
Risk-Aware Submodular Optimization for
Stochastic Travelling Salesperson Problem

Rishab Balasubramanian, Lifeng Zhou, Pratap Tokekar, and P.B. Sujit

Abstract— We introduce a risk-aware variant of the Traveling
Salesperson Problem (TSP), where the robot tour cost and
reward have to be optimized simultaneously, while being
subjected to uncertainty in both. We study the case where
the rewards and the costs exhibit diminishing marginal gains,
i.e., are submodular. Since the costs and the rewards are
stochastic, we seek to maximize a risk metric known as
Conditional-Value-at-Risk (CVaR) of the submodular function.
We propose a Risk-Aware Greedy Algorithm (RAGA) to find
an approximate solution for this problem. The approximation
algorithm runs in polynomial time and is within a constant
factor of the optimal and an additive term that depends on the
value of optimal solution. We use the submodular function’s
curvature to improve approximation results further and verify
the algorithm’s performance through simulations.

I. INTRODUCTION

Determining an optimal tour to visit all the locations in
a given set while minimizing/maximizing a metric is the
classical Travelling Salesperson Problem (TSP) that finds
applications in robotics, logistics, etc. However, there are
several applications where the environment is dynamic and
uncertain, as a result of which classical approaches to solv-
ing the TSP are insufficient. Examples include determining
routes to visit active volcanic regions (where the activity has
temporal variability) for obtaining scientific information (as
shown in Fig. 1); determining routes for a logistic delivery
vehicle in dense urban regions with uncertain traffic, etc.
In such scenarios, the risk due to uncertainty in the travel
times and/or the rewards collected along the path needs to
be considered while determining the tour.

Several approaches to stochastic TSP have been presented
in the literature. In [1], a two-step process to convert the
TSP to a multi-integer linear programming problem and
then introduce a meta-heuristic based on the probabilistic
hedging method proposed in [2] is carried out. Paulin [3]
uses an extension of Stein’s method for exchangeable pairs to
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approach the stochastic salesperson problem. In [4], [5] and
[6], the authors develop a genetic algorithm to approach the
uncertainty in TSP. In [7], a constant factor approximation
algorithm is developed for a Dubin’s vehicle visiting all the
points, with cost minimization being the main objective.
In [8], again an approximation algorithm is presented to
minimize the time taken to visit the targets that are appearing
stochastically in the environment. In all the above articles,
the risk is not considered directly.

We argue that a different approach is necessary in many
risk-sensitive applications. Specifically, instead of optimizing
the expected cost, optimizing a risk-sensitive measure may
be more appropriate. In this paper, we focus on this case and
present a risk-aware TSP formulation. To do so, we develop
an approximation to the stochastic TSP with the optimization
objective represented as a submodular function. The resulting
algorithm takes as input a risk tolerance parameter, α, and
produces a tour that maximizes the expected behavior in the
worst α percentile cases. Thus, the user can choose tours
ranging from risk-neutral (α = 1) to very conservative (α ≈
0).

An important property of submodular functions are their
diminishing marginal values. The use of submodular func-
tions is wide-spread: from information gathering [9] and
image segmentation [10] to document summarization [11].
Rockafellar and Uryasev [12] introduce a relationship be-
tween a submodular function and the Conditional-Value-
at-Risk (CVaR). CVaR is a risk metric that is commonly
employed in stochastic optimization in finance and stock
portfolio optimization. Another popular measure of risk is
the Value-at-Risk (VaR) [13], which is commonly used to
formulate the chance-constrained optimization problems. In
[14], and [15], the authors study the chance-constrained
optimization problem while also considering risk in the
multi-robot assignment, and then extend it to a knapsack
formulation. In a comparison between the VaR and CVaR,
Majumdar and Pavone [16] propose that the CVaR is a better
measure of risk for robotics, especially when the risk can
cause a huge loss. In [17] and [18], a greedy algorithm for
maximizing the CVaR is proposed.

