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Abstract— This letter proposes a task scheduling scheme
designed for code partitioning over time and the hierarchical
cloudlets in a mobile edge network. To this end, we define the so
called energy-time cost parameters to optimally schedule tasks
over time and hierarchical cloudlet locations. Accordingly, we
investigate two different optimization scenarios. In particular,
the first scenario aims at finding the optimal task scheduling
for given radio parameters. In the second scenario, we carry
out the optimization of both the task scheduling and the mobile
device’s transmission power. More importantly, we show that by
adopting the proposed code partitioning scheme in this letter,
the transmission power optimization problem becomes a disjoint
problem from the task scheduling problem.

Index Terms— Hierarchical mobile edge computing, computa-
tion offloading.

I. INTRODUCTION

THE Mobile Edge Computing (MEC) is recognized as
one of the key emerging technologies for 5G networks

and aims at providing computing capabilities within the Radio
Access Network (RAN) and in proximity of mobile users [1].
In the past few years, the MEC architecture and service man-
agement in MEC has been widely researched, and a variety
of policies and algorithms such as [2] have been proposed.
However, it is still desirable to investigate new networking
architectures and efficient computation offloading models that
better suits the MEC concept.

Computation offloading requires code partitioning to decide
which tasks should be executed locally and which tasks
should be offloaded to the mobile edge depending on different
parameters such as energy and delay. Existing computation
offloading problems in the literature such as [3] and [4]
propose joint optimization framework for the code partition-
ing problem and the radio resource optimization. Such joint
optimization frameworks lead to Mixed Integer Nonlinear
Programming (MINLP) models in which finding the optimal
solution requires an exhaustive search over all the useful
call graph partitions, i.e, all the configurations that satisfy
the feasibility conditions. Accordingly, these schemes pro-
pose to find sub-optimal solutions for code partitioning and
then optimize the radio resources for a given partitioning.
A message-passing approach for the same problem is proposed
in [5] which reduces the complexity of the computation
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Fig. 1. System model.

offloading problem. However, the proposed model in [5] con-
siders the code partitioning problem between a mobile device
and only one remote location. In this letter, inspired by distrib-
uted processing systems [6], we propose to use the shortest tree
algorithm to optimally schedule tasks in mobile edge networks.
More importantly, we extend the code partitioning problem
to scheduling problem over time and a hierarchical mobile
edge. To this end, we investigate two different optimization
scenarios. In particular. the first scenario aims at finding an
optimal task scheduling for given radio parameters. In the
second scenario, we investigate joint optimization of task
scheduling and the mobile device’s transmission power, and
show that by using the proposed scheduling scheme, the
transmission power optimization problem becomes a disjoint
problem from the task scheduling problem.

The rest of the letter is organized as follows. Section II
describes the system model and problem formulation. We
investigate our task scheduling scheme and the corresponding
scenarios in Section III. Finally, Sections IV and V present
numerical results and conclude the letter, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a Hierarchical Mobile Edge Computing (HI-
MEC) architecture [7] shown in Fig. 1. The HI-MEC architec-
ture consists of field, shallow and deep cloudlets. In particular,
in a HI-MEC environment, the field cloudlets as the resource-
poor facilities are co-located with Small Cell enhanced Node
Bs (SCeNBs). The shallow cloudlets as the resource-modest
facilities are also hosted at the first level of aggregation nodes,
i.e., at Point of Presences (PoPs). Moreover, a resource-rich
facility called the deep cloudlet is located at the mobile
backhaul. We consider a two-time scale model in which the
running time of the HI-MEC environment is divided into a
sequence of time frames at equal length, T , e.g., five minutes.
Each time frame itself is also divided into a sequence of time
slots at equal length, τ , e.g., one minute. We assume one time
frame consists of N time slots and denote t0, . . . , tN−1 as the
set of time slots in a time frame. At the beginning of each time
frame, each SCeNB broadcasts the available computational
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Fig. 2. Call tree.

