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Abstract—Automatic road detection is a challenging and rep-
resentative computer vision problem due to a wide range of
illumination variations and weather conditions in real traffic.
This paper presents a novel real-time road detection method that
is able to accurately and robustly extract the road region in real
traffic videos under adverse illumination and weather conditions.
Specifically, the innovative global foreground modeling (GFM)
method is first applied to robustly model the ever-changing
background in the traffic as well as to accurately detect the
regions of the moving objects, namely the vehicles on the road.
Note that the regions of the moving vehicles are reasonably
assumed to be the road regions, which are then utilized to
generate in total seven probability maps. In particular, four
of these maps are derived using the color values in the RGB
and HSV color spaces. Two additional probability maps are
calculated from the two normalized histograms corresponding to
the road and the non-road pixels in the RGB and grayscale color
spaces, respectively. The last probability map is computed from
the edges detected by the Canny edge detector and the regions
located by the flood-fill algorithm. Finally, a novel automatic
road detection method, which integrates these seven masks based
on their probability values, defines a final probability mask for
accurate and robust road detection in video.

I. INTRODUCTION

Region of interest (RoI) determination is one of the most

important and fundamental pre-processing steps in many im-

age and video processing applications. A well-defined region

of interest contains all the important location of the image

while excluding the unnecessary regions from the processed

data in the tasks of image and video analysis. Lowering the

amount of required computational resources, increasing the

processing speed, and reducing faulty results are some of the

benefits of determining an RoI. The focus of this study is

automatic RoI determination in traffic videos which is mostly

associated with the road region where the vehicles are located.

Road region recognition is a crucial step in many computer

vision applications such as self-driving vehicles, intelligent

driver assistant systems, traffic surveillance, and navigation

systems.

There have been many studies addressing the issue of

vision-based road recognition in recent years in applications

regarding in-vehicle cameras [1]–[3] and traffic video surveil-

lance [4]–[7]. Most recently, convolutional neural networks

have attracted a lot of attention in computer vision applications

including road segmentation [8]–[13]. However, the need for

large amount of training data and computational resources

along with lack of sufficient generalization ability, makes it

difficult to apply these methods in real-world applications.

In this paper, we propose an adaptive road recognition

method that extracts the road location from single frames in

a traffic video sequence and further updates and refines the

estimated road region as more video frames are processed.

No assumption about the structure of the road is made and

therefore, this method can be used for structured and unstruc-

tured road scenarios. The locations of moving vehicles are

appropriately assumed to associate with the roadway region

and they are utilized as color samples to estimate the location

of road pixels. A novel foreground segmentation technique

[14] based on Gaussian mixture models is applied in order to

detect the moving vehicles and subtract the stable background.

The pixel values of the background image at the corresponding

location of the vehicles are utilized as initial road samples and

several road probability maps are generated. The extracted

probability values are then combined in order to estimate a

more accurate road region map which is further refined by

using the aggregated foreground mask.

The remainder of this paper is organized as follows. Section

II describes the proposed road detection method in details. In

section II-A an approach is discussed to define the initial road

samples based on the location of moving vehicles. Section

II-B contains details on generating several road probability

maps which are further combined and refined by the approach

narrated in section II-C. The performance of the proposed

method is evaluated by using real traffic videos in section III,

and we conclude the paper in section IV.

II. A NEW AUTOMATIC METHOD FOR ROAD REGION

EXTRACTION

Manually determining the region of interest, which in traffic

video analysis refers to the road region, is an exhaustive and

time-consuming task for human agents. Here, a fully automatic

approach for road segmentation and RoI determination is

proposed to reduce the manual effort. The proposed method

can be performed in real-time and is adaptive to camera

view changes and various illumination scenarios. The only

assumption made is about the location of the vehicles which

are assumed to move mostly along the road region. Our

proposed method has mainly two contributions: (i) The new

road probability estimation method can generate a reliable road

map from the initial frames of the video without the need to
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Fig. 1: Sampling the road pixels from the background image

based on the direction of moving vehicles in order to avoid

sampling non-road pixels. The red color indicated the location

of the sampled road pixels.

wait for many vehicles to pass along the road region. (ii) The

novel road segmentation method can automatically refine the

initial road map and find the region of interest to use in traffic

surveillance video analysis tasks.