Building on the work by [17], [18], in this paper, we
develop a polynomial-time algorithm for approximating a
solution to the stochastic TSP. Our method differs from the
previous approaches due to the presence of uncertainty in
the tour cost, making traditional path-planning algorithms
fail. The framework presented in [17], [18] is effective only
for one-stage planning (selecting a path amongst a set of
candidate paths). In this paper, we present a multi-stage



(a) An image of an island, with
the locations of active volca-
noes highlighted in red

(b) Key sites of surveillance
surrounding the volcanic sites

(c) Tour with low cost and low
reward

(d) Tour with high cost and high
reward

Fig. 1: An example of risk-aware tour selection for volcano monitoring in an island. A low-risk, low-reward monitoring tour
avoids the more interesting region in the middle which the high-risk, high-reward tour covers.

planner that finds a route taking the stochastic aspect into
account. To achieve this, we propose an objective function
that balances risk and reward for a tour and prove that this
function is submodular. The method in [19] addresses the
deterministic TSP with a reward-cost trade-off, while our
work is focused on a stochastic version where the uncertainty
in reward and cost is considered. The algorithm from [19]
can be viewed as a special case of our algorithm, with α = 1
and the subsequent risk ignored.
Contributions: The main contributions of this paper are:

• We present a risk-aware TSP with a stochastic objective
that balances risk and reward for planing a TSP tour
(Problem 1).

• We show the objective is submodular (Lemma 3) and
propose a greedy algorithm (RAGA) to find tours that
maximize the CVaR of a stochastic objective (Algo-
rithm 1).

• We prove that the solution obtained by RAGA is within
a constant approximation factor of the optimal and
an additive term proportional to the optimal solution
(Theorem 1) and prove that RAGA has a polynomial
run-time (Theorem 2).

• We evaluate the performance of the algorithm through
extensive simulations (Section V).

II. PRELIMINARIES

We first introduce the conventions and notations used in
this paper. Calligraphic capital letters denote sets (e.g.A). 2A

denotes the power set of A and |A| represents its cardinality.
Given a set B, A \ B denotes set difference. Let x be a
random variable, then E[x] represents the expectation of the
random variable x, and P[·] denotes its probability.

A. Set and Function Properties

Optimization problems generally work over a set system
(X ,Y) where X is the base set and Y ⊆ 2X . A reward/cost
function f : Y → R is then either maximized or minimized.

Definition 1: (Monotonically Increasing): A set function
f : Y → R is said to be monotonically increasing if and
only if for any set S ′ ⊆ S ∈ 2X , f(S ′) < f(S).

Definition 2: (Submodularity): A function f : 2X → R
is submodular if and only if
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), ∀S, T ∈ 2X .

Definition 3: (Matroid): An independence set system
(X ,Y) is called a matroid if for any sets S,P ∈ 2X and
|P|≤ |S|, it must hold that there exists an element s ∈ S \P
such that P ∪ {s} ∈ Y .

Definition 4: (Curvature): Curvature is used as a measure
of the degree of submodularity of a function f . Consider the
matroid pair (X ,Y), and a function f : 2X → R, such
that for any element s ∈ X , f({s}) 6= 0. The curvature
k, 0 ≤ k ≤ 1 is then defined as:

k = 1− min
s∈S,S∈Y

f(S)− f(S \ {s})
f({s}) . (1)

B. Travelling Salesperson Problem

Definition 5: (TSP): Given a complete graph G(V, E), the
objective of the TSP is to find a minimum cost (maximum
reward) Hamiltonian cycle.
In this paper, we consider the symmetric undirected TSP,
where each edge has a reward and cost associated with it.

C. Measure of Risk

Let f(S, y) denote a utility function with solution set S
and noise y. As a result of y, the value of f(S, y) is a random
variable for every S .

Definition 6: (Value at Risk): The Value at Risk (VaR) is
defined as:

VaRα(S) = min
τ∈R
{P[f(S, y) ≤ τ ] ≥ α}, α ∈ (0, 1], (2)

where α is the user-defined risk-level. A higher value of α
corresponds to the choice of a higher risk level.

Definition 7: (Conditional Value at Risk): The
Conditional-Value-at-Risk (CVaR) is defined as

CVaRα(S) = Ey[f(S, y) | f(S, y) ≤ VaRα(S)]. (3)



Maximizing the value of CVaRα(S) is equivalent to maxi-
mizing the auxiliary function H(S, τ) (Theorem 2, [12]):

H(S, τ) = τ − 1

α
Ey[ (τ − f(S, y))+ ], (4)

where [t]+ = t, ∀t ≥ 0 and 0 when t < 0.
Lemma 1: (Lemma 1, [17]) If f(S, y) is monotone in-

creasing, submodular and normalized in set S for any real-
ization of y, then the auxiliary function H(S, τ) is monotone
increasing and submodular but not necessarily normalized 1

in set S for any given τ .
Lemma 2: (Lemma 2, [17]) The auxiliary function

H(S, τ) is concave in τ, ∀ S .

