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Abstract—The multitiered concept of Internet of Things (IoT)
devices, cloudlets, and clouds is facilitating a user-centric IoT.
However, in such three tier network, it is still desirable to inves-
tigate efficient strategies to offer the computing, storage, and
communications resources to the users. To this end, this paper
proposes a new hierarchical model by introducing the concept
of field, shallow, and deep cloudlets where the cloudlet tier itself
is designed in three hierarchical levels based on the principle
of LTE-advanced backhaul network. Accordingly, we explore
a two time scale approach in which the computing resources
are offered in an auction-based profit maximization manner and
then the communications resources are allocated to satisfy the
users’ quality of service.

Index Terms—Hierarchical network architecture, Internet of
Things (IoT), mobile edge computing.

I. INTRODUCTION

HE FOG computing paradigm [1] was introduced by

Cisco as a new platform in which the goal is to sup-
port the requirements of Internet of Things (IoT) varying from
low latency, mobility, geo-distribution, and location aware-
ness [2]. To this end, the fog computing platform was designed
as a multitiered architecture in which different parts of an
IoT application can be deployed on the IoT device, fog plat-
form and a data center as three different tiers. In the past
few years, several efforts have developed similar concepts to
the fog computing. Most notably, three years before the intro-
duction of fog computing, the idea of cloudlet as a trusted,
resource-rich computer which is well-connected to the Internet
and available for use by nearby mobile devices was intro-
duced in [3]. The notion of the cloudlet or a “data center
in a box” has been further developed by a research team at
Carnegie Mellon University by introducing and developing
various mechanisms [4]-[8].

In parallel with the development of fog computing and
the cloudlet concept, the so called mobile edge computing
(MEC) idea has being standardized by an industry specifi-
cation group lunched by the European Telecommunications
Standards Institute [9]. MEC recognized as one of the key
emerging technologies for 5G networks aims at providing
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computing capabilities in proximity of mobile users (MUs) and
within the radio access network, thereby reducing the latency
and improving the quality of service (QoS) [9]. Moreover,
MEC is becoming an important enabler of consumer-centric
IoT with potential applications such as smart mobility, smart
cities, and location-based services [10], [11]. Therefore, in
such user-centric IoT concept in which the users participate
in sensing and computing tasks, computation-intensive tasks
still need to be offloaded to either the cloud or the computing
resources at the edge.

In an MEC environment, a mobile subscriber/user can be
considered as a person/entity with one or more IoT devices
that can utilize the computing and storage capabilities at the
edge. However, it is still desirable to investigate an efficient
strategy that can be used to offer the computing and stor-
age facilities, and accordingly the required communications
bandwidth to a mobile subscriber. Such strategy not only has
to allow the users to adapt their computing and communica-
tions capacities according to their requirements but also has to
change its economics by allowing the users to pay only for the
resources that they utilize. In this regard, the main challenge
is the resource poverty at the edge where we are dealing with
resource-poor computing facilities not big data centers. To this
end, the current study aims to address the aforementioned
issue by proposing an auction-based profit maximization
approach.

A. Contributions

We have made three major contributions.

1) We propose a hierarchical MEC (HI-MEC) architecture
in accordance with the principles of LTE-advanced back-
haul network and introduce the notion of field, shallow,
and deep cloudlets.

2) We propose a two time scale mechanism to allocate the
computing and communications resources to the MUs.
The importance of the proposed two time scale is due
to the fact that the economics of computing resources
cannot change as quickly as the traffic loads of the
MUs. In particular, the decision about the price and
distribution of the computing resources are made in
longer time frames, while the bandwidth allocations are
updated in shorter time slots. To this end, we formulate
a binary linear programming (BLP) aimed at maximiz-
ing the profit of the service provider and a convex
optimization problem for bandwidth allocation. We also
design heuristic algorithms to solve the BLP problem
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TABLE I
DESCRIPTION OF SYMBOLS

[ Symbols [ Description

Provider Side
ACN Set of provisioned SCeNBs as the APs
CCN Set of all cloudlets
CrCC Set of field cloudlets
Cs CC Set of shallow cloudlets
cqg €C Deep cloudlet.
A, CA Set of APs connected to shallow cloudlet ¢ € Cg
Cq, CC Set of cloudlet locations connected to AP a € A
VCN Set of offered VMs
P CN Set of available types of PMs
P.CP Set of available types of PMs at cloudlet location ¢ € C
MP CN Available number of PMs of type p € P at cloudlet ¢ € C
R CN Set of resource types such as memory
D" Maximum allowed data transfer to/from VM type v € V within a time frame
Ty in Base bandwidth of VM type v € V
RD; Resource demand of VM type v € V for resource type 7 € R
RS? Resource supply of PM type p € P for resource type r € R
R, Capacity of the last mile link between AP a € A and its connected shallow cloudlet
R, Capacity of the aggregation link between shallow cloudlet ¢; € C and the aggregation node
R, Capacity of the backhual link which connects the aggregation node to the deep cloudlet

D d Side
B Set of bids submitted for all types of VMs
B. CB Set of b € B that can be served at ¢ € C
BY CB Set of bids submitted for VM type v € V
B, CB Set of bids submitted at AP location a € A
B, CB Set of bids submitted for VM type v € V at AP location a € A
(1,....1B2]) Sequence of bids b € B in a decreasing order of the corresponding prices
ap AP location of b € B
Ty Desired VM type of b € B
kp Rank of b € B in the corresponding sequence (1, ..., |ng b
€ .a Corresponding willingness price of the kth bid in (1, ..., |B>])

