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Abstract— In vehicular ad-hoc networks, due to high mobility,
vehicles usually communicate for short periods of time with
several neighboring vehicles and are required to process data
fast; sometimes in the order of few milliseconds. This urgency
of data processing is further heightened in safety-critical sce-
narios that involve many vehicles. Such scenarios require data
to be prioritized and processed with minimum delay. While
packet scheduling has been extensively studied, these studies
focus on channel scheduling, our work focuses on processing
received packets by a vehicle in dense scenarios. In this paper,
we formulate the prioritized data processing problem as an
integer linear program given a prior knowledge of the request
sequence and prove that it is NP-complete. Due to the difficulty of
predicting the traffic patterns and obtaining the request sequence
in advance, we propose an online algorithm that does not require
the prior knowledge of the request sequence and achieves an O(1)
competitive ratio. The proposed online algorithm strives to accept
higher severity packets for processing in order to maximize the
cumulative severity given vehicular communications/computation
capacity constraints. Using real traffic traces, we evaluate the per-
formance of the online algorithm against three online algorithms,
in which two of them use an exponentially weighted moving
average-based threshold while the other one accepts requests
as capacity permits. Our evaluation shows that our algorithm
achieves up to 492% more cumulative severity compared to the
three other baseline algorithms.

Index Terms— VANET, online algorithm, packet scheduling.

I. INTRODUCTION

ROAD safety remains a major challenge internationally [1]
and is tackled by the industry and governments. In the
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Department Of Transportation (DOT) in 1997 with the primary
goal of enhancing road and highway safety by increasing the
development of driver assistance technologies [2]. To improve
safety, it is important that we make vehicles more intelligent.
Hence, VANETs have emerged as an exciting research area.
The network of vehicles equipped with embedded sensors,
processing and wireless communications capabilities offers
countless life changing applications that can revolutionize road
safety, comfort and driving experiences [3]. VANETs allow
direct communications among vehicles and make it possible
to share information in the absence of infrastructure.

The promises of wireless communications to support vehicle
safety have led to the adoption of the Dedicated Short Range
Communications standard (DSRC; ASTM E 2213-03) by
ATSM and IEEE in July 2003, with the aim of providing stan-
dard for wireless communications capabilities in Intelligent
Transportation Systems (ITS). DSRC operates in the 5.9 GHz
band that is assigned for use by Intelligent Transportation
Systems (ITS) vehicle safety and mobility applications, with
different channels designated for different applications [4].
DSRC supports communications among vehicles traveling
with speeds of up to 200 km/h at a default rate of 6 Mbps
(up to 27 Mbps) and a transmission range of 300 m [3].

To ensure Quality of Service (QoS), DSRC divides its fre-
quency band into six Service Channels (SCH) and one Control
Channel (CCH) such that each packet has one of following
priorities: low, for dissemination of messages transmitted over
the SCH or high, for safety or control messages transmitted
over the CCH [3]. Such division of band resources ensures
that vehicles transmitting over CCH get priority access for
transmission and information dissemination, but beyond this
labeling there are no mechanisms to ensure that messages with
higher priority will be processed earlier than lower priority
messages at the receiver side.

While improving QoS in DSRC, as well as utilizing online
algorithms to enhance the performance of VANET applications
have been studied extensively, none of the studies have tackled
the problem of minimizing delay for safety-critical data in
VANETs on the receiver side. To the best of our knowledge,
this is the first work of its kind that adopts an online algorithm
for packet scheduling and prioritization with a view to mini-
mize delay for safety-critical data while the incoming packets
are processed.

Due to the urgency of safety messages and their strict QoS
requirements, there is a need for methodologies in support
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of service differentiation and admission control. To solve this
problem, we propose an opportunistic online algorithm that
ensures that messages with higher context severity incur lower
processing delay.

We tackle the problem of prioritized message processing by
formulating it as an ILP that requires the request sequence in
advance and prove that it is NP-complete. However, knowing
the sequence of requests in advance is infeasible since the
vehicular traffic pattern cannot be easily predicted. Therefore,
we propose an online algorithm that maximizes the cumulative
severity gain while respecting the vehicle’s communications
and capacity limits. Besides, the algorithm does not require
the knowledge of the sequence of requests and has a compet-
itive ratio of O(1). To measure the performance of the pro-
posed algorithm, two other online algorithms are implemented
which utilize an exponentially weighted moving average based
threshold technique. The three algorithms are tested using real
traffic traces and results show that the proposed algorithm
outperforms the other two algorithms by more than 80% of
the cumulative severity.

The rest of this paper is structured as follows: related work
and the our model is discussed in section II. Section III
discusses the problem settings and section IV shows the
NP-completeness of the problem. The online algorithm is pre-
sented in Section V while performance analysis and validation
experiments are presented in Sections VI–VIII, Section IX
concludes the paper.