III. PROBLEM FORMULATION

In this section, we first discuss a risk-aware TSP and then
formulate the problem as a stochastic optimization problem
by using CVaR.

A. Risk-Aware TSP

In order to motivate our formulation, consider the scenario
of monitoring active volcanoes using a robot (say aerial
robot) on an island as shown in Fig. 1a, where the red-colored
patches represent active volcanic regions. The important sites
(V) that the robot needs to visit are shown in Fig. 1b. These
sites are strategic positions from which it is possible to
observe the volcanic situation from a safe distance. The robot
travels between these monitoring sites and receives a reward
based on the information gathered while traversing this tour.
In this work, we do not constrain vehicle motion in terms of
distance or time. While traveling directly above the volcano,
the robot faces a higher chance of failure (due to volcanic
activity) but can gather more information (a higher reward),
while traveling along a shorter path (less cost). On the other
hand, while traveling around the volcano, the robot has a
lower risk but must travel a longer distance (more cost) while
also receiving a lower reward. Fig. 1c and Fig. 1d show the
paths that could be adopted based on the risk level specified
for the robot. Our objective is to find a suitable tour for
a single robot while considering the risk threshold and the
trade-off between path cost and reward required.

The monitoring task is modeled as a risk-aware TSP on a
graph G(V, E) of an environment E with |V| sites of interest.
The notation E represents the set of edges connecting the
vertices. A representative information density map M of the
environment E is shown in Fig. 2. The robot has sensors
with a sensing range R. As it travels along the tour, the
robot receives a reward based on the amount of information
it collects and a penalty proportional to the tour’s cost. We
assume that both the reward and cost are random variables,
with the reward being positive, and the cost of every edge
having an upper-bound of C. We use r(S, yr) and c(S, yc)
to denote the reward and cost for a set of edges S , where
r(S) and c(S) are the sum of rewards of all points observed
and the costs incurred when travelling along the edges in

1The function f(S, y) is normalized in S if and only if f(∅, y) = 0.

Fig. 2: Map M shows the information distribution in the
environment E. The right bar shows the density degree of
the information.

set S respectively, and yr and yc are the respective noises
induced.

As we want to minimize cost and maximize reward
simultaneously, our utility function f(S, y) is a combination
of these two terms, with a weighting factor deciding the
priority we place on the cost over the reward. We define
f(S, y) as

f(S, y) = (1− β) r(S, yr) + β (|S|C − c(S, yc)), (5)

where β ∈ [0, 1] is the weighting parameter. When β = 0, we
ignore the cost incurred and consider the rewards received
only. When β = 1, we ignore the rewards and are wary of
only the cost penalized (classical TSP). Note that we directly
incorporate the cost-reward trade-off into the utility function.

Let us define r(S, yr) as fr(S, yr) and |S|C− c(S, yc) as
fc(S, yc).

Lemma 3: The utility function f(S, y) is both submod-
ular and monotone increasing in S .

Proof: Let e be the edge to be added to the tour, where
e ∈ E \ S and S is set of edges selected so far. Let us
consider the two parts of f(S, y) separately.

a) fr(S, y): leftmargin=*
• As the rewards are sampled from a truncated Gaussian,

with a lower bound of 0, they are thus always positive.
Therefore, fr(S, y) is always monotone increasing in
S ,

fr(S) ≤ fr(S ∪ {e}). (6)

• While calculating the total reward, we add the rewards
obtained from all distinct points observed while travers-
ing this tour. Consider the current set of edges S and a
new edge e. If the new edge e and the edges S have any
overlap in the sensed regions, the total reward received
from traversing S and e successively will be less than
the sum of rewards of traversing S and e individually.
Therefore,

fr(S ∪ {e}) ≤ fr(S) + fr({e}).
Also, since e ∈ E \ S , fr(S ∩ {e}) = 0. Then we have,

fr(S ∪ {e}) + fr(S ∩ {e}) ≤ fr(S) + fr({e}), (7)



and thus fr(S, y) is submodular in S .