Profit
zy . €{0,1} Binary decision variable that indicates whether the kth bid in sequence (1, ..., [B,]) is served or not. xy, , = 1 if the kth bid
is served, and xz}, , = O otherwise
yfmc e {0,1} Binary decision variable that indicates whether the mth PM of type p € P at cloudlet ¢ € C is on or not. y%qc = 1 if the
'mth PM is on, and y?, . = 0 otherwise
zf_m_c € {0,1} Binary decision variable that indicates the assignments of bid b € B to the mth PM of type p € P at cloudlet ¢ € C.
s zf m.e = 1if bid b € B is assigned to mth PM of type p € P at cloudlet ¢ € C, and z{; m.c = 0 otherwise
qe Cost of electricity at cloudlet location ¢ € C
Pfdle Idle power consumption of PM p € P
:e ak Average peak power consumption of a VM type v € V

Eusage Total power consumption (including that of network facilities) divided by the power consumption at the cloudlets

and a centralized solution is proposed for the bandwidth
allocation problem.

3) We evaluate the performance of the heuristic algorithms
via extensive simulations.

B. Related Work

In the past few years, a large and cohesive body of work
investigated the major limitations of mobile cloud computing
(MCQ), e.g., the radio access associated energy consumption
of mobile devices and the latency experienced over wide area
network, and the researchers came up with a variety of poli-
cies and algorithms. For instances, the computation offloading
problem via joint optimization of the communication and com-
putation resources is explored in [12] and a message-passing
approach for the same problem is proposed in [13]. In [14], a
new cloudlet network architecture that brings the computing
resources from the centralized cloud to the edge is proposed
and the problem of Avatar, a software clone located in a
cloudlet, migration to maintain a low E2E delay is investi-
gated. A cloudlet network planning approach for mobile access
networks is introduced in [15] which optimally places the
cloudlet facilities among a given set of available sites and

then assigns a set of APs to the cloudlets by taking into
consideration of the user mobility.

Recently, Chiang and Zhang [16] summarized the oppor-
tunities and challenges of edge computing in the networking
context of IoT and indicated that the fog concept can fill the
technology gaps in IoT. Gonzalez et al. [17] also explored
the state of the art of edge computing and its applications
in IoT. Moreover, adaptive edge computing solutions for IoT
networking are presented in [18], which aims to optimize
traffic flows and network resources.

As discussed earlier, this paper proposes an auction-based
profit maximization approach. While there are some studies
that investigate auction models for the resource allocation in a
could computing system, only a small body of work has stud-
ied auction mechanisms for the resource allocation in MEC.
For example, Zhang et al. [19] modeled the resource alloca-
tion process of an MCC system as an auction mechanism by
taking into consideration of premium and discount factors and
derived the optimal solutions of the resource allocation in their
proposed auction mechanism. In addition, a concurrent virtual
machine (VM) pricing and the distribution of VM instances
across physical machines (PMs) in a data center are presented
in [20]. Moreover, Zheng et al. [21] developed an optimization
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Fig. 1. System model.

model for the spot pricing system and answered the question of
how users should bid for cloud resources. The auction model
in this paper is inspired by the equilibrium pricing models,
such as the model presented in [20] tailored for a could com-
puting system, i.e., a data center. However, we face the issues
of user mobility and the resource poverty at the edge when
we apply such pricing models to an MEC environment, and
thus, we propose a hierarchical network architecture as well
as a two time scale resource allocation approach to address
these issues. Moreover, we formulate our auction model as
a profit maximization problem in which the gained profit is
established by considering not only the revenue of serving the
VM demands and the electricity cost (EC) of running the com-
puting and network facilities, but also the revenue lost due to
network delay.

The rest of this paper is organized as follows.
Sections II and IIT describe the system model and problem
formulation. We propose our auction-based profit maximiza-
tion problem and the corresponding heuristic algorithms
in Section IV. The bandwidth allocation problem and its
centralized solution are presented in Section V. Finally,
Sections VI and VII present numerical results and conclude
this paper, respectively.

II. SYSTEM MODEL

Fig. 1 shows our proposed HI-MEC architecture designed
for provisioning MEC services by an edge-computing service
provider (a service provider in short). Based on the princi-
ples of LTE-advanced backhaul network [22], we introduce
the notion of field, shallow, and deep cloudlets. In particular,
in an HI-MEC environment, we have several field cloudlets as
the resource-poor facilities co-located with small cell enhanced
node Bs (SCeNBs). The shallow cloudlets as the resource-
middle class facilities are also hosted at the first level of
aggregation nodes, i.e., at point of presences (PoPs). Moreover,
in order to leverage the resource-rich facilities, we consider
one deep cloudlet for each HI-MEC enviroment located at
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mobile backhual. In the proposed hierarchical model, each
SCeNB is assumed to be connected to one PoP using a dedi-
cated last mile link. Moreover, there is a dedicated aggregation
link between each PoP and the aggregation node. In other
words, each field cloudlet has access to only one shallow
cloudlet connected via a dedicated last mile link, and all
shallow cloudlets are connected to the deep cloudlet via aggre-
gation links and mobile backhual. The main advantage of the
HI-MEC architecture is to efficiently manage the fluctuations
in user demands while taking into consideration of the limits
in available resources at the edge. The HI-MEC network can
efficiently handle the peak loads at an AP location. In other
words, when the computing capacity of a field cloudlet is not
enough to handle the loads from its corresponding MUs, the
loads are handled by utilizing the shallow and deep comput-
ing facilities at higher levels. We assume that the network has
been optimally designed in terms of the connections of the
SCeNBs to the PoPs by taking into consideration of different
parameters like link lengths and capacities. A list of the most
symbols is summarized in Table I. However, in order to ease
the reading, the symbols used in Sections IV-B and V are not
included in this table and are explained in the corresponding
sections.