capacities at the field, shallow and deep level to their MUs.
In fact, a centralized controller at the deep cloudlet equipped
with a data management model as well as a global view of
the network predicts the workloads during the next few time
slots and accordingly allocates the resources to the MUs. The
centralized controller informs the SCeNBs about the allocated
resources to each MU. The allocated resources within a time
slot are assumed to be fixed but changing from a time slot
to the next time slot. A MU’s application is described by a
call graph, i.e., a directed acyclic graph as G = (V ; E). The
call graph represents the relation among the tasks in which
the MU’s application can be partitioned. For example, the
call graph of a face recognition application [8] is shown in
Fig. 2. Each vertex represents a task vi in the call stack
and each edge e = (vi ; v j ) shows an invocation of task
v j from task vi . Each task node vi is characterized by its
workload, λvi , i.e., the number of CPU cycles required to
complete the execution of the task. Each edge (vi ; v j ) ∈ E
is also characterized by the number of bits (Dvi ,v j ) that must
be transferred from the parent task vi to child task v j . In
the rest of the letter, we consider a given MU of interest in
defining the corresponding notations. The MU can decide to
execute a task locally at the mobile device or remotely at the
available cloudlet locations. The MU’s decision depends on
two factors, energy and delay. The MU’s energy consumption
is the energy required to execute a task locally or to transmit
the required bits to the remote cloudlet (when the parent task
is executed locally and the child remotely), or to receive
the required bits from the cloudlet (when the parent task is
executed remotely and the child locally). On the other hand,
the delay is the time required to execute the task locally or
to transmit the required bits to the remote location. Therefore,
not only the local parameters but also the remote parameters
are contributing to the corresponding cost of each task, i.e,
the energy and time costs. Here, the local parameters include
transmit power Pup , reception power Prx , local computational
capacity μloc (in CPU cycles per second), and local processing
power Ploc. Unlike the remote parameters, we assume that the
local parameters are not changing time slot by time slot.

In terms of the wireless access parameters, we define Cdl
and Cup(Pup) as the capacities of the downlink and the
uplink channels between the MU and its associated SCeNB,
respectively. The remote parameters are the available cloudlet
locations for the MU, the computational capacities at the
cloudlets and the data rates on the corresponding links. Let’s
assume the MU is associated with SCeNB s and AC is

the set of all available remote locations, which provision a
field, a shallow and the deep cloudlet. Let μ

tn
x also be the

remote computational capacity that can be assigned to the
MU at cloudlet x ∈ AC during time slot tn . Moreover, we
assume Ctn

s,x is the maximum data rate that can be allocated
to the MU between SCeNB s and the cloudlet x during
time slot tn . Similarly, Ctn

x,y is the maximum data rate that
can be allocated to the MU between two cloudlets x ∈ AC
and y ∈ AC . It is assumed that a task is allowed to start
execution only at the beginning of a time slot. However, the
data from a parent task to a child task is assumed to be
transferred as soon as the parent task execution is completed.
We also assume that once a task starts executing during a
time slot (once a data from a parent task to a child task
starts transferring over the network), it is allowed to execute
to completion (to transfer to completion) even if the time slot
ends during execution (transfer) but with the same allocated
computational capacity (data rate). Based on the defined local
and remote parameters, we can translate the computation and
communication requirements of the tasks and the edges on the
MU’s call graph to an energy-time cost parameter as follows,

ET C = ζ1(energy cost) + ζ2(time cost) (1)

where ζ1 and ζ2 are two coefficients as the weights of the
energy and time, respectively. The MU can flexibly choose
the coefficients that favors more their demands. For example,
a user with a low battery level may like to put more weight
on the energy [9]. According to the proposed model, the MU
not only has the option to execute a task at |AC | + 1 different
local and remote computing locations (including the mobile
device) but also in N time slots. Thus, the task offloading
decision problem can be modeled as an assignment problem in
a distributed processors system with (|AC |+1)×N processors.
In terms of the local ETC of a task, let’s define ET Ctn

loc(vi ) as
the ETC of task vi when executed locally at the mobile device
in time slot tn . ET Ctn

x (vi ) is also defined as the ETC of task
vi when executed at location x during time slot tn . Moreover,
ET Ctn,tm

loc,x (Dvi ,v j ) is assumed to be the ET C between two
tasks vi executed locally at the mobile device during time slot
tn and v j executed remotely at cloudlet x during time slot tm
for m > n where Dvi ,v j is the number of bits that must be
transferred from task node vi to v j . ET Ctn,tm

x,loc(Dvi ,v j ) indicates
the same ETC but vi executed remotely at cloudlet x and v j

locally at the mobile device. Similarly, let ET Ctn,tm
x,y (Dvi ,v j ) be

the ET C between two tasks vi executed remotely at cloudlet
x during time slot tn and v j executed at cloudlet y during time
slot tm . Then, we can calculate the following ET Cs,

ET Ctn
loc(vi ) = ζ1 Ploc(

λvi

μloc
) + ζ2(nτ + λvi

μloc
) (2)

ET Ctn
x (vi ) = ζ2(nτ + λvi

μ
tn
x

) (3)

ET Ctn ,tm
loc,x (Dvi ,v j ) =

⎧
⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎩

ζ1 Pup(
Dvi ,v j

Cup(Pup)
) + ζ2(Dvi ,v j

(
1

Cup(Pup)
+ 1

Ctl
s,x

)), m ≥ k + 1

∞, m < k + 1
(4)
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where l = �n + λvi
τμloc

� and k = �n + λvi
τμloc

+
Dvi ,v j

τ ( 1
Cup(Pup)

+ 1
C

tl
s,x

)�.