b) fc(S, y):
• The cost of each edge is defined as a truncated Gaussian

with a upper bound of Mc. For any set of edges in S ,
the sum of costs will always be less than |S|Mc, which
means any sample (realization) of fc(S, y) is positive.
Therefore, fc(S, y) is always monotone increasing in
S , i.e.,

fc(S) ≤ fc(S ∪ {e}). (8)

• Consider again, the current set of edges S and the new
edge e. The total cost of traversing S and e is equal
to the sum of costs of traversing S and e individually.
Therefore,

fc(S ∪ {e}) = fc(S) + fc({e}), (9)

and thus fc(S, y) is modular in S .
c) f(S, y): Since both fr(S, yr) and fc(S, yc) are

monotone increasing in S , f(S, y) as the summation of
these two, is also monotone increasing in S . Similarly, since
fr(S, yr) is submodular in S and fc(S, yc) is modular in S ,
f(S, y) as the summation of these two, is submodular in S .
�

B. Risk-Aware Submodular Maximization

Consider the set system (E , I), where E is the set of all
edges in the graph G(V, E). If A1,A2 . . .An each contains
the edges forming n Hamiltonian tours, then I := 2A1 ∪
2A2 . . .∪2An . We define our risk-aware TSP by maximizing
CVaRα(S), where S ∈ I . We know that maximizing the
CVaRα(S) is equivalent to maximizing the auxiliary function
H(S, τ). Thus, we formally define the problem as:

Problem 1 (Risk-aware TSP):

max
S∈I, τ∈[0,Γ]

τ − 1

α
Ey[(τ − f(S, y))+], (10)

where Γ is the upper bound on the value of τ .

IV. ALGORITHM AND ANALYSIS

In this section, we present a risk-aware greedy algorithm
(RAGA) that extends the deterministic algorithm in [19] for
solving Problem 1. We first explicitly introduce RAGA, then
analyze its performance in terms of approximation bound
and running efficiency.

A. Algorithm

RAGA has three main stages:
(i) Initialization (lines 2 - 3) The decision set S (Hamilto-
nian cycle) is initialized as an empty set. A degree vector D
is set as 01×|V|, which contains vertices’ degrees in order.
We use variables Ĥmax = 0 and Ĥcur = 0 store the maximal
and the current values of Ĥ(S, τ) (line 2).
(ii) Search for valid tour for every τ (lines 4 - 20): For a
specific value of τ , we continue to add edges greedily until
we have a complete tour or the edge set E is empty. For
every edge e ∈ E \ S , we calculate the marginal gain of

Algorithm 1: Risk-aware greedy algorithm (RAGA)
Input:
Graph G(V, E); Risk level α ∈ (0, 1]; Weighing
factor β ∈ [0, 1]; Upper bound Γ ∈ R+ on τ ;
Searching factor γ ∈ (0,Γ]; Oracle function O that
approximates H(S, τ) as Ĥ(S, τ).

Output:
A Hamiltonian tour SG and its respective τG.

1 for i = {0, 1, 2, . . .,
⌈

Γ
γ

⌉
} do

2 S = ∅; D = 01×|V|; Ĥmax = 0; Ĥcur = 0
3 τi = i γ
4 while E 6= ∅ and |S| ≤ |V| do
5 e? = argmax∀e∈E\S Ĥ(S ∪{e}, τi)− Ĥ(S, τi)
6 (u, v)← V(e?)
7 flag = False
8 if D[u] < 2 and D[v] < 2 then
9 check subtour existence in S ∪ {e?} by

running DFS
10 if no subtour present then
11 flag = True
12 end
13 end
14 if flag == True then
15 S ← S ∪ {e?}
16 D[u]+ = 1; D[v]+ = 1