We consider a two time scale model in which the running
time of the HI-MEC environment is divided into a sequence of
time frames at equal length, 7, e.g., 5 min. Each time frame
itself is also divided into a sequence of time slots at equal
length, 7, e.g., a few seconds. Our goal is to maximize the ser-
vice provider total profit during the time frame 7" and minimize
the total delay experienced by the users during the time slot 7.
Note that for the analysis, we consider a single time frame,
e.g., A as the time frame of interest (or a single time slot,
e.g., 6 as the time slot of interest) and omit the explicit time
dependence in the notations through this paper.

A. Provider Side

The service provider provides the MUs (users in short)
by a set of computing and communications facilities as an
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augmentation to their mobile device capacities. The comput-
ing facilities are provisioned as different types of VMs running
on PMs located at different cloudlet sites. To manage the fluc-
tuations in user demands while taking into consideration of
the limitations of available resources at the edge, the ser-
vice provider should consider a flexible pricing methods in
which the resources are priced according to the demands. To
this end, we consider an auction-based pricing model such as
Amazon’s elastic compute cloud spot pricing [20], [21], [23].
In such strategy, the service provider updates the prices for
each type of VM at the beginning of each time frame that
depend on the available resources and demands. The minimum
granularity in offering the computing resource is assumed to
be one VM instance in one time frame. The service provider
also renders the required communications bandwidth between
the users and the VMs, i.e., the SCeNBs as the APs as well
as the network connection between the APs and the cloudlet
locations.

B. Demand Side

The service provider tenders the communications and edge-
computing facilities as a service to the MUs. The MUs can
benefit from the provided service, e.g., by offloading their
mobile applications, and hereby prolong their device battery
life-time. However, the users must submit their demand bids
for the offered service stating their maximum willingness
price for their desired VM type. The maximum willingness
price can be decided using the spot price history. We assume
that the users can submit their bids at any time but the ser-
vice provider runs the auction at the beginning of each time
frame in which the bids above the spot price are served,
and those below the spot price are rejected. In fact, it is
assumed that the demand bids are submitted based on the
required VM type but the service provider will guarantee com-
munications bandwidth for the served bids. Without loss of
generality, if a user demands more than one instance of a
specific type of VM type, we treat the requested instances
as different bids but with the same maximum willingness
price.

III. PROBLEM FORMULATION

The service provider not only has to decide the final price,
which depends on the number of served bids for each type of
VM, but also has to determine the assignments of the VMs
among the cloudlet locations such that the communications
requirements are also guaranteed. To this end, we propose an
auction-based profit maximization problem to be solved by the
service provider. The profit gained by running the proposed
HI-MEC environment is assumed to be given by the revenue
of serving the VM demands minus the EC of running the
computing and network facilities, and the revenue lost due to
network delay.

A. Revenue

The revenue of the service provider in a time frame depends
on its decision about the spot price for each type of VM.
We consider a local pricing approach in which the price for a
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specific type of VM varies from one AP location to another
AP depending on the demand and supply but all the served
bids in one AP location pay an identical price, i.e., equilib-
rium price per instance of a VM type. On the other hand, at
each AP location, for a given type of VM, only those bids
whose respective prices are greater than or equal to the equi-
librium price can be served with their desired VM instances.
We thus establish the revenue of the service provider in one
time frame as

Bz

R=Y"3"N"x (kxef,—k—Dxef_;,) (1)

acAveV k=1

where we assume that the binary variables x,vc,a are decided
such that xj , < x;_; .. In the presented definition for rev-
enue, for example, at AP location a, the final local price for
one instance of VM type v, is set to the maximum willing-
ness price of the last served bid in sequence (1,..., [B}]). In
other words, all the bids with willingness prices above this
bid are served, and on the other hand, all the bids with will-
ingness prices below this bid are rejected. The total revenue
is thus calculated by summing over all the bids in sequence
(1,...,1B}]) with consideration of their willingness prices
(ez’a). Going from the (k— 1)th bid to the kth bid, if (x,VW =1),
the new revenue, k * e,V(,a, is added to the summation and
the previous revenue, (k — 1) % e,vc_ La is deducted from the
summation.

B. Electricity Cost

The EC of the service provider depends on different vari-
ables like the number of turned on PMs at each cloudlet and
the distribution of the VMs among the PMs. Following the
power consumption model adapted for data centers [24]—-[27],
the total EC in one time frame can be computed as

min(|B|,.M?)

EC = TEysage[ Y. D > Y.

QCZZ Pl

,m,c” peak

beB ceCyy, pePe m=1
min(|B|,M?)
2.2 2 w@hlu| O
ceCpeP:  m=1

where the first term corresponds to the EC of VMs’ power
consumption and the second term is to consider the related
cost of PMs’ idle power consumption. In fact, we take into
consideration of both a fixed EC which is due to the idle power
consumption of a PM and a variable EC which is attributed to
the extra power consumption of the VMs running on that PM.
Moreover, we incorporate the power usage effectiveness ratio,
Eusage, to amalgamate the power consumption at the network
facilities.

C. Lost Revenue

The proposed architecture is an MEC architecture where
the users expect to experience a low latency connecting to
their VMs. Therefore, for QoS satisfaction, we incorporate
a lost revenue into our profit maximization problem due to
the network delay experienced by the users. The idea is to
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first serve the bids as close as possible to the edge, and then
allocate bandwidth to those bids that have to be served at
a shallow/deep cloudlet due to high demands at their corre-
sponding AP locations. In other words, field cloudlets have
to be the first priority to serve a bid while shallow and
deep cloudlet facilities have the second and third priorities,
respectively.

