note that the major challenge of solving P1 is
that μik depends on the App assignment xijk. To solve P1
more efficiently, we decompose the original problem into two
subproblems: 1) the App assignment subproblem and 2) the
resource allocation subproblem. We will first assign different
types of Apps among cloudlets (i.e., determining xijk), and then
try to optimally allocate the computing resources to different
types of VMs in each cloudlet (i.e., μik) based on the given xijk.

A. App Assignment

When assigning Apps’ workloads among cloudlets, the pri-
ority of assigning each App to its closest cloudlets should
be considered to reduce the total network delay. Therefore,
we will initialize the App assignment by allocating all Apps
to their closest cloudlets; then, the algorithm will iteratively
select a suitable App with the highest response time and reallo-
cate it to an alternative cloudlet which minimizes its response
time, until each App cannot find a better cloudlet.

Given the capacities of cloudlets, the initial App assignment
is determined by the network delay between UEs that host
Apps and cloudlets, and thus can be obtained by solving the
following problem:

P2: min
xijk

∑

i∈I

∑

j∈J

∑

k∈Kj

xijkdij (11)

s.t.
∑

i∈I
xijk = 1 ∀j ∈ J ; ∀k ∈ Kj (12)

∑

j∈J

∑

k∈Kj

λjklkxijk ≤ Ci ∀i ∈ I (13)

xijk ∈ {0, 1} ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K. (14)

As each App of a UE is assigned among cloudlets indi-
vidually, we denote Z1 as the set of Apps of all UEs which
are waiting to be assigned among cloudlets, and I1 as the
set of cloudlets which have excess computing resources. At
the beginning, all UEs’ Apps have not be assigned and are
included in Z1 (i.e., Z1 = Z), while all cloudlets are empty
without any assigned Apps, i.e., all cloudlets are included in
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I1. Denote diz as the network delay between an App z (i.e.,
z ∈ Z1) and cloudlet i, jz as the UE where App z is located.
Hence, we have diz = dijz , ∀i ∈ I,∀z ∈ Z1.

In the initialization, for App z, the optimal cloudlet i∗ ∈ I1
is the one that incurs the lowest network delay, i.e., i∗ =
arg min{diz|i ∈ I1}; the suboptimal cloudlet i′ is the one that
incurs the second lowest network delay among the cloudlets
in I1, i.e., i′ = arg mini{diz|i ∈ {I1\i∗}}.

As shown in P2, the capacity of each cloudlet is limited, and
thus it is impossible to allocate all Apps to their correspond-
ing optimal cloudlets. The basic idea of the initialization is
to iteratively select a suitable App, whose suboptimal cloudlet
i′ incurs a significant network delay degradation as compared
to the optimal cloudlet i∗, and then allocate the App into its
optimal cloudlet. It is easy to observe that the network delay
degradation incurred by the suboptimal cloudlet determines
the priority of assigning App z to its optimal cloudlet. For
example, if App z’s suboptimal cloudlet B leads to a remark-
ably higher delay than its optimal cloudlet A as compared to
other Apps, assigning App z to the suboptimal cloudlet will
significantly impact the total network delay of all Apps. In
this case, App z is given a higher priority than other Apps to
be assigned into its optimal cloudlet A.

Denote �dz as the network delay degradation by allocating
App z from the optimal cloudlet i∗ to the suboptimal cloudlet
i′, i.e.,

�dz = di′z − di∗z ∀z ∈ Z1. (15)

Thus, as shown in Algorithm 1, in each iteration of the ini-
tialization, the algorithm will select and allocate a suitable
App z, which has the highest network delay degradation (i.e.,
z = arg max{�dz|z ∈ Z1}), to its optimal cloudlet. Afterward,
if the workload of a cloudlet exceeds its capacity, the cloudlet
is removed from I1. Note that once I1 is updated, the algo-
rithm has to recalculate i∗, i′ and �dz for each App z ∈ Z1.
The above procedure is repeated until all Apps are assigned
among cloudlets, i.e., Z1 = ∅.

