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Abstract—Automatic road detection is a challenging and rep-
resentative computer vision problem due to a wide range of
illumination variations and weather conditions in real traffic.
This paper presents a novel real-time road detection method that
is able to accurately and robustly extract the road region in real
traffic videos under adverse illumination and weather conditions.
Specifically, the innovative global foreground modeling (GFM)
method is first applied to robustly model the ever-changing
background in the traffic as well as to accurately detect the
regions of the moving objects, namely the vehicles on the road.
Note that the regions of the moving vehicles are reasonably
assumed to be the road regions, which are then utilized to
generate in total seven probability maps. In particular, four
of these maps are derived using the color values in the RGB
and HSV color spaces. Two additional probability maps are
calculated from the two normalized histograms corresponding to
the road and the non-road pixels in the RGB and grayscale color
spaces, respectively. The last probability map is computed from
the edges detected by the Canny edge detector and the regions
located by the flood-fill algorithm. Finally, a novel automatic
road detection method, which integrates these seven masks based
on their probability values, defines a final probability mask for
accurate and robust road detection in video.

1. INTRODUCTION

Region of interest (Rol) determination is one of the most
important and fundamental pre-processing steps in many im-
age and video processing applications. A well-defined region
of interest contains all the important location of the image
while excluding the unnecessary regions from the processed
data in the tasks of image and video analysis. Lowering the
amount of required computational resources, increasing the
processing speed, and reducing faulty results are some of the
benefits of determining an Rol. The focus of this study is
automatic Rol determination in traffic videos which is mostly
associated with the road region where the vehicles are located.
Road region recognition is a crucial step in many computer
vision applications such as self-driving vehicles, intelligent
driver assistant systems, traffic surveillance, and navigation
systems.

There have been many studies addressing the issue of
vision-based road recognition in recent years in applications
regarding in-vehicle cameras [1]-[3] and traffic video surveil-
lance [4]-[7]. Most recently, convolutional neural networks
have attracted a lot of attention in computer vision applications
including road segmentation [8]-[13]. However, the need for
large amount of training data and computational resources
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along with lack of sufficient generalization ability, makes it
difficult to apply these methods in real-world applications.

In this paper, we propose an adaptive road recognition
method that extracts the road location from single frames in
a traffic video sequence and further updates and refines the
estimated road region as more video frames are processed.
No assumption about the structure of the road is made and
therefore, this method can be used for structured and unstruc-
tured road scenarios. The locations of moving vehicles are
appropriately assumed to associate with the roadway region
and they are utilized as color samples to estimate the location
of road pixels. A novel foreground segmentation technique
[14] based on Gaussian mixture models is applied in order to
detect the moving vehicles and subtract the stable background.
The pixel values of the background image at the corresponding
location of the vehicles are utilized as initial road samples and
several road probability maps are generated. The extracted
probability values are then combined in order to estimate a
more accurate road region map which is further refined by
using the aggregated foreground mask.

The remainder of this paper is organized as follows. Section
II describes the proposed road detection method in details. In
section II-A an approach is discussed to define the initial road
samples based on the location of moving vehicles. Section
II-B contains details on generating several road probability
maps which are further combined and refined by the approach
narrated in section II-C. The performance of the proposed
method is evaluated by using real traffic videos in section III,
and we conclude the paper in section IV.

II. A NEW AUTOMATIC METHOD FOR ROAD REGION
EXTRACTION

Manually determining the region of interest, which in traffic
video analysis refers to the road region, is an exhaustive and
time-consuming task for human agents. Here, a fully automatic
approach for road segmentation and Rol determination is
proposed to reduce the manual effort. The proposed method
can be performed in real-time and is adaptive to camera
view changes and various illumination scenarios. The only
assumption made is about the location of the vehicles which
are assumed to move mostly along the road region. Our
proposed method has mainly two contributions: (i) The new
road probability estimation method can generate a reliable road
map from the initial frames of the video without the need to
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Fig. 1: Sampling the road pixels from the background image
based on the direction of moving vehicles in order to avoid
sampling non-road pixels. The red color indicated the location
of the sampled road pixels.

wait for many vehicles to pass along the road region. (ii) The
novel road segmentation method can automatically refine the
initial road map and find the region of interest to use in traffic
surveillance video analysis tasks.