Let r, be the bandwidth allocated to bid b on all the links
that it has to go through. For example, if bid b is served at
the deep cloudlet, r;, is allocated to bid b on all correspond-
ing last mile, aggregation and mobile bakchual links. In other
words, there is a dedicated link of capacity r, between the
corresponding AP of bid b and its assigned cloudlet location.
Since the users are interested in their QoS, rather than their
allocated bandwidth, we translate the allocated bandwidth to
our lost revenue.

In a nutshell, at any time # € T, we denote the traffic load of
a given bid b on its dedicated link, i.e., rp, by Ap(t). Therefore,
within interval 7', bid b makes its dedicated link busy for
[( fOTAb(t)dt)/rb] seconds. Thus, the link utilization for bid

bis [( fOTAb(t)dt) /Trp]. Here, the network delay is related to
the link utilization such that the less time is the link busy, the
less network delay is experienced. The total traffic load of a
bid within a time slot is upper bounded by its maximum data
transfer to/from the VM, i.e., fOTAb(t)dt < DT, Moreover,
we assume that the allocated bandwidth of each bid is lower
bounded by the base bandwidth of its VM type, i.e., rp > r{lm
Therefore, the link utilization of a bid is upper bounded with
its maximum data transfer as well as the base bandwidth as
follows:

T
Ap(t)dt T
f() (D) < D . 3)
Trp Trl®
min

The idea is to incorporate this upper bound into our profit max-
imization which is solved every time frame and then update
the bandwidth allocated to the bids every time slot based on
the traffic loads. We thus define our lost revenue as

Ty

k=YY Y Y Yalm

ac AbeB, ceCy\Cr peP meM? T m1n

where &, . are the coefficients set by the service provider based
on the importance of QoS compared to the profit and by taking
into consideration of the link lengths between APs and their
connected cloudlets. Moreover, the reason behind using the
upper bound is to derive a QoS satisfaction which is VM type
oriented.

IV. PROFIT MAXIMIZATION

Note that users can submit or cancel their bids or change
their willingness prices. Moreover, the AP location of a
user changes when she moves to other location. Therefore,
the service provider must update its decision on serving the
bids periodically. To this end, we propose to maximize
the auction-based profit at the beginning of each time frame.
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A. Binary Linear Programming

The proposed optimization problem is formulated as

maximize (R—EC —-LR)
xli.a’ yf"v‘«" b,m,c
min(\B\,Mf)

. T

C:Y Y > &,.=x', ¥eB
ceC,,b peP, m=1

24, RD[ < RS Np.m,c,r
beB

min(|B|, M%)

=DM YD IEDS

beB, ceCy\Cr peP. m=1
z‘Z P < R, Va

,m,c’ min
min(|B B Mcd)

S DIDID IS

acAc, beBB, pePLd m=1

Zjl;mcd min — RCA VC‘
min(|B],ME )

) 2 2

beB peP, m=1
Cé6: xk’a < xk_l’a Yv,a,2 <k <|B}
CT: Yoo Voo Ve p, 2 <m<M?
C8:x;, €{0,1} Vv, a,1 <k < |B}]
C9: Zg,m,c € {0, 1} Vb,m,c,p

C10: yﬁl,c €{0,1} Vm, c,p (5)

Ty
Zmcglmin = Rey

where the objective is to maximize the profit defined as the
revenue—EC—lost revenue. The equality constraint C1 in (5)
is to ensure that the served bids are assigned to a PM at a
cloudlet location connected to their AP locations. Inequality
constraint C2 is also to lower bound the total resource demands
of all the bids assigned to a PM by the resource supply of that
machine. In addition, we use inequality constraints C3-C5 to
bound the total minimum bandwidth of the bids traversing a
link by the bandwidth capacity of that link. Note that C3—-C5
are formulated for the last mile, aggregation, and backhual
links, respectively. Moreover, by inequality constraints C6,
we enforce the requirement of our defined revenue function.
Constraint C7 is designed to give priority to the PMs with
lower running index at one cloudlet location over those with
higher index at the same location. Finally, constraints C8—C10
are to restrict our variables to the binary choices. The com-
putational complexity of the proposed BLP is exponential and
corresponds to (9(2”3'2*'7)'*'0').

B. Heuristics

While the proposed BLP optimization model offers flex-
ibility, finding an optimal solution presents computational
complexity. The complexity grows fast with the number of bids
and PMs. In order to obtain high quality solutions in a rea-
sonable time, we propose two heuristic algorithms that employ
VM pricing and VM distribution techniques [20]. The pseudo
codes for VM pricing and VM distribution algorithms are
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shown in Algorithms 1 and 2, respectively. In fact, we follow
a two phases approach.

In the first phase (Algorithm 1), for each type of VM at
each AP location, we first estimate the serving cost of one VM
instance, i.e., ¢}, by taking a weighted average over all suit-
able type of PMs across all connected field, shallow, and deep
cloudlets to that location. In our cost estimation, we consider
both EC and the lost revenue (lines 2—19). We then identify
the favorable number of the bids to be served, i.e., 12; and the
final local price, i.e., @}, such that the estimated profit is max-
imized (lines 21-26). Finally, for each AP a and VM type v,
we store all those bids with a rank less than or equal to k) in
the set of served bids, i.e., S (line 27).