II. RELATED WORK

Quality of Service (QoS) in Mobile Ad-hoc Networks
(MANETs) has been studied extensively [5]. In VANETs,
as a subclass of MANETs, considerable amount of scientific
work has been dedicated to packet scheduling as a means
of improving QoS. Reducing and mitigating congestion via
packet scheduling has been studied in [6]–[9]. In addition,
scheduling to minimize packet delays in routing protocols
has also been studied in [10]–[12]. But, all aforementioned
studies focus on channel scheduling packets, while our work
focuses on processing received packets by a vehicle in dense
scenarios. Furthermore, Online algorithms have been utilized
by [13] and [14] to enhance performance of VANET appli-
cations. In both studies an online algorithm, Oldest Job
First (OJF) is used. In [13] an online algorithm is used
to minimize delay across intersections, while in [14] an
online algorithm is used for coordinating vehicles in platoons.
In spite of the fact that both aforementioned studies use
online algorithms, none of them have addressed the problem
of minimizing delay for safety critical data from processing
perspective of a vehicle. To the best of our knowledge, this is
the first work of its kind that adopts an online algorithm for
packet scheduling and prioritization with a view to minimize
delay for safety critical data. We use an online algorithm
for prioritizing received packets so that safety critical data
experiences lower processing delay.

Puthal et al. [6] used the Congestion Level (CL) metric
to detect congestion and ensure packets with higher prior-
ity, which are usually safety messages, get minimum delay.

CL is calculated from data that is gathered across the stack
protocol. Such a mechanism is helpful in decreasing the
congestion in VANET, but it is not designed, and cannot
prevent congestion created by a malicious node in VANET
that targets one or few other specific nodes. Furthermore,
the study is focused on reducing congestion while transmitting
data, but in our work we focus on prioritizing safety critical
data when packets are received and processed by a vehicle.
In scenarios with dense vehicle numbers (e.g., highways) due
to high volume of received data, processing safety critical data
in a timely fashion is important.

Kumar et al. [12] propose a prioritized based scheduling
algorithm in order to improve QoS. The algorithm uses
dynamic prioritization on a server to service vehicles. All
vehicles send their requests to the RSU, which then forwards
the requests to the server. Based on the request priorities,
the server distributes the vehicle requests into prioritized
queues. The main problem with such an approach is that it
ignores the dynamic topology of VANETs. Parameters are only
valid for few seconds in VANETs as vehicles move fast and
communications times are only a few milliseconds or even
microseconds [15]. But the major difference relative to other
works is that this approach utilizes a central server that
controls prioritization and decides which vehicles will be
served, while in our model, our focus is on the scheduling
of received flows of a vehicle.

In [16], a central priority based scheduler is used to control
a platoon of vehicles in VANETs. Such scheduling is based
on a central scheduler represented by a circular buffer. The
scheduler is used to facilitate access among a platoon of
vehicles in VANET, and is not suitable for general purpose
scheduling of packets in VANETs.

Wu et al. [17] have tried to lower the service delay for users
by using a packet scheduling architecture for classified ser-
vices at Access Points (AP). This study focuses on enhancing
the user experience in an environment that has infrastructure
APs and users would connect to infrastructure for services.
As vehicles are mobile in VANETs, users need to connect to
several different APs during their journey. The work in [17]
develops a scheduling scheme to predict the load and the
service delay for different types of services and to choose
an optimal AP for each service.

The study in [18] explores prioritized directional broad-
casting for message dissemination in VANET and proposes
an accident prevention Directional Broadcast and message
priority assignment system. Initially, each message is assigned
a priority statically. Then, based on its priority, a sending
method is chosen. The research is concerned with how to
disseminate messages with higher priority in minimal time
rather than how to prioritize packets and minimize delay for
all priority levels.

In [19], QoS parameter improvements such as minimiz-
ing delay among others are studied. The study focuses on
minimizing delay for packets being routed using different
routing algorithms, with focus being on improving message
dissemination in VANETs. Zeng et al. [20] utilize channel
prediction based scheduling in order to improve data dis-
semination. Boban et al. [10] have also investigated QoS
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Fig. 1. Overall system model for severity labeling and admission control to
minimize delay.

parameters (e.g., end-to-end delay) improvements albeit only
for unicast routing algorithms. QoS and priority based routing
protocols are also studied in [11] and Suthaputchakun and
Sun propose a broadcast routing protocol that is capable of
providing differentiated services based on message priority
among other characteristics. Xu et al. [21] analyzed typical
VANET routing algorithms to evaluate QoS performance under
different conditions. Authors of [10], [18], [19], [21], study
and/or evaluate different routing algorithms and their impact
on QoS, but none of these studies focus on minimizing delay
and packet scheduling on vehicular level. Most of routing
algorithms target achieving the best performance at network
level.