A. Selection of the initial road samples

In case of applications with an on-board camera system,
initial road samples are usually taken from a triangular area
in front of the vehicle. In contrast, in applications with a
stationary camera overlooking the roadway, the initial road
samples can be extracted based on the location of moving
vehicles. The further steps for road segmentation based on
the initial samples can be commonly used among applications
of traffic surveillance and self-driving vehicles. The focus
of this study is on automatic Rol determination in traffic
surveillance videos. However, our proposed feature extraction
and classification approach can work for road segmentation in
self-driving vehicles as well.

In order to obtain an estimate of the road region during
the initial frames of the video, first we attempt to detect the
vehicles and segment them from the still background. The
global foreground modeling (GFM) method introduced in [14],
[15] is utilized to detect the location of the moving vehicles
and to subtract the stationary background image from the
video frames. The GFM foreground segmentation approach
is chosen due to its ability to quickly subtract the background
in a video captured by a stationary camera. Also, the GFM
method is robust in dealing with stopped vehicles which are
continuously detected as foreground and therefore separated
from the background image. The road estimation method is
applied on the subtracted background with the assumption
that most vehicles pass along the roadway. The corresponding
location of the moving and stopped vehicles in the background
image is considered to be samples of the road region which are
in turn utilized to estimate the probability of all background
pixels. The generated probability maps are further used to
classify the pixels into road and non-road in order to segment
the road region from other areas and determine the Rol based
on the extracted road map.

The selected pixels for road samples should be exclusively
from the road region in order to obtain a good estimation
of road pixel-values. In many intelligent vehicle systems
such as automatic driving, and advanced driver assistance
systems where the field of view is similar to that of the
driver’s, the road region priori is approximated as a triangular
region at the mid-bottom of the frame [16]-[18]. In case of
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Fig. 2: Extracting the auxiliary road region probability maps
using difference images. (a) The background image. (b), (c),
(c) are the gray-scale, color, and hue difference images,
respectively.

traffic surveillance videos where the cameras are overlooking
the road, there can be no initial assumption of the road’s
location without any observation of the images. Here, a valid
assumption is made that most of the pixels in the background
image with locations corresponding to those of the vehicles in
the foreground mask belong to the roadway region. However,
due to the variety of camera view angles, different sizes of
vehicles, and occasional movements in the non-road regions,
some of the pixels of the foreground mask can belong to the
areas outside of the road. Therefore, the vehicles are tracked
and after a few number of initial frames, the foreground mask
is filtered by taking into account the moving direction, track
lifetime, and the displacement vector size of each vehicle.
So that it is possible to comply with real-time constraints of
the traffic management systems, a fast multi-object tracking
method [19] is applied.

In order to obtain a mask containing pixels that represent
road samples €., only the foreground mask of vehicles
with sizable movement and long enough tracking life-time are
considered. The moving direction of each vehicle is estimated
and updated as follows in each sequence of f frames:

Ve = Ty — Ty

Vy = Ymy — Ymy

d; = arctan(vy, vy)

My, = V2 + 2

where v, and v, are the components of the velocity vector,
ZTm, and y,,, are the average x and y values of the blob
centroid in the most recent f/2 frames, x,,, and y,,, are the
average x and y values of the blob centroid in the remaining
f/2 frames, d; is the estimated direction of the vehicle ¢, and
m,,, 18 the estimated magnitude of the vehicle ¢, respectively.
The filtered foreground mask of each vehicle is then cropped
with regards to its moving direction so that only the part
that corresponds to the road region is added to the g,
mask. Figure 1 illustrates some examples of the road sampling
strategy which helps avoid including non-road regions in the
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Fig. 3: Extracting the auxiliary road region probability maps
using difference images. (a) The background image. (b), (c),
(d), (e) are the extracted probability maps Pg, P, Py, and
Pg, respectively.

Q,sm at the boundaries of the roadway. The road samples are
accumulated throughout the video and the €., mask will
cover more parts of the road when more vehicles pass along
the roadway.

B. Road region probability map extraction

Generating a single probability map that represents the
roadway region in all cases is rather difficult due to the variety
of illumination, texture, color and other visual conditions.
Therefore, generating multiple probability maps and merging
them helps obtaining a more reliable probability distribution
for classifying the pixels into road and non-road regions. In
this section, multiple approaches are taken in order to generate
a number of probability maps using low-level features, e.g.,
color, edge, and temporal features. The generated probability
maps are further combined together to obtain a binary clas-
sification mask which is in turn refined by the accumulative
foreground mask as the number of passing vehicles increases.