Lemma 2: Algorithm 1 terminates after a finite number of
iterations, yielding a feasible IoT App assignment.

Proof: Let ξ = |I1| = N initially, i.e., ξ > 0. Then,
for each iteration, since the algorithm chooses a suitable App
z, where z = arg maxz{�dz|z ∈ Z1}, and allocates it to its
optimal cloudlet i∗ (i.e., i∗ = arg mini{diz|i ∈ I1}), ξ is decre-
mented by one. As a result, ξ will become zero after a finite
number of iterations, and thus I1 = ∅.

As shown in Algorithm 1, the complexity of step 2 is |Z|.
After step 2, the complexity of steps 4 and 5 is O(|Z|+|I|) in
the worst case; as they repeat for |Z| times, the corresponding
complexity is O(|Z|(|Z| + |I|)). Meanwhile, as steps 9 and
10 repeat for at most |I| times, the corresponding complexity
is O((|Z|+1)|I|). Aggregating all these steps, the complexity
of Algorithm 1 becomes O(|Z|(|Z| + |I|)).

After the initialization, the AREA algorithm, as shown in
Algorithm 2, iteratively selects a suitable App with the highest
response time, and reallocates it to an alternative cloudlet. At
the beginning, all Apps are unmarked and we define Z2 as
the set of unmarked Apps. Then, in each iteration, the AREA
algorithm finds the App with the highest response time among

Algorithm 1 Initialization
Input: The UE-BS association vector Y = {yrj|r ∈ R, j ∈ I}.
The matrix of E2E delay between BSs and cloudlets T = {τri|r ∈
R, i ∈ I}. The vector of the average task arrival rate for UEs’ Apps
� = {λjk|j ∈ J , j ∈ Kj}.
Output: The initial App assignment matrix, i.e., X = {xijk|i ∈ I, j ∈
J , k ∈ Kj}.

1: Set Z1 = Z and I1 = I based on their definitions;
2: ∀z ∈ Z1, calculate �dz based on Eq. (15);
3: while Z1 �= ∅ do
4: Find App z, where z = arg max

z
{�dz|z ∈ Z1};

5: Allocate App z to its optimal cloudlet i∗ (i.e., i∗ =
arg min

i
{dij|i ∈ I1});

6: Let xijzkz = 1;
7: Update the App set Z1, i.e., Z1 = Z1\z.
8: if cloudlet i∗ is full then
9: Remove i∗ from I1, i.e., I1 = I1\i∗;

10: ∀z ∈ Z1, recalcuate �dz based on Eq. (15);
11: end if
12: end while
13: return X .

all unsigned Apps, and searches for a new cloudlet for the
App to minimize its response time. Note that in each iteration,
the computing resource for each application in a cloudlet is
determined by the percentage of the application’s workload in
the total workloads in the cloudlet, and thus we can derive the
response time of Apps in different cloudlets. If a new cloudlet
is found, AREA proceeds to the next iteration. Otherwise, the
algorithm marks the App (i.e., removing the App from Z2) and
continues to the next iteration. The AREA algorithm repeats
the iterations until Z2 = ∅.

We now analyze the computational complexity of
Algorithm 2. In each iteration, the algorithm checks cloudlets
for an App, and the number of related cloudlets can be |I| in
the worst case. Therefore, the complexity of each iteration is
O(|I|). Then, we analyze the required number of iterations for
the algorithm to optimally place all Apps among the cloudlets.
Each App has a choice of up to |I| cloudlets. In each cloudlet,
the App can have at most |Z| different response times owing
to the different number of Apps allocated to the cloudlet. As
a result, the number of improvements for the App is limited
by |I||Z|. Thus, considering the number of Apps is |Z|, the
total number of iterations in the worst case is |I||Z|2. So,
the computational complexity of Algorithm 2 is O(|I|2|Z|2).
When we fix the number of cloudlets |I|, the complexity of
Algorithm 2 is polynomial with respect to the number of the
Apps.