VANETs have very dynamic topologies and in order to
ensure and promote safety, vehicles have to process safety-
critical data with minimum delay. As shown in Figure 1,
a given vehicle in VANETs at any given time might be
surrounded by many other vehicles. In order to ensure safety,
each vehicle must allocate a portion of it’s processing rate
to each of it’s neighboring vehicles so that it can process
messages from all it’s neighbors while ensuring that safety-
critical data receives prioritized processing. In our model,
as shown in Figure 1, a vehicle guarantees a minimum
processing rate for all neighboring vehicles. In Figure 1, this
is denoted by multiple queues. Beyond that processing rate,
the residual processing capacity in the vehicle is auctioned
by an online algorithm which gives priority to higher severity
vehicles. To define severity, the algorithm assigns a context
severity metric to its neighboring vehicles. Context Severity
of each vehicle is calculated through deep packet inspection
and processing of first and second order statistics of previous
packets that include parameters such as the vehicle’s speed,
acceleration, GPS location, direction and segment ID. It should
be noted here that the assignment of the context severity
metric does not incur a significant overhead as it can be
accomplished through rules that utilize the statistics of the
received packets [22]. As shown in Figure 1, when a vehicle
receives a packet, the packet’s severity level is determined and
labeled in the initial queue. Then based on the packet’s severity
level it will be assigned to one of the prioritized queues.

The vehicle will process the queues with higher priority first,
and when no packets are left in that queue, it processes
packets from lower priority queues. It should be emphasized
here that the single vehicle in our model refers to a receiver
(i.e., not a single source). In our model, there are multiple data
sources and multiple receivers. We consider the case where
every receiver takes decisions independently from the other
receivers; thus, we focus on the case of a single receiver only.

III. SETTINGS

We assume a slotted time system. A VANET consists of V
vehicles, where each vehicle v ∈ V has a residual processing
capacity of Dv messages per time slot. If the vehicle does
not have residual processing capability, its residual processing
capacity is set to 0. The input consists of a sequence of
vehicle advertisement messages β1, β2, . . ., the j -th of which
is represented by β j = (p j , r j , Tj , t j (0)), where p j is the
severity level of message β j , r j is the processing rate required
by request β j , Tj is the duration of processing β j , and t j (0) is
the time slot at which β j appears. For simplicity, we assume
that Tj is a multiple integer of time slots.

Our objective is to decide which requests a vehicle should
accept in order to maximize the cumulative severity gained by
the vehicle without violating the vehicle’s capacity. We intro-
duce the formulation of the optimization problem in the next
section.

IV. PROBLEM FORMULATION

In this section, we consider the problem of maximizing
the cumulative severity of each vehicle independently of the
decisions made by other vehicles. Therefore, in the following,
we study the problem from a single vehicle’s perspective.
We then show that the problem is NP-complete.

A. The Formulation

Before presenting our formulation, we introduce the
following variable

X j =
{

1 if the j -th message is accepted

0 otherwise.

Moreover, let

r j (τ ) =
{

r j t j (0) ≤ τ ≤ t j (0) + Tj

0 otherwise.

The problem of maximizing the cumulative severity of a
single vehicle in a VANET is formulated as the following
Integer Linear Program (ILP):

max
∑

j

X j p j (1)

s.t
∑

j

X jr j (τ ) ≤ Dv ∀τ (2)

The objective is to maximize the cumulative severity gained
by a vehicle while satisfying the capacity constraints of the
vehicle at every time slot.
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Fig. 2. Illustration of the reduction process used in the proof of Theorem 1.

B. NP-Completeness Proof

In this section, we show that the ILP optimization problem
presented in the previous section is NP-complete as stated in
the following theorem:

Theorem 1: The ILP optimization problem is NP-complete.
Proof: We prove this theorem by a reduction from

the well-known knapsack problem. In the knapsack problem,
we have a knapsack with capacity Cap. We have I items each
with weight Wi and profit Pri . The objective is to select the
items that fit in the knapsack such that the capacity of the
knapsack is not violated and the total profit is maximized.

The reduction from the knapsack problem is done as fol-
lows: (1) The capacity of the knapsack is mapped to the
capacity of the vehicle. (2) The number of requests in our
problem is set to I . (3) The i -th item in the knapsack problem
is mapped into the i -th request of our problem, where the rate
ri of the i -th request is set to Wi and the severity level pi is
set to Pri . (4) The arrival time of all requests ti (0) is set to 1
for all i . (5) The duration of all requests Ti is set to 1 for all i .
The reduction is illustrated in Figure 2.

