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Programmable black phosphorus image sensor for
broadband optoelectronic edge computing
Seokhyeong Lee1,3, Ruoming Peng 1,3✉, Changming Wu1 & Mo Li 1,2✉

Image sensors with internal computing capability enable in-sensor computing that can sig-

nificantly reduce the communication latency and power consumption for machine vision in

distributed systems and robotics. Two-dimensional semiconductors have many advantages in

realizing such intelligent vision sensors because of their tunable electrical and optical

properties and amenability for heterogeneous integration. Here, we report a multifunctional

infrared image sensor based on an array of black phosphorous programmable photo-

transistors (bP-PPT). By controlling the stored charges in the gate dielectric layers electrically

and optically, the bP-PPT’s electrical conductance and photoresponsivity can be locally or

remotely programmed with 5-bit precision to implement an in-sensor convolutional neural

network (CNN). The sensor array can receive optical images transmitted over a broad

spectral range in the infrared and perform inference computation to process and recognize

the images with 92% accuracy. The demonstrated bP image sensor array can be scaled up to

build a more complex vision-sensory neural network, which will find many promising appli-

cations for distributed and remote multispectral sensing.
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2D semiconductors have many promising potentials in
optoelectronics because they afford a wide range of
bandgaps with tunable optoelectronic properties1–3.

Being atomically thin and transferable, they are amenable to
heterogeneous integration with photonic circuits and microelec-
tronics to realize advanced functionalities4–9. Among 2D semi-
conductors, black phosphorus (bP) stands out for its tunable
bandgap that corresponds to a wide infrared spectral range.
Discrete, array, and waveguide-integrated bP photodetectors with
compelling performance have been demonstrated for the
infrared10–19. Leveraging its broadband infrared responses, arrays
of bP photodetectors can be utilized for multispectral imaging,
which acquires spatial images with spectral information17,18.
Multispectral imaging combined with artificial neural networks
(ANN) has become a powerful tool for biomedical imaging20–23,
fresh food classification24–26, and surface damage detection on
industrial sites27–29. This imaging technique generates a tre-
mendous amount of data and consequently is computation-
intensive and latency-sensitive, and thus can benefit from the
emerging scheme of edge computing9,30–33. Preprocessing the
images within the sensors at the edge rather than in the cloud can
largely alleviate the data streaming load to the servers, improving
the bandwidth budget34–37 and reducing latency and power
consumption. These advantages of edge computing have urged
the development of optoelectronic edge sensors that combine
vision-sensory and computational functionalities in the same
devices8–10,19, which recently have been demonstrated using 2D
materials for visible/UV spectral imaging. Realizing such a
scheme using bP will extend it to the infrared spectral range,
enabling intelligent night vision and multispectral sensing.

Here, we present a multifunctional image sensor that combines
the functions of multispectral imaging and analog in-memory
computing to implement an in-sensor ANN for image recogni-
tion. The image sensor is based on an array of programmable
phototransistors made of few-layer bP (bP-PPTs), which are
sensitive to a broad infrared spectral range from 1.5 to 3.1 µm in
wavelength. The bP-PPT’s programmability and memory stem
from the stored charges in the rationally designed stack of gate
dielectrics that have a long retention time and effectively mod-
ulate the conductance and photoresponsivity of the bP channel.
The sensor can be programmed and read out both electrically and
optically, enabling optoelectronic in-sensor computing, electronic
in-memory computing, and optical remote programming, all in
one device. It is used as an optical frontend that captures mul-
tispectral images in the infrared and performs image processing
and classification tasks, demonstrating its promise for distributed
and remote sensing applications on household, farming, and
industrial sites.

