
Materials Research Express

PAPER • OPEN ACCESS

Computational exploration of biomedical HfNbTaTiZr and
Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloys

To cite this article: Uttam Bhandari et al 2021 Mater. Res. Express 8 096534

 

View the article online for updates and enhancements.

This content was downloaded from IP address 72.207.228.150 on 30/09/2021 at 21:11

https://doi.org/10.1088/2053-1591/ac1d65
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstR3ccP3qTGtDZ9VlmXmnReehiCdvHui9qJlECLwVohypSPSTbb-jjd0C-jiUa-rBLUHjOB-aPDPB5_samXeP6yUT3WftknfEOFPTU2dQjnwnJ_jrrk1G2gU530f0avf0X11xQEtB-NQdxJbnPamUWbH_nNLpoEDQaI2wYVxXoyXZBbuUuGsIGQ3n2ZEQvGyJDgVwswxYPrsYxkJfeQ86NPdUA7nyhDPHq8QvWrBiABZNGImRj1gXbyp9-A9EXBQ-5t4uiunuKGDE7V0aBWQUaOelOERg4grQ8&sig=Cg0ArKJSzCPZpi_qLZdK&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Mater. Res. Express 8 (2021) 096534 https://doi.org/10.1088/2053-1591/ac1d65

PAPER

Computational exploration of biomedical HfNbTaTiZr and
Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloys

UttamBhandari1, HamedGhadimi1, CongyanZhang2, FengGao3 , ShizhongYang2 and ShengminGuo1

1 Department ofMechanical and Industrial Engineering, Louisiana StateUniversity, BatonRouge,United States of America
2 Department of Computer Science, SouthernUniversity andA&MCollege, BatonRouge,United States of America
3 Department ofMathematics and Physics, SouthernUniversity andA&MCollege, BatonRouge,United States of America

E-mail: feng.gao@sus.edu

Keywords: refractory high entropy alloys, HfNbTaTiZr, density functional theory, supercell, thermal properties

Abstract
Refractory high entropy alloys (RHEAs)have been proven to be a potential candidate in the biomedical
field due to their balancedmechanical properties and biocompatible composition. Recent
experimental findings show that RHEAs likeHfNbTaTiZr andHf0.5Nb0.5Ta0.5Ti1.5Zr have good
mechanical properties such as high polarization andwear resistance than others which establish them
as potentialmaterials for biomedical application. In this work, we performed first-principles density
functional theory calculations on themechanical and thermal properties ofHfNbTaTiZr and
Hf0.5Nb0.5Ta0.5Ti1.5Zr. The predicted lattice constant, density, Young’smodulus, andVickers
hardness are consistent with the available experimental report, which verifies the accuracy of the
appliedmodel. The thermal coefficient of linear expansion of both RHEAs has been investigated by
utilizing theDebye theory. The presentmethods could be applied to study other future RHEAs on
exploration of their physical properties.

1. Introduction

The use of biomaterials in implantation has attracted the interest of researchers in the biomedical field due to
their attractive physical properties such as high strength, biocompatibility, corrosion resistance, andwear
resistance [1–4]. The commonly used biomedical alloys includes 316L, stainless steel, CoCrMo, Ti6Al4V, and
titanium-based alloys [5–9]. However, thesematerials are very sensitive to body fluids, which can easily corrode
and release toxicmetallic ions (Ni, Cr, Co andAl)whenused for a long term [7, 10–14]. For example, titanium
alloy, Ti6Al4V is promising and is widely used for implant applications, but it releases ions of V andAlwhich
affects the organs and tissues of patient’s body. Recent study shows the aluminum ions is a possible cause for
Alzheimer disease, while vanadiumoxide is a toxic chemical for human body [15–17]. This results in early failure
of the implants systemwhich is not desirable. The demand for implants is increasing in developed countries to
maintain the quality of life of aged people. Therefore, it is necessary to designmetallic alloys with balanced
mechanical properties, high hardness, high corrosion resistance, and biocompatibility [18, 19].

Refractory high entropy alloys (RHEAs) are advanced novel classmetallic alloys that are comprised offive or
more different elements, each element has a concentration ranging from5 to 35 at.% [20, 21]. As compared to
traditionalmetallic alloys, RHEAs consist of alloying refractory elements such as titanium (Ti), zirconium (Zr),
molybdenum (Mo), niobium (Nb), iron (Fe), vanadium (V), and tantalum (Ta). RHEAs are considered to be
favorable refractory alloys with non-allergic and non-toxic properties [22–25]. Therefore, compared to
traditionalmetallic alloys, they have great potential application in biomedical field [26].