In the VM distribution phase (Algorithm 2), we first ini-
tialize an instance count mj, for each type of PM at each AP
location (lines 1-5). We then search the set of all the available
PMs and the cloudlet locations to find a favorite PM, i.e., p, at
a favorite cloudlet, i.e., ¢. For a given instance of a PM type
at a given cloudlet, we scan the set of all the served bids and
create a packing list for that machine, i.e., L%. The packing list
for a PM is created based on its resource constraints and the
possibility of serving a bid at that PM. We subsequently com-
pute the utility function for each PM at each cloudlet location,
i.e., ul. Accordingly, both the favorite PM type and cloudlet
location are identified by comparing all the utility functions
(lines 8-25), and all the bids in the corresponding packing list,
ie., L’g , are assigned to one instance of p at ¢ (lines 26-32).
Finally, the assigned bids are removed from the set of served
bids and this process is repeated until all the served bids are
assigned or no suitable PM and cloudlet location is found
for the VM assignment (lines 33 and 34). The complexity of
the VM distribution presented in Algorithm 2 corresponds to
O(IBJ* % |P| * [C)).

V. BANDWIDTH ALLOCATION

Based on the VM assignment in the previous section,
we now define an optimization problem to find the optimal
bandwidth allocated to each served bid, i.e., r,. Our goal
is to minimize the total network delay experienced by the
served users on the link between their corresponding APs and
cloudlets. Note that the delay between a user and AP which
is related to the radio resource allocation is not the focus of
this paper since it has already been addressed in other studies
such as [12]. Let {1, ..., N} be the set of all bids served at a
shallow or deep cloudlet. a, and ¢; are also the corresponding
AP and cloudlet locations of bid b, respectively. Moreover, we
define {1, ..., M} as the set of all the links in our HI-MEC
environment including all the last mile, aggregation links and
the mobile backhual link. Let vy, be a binary variable such
that vy, = 1 if the traffic load of bid b traverses link m.

A. Convex Optimization

We propose to solve the bandwidth allocation problem
shown in (6) at the beginning of the time slot of interest.
The objective of this optimization problem is to minimize the
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Algorithm 1 VM Pricing
. S« 0
2: for all ve V do
3: foralla e Ado

4: g < 0,EC, <0

5: for all c € C, do

6: for all p € P, do

7: if p.canHost(v) = true then
8: ghc < min(M?, |BY])

9: if c € C; \ Gy then

10: ghe < min(gh .. rl\e,—‘f)
11: end if "
12: g < gh+ g’a’,c ,

13: ft‘f.c <~ ch(p;eak + % ZrE'R I;_?é) + Ea,c%
14: Q8 =@h + gac*fac

15: end if

16: end for

17: end for

18: if g;, > 0 then

19: @) <~ %‘

20: Pl <0,k =0, <0

21: for k=1— |B)| do

22: Py < k(e , — ¢p)

23 if p, > p, then

24: Py < Po> @y <€} 4 k) =k
25: end if

26: end for

27: S<—SU{beB |k <=k}
28: end if

29:  end for

30: end for

total delay experienced by the users who have been served at
shallow cloudlets or the deep cloudlet location, by taking into
consideration of the traffic load of each user at the beginning
of the time slot of interest, i.e., Ap. Constraints C1 and C2
are to bound the bandwidth allocated to bid b by the lower
and upper boundary values [, and up, respectively. Note that
these values are positive and decided by the service provider
for example based on the VM types and the traffic loads. The
lower bound [, is also lower bounded by the base bandwidth
considered during the auction, i.e., [, > rr{fin' Moreover, con-
straint C3 is to bound the bandwidth allocation by the physical
bandwidth capacity of the links. In fact, the total bandwidth
allocated to the bids traversing link m is upper bounded by its
capacity, i.e., Ry,

N "
minir?]ize };sab’cbg
Clirp>IlpVbel,...,N
C2rp<u,Vbel,...,N
N
C3: > vmbrp <Ry Ymel,....M (6)
b=1
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Algorithm 2 VM Distribution
1: for all c € C do

2. for all p € P, do
3: m‘? <~ 0
4:  end for
5. end for
6: repeat
7. p<@,c<«Pu<0
g: for all p € P do
9: for all c € C do
10: if p € P. then
11: if m? < M? then
12: ) AR
13: for all b € SN B, do
14: if c.canHost(ap) v mb.canHost(LY U b) =
true then
15: P < 12Ub
16: end if
17: end for 7
18: M]Z <~ Zbelfg o T,
e WinetLper? pprfakHZheLﬁ sa[ri
19: if i« > it then
20: h<—ul,p<—pe<c
21: end if
22: end if
23: end if
24: end for
25:  end for
26:  if p # () then
27: ype <1
mj],c A
28: mf —ml +1
29: for all b € L} do
30: z’; i «~1
31: update the capacity of all links between a;, and ¢
according to r,,
32: end for
33:  end if

M S s\
35:until S=0vp =10

B. Centralized Optimal Solution

The proposed bandwidth allocation problem is a convex
optimization with 2N + M constraints. The complexity of this
problem may increase as the numbers of the served bids and
the links increase. However, an HI-MEC network is assumed
to be limited by the number of the links and the computing
capacity to serve as few as several thousand bids. Therefore,
it is desirable to derive a centralized optimal solution for this
problem. To this end, we define the matrix V = (vimb)yxn
to show the traverse of the bids on each link based on our
already defined binary variable vy, Let R = (Ry, ..., Ry)
and r = (r1, ..., rn) also be the vectors of the capacity of the
links and the bandwidth allocated to the bids, respectively. To
derive the optimal solution, we apply the method of Lagrange
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multipliers since the constraints of Problem (6) are linear, and
the Kuhn-Tucher conditions are necessary and sufficient for
an existing optimal solution [28], [29].

