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Abstract—Robust road region extraction plays a crucial role
in many computer vision applications, such as automated driving
and traffic video analytics. Various weather and illumination
conditions like snow, fog, dawn, daytime, and nighttime often
pose serious challenges to automated road region detection. This
paper presents a new real-time road recognition method that
is able to accurately extract the road region in traffic videos
under adverse weather and illumination conditions. Specifically,
the novel global foreground modeling (GFM) method is first
applied to subtract the ever-changing background in the traffic
video frames and robustly detect the moving vehicles which are
assumed to drive in the road region. The initial road samples
are then obtained from the subtracted background model in the
location of the moving vehicles. The integrated features extracted
from both the grayscale and the RGB and HSV color spaces
are further applied to construct a probability map based on
the standardized Euclidean distance between the feature vectors.
Finally, the robust road mask is derived by integrating the
initially estimated road region and the regions located by the
flood-fill algorithm. Experimental results using a dataset of real
traffic videos demonstrate the feasibility of the proposed method
for automated road recognition in real-time.

I. INTRODUCTION

Road region extraction is a fundamental step in many
modern computer vision applications, such as automatic driv-
ing, traffic warning, navigation, traffic surveillance, and driver
assistance systems. Many studies have addressed the problem
of vision-based road detection in recent years, in both applica-
tions of in-vehicle perception [3], [13], [23] and traffic video
surveillance [9], [10], [14], [26]. The methods proposed in
these studies are mostly applicable in both areas with some
differences in the main motivations. Road detection helps
with automatic driving, navigational warning and obstacle
avoidance in the first group of applications and it is useful
for region of interest (Rol) determination and traffic incidents
detection in the second group.

The recent studies in road detection and Rol determination
choose different strategies to segment the road region in the
images. In some studies, the local features such as color [16],
[17], brightness [31], texture [32], [34], or a combination of
them [11], [33] are extracted in order to classify the pixels
into road and non-road classes. Some methods tend to rely
on the road models in order to match them with low-level
features and detect the road region [6], [12], [18], [29]. Several
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techniques suggest utilizing motion information and temporal
features obtained from a sequence of video frames in order
to extract the road area [14], [30]. Recently, convolutional
deep neural networks have also been applied to segment
the road region due to their ability in modeling non-linear
variable relationships [1], [2], [5], [15], [19], [22]. In terms
of road detection in traffic video analytic applications, the
performance of supervised methods can suffer from a wide
range of different illumination and weather conditions, image
resolutions, camera’s viewing angle, and distance from the
road surface.

This study is focused on automatic road region extraction
in traffic videos that aids with Rol determination which in
turn reduces the need for computational resources and can be
useful in automated detection of traffic incidents and driving
violations. The use of a color features combined with gradient
information and temporal features makes this method robust
against illumination changes and severe weather conditions.
The remainder of this paper is organized as follows. Section II
describes the proposed road recognition method in details. In
section II-A a method for initial road recognition based on
color differences is introduced. Section II-B contains details
on refining the extracted road region by using temporal and
color features. The performance of the proposed method is
evaluated in section III on real traffic videos, and the paper is
concluded in section 1V.

II. A FEATURE-BASED STATISTICAL METHOD FOR ROAD
REGION RECOGNITION

Determining the region of interest (Rol) is crucial pre-
processing step in many video analytic applications. The focus
of this study is on finding the Rol in traffic videos, which is
associated with the roadway region, in real-time and with no
manual input. In this section, the main steps of the proposed
method are discussed in details, which has mainly two contri-
butions: (i) The new sampling approach can approximate the
roadway location during the initial video frames solely based
on color and temporal features without any assumption about
the structure of the roadway. (ii) The initially estimated road is
refined during an updating process that makes it robust against
challenging illumination conditions.
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Fig. 1: Sampling road regions from the background image
based on the direction of moving vehicles. The red color
indicated the sampled road pixels.

A. Initial road region approximation

In the tasks of traffic videos analysis, the Rol is associated
with the roadway. In order to detect the location of the
moving vehicles, a foreground segmentation method [27], [28]
is applied. The road samples are taken from the subtracted
background image in the corresponding location of the moving
vehicles. An effective blob-tracking method [4] is utilized in
order to estimate the moving direction of each vehicle. The
foreground mask of each vehicle is then cropped based on
its moving direction in order to filter out the potential non-
road pixels. Figure 1 shows examples of the road sampling
approach that is applied to construct a aggregated set of road
samples g, .