A. Selection of the initial road samples

In case of applications with an on-board camera system,

initial road samples are usually taken from a triangular area

in front of the vehicle. In contrast, in applications with a

stationary camera overlooking the roadway, the initial road

samples can be extracted based on the location of moving

vehicles. The further steps for road segmentation based on

the initial samples can be commonly used among applications

of traffic surveillance and self-driving vehicles. The focus

of this study is on automatic RoI determination in traffic

surveillance videos. However, our proposed feature extraction

and classification approach can work for road segmentation in

self-driving vehicles as well.

In order to obtain an estimate of the road region during

the initial frames of the video, first we attempt to detect the

vehicles and segment them from the still background. The

global foreground modeling (GFM) method introduced in [14],

[15] is utilized to detect the location of the moving vehicles

and to subtract the stationary background image from the

video frames. The GFM foreground segmentation approach

is chosen due to its ability to quickly subtract the background

in a video captured by a stationary camera. Also, the GFM

method is robust in dealing with stopped vehicles which are

continuously detected as foreground and therefore separated

from the background image. The road estimation method is

applied on the subtracted background with the assumption

that most vehicles pass along the roadway. The corresponding

location of the moving and stopped vehicles in the background

image is considered to be samples of the road region which are

in turn utilized to estimate the probability of all background

pixels. The generated probability maps are further used to

classify the pixels into road and non-road in order to segment

the road region from other areas and determine the RoI based

on the extracted road map.

The selected pixels for road samples should be exclusively

from the road region in order to obtain a good estimation

of road pixel-values. In many intelligent vehicle systems

such as automatic driving, and advanced driver assistance

systems where the field of view is similar to that of the

driver’s, the road region priori is approximated as a triangular

region at the mid-bottom of the frame [16]–[18]. In case of

(a) (b) (c) (d)

Fig. 2: Extracting the auxiliary road region probability maps

using difference images. (a) The background image. (b), (c),

(c) are the gray-scale, color, and hue difference images,

respectively.

traffic surveillance videos where the cameras are overlooking

the road, there can be no initial assumption of the road’s

location without any observation of the images. Here, a valid

assumption is made that most of the pixels in the background

image with locations corresponding to those of the vehicles in

the foreground mask belong to the roadway region. However,

due to the variety of camera view angles, different sizes of

vehicles, and occasional movements in the non-road regions,

some of the pixels of the foreground mask can belong to the

areas outside of the road. Therefore, the vehicles are tracked

and after a few number of initial frames, the foreground mask

is filtered by taking into account the moving direction, track

lifetime, and the displacement vector size of each vehicle.

So that it is possible to comply with real-time constraints of

the traffic management systems, a fast multi-object tracking

method [19] is applied.

In order to obtain a mask containing pixels that represent

road samples Ωrsm, only the foreground mask of vehicles

with sizable movement and long enough tracking life-time are

considered. The moving direction of each vehicle is estimated

and updated as follows in each sequence of f frames:

vx = xm2
− xm1

vy = ym2
− ym1

di = arctan(vy, vx)

mvi
=

√
v2x + v2y

(1)

where vx and vy are the components of the velocity vector,

xm2
and ym2

are the average x and y values of the blob

centroid in the most recent f/2 frames, xm1
and ym1

are the

average x and y values of the blob centroid in the remaining

f/2 frames, di is the estimated direction of the vehicle i, and

mvi is the estimated magnitude of the vehicle i, respectively.