It is clear that a solution to the knapsack problem with
total profit B is feasible iff it is a feasible solution to the
instance of our problem with cumulative severity B , where
the selected items in the knapsack problem correspond to the
selected requests in our problem. The other direction of the
iff statement is done in a similar way. �

V. ONLINE ALGORITHM

We showed in Section IV-B that the ILP optimization
problem is NP-complete. Combined with the fact that the ILP
optimization problem requires the knowledge of all requests
a priori, where obtaining such knowledge can be hard in
real scenarios. In this section, we present an online algo-
rithm that works on a per-request basis (i.e., decides whether
to accept or reject a request when the request arrives) in
order to maximize the cummulative severity gained from the
accepted requests while satisfying the processing capacity of
the processing vehicle at all times. We also show in Section VI
that our algorithm achieves an O(1)-competitive ratio.

In the online version of the problem, the requests are
revealed one by one. The online algorithm has to make

a decision on whether to accept or reject a request. The
algorithms decisions cannot be changed in the future, and the
decision must be made before the next request is revealed,
so the online algorithm works without the prior knowledge
of requests as opposed to the offline ILP optimization prob-
lem. In the case where multiple requests arrive at the same
time, the online algorithm can consider the requests in any
order. The order does not affect the analysis of our proposed
algorithm.

To measure the performance of the online algorithm against
the offline one, we use the concept of Competitive Ratio. Other
works have used the concept of competitive ratio, but for
different problems such as energy efficiency [23] or online
routing [24]. Competitive ratio is defined as the performance
achieved by the offline algorithm to that achieved by the online
algorithm, i.e., if we denote the offline performance as Pof f

and the online performance as Pon , the competitive ratio is:

sup
all input
sequences

Pof f

Pon
.

As the ratio gets closer to 1, the online performance gets
closer to the offline performance. In other words, the smaller
the competitive ratio, the better the online algorithm’s
performance.

A. The Algorithm

Before presenting the online algorithm, we define the
following:

• The relative load on a processing vehicle v at time τ
when β j arrives is

λv(τ, j) =
∑

k:k< j
k∈Processv (τ )

rk

Dv
,

where k < j refers to the indices of all βk that are being
processed at vehicle v at the time when considering β j to
be accepted or not at vehicle v. We use k ∈ Processv (τ )
to represent the processing of βk at vehicle v at time τ .

• The cost of processing a message β j at vehicle v at time
τ is:

Cv (τ, j) = Dv (γ
λv (τ, j ) − 1),

where γ is a constant that will be defined in Section VI.
The core idea of the online algorithm is to assign an expo-

nential cost function for the vehicle in terms of the vehicle’s
relative load. If the cost of processing a new message is less
than the severity level of that message, the algorithm decides
to process the new message. The choice of an exponential cost
function guarantees that the vehicle’s capacity constraints are
not violated. We show that in the next Section. The online
algorithm is presented in Algorithm 1.

In the algorithm, when a new request arrives at time t j (0),
vehicle v computes the relative load (λv(τ, j)) and the cost
(Cv (τ, j)) for every τ ∈ {t j (0), . . . , t j (0) + Tj }. This is
because a message currently being processed may be done
before t j (0) + Tj , thus the relative load and the cost should
be adjusted for each time slot thereafter.
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Algorithm 1 Online Algorithm
New request for β j arriving at vehicle v at time t j (0)
∀τ ∈ {t j (0), . . . , t j (0) + Tj }, Compute Cv (τ, j)

if p j ≥ ∑t j (0)+Tj

τ=t j (0)
r j
Dv

Cv (τ, j) then

process β j on vehicle v
∀τ ∈ {t j (0), . . . , t j (0)+ Tj }, λv (τ, j + 1) = λv(τ, j)+ r j

Dv
else

Do not process
end if

Fig. 3. Relative load and cost calculation example.

For example, Figure 3 shows the relative load at a vehicle
for the next 10 time slots starting from t j (0), which is the
arrival time of a new request β j . The vehicle is processing
three accepted requests β1, β2, and β3 that are going to finish
at times t j (0) + 4, t j (0) + 10, and t j (0) + 8, respectively.
When a request β j arrives at this vehicle at τ = t j (0) and
the duration of processing β j is 10 time slots (i.e. Tj = 10),
the cost calculation should include three accepted requests for
4 time slots, two accepted requests for 4 time slots, and one
accepted request for 2 time slots. Note that the relative load
at every time slot required to calculate the cost is available
to the vehicle at the arrival time of the new request, since
these relative loads are calculated based on the already-
accepted requests. Referring to Figure 3, if we assume that
the relative load for this vehicle is 0.75 for the first 4 time
slots, 0.5 for the next 4 time slots, and 0.25 for the last two
time slots, then the total cost is

∑t j (0)+4
t j (0) (Dv (γ

0.75 − 1)) +∑t j (0)+8
t j (0)+4(Dv (γ

0.5 − 1)) + ∑t j (0)+10
t j (0)+8 (Dv (γ

0.25 − 1)). If the
severity level p j of processing request β j is higher than the
total cost multiplied by r j

Dv
, then the request is accepted, and

the relative load is increased by r j
Dv

for all the 10 time slots.
Otherwise, the request is rejected.