Results
Figure 1a illustrates the core functions of the bP-PPT array, where
the multispectral image in IR range is detected by the remotely
programmed each pixel of the array, performing in-sensor
computing and subsequent electronic in-memory computing for
classification task. Figure 1b depicts the structure of a single bP-
PPT device, which consists of a few-layer bP flake as the channel,
a stack of Al2O3/HfO2/Al2O3 (AHA) as the gate dielectric and
charge storage layer38–40, and a top gate electrode. Contrary to
the conventional floating gate devices that trap charges on an
isolated metallic gate, the bP-PPT stores charges in the HfO2

dielectric layer with a high density of charge trapping sites at
~1.25 eV below the conduction band41, which offers more reliable
and faster operation and simplifies the fabrication process40,42–44.
For optical access to the bP-PPT, indium-tin-oxide (ITO) is used
as the transparent top gate electrode. Figure 1d depicts the band

alignment of the multiple layers in the bP-PPT device. We design
the layer structure and select the materials such that charges
(electrons or holes) can tunnel from the bP channel through the
thin Al2O3 barrier layer to be stored in the HfO2 layer and
effectively modulate the bP channel with field effect. The electron
affinity difference between Al2O3 and HfO2 (χAl2O3

¼ 1:5 eV,
χHfO2

¼ 2:5 eV) provides a high tunneling barrier that facilitates
the retention of trapped charges. Moreover, the energy difference
between the stored charges and the conduction band of HfO2

determines the storing energy to be ~1.25 eV, enabling optical
control of the stored charges—they can be removed by illumi-
nating with visible light (λ < 0.992 µm) but not with infrared light
in the telecommunication band or of longer wavelength. The
conductance and photoresponsivity of the bP-PPT are controlled
by the density of the trapped charges13,15,45, thus can be set either
by applying electrical gate voltage or by shining visible optical
pulses, enabling local and remote programming of the device.

To construct an image sensor and processor, we fabricated a
4 × 3 array of bP-PPTs on a single bP flake in a region with a
uniform thickness of 11 nm, as shown in Fig. 1c (see Methods for
more details about the fabrication process). We optimized the
thickness and the deposition process of the AHA multilayer to
realize a high charge storage density of 1.8 × 1013 cm−2 (see
Supplementary Note 2 for the method used to determine the
density). Figure 1e shows the collective measurement results of
the source-drain current (Ids) of the devices in the array when the
gate voltage (VG) is swept. Because charges are injected and
stored in the AHA multilayer during the VG sweep, the Ids–VG

curve shows a hysteresis loop with a large memory window of
25 V in VG. The high charge storage density leads to effective
control in the electrical conductance of the bP-PPT, achieving an
on/off ratio > 20039. Since the array is fabricated on the same bP
flake, it has excellent uniformity that inter-device variation in the
on/off ratio among 9 devices is less than 8% (inset, Fig. 1e).

Figure 2a illustrates the working principle of electrically pro-
gramming the bP-PTTs by applying voltage pulses to the gate to
enable charge tunneling from the bP to the HfO2 layer. The
device can first be reset with a depressive pulse (−18 V amplitude,
50 ms duration) to a fully-off state with low conductance.
Afterward, it can be programmed by applying positive voltage
pulses with amplitude in the range of 10–18 V and a fixed
duration of 20 ms (18 V for state #0). By varying the pulse
amplitude, the device can be programmed to states of more than
8 distinguishable and stable levels (equivalent to 3 bits) in its
conductance when the bP channel is changed from p-type to
n-type doping (Supplementary Fig. 1). The tunneling process and
the resulting charge density can be modeled with the
Fowler–Nordheim tunneling theory (see Supplementary Note 6
for detailed modeling methods). Figure 2c and d show results of
four representative states with a long retention time >2000 s
(Fig. 2c) and linear I–V characteristics (Fig. 2d). The latter is
important for its application in analog computing.

Even higher precision can be achieved by programming the
devices optically because optical pulses can directly excite the
stored charges to remove them (Fig. 2b), and the duration of
optical pulses can be controlled more accurately than voltage
pulses. We demonstrate optical programming of the bP-PPT
devices using optical pulses in the wavelength of 780 nm, which
provides sufficient energy to activate the stored charges to over-
come the trapping potential (Fig. 1d). Before programming, the
bP-PPT is initialized electrically to state #0. Subsequently, it is
illuminated with optical pulses with fixed average power (~10 µW
at the device) and varying duration so the pulse energy is varied
between 10 nJ and 2 µJ. As shown in Fig. 2e, these optical pulses
program the bP-PPT to 36 states with different levels of
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conductance to represent 5 digital bits, a record-high number of
levels achieved in charge storage devices. The programming
process is accurate, arbitrary, and repeatable. The inset of Fig. 2e
shows three adjacent levels that can be programmed repeatedly
with high precision. Furthermore, each programmed state is
stable for >1000 s, which is shorter than the electrically pro-
grammed 8 states but offers higher precision that is sufficient for
analog computation applications (Supplementary Fig. 5).

