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Abstract

Refractory high entropy alloys (RHEAs) have been proven to be a potential candidate in the biomedical
field due to their balanced mechanical properties and biocompatible composition. Recent
experimental findings show that RHEAs like HINbTaTiZr and Hf, sNbg 5Ta, sTi; sZr have good
mechanical properties such as high polarization and wear resistance than others which establish them
as potential materials for biomedical application. In this work, we performed first-principles density
functional theory calculations on the mechanical and thermal properties of HINbTaTiZr and

Hf, 5Nbg sTag 5Ti; sZr. The predicted lattice constant, density, Young’s modulus, and Vickers
hardness are consistent with the available experimental report, which verifies the accuracy of the
applied model. The thermal coefficient of linear expansion of both RHEAs has been investigated by
utilizing the Debye theory. The present methods could be applied to study other future RHEAs on
exploration of their physical properties.

1. Introduction

The use of biomaterials in implantation has attracted the interest of researchers in the biomedical field due to
their attractive physical properties such as high strength, biocompatibility, corrosion resistance, and wear
resistance [ 1-4]. The commonly used biomedical alloys includes 316L, stainless steel, CoCrMo, Ti6Al4V, and
titanium-based alloys [5-9]. However, these materials are very sensitive to body fluids, which can easily corrode
and release toxic metallic ions (Ni, Cr, Co and Al) when used for along term [7, 10-14]. For example, titanium
alloy, Ti6Al4V is promising and is widely used for implant applications, but it releases ions of V and Al which
affects the organs and tissues of patient’s body. Recent study shows the aluminum ions is a possible cause for
Alzheimer disease, while vanadium oxide is a toxic chemical for human body [15-17]. This results in early failure
of the implants system which is not desirable. The demand for implants is increasing in developed countries to
maintain the quality of life of aged people. Therefore, it is necessary to design metallic alloys with balanced
mechanical properties, high hardness, high corrosion resistance, and biocompatibility [18, 19].

Refractory high entropy alloys (RHEAs) are advanced novel class metallic alloys that are comprised of five or
more different elements, each element has a concentration ranging from 5 to 35 at.% [20, 21]. As compared to
traditional metallic alloys, RHEAs consist of alloying refractory elements such as titanium (T1i), zirconium (Zr),
molybdenum (Mo), niobium (Nb), iron (Fe), vanadium (V), and tantalum (Ta). RHEAs are considered to be
favorable refractory alloys with non-allergic and non-toxic properties [22-25]. Therefore, compared to
traditional metallic alloys, they have great potential application in biomedical field [26].

HfNbTaTiZr was extensively studied for high temperature application in the past [27-32]. Recently Amir
etal [33] synthesized equimolar HINbTaTiZr and non-equimolar Hfy sNbg sTag s Ti; sZr RHEAs by arc melting
method and investigated their microstructure, mechanical, corrosion and wettability properties for possible
biomedical application. They compared the properties of two RHEAs, HINbTaTiZr and Hf, sNbg s Tag 5Ti; 5Zr,
with 316L, CoCrMo, and Ti6A14V alloys. The two studied RHEAs showed greater polarization and wear

©2021 The Author(s). Published by IOP Publishing Ltd
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Figure 1. 100 atoms supercell model with randomly distributed elements. The left-hand side figure represents the supercell of
HINbTaTiZr whereas the right-hand side figure represents the supercell of Hfy, sNbg sTag 5Ti; sZr.

resistance than CoCrMo, 316L, and Ti6Al4V. Both RHEAs exist in BCC stable phase with lattice constant of
3.249 A and 3.405 A, respectively. These two RHEAs are composed of purely biocompatible elements and show
promising characteristics for biomedical applications. Many experiments have been conducted regarding the
design and characterization of RHEAs for biomedical applications [34—40]. However, most experimental studies
focus on the structural and mechanical properties with limited study on other thermodynamics properties. For
the real application of RHEAs, detailed investigation of electronic, structural, mechanical, and thermodynamic
properties is very important. Moreover, computational methods are economical and easier to investigate the
alloys’ structural, mechanical, and thermal properties as compared to experimental techniques.