B. Resource Allocation

After all UEs’ Apps are assigned to different cloudlets, the
problem can be transformed into a resource allocation problem
for each cloudlet i as follows:

P3: min
μik

∑

j∈J

∑

k∈K
xijk

(

dij + 1

μik/lk −∑
j∈J xijkλjk

)

s.t. Constraints (5), (7), (8), (10). (16)

We can then prove the following lemma.
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Algorithm 2 App Assignment
1: Initialize App assignment by Algorithm 1 and obtain X ;
2: Set Z2 based on its definition, i.e., Z2 = {z|z ∈ Z}
3: while Z2 �= ∅ do
4: Find App z ∈ Z2 with the highest response time;
5: Obtain the current cloudlet i of App z;
6: Find the suitable cloudlet i∗ for App z, i.e., i∗ =

arg min

(

dij + 1
μik/lk−∑j∈J xijkλjk

)

;

7: if i∗ �= i then
8: Assign App z to the new cloudlet i∗ and update X ;
9: else

10: Mark App z and let Z2 = Z2\z;
11: end if
12: end while
13: return X .

Lemma 3: When each xijk is determined, P3 is a convex
optimization problem.

Proof: For brevity, let f = ∑
j∈J

∑
k∈K

xijk(dij + [1/(μik/lk −∑
j∈J xijkλjk)]), and we use μk to

substitute μik in cloudlet i. Thus, we have

∂2f

∂μk∂μk′
=
⎧
⎨

⎩

∑
j∈J 2xijkl−2

k
(μk/lk −∑

j∈J xijkλjk)
−3, if k = k′

0, otherwise.
(17)

Since (μk/lk − ∑
j∈J xijkλjk) > 0, the Hessian matrix

H = [∂2f /(∂μk∂μk′)] of f is a positive definite matrix.
As a result, function f is convex. Moreover, because
Constraints (5), (7), (8), and (10) are linear, the optimization
problem P3 is a convex optimization problem.

As P3 is a convex problem, we can derive the optimal solu-
tion of P3 by solving the KKT condition of P3 [22]. Therefore,
the computing resource of each cloudlet is optimally allocated
to different VMs to minimize the response time. Consequently,
the suboptimal solution of P1 is achieved.

VI. RESULTS AND DISCUSSION

In this section, we set up simulations of the proposed
scheme to evaluate its performance. We select two other
workload allocation strategies for comparison: 1) the density-
based clustering (DBC) strategy [17] and 2) the latency-based
strategy [18]. The basic idea of DBC is to offload UEs’ work-
loads to suitable cloudlets until the workloads of the cloudlets
exceed the average workload among cloudlets. On the other
hand, the latency-based strategy is to minimize the network
delay between Apps and cloudlets by assigning Apps to suit-
able cloudlets. In the above two strategies, the computing
resource of each cloudlet is allocated to different types of VMs
according to the percentage of different types of workloads in
the cloudlet.

The simulation environment consists of 25 BSs within an
area of 25 km2, where the coverage of each BS is 1 km2 and
each BS is attached with a cloudlet. Meanwhile, 1000 UEs
are uniformly distributed among the BSs and assumed to be
associated with their closest BSs. There are ten types of IoT
applications in the cloudlet network, and we randomly choose

Fig. 2. Average performance of an App for different algorithms (λmax = 1.5,
Ci = 2 ∗ 108).

three types of Apps for each UE (i.e., the total number of
Apps in the network is 3000). The length of each time slot is
set as 5 min. As each App’s task arrival rate follows a Poisson
distribution, we randomly choose the average task arrival rate
of each App between 0 and λmax. As the computing sizes of
application k’s requests follow an exponential distribution with
the average value of lk, the average size of different types of
requests is chosen according to the Normal distribution with
an average of 106 CPU cycles and a variance of 2∗105 cycles,
i.e., N(106, 2 ∗ 105). Moreover, we assume the network delay
between a BS and a cloudlet is a linear function of the distance
between them [4], [23], i.e., τri = α × d + β, where d is the
distance between BS r and cloudlet i, and α and β are set as
5 and 22.3, respectively. In addition, the maximum allowed
computing delay for different types of applications is chosen
according to N(60, 20) (ms).