The narrow bandgap of bP enables the bP-PPTs to be operated
as broadband photodetectors that can detect optical signals from
the near-infrared (NIR) to the mid-infrared (MIR) spectral range.
Earlier studies have reported that a bP photodetector’s respon-
sivity is sensitive to the doping level and type of the bP
channel12–15,45. In our bP-PPTs, since we can control the density
of the stored charge to modulate the doping level and type of the
bP channel, we can program their photoresponsivity in the same
way as their electrical conductance. Figure 2f shows the photo-
responsivity of a bP-PPT measured in the wavelength range from
1.5 to 3.1 µm when the device is set to high and low conductance
states (corresponding to states #0 and #35 in Fig. 2e), respectively.
Note that the low conductance state (state #35) has a high pho-
toresponsivity due to the Burstein–Moss effect12,15. The unmea-
sured spectral range (1.8–2.6 μm) is due to the tunability gap of
the light source (M-Square Firefly IR). The linearity of the
devices’ photoresponse is also verified for an incident optical
power of up to 30 mW (Supplementary Fig. 3). Therefore, the bP-
PPT has a programmable photoresponse in all the tele-
communication bands (S, C, and L bands) and the mid-
infrared range.

The above results show that the bP-PPT devices can be pro-
grammed both electrically and optically. The programmed state is
non-volatile and can be read out either electrically by measuring
the device’s conductance or optically by measuring its photo-
responsivity. In both cases, the devices are operated in the linear
regime and thus can be utilized for analog computing. Such a
hybrid of multifunctional operation modes enables the utilization
of a bP-PPT array to implement a mixed-mode optoelectronic
neural network system. The same bP-PPT array can act as both
the optical frontend to receive and preprocess optical images and
an electrical processor with in-memory computing to post-
process the images (Fig. 3a).

bP-PPT in-sensor convolution for edge detection. We first use
the bP-PPT array to detect infrared optical images and preprocess
them in the sensor8–10,37. To prove the concept, we configure the
bP-PPT array to perform edge detection of images by program-
ming their photoresponsivity (R) to represent convolutional
kernel matrices and receiving input images transmitted and
encoded in the power (Pin) of telecom band optical signals.
Measuring the photocurrent output IPh ¼ R � Pin from the array
corresponds to a multiply-accumulation (MAC) operation46–48

on the input image with the kernel matrix stored in R. For edge
detection, the photoresponsivity matrix R of a 2 × 2 bP-PPT array
is optically programmed to binary values (Fig. 2f) and, after

proper normalization, to represent kernel matrix
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for bottom edges)49–51.

To demonstrate the broadband capability of the bP-PPT array,
we encode three different 8-bit grayscale images (Fig. 3b; top:
handwritten digits; middle: a husky dog; bottom: a cameraman)
using wavelengths in three telecom bands: 1510 nm in the S band,
1550 nm in the C band, and 1590 nm in the L band, respectively.
The brightness of each pixel is encoded into the optical power
using variable optical attenuators (VOA) and illuminated on the
array. Each bP-PPT device is set to have a high responsivity of
60 mA/W to represent 1, or a low responsivity of 20 mA/W to
represent −1 (Fig. 2f). The measured photocurrents are normal-
ized and offset to calculate the convolution. The convolved
images without any further post-processing are shown in Fig. 3c
to f, for right, top, left, bottom edges, respectively. Figure 3g
shows the combination of all types of edges, resulting in a clear
silhouette of each image. The correlation coefficients between the
experimental and the simulated results are over 92% for all three
images (Supplementary Fig. 13) Thus, we demonstrate the bP-
PPT array’s application as an optical frontend capable of
multispectral imaging reception and preprocessing.