1) Extraction of probability maps based on difference im-
ages: One approach to estimate the road probability of the
pixels is to compare the pixel’s value to the average value
of the initially selected road samples in §2,.,,. Similar to the
approach used in [20], [21] the gray-scale image G* of back-
ground is first smoothed by applying a Gaussian convolution
kernel of size 3 x 3 to reduce the noise effect. Then the absolute
difference between the mean value G7,,, of the grayscale
image in the location of €2,.,,, and each pixel in the smoothed
grayscale image is utilized to obtain a gray-scale difference
image G. A similar process is carried out on the three channels
of the smoothed background image and the three outputs are
added together to obtain another difference image C' based
on the color input. In traffic scenes where the roadway is
considerably different in color from the surrounding area the
hue channel of HSV color space can be a distinguishable factor
in segmenting the road pixels from the image, especially at
the boundaries of the road. The background image is also
converted to HSV color space and the hue channel is utilized
to acquire a difference image H through a similar process.
Figure 2 illustrates sample difference images obtained from
real traffic video data.
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Lower values in the difference images correspond to the
parts of the image that are closer to the average value of the
road pixels in €2,.5,, and have a higher probability of belonging
to the road region. Therefore, the probability value of each
pixel should be inversely proportional to the corresponding
pixel in the difference image. Probability maps can be esti-
mated accordingly based on the difference images obtained
so far in which the probability of each pixel is calculated as

follows: P o) 1 - K(p:) 2)
K\Pi maz (K (p;)|pi € K)

where ¢ = 1...N is the pixel index, K € {G,C, H} refers
to each difference image, and Py (p;) is the probability of
the pixel p; belonging to the road region in the difference
image K. In order to normalize the brightness and increase the
probability contrast of the probability maps, their histograms
are normalized to obtain an approximation of the probability
density function, and the normalized histograms are equalized
as follows:

Hy pr = Z Hp; (m)
0<m<n

P (pi) = Hp, (Pic(pi))

where ¢ = 1...N is the pixel index, K € {G,C, H} represents

each difference image, H Py and H ;D, are the normalized

histogram and the integral histogram of probability map Py,

respectively, and P refers to the equalized histogram of each
probability map.

The pixels representing the road region in traffic videos
usually have a close value in most parts of the roadway
contained in the frame and the road samples represent a high
percentage of the road pixels. Therefore, the standard deviation
is usually assumed to have a relatively small interval with a
high level of confidence. The further the pixel values in G are
from the standard deviation of the pixels in the road sample
mask Q,.¢,,, the probability of belonging to the road region
should drop. Considering the standard deviation of the road
samples, another probability map can be obtained as follows
that specifically favors the pixels that are close to the road
samples:

3

a(pi) = maz (0, sgn(G(pi) — orsm))

Ps(p) =1 —a() 2P 4 Ly g1 < G0)

koysm k2
where p; € G, i = 1...N, 0,4, is the standard deviation of
the pixel values in s, mask of G, k is a natural number
in {k € N|1 < k < max(G(p;) — 0rsm)}, and Ps(p;) is the
resulting probability map. Figure 3 represents the extracted
probability maps from the difference images.

2) Extraction of probability maps based on histogram mod-
els: Another approach of estimating the road region proba-
bility of each frame is to utilize histogram models extracted
from the road and non-road samples. Similar to the approaches
used in [16], [22], a similarity measure is used in order to
generate probability maps that help classify the road and non-
road pixels. The non-road samples are taken from the regions

<k “)

Orsm
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outside of the final estimated road region in the previous frame.
The normalized histograms of the blue and green channels of
the background image and the gray-scale image G* are used
to estimate probabilities as follows:

Ni (K (pi))
Pr(pi) = b o (@)
N (K (pi)) + NE“ (K (pi))
where i = 1.N is the pixel index, K S

{Blue, Green, Gray} refers to the blue and green channels
of the background image and the gray-scale image G*,
N (K(p;)) and N (K (p;)) are the values of the K (p;)th
bin in the histogram models obtained from the road samples
in .., and non-road samples of the previous frame
respectively, and Pk (p;) is the probability of the pixel p;
belonging to the road region in the image K. Since the
histogram models of the red channel and gray-scale of
background image are close (as seen in Figure 4(b)), the
red-channel histogram is not considered and two probability
maps Pghist and Pgphist = Pareen + Ppiue are obtained
from the gray-scale image G* and a combination of green
and blue channels of the background image, respectively.