The filtered foreground mask of each vehicle is then cropped

with regards to its moving direction so that only the part

that corresponds to the road region is added to the Ωrsm

mask. Figure 1 illustrates some examples of the road sampling

strategy which helps avoid including non-road regions in the
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(a) (b) (c) (d) (e)

Fig. 3: Extracting the auxiliary road region probability maps

using difference images. (a) The background image. (b), (c),

(d), (e) are the extracted probability maps PG, PC , PH , and

PS , respectively.

Ωrsm at the boundaries of the roadway. The road samples are

accumulated throughout the video and the Ωrsm mask will

cover more parts of the road when more vehicles pass along

the roadway.

B. Road region probability map extraction

Generating a single probability map that represents the

roadway region in all cases is rather difficult due to the variety

of illumination, texture, color and other visual conditions.

Therefore, generating multiple probability maps and merging

them helps obtaining a more reliable probability distribution

for classifying the pixels into road and non-road regions. In

this section, multiple approaches are taken in order to generate

a number of probability maps using low-level features, e.g.,

color, edge, and temporal features. The generated probability

maps are further combined together to obtain a binary clas-

sification mask which is in turn refined by the accumulative

foreground mask as the number of passing vehicles increases.

1) Extraction of probability maps based on difference im-
ages: One approach to estimate the road probability of the

pixels is to compare the pixel’s value to the average value

of the initially selected road samples in Ωrsm. Similar to the

approach used in [20], [21] the gray-scale image G∗ of back-

ground is first smoothed by applying a Gaussian convolution

kernel of size 3×3 to reduce the noise effect. Then the absolute

difference between the mean value ¯G∗rsm of the grayscale

image in the location of Ωrsm and each pixel in the smoothed

grayscale image is utilized to obtain a gray-scale difference

image G. A similar process is carried out on the three channels

of the smoothed background image and the three outputs are

added together to obtain another difference image C based

on the color input. In traffic scenes where the roadway is

considerably different in color from the surrounding area the

hue channel of HSV color space can be a distinguishable factor

in segmenting the road pixels from the image, especially at

the boundaries of the road. The background image is also

converted to HSV color space and the hue channel is utilized

to acquire a difference image H through a similar process.

Figure 2 illustrates sample difference images obtained from

real traffic video data.

Lower values in the difference images correspond to the

parts of the image that are closer to the average value of the

road pixels in Ωrsm and have a higher probability of belonging

to the road region. Therefore, the probability value of each

pixel should be inversely proportional to the corresponding

pixel in the difference image. Probability maps can be esti-

mated accordingly based on the difference images obtained

so far in which the probability of each pixel is calculated as

follows:

P ′K(pi) =
1−K(pi)

max(K(pi)|pi ∈ K)
(2)

where i = 1...N is the pixel index, K ∈ {G,C,H} refers

to each difference image, and P ′K(pi) is the probability of

the pixel pi belonging to the road region in the difference

image K. In order to normalize the brightness and increase the

probability contrast of the probability maps, their histograms

are normalized to obtain an approximation of the probability

density function, and the normalized histograms are equalized

as follows:

H ′
n,P ′

K
=

∑
0≤m<n

HP ′
K
(m)

PK(pi) = H ′
P ′

K
(P ′K(pi))

(3)

where i = 1...N is the pixel index, K ∈ {G,C,H} represents

each difference image, HP ′
K

and H ′
P ′

K
are the normalized

histogram and the integral histogram of probability map P ′K
respectively, and PK refers to the equalized histogram of each

probability map.

