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The effects of thermal history on the thermal properties of C-18150 (Cu-1.5Cr-0.5Zr, wt%) parts made by
the laser powder-bed-fusion (L-PBF) additive manufacturing (AM) process with three different fabrica-
tion orientations (horizontal, angled, and vertical to the build direction) were investigated. A significant
difference in thermal properties between as-fabricated and fully heat-treated L-PBF C-18150 samples
was observed, and the mechanisms of such behaviors are discussed.

� 2021 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
1. Introduction

NASA and their aerospace industry partners are exploring the
Laser Powder-Bed-Fusion (L-PBF) additive manufacturing (AM)
process for building liquid rocket engine components with copper
alloys [1,2]. Due to the extremely fast cooling rate of the L-PBF pro-
cess (106–107 K/s [3]), non-equilibrium states, i.e. supersaturated
solid-solutions [4], typically exist, leading to unique thermal, elec-
trical, and mechanical properties for the as-fabricated L-PBF
components.

Copper alloy C-18150 is a precipitation-hardened CuCrZr alloy.
The effects of heat treatment on CuCrZr alloys prepared by conven-
tional fabrication methods [5–13] and recently by the L-PBF
method [14] were investigated. Most of those studies focused on
the mechanical and electrical properties. For thermal properties,
Hanzelka et al. [15] studied the low-temperature thermal conduc-
tivity of Cu-0.71Cr-0.23Zr alloy form 5 K to 300 K, and Krishna et al.
[16] performed investigations on thermal conductivity of Cu-
0.61Cr-0.038Zr-0.029Ti alloy from 300 K to 873 K. Over the testing
temperature, both studies found that thermal conductivity
increased with the rise of testing temperature. However, very lim-
ited research was conducted on the high-temperature thermal per-
formance of CuCrZr parts made by AM, which is a critical property
for liquid rocket engine components. For this reason, this study
focuses on the high-temperature thermal properties of L-PBF
C-18150 samples. A significant difference in thermal properties
between as-fabricated and fully heat-treated L-PBF C-18150 sam-
ples was observed, and the mechanisms of such behaviors are
discussed.
2. Materials and methods

Cylindrical-shaped L-PBF C-18150 samples were fabricated in
three different orientations: vertical, angled (45�), and horizontal
to the build direction. The schematics indicating the orientations
of the samples are shown in Fig. 1a. Hereafter, the samples are
denoted as Vertical, Angled, and Horizontal, respectively. Thermal
properties of the C-18150 AM samples were evaluated using a Net-
zsch LFA 467 apparatus from room temperature (RT) to 1000 C at a
heating rate of 25 �C/min, with a dwell time of ~30 min at each
testing temperature (except RT). The detailed description of the
testing process can be found elsewhere [17]. X-ray diffraction
(XRD) was utilized to characterize the phase structures, with the
tested surfaces perpendicular to the central axis of the sample
cylinders.
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Fig. 1. Thermal properties of the as-fabricated samples with vertical, angled, and
horizontal fabrication orientations, together with a pure copper reference sample of
the first and the second test cycle. (a), (b) and (c) show the variation of specific heat,
thermal diffusivity and thermal conductivity as a function of testing temperature,
respectively. ‘‘-2” indicates the repeated test cycle.
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3 . Results and discussion

3.1. Thermal property test

The Netzsch LFA 467 measures thermal diffusivity directly and
provides specific heat measurements by comparing the samples
with a pure Cu reference sample. Thermal conductivity is the pro-
duct of thermal diffusivity, specific heat, and density. Densities of
26
the L-PBF C-18150 samples were measured using the Archimedes
principle, and the densities of Horizontal, Angled, and Vertical
samples were 8.94 ± 0.08, 8.63 ± 0.08, 8.87 ± 0.13 g/cm3, respec-
tively. In the first test cycle, thermal diffusivity/conductivity values
for the as-fabricated samples were unexpectedly low from RT to
~500 C, Fig. 1. This motivated the authors to repeat the test with
a second cycle. The specific heat values of L-PBF C-18150 samples
(Fig. 1a) were found to increase monotonically from RT to 1000 C
and no clear differences were observed among all the samples over
the two test cycles, indicating that specific heat is non-sensitive to
the thermal history.

Based on Fig. 1b and c, thermal diffusivity was clearly the deci-
sive factor influencing thermal conductivity measurements. Mean-
while, samples with different fabrication orientations had almost
identical thermal diffusivity/conductivity values, indicating that
thermal diffusivity and conductivity are not sensitive to grain ori-
entation, which agrees with a previous study [18]. During the first
test cycle, thermal diffusivity increased from RT to around 500 C,
and then declined while progressing to temperatures up to
1000 C. Due to the heat-treatment effect of the first test cycle, ther-
mal diffusivity of the second cycle was clearly higher than that of
the first cycle when tested below 500 C. However, above 500 C,
the thermal diffusivity measurements of the two cycles
overlapped.