The sampled road pixels are used in order to generate a road
probability map based on color differences. According to the
histogram models of the road samples, an example of which
can be seen in Figure 2, the blue, green, and grayscale values
of each pixel are discriminative features for classifying the
road and non-road regions. A set of four-dimensional feature
vectors is denoted by:

= {fi, fa, o FNY = (1)

where f! is a D dimensional feature vector of pixel i that
contains the blue, green, grayscale, and hue values of that
pixel at frame ¢. The standardized Euclidean distance between
each feature vector and the mean value of the pixels in the
road sample are calculated as follows:
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where i = 1...N is the pixel index, D = 4 is the number of
features, fj‘? is the mean value of the j-th feature in the set
of road samples Qgy,, ff; is the j-th feature of pixel 4, dj is

the standardized Euclidean distance, (0%)? is the variance of

J
the j-th feature at frame ¢. The road probability map Pr is
denoted by:

Pr' = {pl,ph. .o} = {pi}il, 3)

Fig. 2: The histogram plot representing the RGB and gray
values of the background image from the road samples.

where N is the total number of pixels, and p; € [0,1] is the
road probability value of pixel ¢ at frame ¢ which is calculated
as follows:

Uj: (Z(itj_fjt')Q
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where ¢ = 1...N is the pixel index, ot is the mean standard
deviation of the features among the D dimensions in 2., k
is a natural number in {k € N|1 < k < maxz(d! —o?)}, and p;
is the resulting probability value of pixel ¢ at frame ¢. Figure 3
represents an example of the extracted probability map from
the difference values.

The extracted probability map Pr is updated throughout
the video frames by applying the temporal fusing algorithm

as follows: . s
~t _ Zf:l wfp’L

1+ Z’}Zl wf &)
wl =i,

where i = 1...N is the pixel index, w/ is the weight of frame f
which is associated with the number of pixels in the aggregated
sample mask, p{ is the probability value of pixel ¢ at frame
f, ng is the accumulative road sample mask at frame f, N
is the total number of pixels in each frame, and p}-t is the
updated probability value of pixel ¢. The Otsu’s threshold [8]
is applied on the resulting map in order to obtain a binary
mask Pg.

B. Integration of temporal features with the estimated road
region

Since road is a unified object, a combination of color and
temporal features represent a more reliable estimation when
enough time has passed. Here, the flood-fill algorithm is
applied in order to unify the connected components of the
road pixels and extract the road region. In order to define
the limiting boundaries of the flood-fill method, the Canny
edge detection method is applied on the difference image
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Algorithm 1: Acquiring the accumulative foreground
mask
Input:
The size of each video frame
The set T' of vehicle tracks in the current frame
The set of blobs for each track B; = {b1,...b,, }
A set of predefined thresholds 7 = {74, 7, 75}
Output:
The accumulative foreground mask Fg.. of
the same size as the video frame
1 initialize F,.. with O;
2 foreach t € T do

3 if size(t) < 75 then

4 ‘ continue;

5 end

6 d= ||tcn —te1|)s

7 if d < 74 then

8 ‘ continue;

9 end

10 add track’s current blob b,, to track’s accumulative
mask Fy;

11 if t; > 7; then

12 ‘ facc[ft] = -Facc[ft] + d;

13 end

14 end

15 JT"acc = %7

By with 7, = 0.66 x M and 75, = 1.33 x M as the

lower and upper thresholds, respectively, where M is the
median luminance of B,. After applying the edge detection
method, leak segmentation error can still occur due to lack of
enough gradient information at the dominant road boundaries,
which can be corrected by using the accumulative foreground
mask F,... Algorithm 1 shows the steps of accumulating the
foreground masks obtained by the GFM [27], [28] method
with false positives and slow-moving object filtered out by
applying two thresholds 74 and 7, at steps 3—8. The threshold
7; 1s used to define how long a track has to be inactive before
being removed. The accumulative foreground mask F,.. is
added by d in the location of the track only after track ¢ has
been removed from the set 1" (step 11 of Algorithm 1). This
way the tracks with larger movements contribute more to the
estimated road region. At the end, F,.. is normalized as it is
divided by the maximum value.

Similar to the approach used in [7], [20], the contours of
Fuace are smoothed using a Gaussian kernel. The Gaussian
coefficients are calculated as follows:

1
o = 3 (co+1)
M =2(sgn(o”)[|o”| +0.5])

-1
9 (6)
_ (Z _ MQ_I) £y
P = ; i =1
gi = aexp oo ; g
where ¢ is an integer constant, M € {2n +1 : n € Z}

Fig. 3: Extracting the auxiliary road region probability map
using feature difference values. (a) The subtracted background
image B. (b) The difference image B, obtained by d;. (c) The
extracted probability map Pr.

is the Gaussian aperture size, o is the standard deviation, «
is the scale factor chosen so that sz\io_ Ygi = 1, and g; is
the ¢-th Gaussian filter coefficient. The contours are smoothed
separately over each X and Y axis:

Ci(ICl+n—k) .ifn<k
Cin)=RCj(n—k—1[C|) .ifn>(k+|C|—1)
Cj(n—k) ,otherwise (7)

M—-1
Cin)= Y Cfn)gi .k=-L.L
=0

where n = 0...(]C|—1) is the index of each point on
the curve, C is the surrounding contour of the accumulative
foreground mask, j € {x,y} represents the x or y axis,
L£L=31(M-1),and C7(n) is the position of the n-th point
in the smoothed contour.