17 Ĥcur = Ĥ(S ∪ {e?}, τi)
18 end
19 E ← E \ {e?}
20 end
21 if Ĥcur ≥ Ĥmax then
22 Ĥmax = Ĥcur; (SG, τG) = (S, τi)
23 end
24 if Ĥcur < 0 then
25 break
26 end
27 end

the auxiliary function, Ĥ(S ∪ {e})− Ĥ(S) using the oracle
function O, and choose the edge e∗ which maximizes the
marginal gain (line 5). We then check if the selected edge
e∗ forms (or could form) a valid tour with the elements in S
(i.e., if S ∪ {e∗} ∈ I) (lines 8 - 13). Here, we first validate
the degree constraint for each edge in S ∪{e}, and then use
the depth-first search (DFS) algorithm to iterate through the
selected edges to check for subtours. If the new edge does
not break the above constraints, we add the edge in S and
update D and Ĥcur (lines 14 - 18). Finally, we remove e∗

from E in line 19.
(iii) Selecting best tour set (SG, τG) (lines 21 - 23): For
every tour we store the value of the auxiliary function Ĥ in
Ĥcur, and compare it to the best value Ĥmax. We store the
pair (S, τ) whenever Ĥcur > Ĥmax, and update Ĥmax.

Lines 24 - 26 show the condition of exiting the loop. As
H(S, τ) is concave in τ , and we start from a non-negative
value (as seen in Fig. 6a), it is certain that if H(S, τ)
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Fig. 3: Probability density function of f(S, y) at different values of α, keeping β fixed.
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Fig. 4: Probability density function of f(S, y) at different values of β, keeping α fixed.

becomes negative, it will continue to further decrease. This
improves the runtime of RAGA.
Designing the oracle function O: We use a sampling based
oracle function to approximate H(S, τ) as Ĥ(S, τ). The
authors of [20] have proved that if the number of samples
ns = O(Γ2

ε2 log 1
δ ), δ, ε ∈ (0, 1), the approximation for

the value of CVaR (or equivalently, the auxiliary function
Ĥ(S, τ)) gives an error less than ε with a probability of at
least 1− δ.

B. Performance Analysis

Theorem 1: Let SG and τG be the tour and the searching
scalar selected by RAGA and let S? and τ? be the tour and
the searching scalar selected the optimal solution. Then,

H(SG, τG) ≥ 1

2 + k
(H(S?, τ?)− γ) +

1 + k

2 + k
Γ(1− 1

α
)− ε
(11)

with a probability of at least 1 − δ, when the number of
samples ns = O(Γ2

ε2 log 1
δ ), δ, ε ∈ (0, 1). k is the curvature

of H(S, τ) with respect to S .
Proof: Note that H(S, τ) is monotone increasing, sub-

modular, but not normalized (Lemma 1). [21, Theorem 6.1]
and [19, Theorem 2.10] have shown that for a normalized
submodular increasing function, the greedy algorithm gives
an approximation of 1

2+k for maximizing it. Following this
result, normalizing H(S, τ) by H(S, τ)−H(∅, τ), we get:

H(SG, τ)−H(∅, τ)

H(S?, τ)−H(∅, τ)
≥ 1

2 + k
(12)

where H(S?, τ) is the optimal value of H(S, τ) for any
given value of τ . Then following the proof of Theorem 1
in [18], we have the bound approximation performance of
RAGA in Equation (11). �

Theorem 2: RAGA has a polynomial running time of
O(dΓ

γ e(|V|3(|V|np + ns + 2 log|V|+1))).
Proof: First, the outer “for” loop (lines 1-27) takes at

most dΓ
γ e time to search for τ . Second, the inner “while”

loop (lines 4-20) needs to check for edges e ∈ E to find the
tour S , thus running at most |E| times.

Within the “while” loop, RAGA finds the edge e? with
maximal marginal gain in line 5. To compute the marginal
gain for an edge e, RAGA calls the oracle function O. As it
estimates Ĥ(S, τi), ∀e ∈ E \S , O is called at most |E| times,
during one iteration of the “while” loop in line 4. As RAGA
needs to compute the marginal gains only when S is changed
in line 15, and as S can have only |V| elements, it needs to
perform a total of |V| recalculations. In addition, the edges
need to be sorted every time a recalculation is performed, so
that future calls to find the most beneficial element can be
run in constant time without recomputing Ĥ(S, τi).

For any edge e, the oracle O must compute the new mean
reward and cost of S ∪ {e}. As only the distinct points in
the environment are considered while calculating reward, the
oracle must maintain an array of points that were observed
while traveling along S . If the maximum points observed
when traveling along any edge in E is np, then the maximum
number of points observed while traversing S would be
|V|np. Afterward, the oracle takes ns samples to compute
Ĥ(S, y). Thus the total runtime of the oracle is |V|np + ns.
Therefore, the total time for computing gains and sorting
would be O(|V|(|E|(|V|np + ns) + |E|log|E|)).