3.2. Mechanisms behind the variations of thermal properties for the
as-fabricated C-18150 samples

C-18150 is a precipitate-strengthened alloy with dilute Cr/Zr
elements. As heat is mainly carried by electrons in metals [19], a
small addition of solute atoms would dramatically increase electri-
cal resistivity and remarkably reduce thermal conductivity [20–
23]. The authors performed CALPHAD calculations (ThermoCalc
software package, TCCU3 database) to highlight the solidification
process and the formation of precipitates at different temperatures
(Fig. 2) [24]. CALPHAD calculation predicts the phase equilibrium
at different temperatures using the Gibbs energy principle [25].
Based on CALPHAD calculations, the amount of phases in C-
18150 at equilibrium state over a wide temperature range is plot-
ted, i.e. Fig. 2. Obviously, in an equilibrium condition, the dominant
phase of C-18150 alloy at RT is the Cu phase (FCC_L12). The precip-
itates in C-18150 include Cr (BCC_B2), Cu51Zr14, and Cr2Zr
(C15_LAVES). And the total amount of secondary phases is <2%
(Fig. 2b). At 630 �C, Cu51Zr14 transforms into Cu2Zr. Due to the
rapid cooling process associated with AM, the as-fabricated C-
18150 samples have supersaturated Cr/Zr solute atoms in the Cu
matrix, which significantly scatter electrons [26–29], thus result-
ing in a low thermal conductivity. With the increase of testing tem-
perature, solute Cr/Zr atoms gradually form precipitates, reducing
thermal resistance. At low testing temperatures (<500 C), solute
atoms act as the decisive scattering center for free electrons, and
the decrease of solute atoms reduces thermal resistance and conse-
quently increases thermal diffusivity/conductivity. However, at
high temperatures, electron–phonon interactions become stronger
[30] and the thermal diffusivity/conductivity of C-18150 L-PBF
alloy therefore decreases monotonically with an increase in testing
temperatures over 500 C (Fig. 1b, c).

3.3. Effect of temperature history on thermal properties of C-18150 AM
samples

The precipitation process depends on the aging temperature
[14,31]. To examine the effect of temperature history on the pre-
cipitation process of L-PBF C-18150 samples, heat treatments were
performed on as-fabricated Vertical samples at 420, 500, 575, and
650 C, each for 2 h.



Fig. 2. CALPHAD study of C-18150 alloy. (a) Full range calculation results, (b) minor phases.

Fig. 3. Images showing the thermal diffusivity results of the aged Vertical samples after the first test cycle (a) and the second test cycle (b).

Fig. 4. Images showing XRD results of the as-fabricated samples and aged Vertical samples. (a) As-fabricated samples with different fabrication orientations. (b) Samples aged
at different temperatures. (c) Shift of diffraction peaks at varying aging temperatures.
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Thermal diffusivity results for the two test cycles are shown in
Fig. 3. Clearly, when tested below 500 C during the first cycle, ther-
mal diffusivity of the samples increased relative to the aging tem-
perature (Fig. 3a) due to the enhanced precipitation. Thermal
diffusivity of the samples converged above 500 C, at which point
nearly all the solute Cr/Zr atoms had formed precipitates and the
phonon-electron interaction dominated. Samples aged at high
temperatures (575 and 650 C) showed nearly identical thermal dif-
fusivity, indicating aging at 575 C for 2 h was sufficient to complete
the precipitation process. Thermal diffusivity of the second test
cycle was almost identical for all the samples (Fig. 3b). It is note-
worthy that at low testing temperatures (<400 C), thermal diffusiv-
ity of the second test cycle (for samples aged above 500 C) was
lower than that of the first test cycle, which is most likely caused
by the over-aging effect during the first cycle, introducing non-
coherency between the precipitates and Cu matrix [18,20], and
causing higher thermal resistance. With an aging temperature over
500 C for 2 h, an improved thermal conductivity of ~280 W/(m�K)
at RT was obtained.

Consistent with the CALPHAD study, XRD results showed that,
for both the as-fabricated and aged samples, the dominant phase
is FCC-Cu (Fig. 4a, b). For the as-fabricated samples, the Cu(220)
peak became stronger when the fabrication orientation changed
from horizontal to vertical, indicating preferential grain growth
(Fig. 4a). For the aged samples, the diffraction peaks shifted
towards larger diffraction angles as aging temperature increased
(Fig. 4c), which, per Bragg’s equation [13], indicates a decrease of
lattice parameter caused by the gradual precipitation of solute
Cr/Zr atoms [14]. This verifies the variation behaviors of thermal
properties observed in Fig. 3.
4. Conclusions

C-18150 L-PBF samples were characterized to investigate the
effect of temperature history on the thermal properties. The fol-
lowing conclusions are reached.

(1) FCC-Cu is the dominant phase of the C-18150 alloy. Due to
the extremely rapid cooling rate of the L-PBF process, Cr/Zr
atoms are supersaturated in the Cu matrix.

(2) Specific heat is not sensitive to the thermal history, while
thermal diffusivity is not sensitive to grain orientation.

(3) Thermal diffusivity is the dominant factor influencing ther-
mal conductivity. Due to the supersaturated solid solutes,
the as-fabricated L-PBF C-18150 samples have much
reduced thermal conductivity values at RT to about 500 �C.
However, heat treatment above 500 �C for 2 h can effectively
recover the thermal properties of the L-PBF C-18150 alloy
due to the precipitation of Cr/Zr solid solute atoms.
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