3) Extraction of probability maps based on edge informa-
tion: In many road detection methods [20], [23]-[26] gradient
filters are applied in order to differentiate between the road
and non-road regions based on the presumed fact that the
road region contains considerably less amount of gradient
information compared to the surrounding areas. This is usually
not the case in traffic surveillance videos where the objects
are further from the camera and the edge density is not much
higher in the non-road regions. However, the dominant road
boundaries create strong edges which can be used along with
the location of the vehicles to separate the road region from
the surroundings. The Canny edge detection method is applied
on the gray-scale difference image G with lower and upper
thresholds set to 7; 0.66 x M and 7, 1.33 x M
respectively, where M is the median luminance of G. Since
the geometric distortion caused by the perspective view of the
camera lens results in the losing valuable edge information
in the regions that are further from the camera. Therefore, the
horizontal line can be estimated and considered as a secondary
boundary in addition to the background edges in order to avoid
including the areas like sky above the vanishing point inside
the road region.

In order to avoid the inclusion of non-road pixels as seed
points for flood-fill operation, a single block from the colored
difference image C' located at one of the corner points of
each vehicle’s surrounding bounding box is chosen as road
samples. The selected corner is picked according to the moving
direction of each vehicle in order to make sure the sample
block is certain to belong entirely to the road region. The
pixels in the chosen blocks form a flood seed mask €y,
which contains the starting nodes for the procedure of flood-fill
algorithm. The extracted edges from the gray-scale difference
image GG along with the horizontal line are used as boundaries
for the flood-fill algorithm with a connectivity value of 4, in
order to fill the connected components with a constant value
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(C)

Fig. 4: Extracting the road region probability maps using his-
togram models. (a) The background image. (b) The histogram
plot representing the RGB channels and gray-scale image of
the background image. 4(c), (d) are the extracted probability
mapa Pgphist and Pgpist, respectively.

in a flood-fill mask image M. The maximal lower and upper
intensity difference between the currently observed pixel and
one of its four nearest neighbors of the same component, or
a new seed pixel being added to the component is calculated
based on the standard deviation of the colored difference image
C as follows:

1N
m:N;C(m)

s:¢zfmmwm2
N

(6)

thr = max(1, %)

where m is the mean value of the colored difference image C,
N is the total number of pixels in the background image, p; is
the intensity value of the i-th pixel, k is a pre-defined constant,
and thr is the maximal lower or upper intensity difference.

C. Updating and merging the extracted probability maps

The extracted probability maps are updated in order to
bring into account the gathered information from all observed
frames. As more vehicles pass along different locations of the
roadway, the number of pixels in the 2 grows which makes
the probability maps of the latest frames more reliable than
the initial values. Also, when a pixel repeatedly appears in
the foreground mask of the moving vehicles, it is more likely
to belong to the road region. Therefore, all probability maps
are updated by applying the temporal fusing algorithm at each
frame as follows:

Y w! x Ph(p)

Pf{(Pi)

1“‘21}:1 wf
N (7
w! =0, (p))
j=1
where ¢ = 1..N is the pixel index, wf is the
weight associated with pixel p; at frame f, K €
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Fig. 5: The process of merging and refining the probability maps. The extracted probability maps are combined and the Otsu’s
threshold is applied on the result. The non-road pixels that are misclassified as a part of the road region due to similar color
values are later filtered out by intersecting the binary image with the accumulative foreground mask.

{G,C, H, S, Ghist, GBhist, F'} refers to the source of each
probability map, P}; (pi) is the probability value of pixel p; at
frame f, M € {rsm, fsm} is the source of the sample mask
containing the initial seed points, Q{w (pi) € {0, 1} is the value
of p; in the accumulative road sample mask of frame f, N is
the total number of pixels in each frame, and P (p;) is the
updated probability value of pixel p;.