The sides of the smoothed contours which correspond to
the boundaries of the road are partitioned into a set of K
separate clusters C = {c,}5_, based on their connectivity
which is in turn measured by Euclidean distance. The points
of each cluster cj, are resampled by traversing in a pace equal
to resample size my = sy /d where sj, is the arc-length of ¢
and d is a pre-defined constant.

Then a similar approach to [21] is used to estimate the
boundaries of the road by fitting a second-degree polynomial
curve on each cluster. The principal component analysis (PCA)
method is applied on each set of re-sampled points in order
to calculate the direction of the maximum variation in the
set. First a matrix P, € N™#*2 is formed with each row
containing the x, y coordinate values of each resampled point
from ci. Then the covariance matrix Sy is computed as
follows:

mi N (®)

where uy, is a row vector that contains the mean x and ¢ values
of each column in Pj. The eigenvalues and eigenvectors of
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(e)

Fig. 4: Estimating the road boundaries. (a) Sample traffic video
frame. (b) Accumulative foreground mask after one minute. (c)
Contours of the accumulative foreground masks. (d) Smoothed
contours. (e) Cropped contours. (f) Clustering. (g) Resampled
points. (h) Estimated road boundaries.

the covariance matrix are calculated as follows:

1 2
k \k 2 2
)\1’)\ = 5 (awk + Uyk + \/(U%k - O-Zk) + 4Uf%kyk)
1 2 ©)
e} = {)\?myk }

J 2
2 g2
\/UIkyk + (AJ GIk)
where j € {1,2}, 02, o2, , and o2, are the variance of
x, variance of y, and covariance of xy values in Py, respec-
tively. )\;? and e? are the eigenvalues and their corresponding
eigenvectors of Sy. A matrix Ey, is defined as follows:

k k
ary; Q2
E; = [ ko k

(10)
az; Qg2

T T
where ef = [a};,ab,]" and €5 = [al,,ab,]" are the first
and second eigenvectors of Py, respectively. A new axis is

generated and the data points from Py, are rotated as follows:

O = cos™* (tr(Ex)/2)

__|cosB, —sinfy
k= {sin@k cos 0y, } aDn
P’} =R,PT

where 6;, is the direction of maximum dispersion in Py,
tr(Ei) = a¥y + ab,, Ry, is the rotation matrix, and P’y is
the matrix containing the rotated points. After second-degree
polynomial curve-fitting on each P’ the resulting curves are
rotated back to the original x and y axis to represent an
estimation of the dominant road boundaries. Figures 4 and
5 represent an example of road boundary estimation.

The flood-fill algorithm with a connectivity value of 4
and with seed points taken from the set (), is applied in
order to aggregate the connected components in a mask image
M z. During the component connection process, the maximal
lower and upper thresholds of intensity difference between
the current pixel and each of its nearest neighbors of the
same component, or a new seed pixel being added to the

(b)

Fig. 5: Extracting the dominant road boundaries using the PCA
method. (a) Re-sampled points used for curve fitting. (b) The
direction of the maximum variation recognized by PCA. (c)
The limiting boundaries estimated by curve fitting.

component are calculated based on the standard deviation of
the background image B as follows:

1 X
B:NZ;&
i (B~ B)? 12
o= =
N
T:max(l,%)

where B is the mean value of the background image B, N is
the total number of pixels in the background image, 5; is the
intensity value of the i-th pixel, k£ is a pre-defined constant,
and thr is the maximal lower or upper intensity difference.
When the intersection between the binary probability mask
Pz and the aggregated flood-fill mask Mx surpasses a
threshold, the flood-fill algorithm has connected most of the
road components. Morphological procedure is performed on
M £ to bridge the gaps and the intersection between its result
and Pg, is utilized as the final estimated road region as follows:

My =MzraoB
- IMenPg]

Pxl
MR=Y%

GfT <0
M’z N Ps |, otherwise

13)

where M’ = {z|[(B). N Mz] # @} is the result of a
dilation operation with B as a structuring element, 7 is the
number of common pixels between the probability mask and
the accumulative flood-fill mask, § € [0,1] is a predefined
threshold, and My, is the final mask representing road pixels.