In this report, the comparative study of electronic, mechanical, and thermodynamics properties of two
RHEAs, HINbTaTiZr and Hf, sNbg 5Tay 5T, 5Zr, are performed by using first-principles density functional
theory (DFT) calculations. The accuracy of the predicted properties of both RHEAs was further validated by
comparing with available experimental data. It has been observed that the calculated mechanical properties are
in good agreement with the available experiments. The quasi-harmonic Debye-Griineisen theory was adopted to
compute the thermodynamics properties.

2. Computational method

All mechanical properties were calculated using Vienna Ab-Initio Simulation Package (VASP) 5.4 [41] in MedeA
software [42]. The generalized gradient approximation (GGA) [43] of Perdew-Burke-Ernzerhof (PBE) [44] is
used as an exchange-correlation function. The plane wave cut off 500 eV was used in all calculations. The
convergence criterion is 0.02 eV/Ang. The electronic iterations convergence is 10~ eV using the blocked
Davidson algorithm. The applied k-spacing of 0.2 per Angstrom, leadstoa4 x 3 x 3 mesh in our calculation.
This gives a k-spacings 0f 0.185 x 0.197 x 0.197 per Angstrom. The first order Methfessel-Paxton smearing
with a width of 0.2 eV was used. A first-principles calculation is performed to predict the mechanical properties
of RHEAs. Previously, this method has been successfully applied for studying the alloying effects of element on
structural, mechanical, and thermal properties of RHEAs [45-48]. Hu et al [45] studied the hydrogen behaviors
and microstructural development in the HEA TiZrHfMoNb by applying first-principles method.

The random structure of BCC supercell is constructed by utilizing the python code and Knuth shuffle model
[49] consisting of 100 atoms and is shown in figure 1. Virtual crystal approximation (VCA) [50] and special
quasi-random structure (SQS) [51] are often used methods for simulating random distribution of RHEAs
components on a given crystal lattice. However, VCA methods do not consider the effect of lattice distortion that
exists in complex RHEAs whereas the SQS method considers the lattice distortion effect by combining the idea
of cluster expansion with large supercells [52]. For complex RHEAs, large supercells are required to resemble the
random distribution of elements. As an example, Tian et al [53] have constructed a large supercell of 250 and 128
atoms using the Alloy Theoretic Automated Toolkit to study the elastic properties of various RHEAs. The major
limiting factor of the SQS model is the high computational cost associated with a large supercell. The proposed
100 atoms random supercell model is capable of distributing the components of the complex alloy randomly
and its convergence test has been succinctly described in a previous publication [54]. This 100 atoms supercell is
appropriate for providing highly accurate results with low computational costs.
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The stress-strain method [55, 56] which is implemented in MedeA software is used to calculate the elastic
constants Cy1, Cj», and Cyy. VASP computes the stress tensor by applying analytic expressions. Several strains are
used to get more points for the fitting procedure involved in the calculation of the elastic constants. The
equilibrium supercell is optimized with high accuracy to avoid zero strain. The Voight-Reuss-Hill
approximation [57] was used to calculate bulk modulus (B), Shear modulus (G), Young’s modulus (E), and
Poisson ratio (V).