Theorem 1: There exists y,, > 0 (m € 1, ..., M) such that
Vbel,...,N
A
o= |t )
Zm=1 ¥YmVmb
lp <rp <up
and Vmel,...,. M
Ym((V.r)m — R) =0 3)

where 7}, is the optimal solution for (6).

Proof: Our proof is based on the assumption that the
bandwidth allocation space of (6) is a nonempty, convex, and
compact set and thus our objective function is strictly convex
with respect to r,. Then, we define o > 0 and B, > 0 Vb €
I,...,Naswell as y, > 0Vm € 1,...,M as the Lagrange
multipliers for constraints C1-C3 in problem (6), respectively.
Therefore, the Lagrangian becomes

N N
A
L0 Boy) = ) Eape, — + ) enlly = rs)
b=1

by

N M
+D Borb—up) + Y YV = (R)).
b=1 m=1

9)

To optimize the objective by applying the necessary and
sufficient conditions, we have

M
. Ab
AL(F, @, B, y) =06 —bu0,—5 —ap + By + Z YmVmb

b

m=1
=0Vbel,...,N
(10)
and
ap(ly — 7)) =0Vbel,...,N
By(ry —up) =0Vbel,...,N
Vm((v~r)m_(R)m) :()Vme 19""M (11)

where 7 = (A, ..., ry) is the optimal solution to (6). Noting
the values of the Lagrange multipliers in (11) and focusing
on the general case when [, < r, < up, one can conclude
ap = 0 and B, = 0. In fact, we are not interested in special
cases when rj, is equal to the boundary values. Therefore, by
solving (10) for ap = 0 and B, = 0, rp is derived and the
proof is complete. |

The result of Theorem 1 indicates that the optimal band-
width for each bid can be achieved by the optimal multipliers
of its associated links. For example, when a bid is served at
the deep cloudlet, its optimal bandwidth can be solved by the
optimal multipliers of its associated last mile and aggregation
links as well as the mobile backhual link. Therefore, solving
this problem in a distributed manner for the case that the num-
bers of bids and the links scale up can be investigated in a
future work.
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TABLE 1T
COMPUTATION TIMES COMPARISON BETWEEN HEURISTIC
AND OPTIMAL APPROACHES

50 (bids) 100 (bids) 1000 (bids) 2000 (bids)
Heuristic case 1 0.052 (s) 0.79 (s) 1.89 (s) 5.55 (s)
Optimal case 1 2.17 (s) 76.32 (s) 107.65 (s) 458.86 (s)
Heuristic case 2 0.31 (s) 0.94 (s) 2.716(s) 5.75 (s)
Optimal case 2 2.53 (s) 31.99 (s) 97.34 (s) 570.53 (s)

VI. SIMULATION RESULTS

In this section, we compare the results of the heuristic
VM pricing and VM distribution algorithms with the optimal
results in solving the proposed profit maximization problem
(BLP). We consider an HI-MEC environment consisting of
five AP locations, each co-located with a field cloudlet, and
two PoPs, each equipped with a shallow cloudlet in which
APs 1-3 are connected to the first PoP, and APs 4 and 5 to
the second PoP. The network model is also assumed to have a
deep cloudlet. We fix the bandwidth capacity of all the links to
1 Gb/s. Moreover, we consider three types of VMs (m3 large,
c3 xlarge, and r3 2xlarge) and three types of resources (CPU,
memory, and storage) [23]. The cloudlets are assumed to be
equipped with the same type of PM but different numbers of
PMs are available at different hierarchical levels. The power
consumption of a PM is set to 0.7 kWh and the power con-
sumption of each type of VM is estimated accordingly based
on its resource demands and the resource supply of the PM.
The price of electricity is fixed to 2 cent/kWh. The price of the
bids are generated randomly using a triangle distribution [20]
assuming that the submitted price for each type of VM will
not exceed its on-demand price available at [23].

CVX [30] combined with Gurobi [31] and MATLAB are
used to simulate the BLP and the two phases heuristic
approach. For performance evaluations, we study two cases,
each with four different scenarios, i.e., 50, 500, 1000, and 2000
bids. In the first case study, we fix the ratio of bids submitted
for three types of VMs as m3:c3:r3 = 2.5:1.5:1, correspond-
ing to the case that the users are more interested in a smaller
type of VM, i.e., m3. On the other hand, for the second case
study, we change the ratio to m3:c3:r3 = 1:1.5:2:5 assuming
that the users are more interested in a larger type of VM, i.e.,
r3. The AP locations for the bids are generated randomly in
each case.

The computation time of the optimal approach (BLP) and
the heuristic algorithm for different scenarios are compared
in Table II. While the heuristic algorithm provides the sub-
optimal solution within a few seconds, the computation time
of the optimal approach grows fast with the number of bids.
The reason is in accordance with our qualitative discussion of
the complexities of the BLP and VM distribution algorithm
in which the former grows exponentially with the number of
bids and the latter is polynomial.