B. Illustrative Example

In this example, suppose that a vehicle can handle requests
with a rate up to 40 packets per time slot and this vehicle
represents the receiver in this example. In addition, suppose
that there are three other vehicles within the communications
range of this vehicle and these vehicles represent senders.
Furthermore, suppose that γ is 29. Initially, the receiver’s
relative load is 0, since the receiver is not serving any request
yet and the cumulative severity is also zero. Consequently,
the following steps will occur when senders start sending
requests to the receiver:

Fig. 4. Illustrative example of the proposed online algorithm.

Step 1: at time slot 1, the receiver receives the request
(80, 6, 10, 1) which arrives at time slot 1 and finishes at time
slot 10, asking for a processing rate of 6 packets per time slot
and has a severity of 80. Now, since the relative load of the
receiver is zero at the beginning then the minimum required
severity to accept a bid is 0, so the request is accepted and
the cumulative severity becomes 80. Also, the relative load
is updated for the period from time slot 1 to time slot 10 to
be 0.15

Step 2: at time slot 2, the request (12, 4, 3, 2) arrives
requesting a processing rate of 4 packets per time slot with
a severity of 12 and finishes at time slot 4. The relative
load at time slots 2, 3, and 4 is 0.15 and the cost for this
request is 7.9. Thus, since the severity is more than the
computed cost, the request is accepted and the cumulative
severity becomes 92. Also, the relative load is updated for
the period from time slot 2 to time slot 4 to be 0.25 while it
stays at 0.15 for time slot 1 and for the period from 5 to 10.

Step 3: at time slot 2, the request (30, 8, 3, 2) arrives with
a severity of 30 and requesting a processing rate of 8 packets
per time slot for 3 time slot. The relative load from time
slot 2 to 4 is 0.25 and the cost of this request is 31.7 which
is more than the severity of the request, so the request gets
rejected. Since the relative load gets higher, the cost goes up
in relation with the time period because the online algorithm
tries to preserve the capacity for future requests with higher
severity (c.f. Figure 4).

In the above example, the third request is rejected even
when the severity is higher than the second request. However,
compared to the first request, the severity of the third request
is relatively low. The objective of the system is to maximize
the cumulative severity which supports the safety of vehicles
because high severity requests have a high potential of being
accepted unless the residual capacity is low. Thus, emergency
messages like safety messages have greater acceptance ratio
than lower severity messages. However, when the system is
heavily loaded with many requests being processed, the sys-
tem may reject high severity requests in order to keep the
system healthy and not to jeopardize the processing of already
accepted requests. Note that this auctioning process is applied
to the residual processing capability in the receiving vehicle.
This is beyond the processing capacity guaranteed to all
neighboring vehicles.
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VI. PERFORMANCE ANALYSIS

In this Section, we show that our algorithm does not violate
the capacity constraints, and achieves an O(1)-competitive
ratio.

Before we start the proof of satisfying the capacity
constraints and the competitive ratio, we need to state the
following two assumptions:

1 ≤ p j

r j Tj
≤ F ∀ j , (3)

and

r j ≤ Dv

log(γ )
∀ j , (4)

where F is any constant that is large enough to satisfy the
assumption in (3), γ = 2(T F + 1), and T = max(Tj ),∀ j .
The assumption in (3) states that the severity level of a
message scales with the required processing rate and dura-
tion. The assumption in (4) requires that the processing
capacity of any vehicle should be greater than the required
processing rate of any message, which is a practical condition
to assume.

We start by proving that the online algorithm does not
violate the capacity constraints. After that, we show that the
online algorithm achieves a O(1)-competitive ratio. In all of
the subsequent proofs, τ ∈ {t j (0), . . . , t j (0) + Tj }.

Proposition 1: The Online algorithm does not violate the
capacity constraints.

Proof: Let β j be the first request that caused the relative
load at vehicle v to exceed 1. By the definition of the relative
load, we have

λv(τ, j) > 1 − r j

Dv

using the assumption in (4) and the definition of the cost
function, we get

Cv (τ, j)

Dv
= γ λv(τ, j ) − 1

≥ γ 1− r j
Dv − 1

≥ γ
1− 1

log γ − 1

≥ γ

2
− 1 ≥ T F

Multiplying both sides by r j and using the assumption in (3),
we get

r j

Dv
Cv (τ, j) ≥ T Fr j ≥ p j

From the definition of our algorithm, β j should not be
processed at vehicle v. Therefore, the online algorithm does
not violate the capacity constraints. �

The next lemma shows that the cumulative severity gained
by our algorithm is lower bounded by the sum of the process-
ing costs.