The formula to compute B, G, E, and v are

1 1
B = g(cll +2Cn), G = E(GVoight + Greuss)

where
1
Gvoight = E(Cn — Cp + 3Cyy)
and
GReuss = > >
4(S11 — Si2) + 38y
Sis compliance matrix,
E =9BG/3B + G and v = 3B — 2G/2(3B + G). (1)

The Griineisen-Debye approximation was applied to compute the thermal expansion coefficient and
Griineisen constant G [58]. The internal energy-volume equation of state provided by Mayer et al [59] was used
to find the Griineisen constant G

5
6%
E) = SBi(K) Y- |+ Es @
— =0 Vo - =
6
where V; is equilibrium volume and B is bulk modulus.
After calculating the v, Debye temperature is calculated as,
B (672q )3
Tq )3
Op=—|—=1| V., 3
D KB( ‘/0 ) m ( )

where Vj is volume, g represents atoms in the unit cell, 4, and Kp are Planks and Boltzmann constant,
respectively. The specific heat capacity, Cy, as a function of temperature, T, is estimated as,

TY 0 xtexpx
Cyry= 9qkg| — ——dx 4
e qB(QD) | )

where xp = b and 0 is alinear thermal expansion coefficient. The linear thermal expansion coefficient (@) is
calculated as,
1 Cy(T)

ar(T) = —
(1) 576 BV,

)

3. Results and discussion

3.1. Structural properties

Various parameter calculations were performed which can predict the phase of RHEAs. The entropy of mixing
(ASmix) [60], enthalpy of mixing (AHmix) [61], unitless parameter (£2) [62], atomic size difference (6), and
valence electron concentration (VEC) [63] of the alloys, were calculated by the following formula:

ASmix = — RZ Xi In Xi (6)

i=1
n .
AHmix = Z 4AHiT’Xxix]- (7)
i=1,i=j

n

\2 n
§ =100 x in(l—%) Fo=D ®
i=1
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Figure 2. Comparison of calculated lattice constant of HINbTaTiZr and Hf sNby sTag sTi; sZr with available experimental data.
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Figure 3. Calculated elastic constant of HINbTaTiZr and Hfy sNbg sTag sTi; sZr from 100-atom supercell simulation.

Table 1. The calculated parameter ASmi,, AHmi,, VEC, (2, 6, and T,,, of RHEAs.

Name of alloys AS,.ix(J Kmol ™) AHmix (KJ mol™ ") VEC Q 6 T,, (K)
HfNbTaTiZr 13.38 2.72 4.40 12.41 4.9 2523
Hf, sNbg sTag sTi; 5Zr 12.41 1.84 4.24 15.63 4.63 2322
n
VEC = > xi(VEC); 9)
i=1
TuAS,;
Q=" T, =x; (T)i (10)
|AHmix|

where Ris ideal gas constant; x; and x; are the atomic percentages of the ith and jth element, respectively; 7; is
the radius of the ith element; 7 is averaged atomic radius; and (VEC); is the valence electron concentration of ith
element.

From the report of Zhang et al [61] and Sheng et al [64], the required conditions for HEAs to form a solid
stable solution are: 11 < ASmix <19.5 (J/K.mol), —22 < AHmix < 7 (kKJmol™"),and > 1.1and§ < 6.6%.
The calculated parameters are shown in table 1, which suggest that two current RHEAs will form a solid solution
structure as it satisfies the conditions proposed by references [61, 62]. According to Guo et al [63], if the
calculated VEC of alloy is lower than 6.67, it will form a BCC crystal structure and both RHEAs have VEC < 6.67
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Table 2. Calculated p (g cm ™), B(GPa), G (GPa), E (GPa), H, (GPa) and their comparisons with the available experiments.

Name of alloy p B G E H, v B/G

HfNbTaTiZr (this work) 9.96 119 35 97 2.92 0.36 3.35

Exp. [33] 9.94[29]  134[32] 42129] 112.74 + 466 3.14+0.12  0.40[32]
9.92[32] 38.5[71] 97.9 £ 6.9[71]

Hfy sNbg sTag 5Ti; sZr (this work) 8.26 111 31 86 2.49 0.37 3.56

Exp. [33] 98.57 4+ 4.18 3.02 £ 0.11

indicating the existence of BCC phase in them. The experimental reports [27, 29, 31, 33] show only BCC phase
exists for both RHEAs, which confirms the VEC could be the indicative parameter to identify the phase in alloys.