Fig. 2 shows the average response time per App, in which
AREA achieves lower response time as compared to the other
two strategies. Specifically, the latency-based strategy always
assigns Apps’ requests to their closest cloudlets without con-
sidering the workload in each cloudlet; DBC assigns Apps
to the closest cloudlets until the workload of each cloudlet
exceeds the average workload among cloudlets, without con-
sidering the diversity of applications in each cloudlet. Thus,
both DBC and the latency-based strategy lead to a lower
network delay and a higher computing delay than AREA.
AREA considers both the network delay of each App and the
different types of workloads for each cloudlet in the work-
load allocation. To reduce the computing delay of all Apps,
it tends to assign Apps with small computing sizes to the
lightly loaded cloudlets. Furthermore, it also optimally allo-
cates computing resources for different types of VMs based on
their corresponding workloads, and thus significantly reduces
the average response time per App. Meanwhile, as shown in
Fig. 3, the average response time for different types of appli-
cations in AREA is significantly smaller than those of DBC
and the latency-based strategy.
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Fig. 3. Average response time for different types of IoT applications (λmax =
1.5, Ci = 2 ∗ 108).

Fig. 4. Average response time with respect to λmax (Ci = 3.8 ∗ 108).

We further analyze how the workloads of Apps affect the
performance of the three algorithms. Note that the value of
λmax reflects the workloads of Apps, i.e., increasing λmax
increases workloads of Apps. As shown in Fig. 4, with the
increase of λmax, the average response time of the three algo-
rithms increases gradually. However, the average response
time of AREA is much lower and increases more slowly as
compared to those of the other two algorithms. When the
workloads of Apps are heavy, AREA can always offload the
App with the highest response time to an alternative cloudlet,
and thus iteratively minimize the maximum response time
among Apps. Meanwhile, AREA also optimally allocates the
computing resources of each cloudlet to different types of
applications based on their workloads and their correspond-
ing computing sizes, and thus further reduces the computing
delay.

Moreover, we investigate the impact of cloudlets’ capacities
on the average response time. Fig. 5 shows that the response
time of the three algorithms when the capacities of cloudlets
increase. It can be seen that AREA achieves much lower aver-
age response time when the capacities of cloudlets change.

Fig. 5. Average response time with respect to the capacity of each cloudlet
(λmax = 1.5).

Fig. 6. Average response time with respect to different number of UEs
(λmax = 1.5, Ci = 3.8 ∗ 108).

When the capacities of cloudlets are small, since DBC and the
latency-based algorithm do not balance the workloads among
cloudlets based on different types of applications (i.e., con-
sidering all task requests are homogeneous), AREA leads to
a remarkably lower computing delay, and thus incurs lower
response time. However, when the capacities of cloudlets are
very high, the computing delay is no longer a dominating
factor for the average response time, and thus the average
response time of DBS and the latency-based algorithm get
close to that of AREA.

We also analyze the impact of the number of UEs on the
average response time of Apps. As shown in Fig. 6, the aver-
age response time of AREA increases much slower than those
of the other two algorithms. Since AREA considers the dif-
ference between applications, it tends to assign Apps with
smaller task sizes to lightly loaded cloudlets and allocates
more computing resources to them, thus minimizing the aver-
age response time of all UEs’ Apps. Therefore, as the number
of UEs increases where the computing delay is the dominating
factor in the average response time, AREA is able to achieve

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 23,2022 at 10:32:50 UTC from IEEE Xplore.  Restrictions apply. 



FAN AND ANSARI: AREA FOR EDGE COMPUTING-BASED IoT 2153

a lower computing delay than the other two algorithms, thus
improving the performance of the average response time.

VII. CONCLUSION

In this paper, we have proposed the AREA scheme for
edge computing-based IoT. AREA assigns different types of
workloads in each UE to their corresponding VMs in each
cloudlet and optimally allocates the computing resources of
each cloudlet to its application-based VMs. We have formu-
lated the problem of minimizing the average response time of
Apps and designed the AREA algorithm to achieve a subopti-
mal solution. Simulation results have verified the performance
of AREA.
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