Lemma 1: Let A be the set of indices of requests accepted
by the online algorithm, and k be the last index, then

2 log(γ )
∑
j∈A

p j ≥
∑
τ

Cv (τ, k + 1)

Proof: We prove this lemma by induction on k. When
k = 0, the vehicle is not processing any request and the right
hand side of the inequality is 0. When β j is not accepted by
the online algorithm, neither side of the inequality is changed.
Then it is enough to show, for an accepted request β j , that:

2 log(γ )p j ≥
∑
τ

[Cv (τ, j + 1) − Cv (τ, j)]

since summing both sides over all j ∈ A will yield (1).
The additional cost incurred by processing β j is given by:

Cv (τ, j + 1) − Cv (τ, j) = Dv [γ λv(τ, j+1) − γ λv(τ, j )]
= Dvγ

λv (τ, j )[γ
r j
Dv − 1]

= Dvγ
λv (τ, j )[2log γ

r j
Dv − 1]

Since 2x − 1 ≤ x for 0 ≤ x ≤ 1 and using the assumption
in (4)

Cv (τ, j + 1) − Cv (τ, j) ≤ Dvγ
λv (τ, j )[ r j

Dv
log γ ]

≤ r j log γ [Cv (τ, j)

Dv
+ 1]

≤ log γ [ r j

Dv
Cv (τ, j) + r j ]

Summing over τ and the fact that β j is processed, we get∑
τ

[Cv (τ, j + 1) − Cv (τ, j)]

≤ log γ
∑
τ

[ r j

Dv
Cv (τ, j) + r j ]

≤ log γ [p j +
∑
τ

r j ]
≤ 2 log(γ )p j

�
Lemma 2: Let Q be the set of indice of requests accepted

by the offline algorithm, but not the online algorithm. Let
l = arg max j∈Q(Cv (τ, j)). Then∑

j∈Q

p j ≤
∑
τ

Cv (τ, l)

Proof: Since β j was not processed by the online
algorithm, we have:

p j ≤
∑
τ

r j

Dv
Cv (τ, j) ≤

∑
τ

r j

Dv
Cv (τ, l)

Summing over all j ∈ Q∑
j∈Q

p j ≤
∑
τ

Cv (τ, l)
∑
j∈Q

r j

Dv
≤

∑
τ

Cv (τ, l)

Since any offline algorithm cannot exceed a unit relative
load,

∑
j∈Q

r j
Dv

≤ 1. �
Combining Lemma 1 and Lemma 2, we have the following

theorem.
Theorem 2: The online algorithm achieves an

O(1)-competitive ratio.
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Fig. 5. Performance of the online algorithm for different γ values.
(a) Cumulative severity for different γ values. (b) System load for different
γ values.

Proof: Let A∗ be the set of indices of the requests accepted
by the offline algorithm, and let k be the last index. The
cumulative severity of the offline algorithm is given by:∑

j∈A∗
p j =

∑
j∈Q

p j +
∑

j∈A∗/Q

p j

≤
∑
j∈Q

p j +
∑
j∈A

p j

≤
∑
τ

Cv (τ, l) +
∑
j∈A

p j

≤
∑
τ

Cv (τ, k + 1) +
∑
j∈A

p j

≤ 2 log(2γ )
∑
j∈A

p j

Since γ is a constant defined at the beginning of this section,
our algorithm achieves an O(1)-competitive ratio. �
The value of the variable γ , the definition of the cost function,
the steps of the algorithm, and the assumptions mentioned in
Section V are all tied together in order to achieve a constant
competitive ratio and satisfy the capacity constraints as shown
in the proofs in Section VI. Any other value of γ may result in
a worse competitive ratio or violating the capacity constraints.

VII. VALIDATION EXPERIMENTS

In Section VI, we defined the value of γ needed to achieve
an O(1)-competitive ratio. To validate our analytical results,
we conduct simulation experiments using different values of
γ ; namely, values that coincide with our analytical results as
well as lower and higher values. The results of our experiments
are illustrated in Figure 5.

From Figure 5(a), it can be clearly seen that the algorithm
gains less profit in terms of cumulative severity when a higher
value of γ is used compared to our analytical expression.
Furthermore, Figure 5(b) illustrates that lower values of γ
compared to our analytical expression allow the algorithm to
accept more requests than what can be handled by the system;
thus, violating the capacity constraint. Figure 5 also illustrates
how the value of γ generated based on our analytical expres-
sion achieves better cumulative severity while not violating
the capacity constraint of the system.