The lattice constant of both RHEAs was calculated using the relaxed super cell volume and results were
compared with available experiment data which is shown in figure 2. The calculated lattice constant of
HfNbTaTiZris 3.403 A which is equal to the experimental values of 3.40 A [27,29] and 3.405 A [31]. Similarly,
the calculated lattice constant of Hfy sNby s Tag 5Ti; sZr was equal to 3.391 and its experimental value is 3.405
[33]. Itis seen that the changes in the atomic concentration of alloys from equimolar to non-equimolar lowers
the atomic size of alloys as shown in table 1. This lowering of atomic size is responsible for lattice contraction
which slightly decrease the lattice constant of Hf sNbg sTag sTi; sZr [65].

3.2. Mechanical properties

To explore the mechanical properties of two RHEAs, we obtained the elastic constants which are important
parameters in determining the stability of materials and calculated values are shown in figure 3. According to the
Born Rule, the mechanical stability criteria required for materials are Cy; + 2Cj; > 0, C; — Cj; > 0, Cyy>0,
and Cj; > |C;|. The values of the elastic constants Cy;, C;,, and Cyy meet the Born stability criteria for both
RHEASs, showing that their crystal structures are mechanically stable. The experiment conducted by Dirras et al
[32] found the C;; and Cyy of HINbTaTiZrare 172 + 6 GPaand 28 £ 1.5 GPa, respectively, which is closer to
our simulation value. Similarly, Fazakas et al [66] calculated the value of C; and Cyy of HINbTaTiZr by first-
principles method, which are 160 GPa and 62.4 GPa, respectively. The first-principles calculations overestimate
the Cy4 value and underestimate the value of Cy;. The elastic constants Cj; and Cj, of HINbTaTiZr are larger than
Hf, sNbg 5Tag sTi; 5Zr. The reason for higher elastic constant of HINbTaTiZr could be the lattice distortion
brought by size difference in atomic radii of elements [67]. However, there is no significant changes in the Cyy
value for both alloys and the existing first-principles method is not able to provide a conclusive explanation. The
Cauchy pressure (C;;—Cy4) of materials is useful in predicting the nature of bonding which, if positive, is likely to
form a metallic bond with ductile behaviors [68]. It is found that the value of Cauchy pressure for both alloys are
positive which indicates the formation of metallic bonds exists in them and they are ductile in nature. The
anisotropy factor (A) [69] is an excellent parameter that reveals how much anisotropy a cubic crystal possesses
which is calculated by the following equation

A— 2Cy

=0 (an
Cll - CIZ

For isotropic crystals, the anisotropy factor must equal one, and any value of A less or more than one relates
to the crystal’s degree of elastic anisotropy. The calculated A from elastic constants is 0.87 and 0.91 for
HfNbTaTiZr and Hf, sNbg sTa, sTi; sZr RHEAs, respectively. As a result, one can conclude that
Hf, sNbg sTag 5Ti; 5Zr is somewhat more anisotropic than HINbTaTiZr. Furthermore, the higher value of
elastic constants C;; and Cj; increases the other mechanical properties like bulk modulus (B), shear modulus
(G), Young’s modulus (E) and Vickers’s hardness (H,) in HINbTaTiZr. The theoretically calculated density (p),
B, G, Eand H, for both RHEAs are shown in table 2. The Tian’s et al [70] model was used to calculate the Vickers
hardness (H,) as

H, = 0.92 x K137 x G708 (12)

where K = E

The hardness of the HINbTaTiZr was found to be 2.92 GPa, which is higher than the Hf, sNbg 5Tag 5T, 5Zr.
The increased hardness of HINbTaTiZr could be due to the cocktail effect [72] which can result in unexpected
properties changes in metallic alloys. For metallic alloys, the cocktail effect can be achieved by changing the
composition and alloying of materials. According to Pugh’s rule [73], ductile material will have a B/G ratio
>1.75 and brittle material willhave B/G < 1.75. The calculated B/G ratio for both RHEAs is greater than 1.75,
which suggests that these RHEAs will have a ductile nature. The calculated Young’s modulus of
Hf,, 5Nbg 5Tag 5Ti; 5Zr is 86 GPa which is lower than the HINbTaTiZr. Due to the lower elastic modulus,
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Figure 4. Thermal coefficient of linear expansion (cv) as a function of temperature.