The updated probability values for each pixel extracted
from different sources should be combined with each other,
in order to obtain a consensus estimation. If we denote the
set of all pixels with A" and the set of extracted probability
maps with K, the event R; specifying whether a pixel i € N/
belongs to the road region or not, can be considered as a
Bernoulli random variable Ber(g;) where ¢; € [0,1]. R; =1
means ¢ belongs to the road region and R; = 0 means 4 is
a non-road pixel. The set of generated probability maps K,
contains several estimations, each of which is drawn from
a different source of information. We denote the probability
prediction of source j made on pixel ¢ with p; ; € [0,1]. To
solve a probability aggregation problem, we need to design
a function F : ([0, 1])VI*IKI — [0,1]WV] that takes the
predicted probabilities {p; ;}icarjex as input and generates
an aggregated probability estimation ¢; € [0, 1] for each pixel
i.

Some simple approaches to aggregate probability predic-
tions are arithmetic mean of the probabilities, median of the
probabilities, majority voting, logarithmic opinion pool, and
Beta-transformed linear opinion pool. Here, we use weighted
mean and median in order to solve the aggregation problem
by considering the different degrees of reliability among the
generated probability maps and also, taking into account that
the aggregated estimation should tend towards the majority
opinion in extreme cases of probability predictions. The values
of each pixel 7 in the set K is sorted and the resulting ordered
list X' = {P{,..., P} is utilized to define the weighted

median p) . such that:

K|

k-1
ij <1/2 and Zw‘jgl/Q (8)
=1 j=k

where j = 1...K is the index of the probability maps and
w; is the weight for each map representing its reliability.
Experimental results have shown higher stability of the Pg
and Pgs probability maps and higher weights are assigned to
these source in the aggregation process.

If the values of a pixel in the set of extracted probability
maps K = { P, ..., P, } have a large median, it means that the
pixel has a high value in most probability maps and therefore,
is most likely inside the road region. On the other hand, low
median means most predictions contain a low value for a pixel
and it most likely belongs to the non-road area. The aggregated
probability values are calculated as follows:

(mflkJrl) >k Pl Af P > 0

. k ;

Gi = %ijlpgﬁj Jif i <(1—01) (9
%(p;k + 725’1:];7”) , otherwise

where i € A is a pixel, p; ; 1s the probability value of pixel ¢ in
the sorted probability set K = {p; ;}ien jex, k is the index
of the weighted median value pgy > 0 1s a pre-defined threshold
close to 1, and ¢; is the aggregated probability value for pixel
p;i. The Otsu’s threshold [27] is applied on the resulting map
in order to filter out the regions with low probability value.
When the intersection between the binary probability mask
and the aggregated foreground mask surpasses a threshold,
the accumulative foreground mask has covered most of the
road pixels after morphological dilation with a size close
to the average size of vehicles. As illustrated in fig. 6, the
intersection between the accumulative foreground mask and
the binary fused probability mask is utilized as the final
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Fig. 6: The F-measure score, accuracy, and false-positive rate of the proposed road extraction method at different frames, tested
on some of the sample traffic videos. The sudden improvement in the performance measures happens when the first vehicle is
observed in the video sequence and the initial road samples are obtained based on its location.

estimated road region. This way, the possible misclassified
non-road regions are removed and the final road map is
refined by the exclusion of the over segmentation and leak
segmentation errors. In the rare cases of misclassifying the
non-road regions as road pixels, the accumulative foreground
mask can be applied to remove the misclassified regions from
the final road mask while keeping the information about road
boundaries. The foreground mask at each frame is obtained
by applying the GFM method along with the blob-tracking
approach in order to only consider the location of moving
vehicles. The foreground blobs are selected by considering
their size and moving distance in order to filter out the
blobs corresponding to the non-vehicle objects at the non-road
regions and slow-moving vehicles. The entire foreground mask
of a vehicle is added to the accumulative mask with a weight
equal to its moving distance only when the track associated
to that vehicle has been inactive for a certain period of time.
This way, the vehicles with larger moving distances contribute
more to the accumulative foreground mask. The final mask is
normalized at each frame as it is divided by the maximum
value.

III. EXPERIMENTS

In this section, the performance of the proposed method
is evaluated on different videos with various illumination
and weather conditions, resolution, and frame-rate values in
order to ensure the diversity of the tested data. The used
dataset, provided by New Jersey Department of Transportation
(NJDOT), contains 84 real traffic surveillance videos with vari-
ous illumination conditions, road shapes, resolutions, viewing
angles, and frame-rates. A sample frame of each videos is
displayed at the first rows of Figures 7 and 8. The ground-
truth mask representing the road region corresponding to each

video is illustrated at the second rows of Figures 7 and 8 and
the third rows present the resulting extracted road as a red
mask on the background image of each video. The experiments
were carried out using a DELL XPS 8900 PC with a 3.4 GHz
processor and 16 GB RAM. The average speed was ~ 42.22
frames per second for videos of size 720 x 480 pixels, which
shows the feasibility of the proposed method for real-time
applications.