The pixels representing the road region in traffic videos

usually have a close value in most parts of the roadway

contained in the frame and the road samples represent a high

percentage of the road pixels. Therefore, the standard deviation

is usually assumed to have a relatively small interval with a

high level of confidence. The further the pixel values in G are

from the standard deviation of the pixels in the road sample

mask Ωrsm, the probability of belonging to the road region

should drop. Considering the standard deviation of the road

samples, another probability map can be obtained as follows

that specifically favors the pixels that are close to the road

samples:

α(pi) = max(0, sgn(G(pi)− σrsm))

PS(pi) = 1− α(pi)[
G(pi)

kσrsm
+

1

k2
], k − 1 ≤ G(pi)

σrsm
< k

(4)

where pi ∈ G, i = 1...N , σrsm is the standard deviation of

the pixel values in Ωrsm mask of G, k is a natural number

in {k ∈ N|1 < k ≤ max(G(pi) − σrsm)}, and PS(pi) is the

resulting probability map. Figure 3 represents the extracted

probability maps from the difference images.
2) Extraction of probability maps based on histogram mod-

els: Another approach of estimating the road region proba-

bility of each frame is to utilize histogram models extracted

from the road and non-road samples. Similar to the approaches

used in [16], [22], a similarity measure is used in order to

generate probability maps that help classify the road and non-

road pixels. The non-road samples are taken from the regions
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outside of the final estimated road region in the previous frame.

The normalized histograms of the blue and green channels of

the background image and the gray-scale image G∗ are used

to estimate probabilities as follows:

PK(pi) =
Nr

K(K(pi))

Nr
K(K(pi)) +Nnr

K (K(pi))
(5)

where i = 1...N is the pixel index, K ∈
{Blue,Green,Gray} refers to the blue and green channels

of the background image and the gray-scale image G∗,
Nr

K(K(pi)) and Nnr
K (K(pi)) are the values of the K(pi)th

bin in the histogram models obtained from the road samples

in Ωrsm and non-road samples of the previous frame

respectively, and PK(pi) is the probability of the pixel pi
belonging to the road region in the image K. Since the

histogram models of the red channel and gray-scale of

background image are close (as seen in Figure 4(b)), the

red-channel histogram is not considered and two probability

maps PGhist and PGBhist = PGreen + PBlue are obtained

from the gray-scale image G∗ and a combination of green

and blue channels of the background image, respectively.

3) Extraction of probability maps based on edge informa-
tion: In many road detection methods [20], [23]–[26] gradient

filters are applied in order to differentiate between the road

and non-road regions based on the presumed fact that the

road region contains considerably less amount of gradient

information compared to the surrounding areas. This is usually

not the case in traffic surveillance videos where the objects

are further from the camera and the edge density is not much

higher in the non-road regions. However, the dominant road

boundaries create strong edges which can be used along with

the location of the vehicles to separate the road region from

the surroundings. The Canny edge detection method is applied

on the gray-scale difference image G with lower and upper

thresholds set to τl = 0.66 × M and τh = 1.33 × M
respectively, where M is the median luminance of G. Since

the geometric distortion caused by the perspective view of the

camera lens results in the losing valuable edge information

in the regions that are further from the camera. Therefore, the

horizontal line can be estimated and considered as a secondary

boundary in addition to the background edges in order to avoid

including the areas like sky above the vanishing point inside

the road region.

In order to avoid the inclusion of non-road pixels as seed

points for flood-fill operation, a single block from the colored

difference image C located at one of the corner points of

each vehicle’s surrounding bounding box is chosen as road

samples. The selected corner is picked according to the moving

direction of each vehicle in order to make sure the sample

block is certain to belong entirely to the road region. The

pixels in the chosen blocks form a flood seed mask Ωfsm

which contains the starting nodes for the procedure of flood-fill

algorithm. The extracted edges from the gray-scale difference

image G along with the horizontal line are used as boundaries

for the flood-fill algorithm with a connectivity value of 4, in

order to fill the connected components with a constant value

(a) (b) (c) (d)

Fig. 4: Extracting the road region probability maps using his-

togram models. (a) The background image. (b) The histogram

plot representing the RGB channels and gray-scale image of

the background image. 4(c), (d) are the extracted probability

mapa PGBhist and PGhist, respectively.

in a flood-fill mask image MF . The maximal lower and upper

intensity difference between the currently observed pixel and

one of its four nearest neighbors of the same component, or

a new seed pixel being added to the component is calculated

based on the standard deviation of the colored difference image

C as follows:

m =
1

N

N∑
i=1

C(pi)

s =

√∑N
i=1(C(pi)−m)2

N

thr = max(1,
s

k
)

(6)

where m is the mean value of the colored difference image C,

N is the total number of pixels in the background image, pi is

the intensity value of the i-th pixel, k is a pre-defined constant,

and thr is the maximal lower or upper intensity difference.