Next, within the “while” loop, RAGA checks if a the
selected edge e∗ could form a valid tour with S (lines 8-
13). In particular, it ensures the degree of the two vertices
of edge e? is less than two (line 8). If both vertices have a
degree less than two, it runs DFS to traverse the elements
in S to check for subtours (line 9), which takes at most |V|



time. As this is performed for every edge e to be added to S ,
in total, validating the selected edge runs in O(|V||E|) time.

Assuming that all other commands take constant time,
RAGA has a runtime of O(|V|(|E|(|V|np+ns)+ |E|log|E|)+
|V||E|) for one iteration of the “for” loop. Notably, for a
complete graph, |E|= O(|V|2). Considering that the “for”
loop has dΓ

γ e iterations, the total runtime of RAGA becomes
O(dΓ

γ e(|V|3(|V|np + ns + 2 log|V|+1))). �

V. SIMULATION RESULTS

The performance of RAGA is evaluated through extensive
simulations with various environment maps and varying
numbers and locations of nodes.2

Simulation setup. We consider the scenario with the
number of sites (nodes) |V|= 8 in a 2D environment of
size 100m × 100m meters. The sensing radius of the robot
is R = 2 meters. We assume both the reward and cost of
an edge are modeled as a truncated Gaussian distribution,
but RAGA can handle other distributions as well since it
only requires samples of the distributions to approximate
CVaR. Similarly, the noise terms yr and yc are assumed to be
Gaussian. However, the terms are generic to accommodate
any other distributions. Given the information density map
M (Fig. 2), in which each point depicts the mean reward
obtained from observing that position. The average reward
for an edge r(e) is the sum of rewards of all points on M
sensed while traversing this edge. The mean cost c(e) of an
edge is proportional to its length. We assume the variances
of the edge reward is proportional to its mean r(e) and
variance in the cost to be proportional to C − c(e). The
average rewards and costs for every edge are normalized
and re-scaled to a maximum value of 10. We set the number
of samples as ns = 250.

Results. Fig. 3 shows the probability distributions of the
utility function f(S, y) as a function of α, with a fixed β.
From Fig. 3c, when the risk level α is small, a path with a
lower mean utility value f(S, y) is chosen. This is because
a lower α indicates a small risk level, and therefore a low-
utility low-risk path is selected. As the value of α increases,
we see that the paths selected are more rewarding but tend to
have a higher variance. The case of α = 1 is the risk-neutral
scenario, where we disregard the variance in reward and cost
but rather focus only on the mean values, which is the same
as the deterministic settings in [19]. As expected, with α = 1,
we select tours with the highest risk. This gradation in tour
selection thus illustrates RAGA’s ability to select paths based
on its evaluation of reward-risk trade-off.

Fig. 4 shows the probability distributions of the utility
function f(S, y) as a function of β, when α is given. Let
us use Fig. 4b as an example. We see that initially, for β =
0, RAGA selects a high-variance high-utility path. This is
because, at β = 0, we only consider maximizing the reward
and disregard the cost of the tour. As we increase β, we
see that RAGA slowly shifts towards paths with lesser utility
(lesser risk), with the most conservative paths chosen around

2RAGA code is available at https://github.com/rishabbala/
Risk-Aware-TSP

(a) α = 0.1, β = 0 (b) α = 0.1, β = 0.5 (c) α = 0.1, β = 1

(d) α = 0.5, β = 0 (e) α = 0.5, β = 0.5 (f) α = 0.5, β = 1

(g) α = 1, β = 0 (h) α = 1, β = 0.5 (i) α = 1, β = 1

Fig. 5: The tours chosen for varying values of α and β.

β = 0.2 ∼ 0.4. At this point, we wish to minimize cost while
maximizing reward simultaneously, and therefore are more
cautious of both terms. As β continues to increase further, we
see that the tours with higher utilities are chosen, which have
a higher variance. Finally, at β = 1, we consider only the
cost minimization and select a tour with high-variance high-
utility as the case of β = 0. Table I provides a quantitative
representation of Fig. 3 and 4 by showing the variations in
fr(S, y) and fc(S, y) with respect to α and β.