VIII. EXPERIMENTAL PERFORMANCE ANALYSIS

To evaluate the performance of the online algorithm,
we compare it against three heuristic algorithms. The first
algorithm, named FirstFit, accepts requests as long as the
capacity permits without taking the severity of requests into
consideration. The other two algorithms are threshold-based
heuristic algorithms. The threshold is updated based on the
exponentially weighted moving average (EWMA) filter using
the following equation:

θ j = (1 − α).θ j−1 + α.p j

where θ j is the newly computed threshold value for request j ,
θ j−1 is the previous estimation computed from request j − 1,
p j is the current severity of request j , and α is a parameter that
determines the reactivity of the algorithm. The two heuristic
algorithms are:

1) Agile: where α = 0.7.
2) Stable: where α = 0.3.

A higher value of α means that the new threshold mostly
depends on the current severity and therefore the algorithm
will respond quickly to changes. Both the agile and the stable
algorithms accept a request if the severity of the received
request is higher than the computed threshold value and the
capacity constraint is not violated; otherwise, the request is
rejected.

In order to compare the performance of the aforementioned
algorithms, we use the traffic traces generated as explained
in Section VIII-A for two different cities: Bologna in Italy
and Erlangen in Germany. These traffic traces contain the
velocity of each vehicle, the start time and end time of the
communication process, and the number of packets generated
during the communication. These fields are used to produce
the input data for the algorithms as follows:

1) Arrival time of the j -th request (t j (0)): This is the same
as the start time of the communication process.

2) Duration of the j -th request (Tj ): This is represented by
the difference between the end time and the start time
of the communication process.

3) Processing rate of the j -th request (r j ): This is the
number of packets of the j -th request divided by the
Duration of the j -th request.

4) Severity of the j -th request (p j ): This is computed based
on the following equation:

p j = |Us − Ur |
Ua

.M
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Fig. 6. Map of Erlangen, Germany, as available from the OpenStreetMap
project. Overlaid are the scenarios start and finish positions, the fastest
route between them, and popular alternative routes around the artificial
incident. [27].

Where Us is the stopping distance of the sending vehicle,
Ur is the stopping distance of the receiving vehicle, Ua is
the actual distance between sending and receiving vehi-
cles, and M is a scaling factor. The stopping distances Us

and Ur are computed using the following equation [25]:

U = V el × R + V el2

2�g

Where V el is the vehicle’s velocity, R is the driver
reaction time in seconds which is set to 1.5, � is the
friction coefficient which is set to 0.7, and g is the
gravity of earth.

Our complete emulation traces can be found in [26].
Simulation settings and results obtained from running the three
algorithms based on the simulation data are discussed next.

A. Simulation Settings

In order to generate realistic vehicular data for our proposed
online algorithm, we simulate two different scenarios using
Veins (Vehicles in Network Simulation) [27], because direct
practical experiments are not feasible. The hybrid simulation
framework, Veins, uses Omnet++ [28], a network simulator,
and SUMO [29], a road traffic simulator, as its principle
components to simulate network traffic and mimic traffic
behavior.

The first scenario to simulate Inter-Vehicular Communica-
tions (IVC) was traffic in Erlangen city in Germany. Erlangen
city simulation scenario is the default scenario that is coupled
with Veins. The base road layout for the city is retrieved
from the publicly available OpenStreetMap project [27]. The
project produces detailed maps of cities by combining data
from different sources. Figure 6, shows a detailed map of
Erlangen with overlaid locations of traffic source and sink
nodes.

Fig. 7. Bologna city map [30].

The second IVC simulation scenario was for traffic
from Bologna city in Italy. To conduct this simulation,
we used Bologna Ringway dataset [30]. Bologna is a city
of 380,000 people located in central northern Italy. As shown
in Figure 7, the urban area is surrounded by a ringway that
features three lanes per direction. Morning traffic peak hours
occur due to the flow of traffic from the city’s outskirts
to the city’s commercial hub, downtown, where majority of
commercial activities occurs. Thus, most of the vehicular
traffic flows along the ringway [30]. Figure 7 also shows a
distribution of trips and their starting and ending edges. As can
be seen from the figure, a few of the edges are prominent in
most of the trips. This is an important fact, as it demonstrates
that certain routes are used more than others and as such,
traffic on those routes would be much more severe than other
routes. Heavy traffic means that a larger number of vehicles
will be exchanging data; thus, increasing the processing load
and the need for prioritization.

Bedogni et al. [30] generate four different mobility datasets,
based on the number of vehicle trips. In our simulation,
we use the complete travel demand dataset that maps to
peak traffic hours between, 8 A.M. and 9 A.M.; with a
total of 22,213 trips. Veins simulates the complete network
stack for all communications among vehicles. Each vehicle
has a wireless module that utilizes IEEE 802.11p network
cards transmitting at 3 Mbps. Beacon generation rate was set
to 10 Hz [31]–[33] This rate also provides more saturated
channel and its preferable instead of higher data rates due
to the lower capture threshold [31]. Although the dynamic
generation rate is recommended for VANETs in order to
prevent network congestion [32], but since there is no explicit
generation rate specified in the standard [34] we tried to adhere
to the most common value used in literature. The complete
parameter list is given in Table I. It should be noted that the
selection of these datasets does not affect the results. We chose
these two cities because their datasets are publicly available.
The only parameter that affects the results is the number of
cars present during simulation.