Figs. 2 and 3 show the profits gained in one time frame for
case 1 and case 2, respectively. The corresponding approx-
imate ratios of the heuristic algorithm in Fig. 2 are 0.989,
0.991, 0.987, and 0.982 for 50, 500, 1000, and 2000 bids,
respectively. The ratios in Fig. 3 also equal to 0.995, 0.995,
0.965 and 0.961 for 50, 500, 1000, and 2000 bids, respectively.
As we can see in these figures, the heuristic algorithm results
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Fig. 2. Profit comparison between heuristic and optimal approaches for
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Fig. 4. Ratios between the served bids and the total bids for case 1.

in a profit quite close to the profit of the optimal approach.
To understand the reason of this observation, we should ana-
lyze the performance of the heuristic approach in terms of the
number of the served bids as well as the VM pricing. To this
end, we compare the performance of the heuristic and opti-
mal approaches by providing the ratio of the served bids in
Figs. 4 and 5 for cases 1 and 2, respectively. Here, the ratio of
the served bids is defined as the total number of served bids
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Fig. 7. Average delay per bid comparison between heuristic and optimal
approaches.

divided by the total number of submitted bids. As demon-
strated in these figures, the heuristic approach serves nearly
the same number of bids as the optimal approach. We vali-
date the performance of the VM pricing algorithm in Fig. 6.
Owing to similarity, we only compare two prices as examples,
and we choose m3 for case 1 and r3 for case 2 since m3 and r3
are the most demanded VMs in case 1 and 2, respectively. As
demonstrated in the figure, the estimated price of the heuris-
tic VM pricing for most scenarios is slightly higher than the
optimal price. This result is due to the reason that the heuris-
tic VM pricing algorithm serves fewer bids than the optimal
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one, as also confirmed by the results shown in Figs. 4 and 5.
Finally, we compare the average delay per bid of the heuristic
algorithm with that of the optimal algorithm in Fig. 7 for case
1. To obtain the average delay per bid, we solve the bandwidth
allocation problem based on both the results of the heuristic
VM pricing and distribution algorithms as well as the opti-
mal approach. As we can see in this figure, the delay per bid
achieved by the heuristic algorithm is slightly higher than that
of the optimal approach.

VII. CONCLUSION

In this paper, we have proposed a new hierarchical archi-
tecture in the context of MEC called HI-MEC. Specifically,
we have introduced the concept of field, shallow and deep
cloudlets deployed in three hierarchical levels in accordance
with the principle of LTE-advanced mobile backhaul network.
Based on the proposed model, a two time scale optimization
approach for resource allocation is introduced. In particular,
a BLP is formulated to maximize an auction-based profit for
concurrent VM pricing and VM distribution, and accordingly
heuristic algorithms are designed to solve this problem in a
reasonable time. Moreover, a convex optimization problem
for bandwidth allocation is formulated and a centralized solu-
tion to this problem is derived. The proposed hierarchical
model and the two time scale optimization platform have been
demonstrated to effectively facilitate the resource allocation to
the subscribers of an MEC network.

REFERENCES

[1] F. Bonomi, “Connected vehicles, the Internet of Things, and fog com-
puting,” in Proc. 8th ACM Int. Workshop Veh. Int. Netw. (VANET),
Las Vegas, NV, USA, 2011, pp. 13-15.
[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. MCC Workshop Mobile Cloud
Comput., Helsinki, Finland, 2012, pp. 13-16.
[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14-23, Oct./Dec. 2009.
[4] S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan,
“How close is close enough? Understanding the role of cloudlets in
supporting display appropriation by mobile users,” in Proc. IEEE Int.
Conf. (PerCom), Lugano, Switzerland, 2012, pp. 122-127.
[5] M. Satyanarayanan et al., “The role of cloudlets in hostile envi-
ronments,” [EEE Pervasive Comput., vol. 12, no. 4, pp. 40-49,
Oct./Dec. 2013.
[6] G. A. Lewis, S. Echeverria, S. Simanta, B. Bradshaw, and J. Root,
“Cloudlet-based cyber-foraging for mobile systems in resource-
constrained edge environments,” in Proc. ACM 36th Int. Conf. Softw.
Eng., Hyderabad, India, 2014, pp. 412-415.
[71 M. Satyanarayanan et al., “Edge analytics in the Internet of Things,”
IEEE Pervasive Comput., vol. 14, no. 2, pp. 24-31, Apr./Jun. 2015.
[8] K. Ha er al., “Adaptive VM handoff across cloudlets,” School
Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.
CMU-CS-15-113, 2015.
[9] Y. C. Hu et al., “Mobile edge computing—A key technology towards
5G,” ETSI, Sophia Antipolis, France, White Paper, vol. 11, 2015.
[10] P. Corcoran and S. K. Datta, “Mobile-edge computing and the Internet
of Things for consumers: Extending cloud computing and services to
the edge of the network,” IEEE Consum. Electron. Mag., vol. 5, no. 4,
pp. 73-74, Oct. 2016.

[11] X. Sun and N. Ansari, “EdgeloT: Mobile edge computing for the Internet
of Things,” IEEE Commun. Mag., vol. 54, no. 12, pp. 22-29, Dec. 2016.

[12] B. Sergio, S. Sardellitti, and P. Di Lorenzo, “Communicating while

computing: Distributed mobile cloud computing over 5G heteroge-

neous networks,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 45-55,

Nov. 2014.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 23,2022 at 10:36:54 UTC from IEEE Xplore. Restrictions apply.



KIANI AND ANSARI: TOWARD HI-MEC: AUCTION-BASED PROFIT MAXIMIZATION APPROACH

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

S. Khalili and O. Simeone, “Inter-layer per-mobile optimization of
cloud mobile computing: A message-passing approach,” Trans. Emerg.
Telecommun. Technol., vol. 27, no. 6, pp. 814-827, 2016.

X. Sun and N. Ansari, “PRIMAL: Profit maximization avatar placement
for mobile edge computing,” in Proc. ICC, Kuala Lumpur, Malaysia,
May 2016, pp. 1-6.