Fig. 5 shows the tours chosen by RAGA for different values
of α and β. We can clearly see that the paths chosen in Fig.
5a and Fig. 5i are the same and Fig. 5c and Fig. 5g are
similar. This is because we get a lower reward when we
travel less and a higher reward when we travel more, thus
highlighting our problem’s true dual nature.

Fig. 6a shows the value of H(S, τ) with respect to τ ,
and it can be seen that the auxiliary function is concave.
Fig. 6b shows the computational time for varying number of
vertices for α = 0.1, 0.5, 0.9. We use ns = 250, Γ = 200,
and γ = 1. The results show that the running time increases
with increase in α as for a larger α, reaching the maximum
is slower. This is shown in Fig. 6a where the maximum for
H(S, τ) is reached at a larger value of τ when α is larger.
Combining this, and lines 24 - 26 in RAGA, we can see
that with a smaller value of α, RAGA stops quickly. As a
result, the number of iteration over τ performed is lesser,
and RAGA reaches a solution earlier than for a larger α. To
show the scalability of RAGA, we test it on an environment
of size 500m× 500m consisting of 20 nodes along with the
generated tour as shown in Fig. 6c. The parameters for the
robot are set as R = 1, α = 0.1 and β = 0.8.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a risk-aware greedy algorithm
(RAGA) for the TSP, while considering the risk-reward trade-

https://github.com/rishabbala/Risk-Aware-TSP
https://github.com/rishabbala/Risk-Aware-TSP


α

β
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.01 122 / 145 121 / 144 124 / 141 126 / 134 129 / 136 127 / 136 132 / 138 127 / 133 130 / 131 132 / 138 137 / 135
0.1 121 / 149 122 / 148 121 / 149 125 / 146 121 / 145 136 / 132 136 / 137 135 / 136 135 / 133 130 / 131 134 / 131
0.2 124 / 144 121 / 143 124 / 140 124 / 147 134 / 139 137 / 139 144 / 134 129 / 138 138 / 138 138 / 130 134 / 133
0.3 138 / 137 127 / 142 133 / 133 135 / 136 138 / 138 138 / 140 131 / 144 140 / 138 123 / 144 127 / 150 126 / 141
0.4 133 / 138 142 / 134 136 / 135 129 / 137 136 / 139 138 / 140 130 / 141 139 / 136 128 / 147 127 / 148 126 / 147
0.5 141 / 135 138 / 135 144 / 133 141 / 138 142 / 137 136 / 139 138 / 139 127 / 148 138 / 140 125 / 147 129 / 143
0.6 138 / 131 141 / 134 141 / 134 142 / 132 142 / 137 134 / 142 129 / 142 134 / 141 130 / 144 124 / 146 130 / 146
0.7 143 / 133 138 / 141 138 / 138 139 / 138 139 / 138 137 / 138 134 / 141 131 / 143 136 / 140 129 / 146 129 / 147
0.8 143 / 135 138 / 137 141 / 137 144 / 133 142 / 137 142 / 137 141 / 138 143 / 135 129 / 146 122 / 148 126 / 147
0.9 144 / 133 139 / 139 142 / 135 144 / 133 142 / 137 140 / 139 143 / 136 128 / 148 131 / 146 121 / 149 122 / 150
1 143 / 132 144 / 132 144 / 132 145 / 134 145 / 134 137 / 137 134 / 141 135 / 139 121 / 149 121 / 149 128 / 147

TABLE I: Variations of fr(S, y)/fc(S, y) with α and β.
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Fig. 6: Performance of RAGA.

off. We used a CVaR submodular maximization approach for
selecting a solution set under matroidal constraints. We also
analyzed the performance of RAGA and its running time. The
results show RAGA’s efficiency in optimizing both reward
and cost simultaneously.

An ongoing work is to improve the running time of
RAGA as a larger value of α has a higher running time.
Another future avenue is to extend RAGA to address arbitrary
distributions for the reward and cost, based on the real-
world data. Further, the work can be extended for other types
of combinatorial optimization problems, and for the cases
where the risk associated with the graph can be learned,
and the paths can be determined dynamically. Finally, we
also plan to extend RAGA to the stochastic version of multi-
robot TSP [22] where we plan tours for multiple robots with
stochastic rewards and costs.
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