bP-PPT CNN for image recognition. Besides its photo-
responsivity, the conductance of the bP-PPT array can also be

programmed to perform MAC operation by measuring the
source-drain current IDS ¼ VDS � gbP, where gbP is the con-
ductance matrix of the array programmed to represent the weight
matrix, VDS is the source-drain voltages applied to the array as the
input vector. An optoelectronic convolutional neural network
(CNN) thus can be implemented with the array connected to the
previous sensory devices, where the optical input image is
detected and converted to electrical signals (Fig. 4a, red dashed
box). In Fig. 2e, we have demonstrated precise programming of
the bP-PPT to 36 discrete levels, ensuring high accuracy in weight
training and inference calculation52,53. Here, we use the 3 × 3 bP-
PPT array to demonstrate a CNN that recognizes images of
handwriting numbers “0” and “1” from the MNIST data set. The
CNN consists of an input layer that captures a 28 × 28-pixel
image, a convolution layer with two 3 × 3 kernels, an average
pooling layer followed by an 8 × 2 fully connected (FC) layer
(Fig. 4a). The network is trained offline with 12,000 images of the
training set with 100 epochs, delivering the final output scores
that classify the input image to “0” or “1” with 99% accuracy. The
trained network model is remotely programmed into the bP-PPT
array by illuminating each pixel with the programming optical
pulses. The kernel elements are discretized to accommodate the
36 discrete levels of the programmable states and used con-
sistently in the experiment and simulation (Fig. 4b). For example,
the element value 2.00 in kernel 1 (K1), the largest element, is
represented by setting a pixel of the bP-PPT to state #35 (in
Fig. 2e). By optically programming the 9 pixels of the array to the
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kernel elements, encoding the image pixels in the source-drain
voltages, and measuring the source-drain current, the convolution
calculation is executed on-chip to obtain the feature maps, fol-
lowed by the average pooling and FC layers. The two output
nodes from the FC layer are activated with the Softmax function
and stored as scores to complete the classification task.

To verify the accuracy of the bP-PPT optoelectronic CNN, 100
randomly chosen images of handwritten numbers (48 of “0”s and
52 of “1”s) from the MNIST dataset were tested. The results are
compared with the simulated results obtained from a computer.
Note that this simulation is different from the first training with
99% accuracy due to the limited 36-level discreteness of the kernel
element values. The bar graph in Fig. 4c compares the
experimental and the simulated output scores of the two labels
“0” and “1” for 50 test cases, which have shown excellent
agreement. The gray-tarnished bars in the experimental data
highlight the incorrectly recognized cases. The experimental and
the simulation results are summarized in the confusion table in
Fig. 4d. The bP-PPT array-based CNN reached an accuracy of
92%, comparable with the simulated results (95%).

To summarize, we have demonstrated a phototransistor array
based on bP (bP-PPT) that can be programmed electrically and
optically by utilizing the stored charges in the gate dielectric stack
that has a long retention time. Particularly, our device has a
programming precision with a resolution higher than 5-bit, which
is among the highest of non-volatile memory devices based on the

charge trapping mechanism54. Leveraging its flexible functionality,
we use the bP-PPT array to realize vision-sensory functions with
in-memory computing. The sensors’ programmable photorespon-
sivity enables in-sensor computing for edge detection on images
that are optically encoded and transmitted over a broad infrared
band. The same bP-PPT array can also be electrically programmed
on the backend to implement a CNN to perform image
recognition tasks. Although the demonstrated 5-bit programming
precision of our devices is far less precise than that of digital
computers, its application in analog in-sensor computing is more
suitable for edge computing requiring low power consumption
and low latency37,55–57. Additionally, the demonstrated program-
mable photoresponsivity in the near-IR can be extended to a
broader range of infrared and further improved by heterogeneous
integration of bP with other 2D materials14,18,58, or optimized for
a specific spectral range by varying bP’s thickness. It will allow
multispectral image processing on edge devices, which can
expedite many processes in industrial or biomedical
applications21–29. Furthermore, recently reported centimeter-
scale growth of bP suggests that it is promising to scale the bP-
PPT array to an even larger array of megapixels59. Thus, the
demonstrated multifunctional optoelectronic bP-PPT array,
combined with parallel imaging and programming schemes, such
as spatial light modulation and wavelength division multiplexing,
can realize more complex deep neural networks for machine
vision sensors distributed with edge computing.