A. Ceselli, M. Premoli, and S. Secci, “Cloudlet network design opti-
mization,” in Proc. IFIP Netw., Toulouse, France, 2015, pp. 1-9.

M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854-864,
Dec. 2016.

N. M. Gonzalez et al., “Fog computing: Data analytics and cloud dis-
tributed processing on the network edges,” in Proc. 35th Int. Conf.
Chilean Comput. Sci. Soc., Valparaiso, Chile, 2016, pp. 1-9.

M. Jutila, “An adaptive edge router enabling Internet of Things,” IEEE
Internet Things J., vol. 3, no. 6, pp. 1061-1069, Dec. 2016.

Y. Zhang, D. Niyato, and P. Wang, “An auction mechanism for resource
allocation in mobile cloud computing systems,” in Proc. Int. Conf.
Wireless Algorithms Syst. Appl., 2013, pp. 76-87.

U. Lampe, M. Siebenhaar, A. Papageorgiou, D. Schuller, and
R. Steinmetz, “Maximizing cloud provider profit from equilibrium price
auctions,” in Proc. IEEE 5th Int. Conf. Cloud Comput., Honolulu, HI,
USA, 2012, pp. 83-90.

L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How to
bid the cloud,” ACM SIGCOMM Comput. Comm. Rev., vol. 45, no. 4,
pp. 71-84, 2015.

NGMN Alliance, “Small cell Backhaul requirements,” White Paper,
Jun. 2012.

Amazon EC2. Accessed: Nov.
https://aws.amazon.com/ec2

R. Brown et al., “Report to Congress on server and data center energy
efficiency: Public law 109-431,” Lawrence Berkeley Nat. Lab., Berkeley,
CA, USA, Tech. Rep., 2007.

M. Ghamkhari and H. Mohsenian-Rad, “Energy and performance man-
agement of green data centers: A profit maximization approach,” IEEE
Trans. Smart Grid, vol. 4, no. 2, pp. 1017-1025, Jun. 2013.

A. Kiani and N. Ansari, “Profit maximization for geographical dis-
persed green data centers,” IEEE Trans. Smart Grid, to be published,
doi: 10.1109/TSG.2016.2562565.

A. Kiani and N. Ansari, “A fundamental tradeoff between total and
brown power consumption in geographically dispersed data centers,”
IEEE Commun. Lett., vol. 20, no. 10, pp. 1955-1958, Oct. 2016.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

J. Guo, F. Liu, D. Zeng, J. C. S. Lui, and H. Jin, “A cooperative game
based allocation for sharing data center networks,” in Proc. INFOCOM,
Turin, Italy, 2013, pp. 2139-2147.

CVX: MATLAB Software for Disciplined Convex Programming, Version
2.0. Accessed: Nov. 23, 2016. [Online]. Available: http://cvxr.com/cvx
Gurobi Optimization. Accessed: Nov. 23, 2016. [Online]. Available:
http://www.gurobi.com

23, 2016. [Online]. Available:

2091

Abbas Kiani (S’14) received the B.Sc. degree
in electrical engineering from Imam Khomeini
International University, Qazvin, Iran, the M.Sc.
degree in communication engineering from Shahed
University, Tehran, Iran, and is currently pursuing
the Ph.D. degree in electrical engineering at the New
Jersey Institute of Technology, Newark, NJ, USA.

His current research interests include data centers,
cloud computing, network optimization, and green
communications.

Nirwan Ansari (S’78-M’83-SM’94-F’09) received
the B.S.E.E. degree (summa cum laude) from the
New Jersey Institute of Technology (NJIT), Newark,
NJ, USA, in 1982, the M.S.E.E. degree from the
University of Michigan, Ann Arbor, MI, USA, in
1983, and the Ph.D. degree from Purdue University,
West Lafayette, IN, USA, in 1988.

He is a Distinguished Professor of Electrical and
Computer Engineering with NJIT. He has also been
a Visiting (Chair) Professor with several universi-
ties. He has co-authored (with T. Han) Green Mobile
Networks: A Networking Perspective (Wiley—IEEE, 2017) and two other
books. He has also co-authored over 500 technical publications, over 200
published in widely cited journals/magazines. He has also been granted 35
U.S. patents. His current research interests include green communications and
networking, cloud computing, and various aspects of broadband networks.

Prof. Ansari was a recipient of several Excellence in Teaching Awards,
a few Best Paper Awards, the NCE Excellence in Research Award, the
IEEE TCGCC Distinguished Technical Achievement Recognition Award, the
ComSoc AHSN TC Technical Recognition Award, the ComSoc AHSN TC
Outstanding Service Recognition Award, the NJ Inventors Hall of Fame
Inventor of the Year Award, the Thomas Alva Edison Patent Award, and
the Purdue University Outstanding Electrical and Computer Engineer Award.
He has guest edited a number of special issues covering various emerging
topics in communications and networking. He has served on the Editorial
Board and Advisory Board of over ten journals and magazines including
IEEE Communications Magazine (as a Senior Technical Editor). He was
elected to serve on the IEEE Communications Society (ComSoc) Board of
Governors as a Member-at-Large. He was recently selected to serve on the
IEEE Fellow Committee. He has chaired ComSoc Technical Committees
and has been actively organizing numerous IEEE international confer-
ences/symposia/workshops. He has frequently delivered keynote addresses,
distinguished lectures, tutorials, and invited talks. He holds a designation as
a COMSOC Distinguished Lecturer.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on March 23,2022 at 10:36:54 UTC from IEEE Xplore. Restrictions apply.


https://aws.amazon.com/ec2
http://cvxr.com/cvx
http://www.gurobi.com