III. EXPERIMENTS

The performance of the proposed method is evaluated using
several videos. The dataset is provided by the New Jersey
Department of Transportation (NJDOT) which contains 84
real traffic videos captured from highways with different road
structures, various illumination conditions, resolutions and
frame-rates. A single frame from each tested video is shown
at the first rows in Figure 6. The second rows represent the
ground-truth mask corresponding to the road region in each
video. The last rows illustrate the extracted road by a red-
colored mask over the subtracted background of each video
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(a) Video 1 (b) Video 2 (c) Video 3 (d) Video 4

(e) Video 5

(f) Video 6 (g) Video 7 (h) Video 8

Fig. 6: Road extraction results in traffic videos with regular and challenging illumination conditions. The first row displays
a sample frame of each video. The second row represents the ground-truth road region masks. The third row illustrates the

extracted road region by the proposed method.

TABLE I: The quantitative evaluation of the proposed method

Video # | 1 2 3 4 5 6 7 8 Average

Precision | 098 0.87 094 093 089 097 0.80 0.97 0.93

Recall 096 093 095 094 096 0.89 092 0.81 0.92

F-Score 097 090 095 094 092 093 0.86 0.88 0.92
frame. All the experiments were conducted using a DELL XPS 1
8900 PC with a 3.4 GHz processor and 16 GB RAM. The S0l |
average processing speed for video frames of size 720 x 480 é
pixels was around ~ 41.28 frames per second, which is inline s 0L R
with real-time requirements of video analysis applications. §0.4— —Acc | 1
According to recent studies on embedded systems [24], [25], %027 |
out proposed method can also be applied in embedded systems e
for real-time applications. 0 10 2 2 10 50

The following metrics are used in order to evaluate the
quantitative results:

FPR = Fp/(Fp +Ty)
PRE =Tp/(Tp + Fp)

REC =Tp/(Tp + Fy)

F, =2 x (PRE x REC)/(PRE + REC)
ACC = (TP+TN)/(TP+FP+TN+FN)

(14)

where Tp, Fp are the number of pixels correctly and incor-
rectly reported as road regions, and 7y and Fy are the number
of pixels that are correctly and incorrectly reported as non-
road regions, respectively. FPR, PRE, REC, ACC, and
F1 refer to false positive rate, precision, recall, and F1-score,
and accuracy, respectively. Figure 7 shows the changes in F1-
score, accuracy, and the false-positive rate based on the frame
number.

When the first vehicle is observed in each video, the initial
road samples are obtained from its location and detection
results improve when more vehicles pass along the road.
In Table I the quantitative performance of the road region
extraction method is reported for the 12 sample traffic videos.
Due to under-segmentation, the entire roadway region is not
always extracted which results in the precision values being
slightly higher than the recall values in most cases. An

Frame Number

Fig. 7: The F-measure score, accuracy, and false-positive
rate of the proposed method at different frames. The sudden
improvement in the performance measures happens when the
first vehicle is observed in the video sequence.

example of under-segmentation can be seen in Figure 6(h)
which is mostly caused by the lose of tracking information
at the far side of the road. Strong cast shadows and traffic
congestion can also result in under-segmentation, specially at
the initial frames (e.g., Figure 6(e)). Over-segmentation or leak
segmentation can also occur which is usually due to the lack
of sufficient gradient information at the road boundaries or
the illumination effects which causes similarity between the
non-road and road regions. Examples of over-segmentation are
exemplified in Figures 6(b), 6(d) and 6(h).

IV. CONCLUSION

Determining the region of interest (Rol) in video analysis
applications is an important pre-processing step. An accurate
Rol can keep all the essential information while reducing the
need for computational resources and eliminating a portion of
potential false outputs. In applications of traffic video analysis
the Rol usually refers to the road region. In this paper, an
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adaptive and fully automatic method is proposed for road
recognition in real-time. Temporal features are utilized in a
statistical foreground segmentation method in order to obtain
sample data. The road region is then extracted in the initial
frames of the video by using pixel values in different color-
spaces. The initially extracted road is updated and refined
with more sample data generated through the subsequent video
frames.

The proposed method shows good performance in videos of
different sizes and frame-rates with various illumination and
weather conditions. Since the first part of the proposed method
uses feature-based probability estimations, it can be applied in
applications with in-vehicle perception as well with the initial
road samples gathered by a triangular area in front of the
vehicle. This method is not limited to geometrical models since
no assumptions have been made about the structure of the road.
The extracted road region can further be utilized as the Rol in
different traffic video analysis tasks. The experimental results
from evaluating the method using real traffic videos provided
by NJDOT indicate the feasibility of the proposed method for
real-world applications.
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