ET Ctn,tm
x,loc(Dvi ,v j )

=
⎧
⎨

⎩

ζ1 Prx (
Dvi ,v j

Cdl
) + ζ2(Dvi ,v j (

1

Cdl
+ 1

C
tl�
s,x

)), m ≥ k � + 1

∞, m < k � + 1

(5)

ET Ctn,tm
x,y (Dvi ,v j ) =

⎧
⎨⎨

⎨⎩

ζ2(
Dvi ,v j

C
tl�
x,y

), m ≥ k �� + 1

∞, m < k �� + 1
(6)

where l � = �n + λvi

τμ
tn
x

�, k � = �n + λvi

τμ
tn
x

+ Dvi ,v j
τ ( 1

Cdl
+ 1

C
tl�
s,x

)�
and k �� = �n + λvi

τμ
tn
x

+ Dvi ,v j

τC
tl�
x,y

�.

ET C
tn,tm≥l+1
local,local(Dvi ,v j ) = ET C

tn,tm≥l�+1
x,x (Dvi ,v j ) = 0 (7)

Moreover, some of the tasks in a call graph are required
to be executed locally. For example, the user interface task
in Fig. 2 which initiates the application must be executed
locally at the mobile device. Therefore, the ETC of executing
such tasks remotely is set to infinity. Based on the defined
ETC parameters, the code partitioning problem over time
and hierarchical cloudlets can be formulated as the following
MINLP

minimize
0≤Pup≤Pmax , I x,tn

vi ∈{0,1}

�

vi∈V

�

x∈AC �

N−1�

n=0

I x,tn
vi

ET Ctn
x (vi )

+
�

(vi ;v j )∈E

�

x∈AC �

�

y∈AC �

N−1�

n=0

N−1�

m=0

I x,tn
vi

×I y,tm
v j

ET Ctn,tm
x,y (Dvi ,v j )

s.t .
�

x∈AC �

N−1�

n=0

I x,tn
vi

= 1 ∀vi ∈ V

�

vi∈V

I x,tn
vi

= 1 ∀x ∈ AC �, n = 1, . . . , N − 1 (8)

where I x,tn
vi = 1 if task vi is executed at cloudlet x during

time slot tn , and I x,tn
vi = 0 otherwise. Set AC � is also the set

of all cloudlets plus the mobile device.

III. OPTIMAL HIERARCHICAL TASK SCHEDULING

Note that (8) defines a mixed integer program which
involves binary and real variables. Finding an optimal solution
to this problem requires an exhaustive search over all the use-
ful code partitions and entails a complexity that is exponential
in the number of tasks. Therefore, we investigate an optimal
scheduling scheme to solve problem (8) for two optimization
scenarios. In the first scenario, we are interested in finding an
optimal task scheduling for given radio parameters, i.e., the
case that variable Pup in the optimization problem (8) is fixed.
In the second scenario, beside finding the optimal scheduling,
we also optimize the transmission power at the mobile device,
i.e., Pup . Note that in the scheduling scheme to be presented
in this section, it is assumed that the MU’s call graph is a
directed tree.

Fig. 3. Scheduling graph and one of the corresponding assignment trees.

A. Optimal Scheduling for Given Radio Parameters

Fig. 3 shows an scheduling graph for a time frame consisting
of four time slots and one of its corresponding assignment
trees. Each node of the scheduling graph corresponds to the
execution of a task in a given time slot and at a given
cloudlet location. As shown in Fig. 3, in time slot t1, the local,
shallow and deep cloudlets are all available to execute task v1.
However, as task v1 initiates the application, it is required to
be executed locally. Therefore, task v1 is scheduled only at
the local location. In time slot t2, while the local and the deep
locations are available to execute task v2, the field and shallow
locations are unavailable due to for example peak load at the
corresponding SCeNBs. Accordingly, task v2 is scheduled to
be executed either locally or at the deep cloudlet. Moreover,
we assume that the execution of task v2 takes more than the
duration of one time slot. Therefore, no matter which locations
are available during time slot t3, child tasks v3 and v4 have
to wait until the execution of parent task v2 is completed,
i.e., time slot t4. Then, tasks v3 and v4 can be scheduled at
the local, field and deep locations. We assume that two tasks
cannot be scheduled at the same cloudlet location in one time
slot. In fact, if task v3 is scheduled to be executed locally, task
v4 has to be executed either at the field cloudlet or the deep
cloudlet. An assignment graph also has some distinguished
nodes including one source node and several terminal nodes.
In particular, there is one terminal node for each leaf node of
the call tree.