Hf, sNby 5Tag 5Ti; sZr could be a potential alloy for bone implants [71]. Furthermore, slightly higher value of
poison ratio of Hfy sNby sTag sT1; sZr indicates its better plastic property [74]. Higher plastic material is easy to
handle than brittle material during the manufacturing process. There is a good agreement between the
calculated elastic constants, Young’s modulus, shear modulus, Poison’s ratio (v), Vickers hardness with the
available experimental reports which provides validation of the theoretical analysis. This demonstrates that the
random supercell model merged with the DFT-based calculation is a feasible approach to predict the elastic
constants and other mechanical properties correctly.

3.3. Thermal properties

Itis very necessary to study the thermal stability of alloys at different temperatures in order to use them as a high
temperature structural material. Therefore, the thermal properties of both alloys have been studied. Debye
temperature (6p) has been calculated which helps to identify the natural covalent bond of solid materials. It is
found that the material with larger 6, has a higher chance of forming a strong covalent bond [75]. The calculated
0, Griineisen parameter, and V,, of HINbTaTiZr are 235.7 K, 2.25,and 2136 ms ', respectively and those of
Hfy sNbg sTao sTi; sZrare 242.9 K, 2.32,and 2205 m s '. The thermal coefficient of linear expansion (o) of two
RHEAs is shown in figure 4. It is a very useful parameter for explaining how temperature can change the size of
materials and its value has wide application in determining the structural as well as mechanical applications. It
can be seen from the diagram that for Hf sNb, sTag sTi; sZr, the oy value is almost the same as HINbTaTiZr up
to 70 K and becomes higher after 100 K. The higher value of oy, shows its sensitivity nature towards high
temperature. Since ¢ is inversely proportional to the melting temperature of materials, Hf, sNbg sTag 5 T1, sZr
has a higher melting temperature than HfNbTaTiZr which results in increased ¢y, as temperature increased. The
Op and oy of Hfy sNbg sTag 5Ti; sZr is greater than the HINbTaTiZr which implies it has better thermal
properties. There is no experimental and theoretical study of thermal properties related to both RHEAs as per
the authors’ findings. Therefore, simulations of the thermal properties of current RHEAs could provide
important guidance for future experimental and ab-initio investigation.

Itis clear from this computational study that changing the composition of elements of RHEAs could affect
the mechanical and thermodynamic properties, often described by four core effects [76]. In this study, various
structural, mechanical, and thermal properties of RHEAs have been explored and compared with available
experiments. More experimental study is needed to validate some of our computational findings, and it is
expected to be confirmed in the near future.

4, Conclusion

The first-principles DFT calculations have been performed to study the structural, mechanical, and thermal
properties of two RHEAs, HfINbTaTiZr and Hf, sNbg sTag 5Ti; sZr, with BCC structure. The calculated elastic
constants indicate that both RHEAs are mechanically stable. The calculated lattice constant, density, Young’s
modulus, and hardness for both RHEAs are consistent with the experiments. It is found that the
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Hf, sNbg sTag sTi; sZr RHEA have low Young’s modulus, high plasticity, and better thermal properties which is
likely to be a potential candidate for future biomedical application. The agreement of our computational
findings with the available experimental data confirms the efficiency and accuracy of 100 atoms supercell model
which is capable of predicting the mechanical properties precisely. Therefore, DFT computational technique
could be an alternative cost-effective and efficient method, besides related experiments, to explore the
structures, mechanical, and thermodynamical properties of the novel RHEAs that have potential application in
biomedical fields.
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