C. Updating and merging the extracted probability maps
The extracted probability maps are updated in order to

bring into account the gathered information from all observed

frames. As more vehicles pass along different locations of the

roadway, the number of pixels in the Ω grows which makes

the probability maps of the latest frames more reliable than

the initial values. Also, when a pixel repeatedly appears in

the foreground mask of the moving vehicles, it is more likely

to belong to the road region. Therefore, all probability maps

are updated by applying the temporal fusing algorithm at each

frame as follows:

P t
K(pi) =

∑t
f=1 w

f
i × P f

K(pi)

1 +
∑t

f=1 w
f
i

wf
i =

N∑
j=1

Ωf
M (pj)

(7)

where i = 1...N is the pixel index, wf
i is the

weight associated with pixel pi at frame f , K ∈
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Fig. 5: The process of merging and refining the probability maps. The extracted probability maps are combined and the Otsu’s

threshold is applied on the result. The non-road pixels that are misclassified as a part of the road region due to similar color

values are later filtered out by intersecting the binary image with the accumulative foreground mask.

{G,C,H, S,Ghist,GBhist, F} refers to the source of each

probability map, P f
K(pi) is the probability value of pixel pi at

frame f , M ∈ {rsm, fsm} is the source of the sample mask

containing the initial seed points, Ωf
M (pi) ∈ {0, 1} is the value

of pi in the accumulative road sample mask of frame f , N is

the total number of pixels in each frame, and P t
K(pi) is the

updated probability value of pixel pi.

The updated probability values for each pixel extracted

from different sources should be combined with each other,

in order to obtain a consensus estimation. If we denote the

set of all pixels with N and the set of extracted probability

maps with K, the event Ri specifying whether a pixel i ∈ N
belongs to the road region or not, can be considered as a

Bernoulli random variable Ber(qi) where qi ∈ [0, 1]. Ri = 1
means i belongs to the road region and Ri = 0 means i is

a non-road pixel. The set of generated probability maps K,

contains several estimations, each of which is drawn from

a different source of information. We denote the probability

prediction of source j made on pixel i with pi,j ∈ [0, 1]. To

solve a probability aggregation problem, we need to design

a function F : ([0, 1])|N |×|K| → [0, 1]|N | that takes the

predicted probabilities {pi,j}i∈N ,j∈K as input and generates

an aggregated probability estimation q̂i ∈ [0, 1] for each pixel

i.

Some simple approaches to aggregate probability predic-

tions are arithmetic mean of the probabilities, median of the

probabilities, majority voting, logarithmic opinion pool, and

Beta-transformed linear opinion pool. Here, we use weighted

mean and median in order to solve the aggregation problem

by considering the different degrees of reliability among the

generated probability maps and also, taking into account that

the aggregated estimation should tend towards the majority

opinion in extreme cases of probability predictions. The values

of each pixel i in the set K is sorted and the resulting ordered

list K′ = {P ′1, ..., P ′m} is utilized to define the weighted

median p′i,k such that:

k−1∑
j=1

wj ≤ 1/2 and

|K′|∑
j=k

wj ≤ 1/2 (8)

where j = 1...K is the index of the probability maps and

wj is the weight for each map representing its reliability.

Experimental results have shown higher stability of the PF

and PS probability maps and higher weights are assigned to

these source in the aggregation process.