Optical Frontend Electronic Post-processing
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Input Image
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Fig. 3 bP-PPT array for imaging with in-sensor computing for edge detection. a The bP-PPT array receives images in multiple wavelength bands. The
array’s photoresponsivity matrix is programmed to represent the convolution kernel to directly preprocess the images in the optoelectronic domain (red
dashed line box). The array’s conductance matrix is then programmed to perform inference computation in the electrical domain (blue dashed line box).
b The original input images encoded in the optical power transmitted in three different telecom bands. Top: handwritten digits (56 × 56 pixels, S-band);
middle: a husky dog (312 × 222 pixels, C-band); bottom: a cameraman (256 × 256 pixels, L-band). c–f The resultant images after convolution with the right,
top, left, and bottom edge kernels, respectively. g The final images combining all the edges.
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Methods
bP-PPT device fabrication. Few-layer black phosphorus (bP) with 11 nm thickness
was mechanically exfoliated from a bulk crystal (HQ Graphene) and dry transferred
using a polydimethylsiloxane stamp onto a silicon substrate with 300 nm-thick
thermally grown SiO2. The thickness of the bP flake was identified using an atomic
force microscope (Bruker Dimensions Icon). The bP flake with the lateral size of
20 µm × 30 µm was patterned into an array of 4 × 3 pixels with each pixel in the size
of 3 µm × 4 µm (Fig. 1c) using electron beam lithography (EBL, JEOL- JBX6300FS)
and inductively coupled plasma (ICP) etching based on SF6 chemistry when the
ZEP 520 A resist was used as the protective mask. The source and drain contacts
made of Ni/Au (5 nm/25 nm) were patterned by steps of EBL, electron beam eva-
poration, and lift-off in a solvent. The processes of bP exfoliation, thickness mea-
surement, and lift-off of the deposited metal films were all performed in an Ar-filled
glovebox with oxygen and water concentration <0.1 ppm to avoid the degradation
of the bP flake due to the exposure to moisture and oxygen. Subsequently, the gate
dielectric stack of Al2O3/HfO2/Al2O3 (AHA) was deposited by atomic layer
deposition (ALD) systems. The 6 nm-thick tunneling layer of Al2O3 was grown on
bP at 150 °C by thermal ALD, and the 7 nm-thick storage layer of HfO2 was then
grown at 290 °C by plasma-enhanced ALD, followed by the 20 nm-thick blocking
layer of Al2O3. The top gate electrode made of indium-tin-oxide (ITO was patterned
by EBL and deposited by a pulsed sputtering system (Evatec LLS EVO).

Measurement setup. The bP-PPT devices were wire-bonded to the 64-pin chip
holder as shown in Supplementary Fig. 14. For electrical measurements, each
device’s gate, source, and drain contacts were connected to 3 pins of the holder.
Since we have 12 bP-PPT devices, we can simultaneously measure the conductance
or photocurrent of several devices using a set of source-measurement unit (SMU)
modules. For the optical input, both 780 nm and tunable telecom-band lasers were
aligned and focused onto each device. We programmed the devices using a 780 nm
laser diode (LP785SF20, Thorlabs) with tunable output power and pulse width. The
optical images were input to the devices by modulating the intensity of a tunable
telecom band laser (TSL-210, Santec Corporation) using a variable optical
attenuator (EVOA1550A, Thorlabs). Optical programming of the bP-PPT array
was achieved by using a spatial light modulator. A data acquisition system was used
to measure the device array and the output was feedback to the device array to
realize a network. To characterize the devices’ photoresponsivity in the broadband
infrared spectrum, a tunable infrared laser (Firefly, M Squared) was used with its

signal output in the wavelength range of 1.5–1.8 μm and its idler output in the
wavelength range of 2.6–3.1 μm. A CaF2 lens was used to focus the infrared light
onto the bP-PPT devices.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
No custom computer code or mathematical algorithm is used to generate the results that
are reported in this study.
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