B. Results and Discussions

For validation purposes, we compare our online algorithm
against the ILP optimization presented in Section IV-A.
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Fig. 8. Performance vs. capacity: online algorithm vs. ILP.

Fig. 9. Performance vs. capacity: online algorithm vs. agile, stable, and FirstFit online heuristics.

TABLE I

SIMULATION PARAMETERS

Due to the intractability of solving the ILP optimization,
we run the simulations using a small dataset containing
800 requests from the Bologna case. The results are shown
in Figure 8. As can be seen from the figure, a 30% to 40%
increase in the cumulative severity gained by the optimal
algorithm over the cumulative severity gained by the online
algorithm is observed, which is inline with the worst-case

ratio proved in Section VI. Moreover, as the capacity of
the processing vehicle increases, the gap between the online
solution and the optimal solution decreases.

In our experiments, the four algorithms were tested using
different capacities. Figure 9 and Figure 10 show the results
for Bologna and Erlangen cities.

In the first experiment, we studied the cumulative
severity for the four algorithms over different capacities
(c.f. Figure 9(a)). This experiment demonstrates the superior
performance of the proposed online algorithm over the other
algorithms by up to 492% when the capacity is limited. As the
capacity increases, the gap in cumulative severity between the
proposed algorithm and the other three algorithms decreases.
Actually, with large capacity, any algorithm can accept all the
requests, which makes the problem simple and eliminates the
need for an intelligent algorithm.

In our second experiment, we studied the number of
accepted requests for the four algorithms over different
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Fig. 10. Severity vs. time for capacity of 350 packets per second. (a) Bologna city. (b) Erlangen city.

capacities (c.f. Figure 9(b)). While this experiment shows
that the proposed algorithm accepts more requests than the
heuristic-based algorithms, the selection of the requests is not
random. In other words, the online algorithm does not have
to accept more requests to get higher cumulative severity. The
advantage of the online algorithm over other algorithms is
that it tends to accept requests with higher severity that span
shorter periods of time in order to preserve the capacity for
future potential requests as can be clearly seen in Figure 9(d).

Figure 9(d) compares the average time per request for the
four algorithms using different capacities. The figure supports
the fact that the proposed algorithm does not accept more
requests randomly but rather makes intelligent decisions by
accepting requests that tend to span shorter periods. In other
words, the proposed algorithm has a better utilization of time
compared to the other three algorithms because it does not
allow a request to reserve the capacity for longer periods.

In Figure 10, the capacity is set to 120 packets per second.
In each time slot, the sum of the severity levels of the accepted
requests in that time slot for the four algorithms is plotted. The
agile and stable algorithms accept requests that exceed their
identified thresholds regardless of their time span; therefore,
they end up accepting some requests that reserve the capacity
for long periods preventing both algorithms from accepting
further requests. Likewise, the FirstFit algorithm falls in the
same trap and ends up accepting requests that reserve the
capacity for long time. This implies that the three algorithms
might end up regretting their previous decisions as illustrated
in Figure 10 compared to our proposed online algorithm which
does not regret previous decisions.

Figure 9(c) plots the cumulative severity per accepted
request per unit of time for the four algorithms over different
capacities. This figure provides the insight about how the
online algorithm achieves its “no regret” behavior by accepting
requests with higher severity that tend to span shorter intervals.
Furthermore, Figure 9(c) shows that the proposed online
algorithm is responsive to the system’s capacity as it accepts
more requests when the system’s capacity is increased while
the other three algorithms are insensitive to capacity increases.

IX. CONCLUSION

In this paper, we study the problem of prioritizing the
processing of message requests in vehicular networks, where
a vehicle needs to select which requests it needs to process
based on the severity level of the request. This is motivated
by the urgency of data processing in safety-critical scenarios
such as collision avoidance applications. We formulate the
problem as an Integer Linear Program that requires a prior
knowledge of the request sequence to maximize the cumula-
tive severity without violating the capacity constraints of the
serving vehicle, and prove that the problem is NP-complete.
Since obtaining the request sequence in advance is hard in
real scenarios, we propose an online algorithm that works on
a per-request basis and does not require the prior knowledge
of the request sequence. Through detailed analysis, we show
that the cumulative severity gained by the online algorithm is
within a constant factor of the optimal cumulative severity. Our
evaluation, based on real traffic traces, shows that our algo-
rithm can outperform exponentially weighted moving average
threshold-based heuristics and FirstFit by up to 492%.
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