If the values of a pixel in the set of extracted probability

maps K = {P1, ..., Pm} have a large median, it means that the

pixel has a high value in most probability maps and therefore,

is most likely inside the road region. On the other hand, low

median means most predictions contain a low value for a pixel

and it most likely belongs to the non-road area. The aggregated

probability values are calculated as follows:

q̂i =

⎧⎪⎪⎨
⎪⎪⎩

1
(m−k+1)

∑m
j=k p

′
i,j , if p′i,k > θ1

1
k

∑k
j=1 p

′
i,j , if p′i,k < (1− θ1)

1
2 (p

′
i,k +

∑
j∈K wjpi,j
∑

j∈K wj
) , otherwise

(9)

where i ∈ N is a pixel, p′i,j is the probability value of pixel i in

the sorted probability set K′ = {p′i,j}i∈N ,j∈K′ , k is the index

of the weighted median value p′i,k, θ is a pre-defined threshold

close to 1, and q̂i is the aggregated probability value for pixel

pi. The Otsu’s threshold [27] is applied on the resulting map

in order to filter out the regions with low probability value.

When the intersection between the binary probability mask

and the aggregated foreground mask surpasses a threshold,

the accumulative foreground mask has covered most of the

road pixels after morphological dilation with a size close

to the average size of vehicles. As illustrated in fig. 6, the

intersection between the accumulative foreground mask and

the binary fused probability mask is utilized as the final
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Fig. 6: The F-measure score, accuracy, and false-positive rate of the proposed road extraction method at different frames, tested

on some of the sample traffic videos. The sudden improvement in the performance measures happens when the first vehicle is

observed in the video sequence and the initial road samples are obtained based on its location.

estimated road region. This way, the possible misclassified

non-road regions are removed and the final road map is

refined by the exclusion of the over segmentation and leak

segmentation errors. In the rare cases of misclassifying the

non-road regions as road pixels, the accumulative foreground

mask can be applied to remove the misclassified regions from

the final road mask while keeping the information about road

boundaries. The foreground mask at each frame is obtained

by applying the GFM method along with the blob-tracking

approach in order to only consider the location of moving

vehicles. The foreground blobs are selected by considering

their size and moving distance in order to filter out the

blobs corresponding to the non-vehicle objects at the non-road

regions and slow-moving vehicles. The entire foreground mask

of a vehicle is added to the accumulative mask with a weight

equal to its moving distance only when the track associated

to that vehicle has been inactive for a certain period of time.

This way, the vehicles with larger moving distances contribute

more to the accumulative foreground mask. The final mask is

normalized at each frame as it is divided by the maximum

value.

III. EXPERIMENTS

In this section, the performance of the proposed method

is evaluated on different videos with various illumination

and weather conditions, resolution, and frame-rate values in

order to ensure the diversity of the tested data. The used

dataset, provided by New Jersey Department of Transportation

(NJDOT), contains 84 real traffic surveillance videos with vari-

ous illumination conditions, road shapes, resolutions, viewing

angles, and frame-rates. A sample frame of each videos is

displayed at the first rows of Figures 7 and 8. The ground-

truth mask representing the road region corresponding to each

video is illustrated at the second rows of Figures 7 and 8 and

the third rows present the resulting extracted road as a red

mask on the background image of each video. The experiments

were carried out using a DELL XPS 8900 PC with a 3.4 GHz

processor and 16 GB RAM. The average speed was ∼ 42.22
frames per second for videos of size 720× 480 pixels, which

shows the feasibility of the proposed method for real-time

applications.