Note that each scheduling of the tasks to different cloudlet
locations and different time slots corresponds to a subgraph
of the scheduling graph. The subgraph plus the source and the
terminal nodes is called an assignment tree, and it connects
the source node to all the terminal nodes. The weight of
an edge on the assignment tree connecting parent task vi ,
executed at cloudlet x during time slot tn , to child task
v j , executed at cloudlet y during time slot tm , is equal to
ET Ctm

y (v j ) + ET Ctn,tm
x,y (Dvi ,v j ). The ETC of the source and

the terminal nodes as well as the weight of the edges that
connect the leaf tasks to the terminal nodes are assumed to
be zero (see the assignment tree in Figure 3). Moreover, the
weight of each assignment tree which indicates the ETC of
that assignment is established by the sum of the weights of
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all edges in it. Therefore, the optimal assignment corresponds
to the assignment tree which has the minimum weight. The
minimum weight assignment tree of an application, which
involves M tasks, N time slots, and |AC |+1 cloudlet locations,
can be found by dynamic programming with complexity
O(M × N2 × (|AC | + 1)2) [6].

B. Optimal Scheduling While Optimizing the
Transmission Power

In this section, we are interested in both finding the
optimal scheduling and optimizing the transmission power
at the mobile device, i.e., Pup . We show in the following
theorem that the optimal scheduling and the optimization of
the transmission power are disjoint optimization problems that
can be solved independently.

Theorem 1: The scheduling optimization problem and the
transmission power optimization are disjoint optimization
problems.

Proof: We first assume that the transmission power is
given. Then, following the optimal scheduling scheme for
given radio parameters, the optimal scheduling corresponds
to the assignment tree that has the minimum weight. On the
other hand, according to the defined ETCs, factors ζ1 Pup+ζ2

Cup(Pup)
appear on the weight of an assignment tree. Therefore, one
can first minimize ζ1 Pup+ζ2

Cup(Pup)
by optimizing Pup and then find

the optimal scheduling for the given optimal Pup . The proof
is complete.

Therefore, we propose a disjoint optimization framework in
which we first solve the following optimization problem to
find the optimal transmission power,

minimize
0≤Pup≤Pmax

ζ1 Pup + ζ2

Cup(Pup)
(9)

Then, we follow the optimal scheduling scheme in the pre-
vious section for the given optimal transmission power. The
optimization problem in (9) becomes strictly convex with the
change of variables Z = Cup(Pup) [4] and thus can be solved
by efficient convex optimization techniques.

IV. SIMULATION RESULTS

In this section, we evaluate the results of the proposed
optimal code partitioning scheme. To this end, we consider the
call tree of Fig. 2 and assume λv1 = 2 M cycles. We also set
λv2 = 18.1 M cycles, λv3 = 92.6 M cycles, λv4 = 256.1 M
cycles, Dv1,v2 = 182 kB, Dv2,v3 = 4675 kB and Dv2,v4 =
13860 kB [8]. Moreover, we consider an scheduling graph
consisting of four time slots and we assume the computational
capacity of a cloudlet location during a time slot is fixed and
between 10 to 14 G cycles per second if it is available, and
is equal to zero otherwise. The local computational capacity
is also set to 100 M cycles per second. In terms of the
uplink channel, we set the channel bandwidth to 5 MHz,
the transmission power budget constraint to 100 mW, and
the background noise to −100 dBm [9]. For performance
evaluations, we define the normalized energy-time gain as
ET Call locall −ET Ccode partitioning

ET Call locall
where ET Call locall is the ETC

incurred if all the tasks are executed locally. Fig. 4 compares
the normalized energy-time gain of the proposed scheme with
MINLP model. The OPTI toolbox combined with NOMAD,

Fig. 4. Normalized energy-time gain of code partitioning versus local
processing power.

which is an excellent derivative free MINLP solver, is used
to solve the MINLP problem. As demonstrated in Fig. 4, the
proposed scheme performs better than the MINLP model. This
result is attributed to the fact that in the proposed scheme
we first optimize Pup and then carry out the scheduling
optimization for the optimal value of Pup .

V. CONCLUSION

In this letter, we have proposed a task scheduling scheme for
offloading computation over time and the hierarchical mobile
edge. To this end, we have studied two different optimization
scenarios. In particular, in the first scenario, we have found
an optimal task scheduling for given radio parameters. In the
second scenario, we have investigated the joint optimization
of task scheduling and the mobile device’s transmission power
in which we have showed that by using the scheduling
task in this letter, the problem of optimizing the transmis-
sion power becomes a disjoint problem from the scheduling
problem.
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