In order to evaluate the quantitative results, several evalua-
tion metrics are utilized as follows:

FPR = Fp/(Fp + Ty)
PRE = Tp/(Tp + Fp)

REC =Tp/(Tp + Fy) (10)
ACC = (Tp + Tn)/(Tp + Fp + Ty + Fy)

Fy, =2 x (PRE x REC)/(PRE + REC)

where Tp, Fp refer to the number of pixels correctly and
incorrectly detected as part of the road region, and 7Ty and
F'y are the number of pixels that are correctly and incorrectly
detected as part of the non-road region, respectively. F'PR,
PRE, REC, ACC, and F; refer to false positive rate,
precision, recall, accuracy, and F-measure respectively. The
number of pixels classified as road and non-road are compared
with the ground-truth data to calculate each measure. Figure 6
demonstrates the accuracy, F1 score, and false-positive rate
charts for a number of traffic videos. An instant improvement
in the detection results can be seen in the charts shown in
Figure 6 which corresponds to the frame at which the first
vehicle is observed in the video and a number of pixels
corresponding to the location of the vehicle can be used as
initial road samples.
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Fig. 7: Road extraction results in regular traffic videos. The first row displays a sample frame of each video. The second row
represents the ground-truth road region masks. The third row illustrates the extracted road region by the proposed method
before applying the accumulative foreground mask.

12T / 52%

bk 3

527|216l
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Fig. 8: Road extraction results in traffic videos with challenging illumination conditions. The first row displays a sample frame
of each video. The second row represents the ground-truth road region masks. The third row illustrates the extracted road
region by the proposed method before applying the accumulative foreground mask.

TABLE I: The quantitative evaluation of the proposed method

Video # [ 1 2 3 4 5 6 7 8 9 10 11 12 [ Average

Precision | 0.98 0.87 1 093 099 099 086 089 097 080 097 099 0.94
Recall 096 093 095 094 087 073 098 09 0.89 092 0.89 091 0.91
F-Score 097 090 097 093 092 084 092 092 093 086 093 095 0.93

Table T shows the quantitative performance of the road ex- there are more false-positive cases than false-negative. This
traction method given 12 sample traffic videos. The precision is due to the overestimation or leak segmentation which is
values are higher than the recall values in most cases, which in turn caused by inconspicuous edges and lack of sufficient
means that the entire roadway region is not always extracted  gradient information at the road boundaries. Another reason is

due to under-segmentation. Some examples can be seen in  the jllumination effect which makes the non-road regions such
Figures 7(e), 7(f), 8(a) and 8(e) This is usually caused by the as sky have similar values to the road pixels. Some examples
perspective view and losing the tracking information at the of this can be seen in Figures 7(b), 7(d), 8(e) and S(f).
far side of the road. Also, strong cast shadows and congested Here, we do not make any presumptions about the shape of
traffic can result in excluding some road pixels at the initial the road in order for the approach to work on unstructured

frames from the rf)ad map (e.g., Figure 8@’»- In some videos, roads. Therefore, segmentation errors cannot be avoided by
the recall value is higher than the precision, which means restrictions based on geometric models.
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IV. CONCLUSION

Region of interest (Rol) determination is an essential pre-
processing step in most image and video analytic applications.
In case of traffic video analysis, the Rol usually refers to
the road region where the objects of interest, i.e., vehicles,
are located. In this paper, an adaptive statistical approach is
proposed in order to extract the road region in real-time and
automatically without the need of manual input. The pro-
posed method can be applied on different videos with various
resolution, frame-rate, illumination, and weather conditions.
The road region extraction is performed by using color and
temporal features and with no assumptions about high-level
features such as the structure of the roadway, which makes the
approach adaptive to various road shapes. The extracted road
region can further be utilized as the Rol in video analytic tasks,
such as anomaly detection, incident detection, recognition
of hazardous driving behavior, speed estimation, and vehicle
counting. The experimental results using real traffic video
sequences provided by NJDOT demonstrate the feasibility and
computational efficiency of the proposed method.
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