In order to evaluate the quantitative results, several evalua-

tion metrics are utilized as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FPR = FP /(FP + TN )

PRE = TP /(TP + FP )

REC = TP /(TP + FN )

ACC = (TP + TN )/(TP + FP + TN + FN )

F1 = 2× (PRE ×REC)/(PRE +REC)

(10)

where TP , FP refer to the number of pixels correctly and

incorrectly detected as part of the road region, and TN and

FN are the number of pixels that are correctly and incorrectly

detected as part of the non-road region, respectively. FPR,

PRE, REC, ACC, and F1 refer to false positive rate,

precision, recall, accuracy, and F-measure respectively. The

number of pixels classified as road and non-road are compared

with the ground-truth data to calculate each measure. Figure 6

demonstrates the accuracy, F1 score, and false-positive rate

charts for a number of traffic videos. An instant improvement

in the detection results can be seen in the charts shown in

Figure 6 which corresponds to the frame at which the first

vehicle is observed in the video and a number of pixels

corresponding to the location of the vehicle can be used as

initial road samples.
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(a) Video 1 (b) Video 2 (c) Video 3 (d) Video 4 (e) Video 5 (f) Video 6

Fig. 7: Road extraction results in regular traffic videos. The first row displays a sample frame of each video. The second row

represents the ground-truth road region masks. The third row illustrates the extracted road region by the proposed method

before applying the accumulative foreground mask.

(a) Video 7 (b) Video 8 (c) Video 9 (d) Video 10 (e) Video 11 (f) Video 12

Fig. 8: Road extraction results in traffic videos with challenging illumination conditions. The first row displays a sample frame

of each video. The second row represents the ground-truth road region masks. The third row illustrates the extracted road

region by the proposed method before applying the accumulative foreground mask.

TABLE I: The quantitative evaluation of the proposed method

Video # 1 2 3 4 5 6 7 8 9 10 11 12 Average
Precision 0.98 0.87 1 0.93 0.99 0.99 0.86 0.89 0.97 0.80 0.97 0.99 0.94

Recall 0.96 0.93 0.95 0.94 0.87 0.73 0.98 0.96 0.89 0.92 0.89 0.91 0.91
F-Score 0.97 0.90 0.97 0.93 0.92 0.84 0.92 0.92 0.93 0.86 0.93 0.95 0.93

Table I shows the quantitative performance of the road ex-

traction method given 12 sample traffic videos. The precision

values are higher than the recall values in most cases, which

means that the entire roadway region is not always extracted

due to under-segmentation. Some examples can be seen in

Figures 7(e), 7(f), 8(a) and 8(e) This is usually caused by the

perspective view and losing the tracking information at the

far side of the road. Also, strong cast shadows and congested

traffic can result in excluding some road pixels at the initial

frames from the road map (e.g., Figure 8(b)). In some videos,

the recall value is higher than the precision, which means

there are more false-positive cases than false-negative. This

is due to the overestimation or leak segmentation which is

in turn caused by inconspicuous edges and lack of sufficient

gradient information at the road boundaries. Another reason is

the illumination effect which makes the non-road regions such

as sky have similar values to the road pixels. Some examples

of this can be seen in Figures 7(b), 7(d), 8(e) and 8(f).

Here, we do not make any presumptions about the shape of

the road in order for the approach to work on unstructured

roads. Therefore, segmentation errors cannot be avoided by

restrictions based on geometric models.
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IV. CONCLUSION

Region of interest (RoI) determination is an essential pre-

processing step in most image and video analytic applications.

In case of traffic video analysis, the RoI usually refers to

the road region where the objects of interest, i.e., vehicles,

are located. In this paper, an adaptive statistical approach is

proposed in order to extract the road region in real-time and

automatically without the need of manual input. The pro-

posed method can be applied on different videos with various

resolution, frame-rate, illumination, and weather conditions.

The road region extraction is performed by using color and

temporal features and with no assumptions about high-level

features such as the structure of the roadway, which makes the

approach adaptive to various road shapes. The extracted road

region can further be utilized as the RoI in video analytic tasks,

such as anomaly detection, incident detection, recognition

of hazardous driving behavior, speed estimation, and vehicle

counting. The experimental results using real traffic video

sequences provided by NJDOT demonstrate the feasibility and

computational efficiency of the proposed method.
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