HfNbTaTiZr was extensively studied for high temperature application in the past [27–32]. Recently Amir
et al [33] synthesized equimolarHfNbTaTiZr and non-equimolarHf0.5Nb0.5Ta0.5Ti1.5Zr RHEAs by arcmelting
method and investigated theirmicrostructure,mechanical, corrosion andwettability properties for possible
biomedical application. They compared the properties of twoRHEAs,HfNbTaTiZr andHf0.5Nb0.5Ta0.5Ti1.5Zr,
with 316L, CoCrMo, andTi6Al4V alloys. The two studied RHEAs showed greater polarization andwear
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resistance thanCoCrMo, 316L, andTi6Al4V. Both RHEAs exist in BCC stable phase with lattice constant of
3.249A and 3.405A, respectively. These twoRHEAs are composed of purely biocompatible elements and show
promising characteristics for biomedical applications.Many experiments have been conducted regarding the
design and characterization of RHEAs for biomedical applications [34–40]. However,most experimental studies
focus on the structural andmechanical properties with limited study on other thermodynamics properties. For
the real application of RHEAs, detailed investigation of electronic, structural,mechanical, and thermodynamic
properties is very important.Moreover, computationalmethods are economical and easier to investigate the
alloys’ structural,mechanical, and thermal properties as compared to experimental techniques.

In this report, the comparative study of electronic,mechanical, and thermodynamics properties of two
RHEAs,HfNbTaTiZr andHf0.5Nb0.5Ta0.5Ti1.5Zr, are performed by usingfirst-principles density functional
theory (DFT) calculations. The accuracy of the predicted properties of both RHEAswas further validated by
comparingwith available experimental data. It has been observed that the calculatedmechanical properties are
in good agreementwith the available experiments. The quasi-harmonicDebye-Grüneisen theorywas adopted to
compute the thermodynamics properties.

2. Computationalmethod

Allmechanical properties were calculated usingViennaAb-Initio Simulation Package (VASP) 5.4 [41] inMedeA
software [42]. The generalized gradient approximation (GGA) [43] of Perdew-Burke-Ernzerhof (PBE) [44] is
used as an exchange-correlation function. The planewave cut off 500 eVwas used in all calculations. The
convergence criterion is 0.02 eV/Ang. The electronic iterations convergence is 10−5 eVusing the blocked
Davidson algorithm. The applied k-spacing of 0.2 per Angstrom, leads to a 4×3×3mesh in our calculation.
This gives a k-spacings of 0.185×0.197×0.197 per Angstrom. Thefirst orderMethfessel-Paxton smearing
with awidth of 0.2 eVwas used. Afirst-principles calculation is performed to predict themechanical properties
of RHEAs. Previously, thismethod has been successfully applied for studying the alloying effects of element on
structural,mechanical, and thermal properties of RHEAs [45–48]. Hu et al [45] studied the hydrogen behaviors
andmicrostructural development in theHEATiZrHfMoNbby applying first-principlesmethod.

The random structure of BCC supercell is constructed by utilizing the python code andKnuth shufflemodel
[49] consisting of 100 atoms and is shown infigure 1. Virtual crystal approximation (VCA) [50] and special
quasi-random structure (SQS) [51] are often usedmethods for simulating randomdistribution of RHEAs
components on a given crystal lattice. However, VCAmethods do not consider the effect of lattice distortion that
exists in complex RHEAswhereas the SQSmethod considers the lattice distortion effect by combining the idea
of cluster expansionwith large supercells [52]. For complex RHEAs, large supercells are required to resemble the
randomdistribution of elements. As an example, Tian et al [53] have constructed a large supercell of 250 and 128
atoms using the Alloy Theoretic Automated Toolkit to study the elastic properties of various RHEAs. Themajor
limiting factor of the SQSmodel is the high computational cost associatedwith a large supercell. The proposed
100 atoms random supercellmodel is capable of distributing the components of the complex alloy randomly
and its convergence test has been succinctly described in a previous publication [54]. This 100 atoms supercell is
appropriate for providing highly accurate results with low computational costs.

Figure 1. 100 atoms supercell model with randomly distributed elements. The left-hand side figure represents the supercell of
HfNbTaTiZr whereas the right-hand side figure represents the supercell ofHf0.5Nb0.5Ta0.5Ti1.5Zr.
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The stress-strainmethod [55, 56]which is implemented inMedeA software is used to calculate the elastic
constants C ,11 C ,12 and C .44 VASP computes the stress tensor by applying analytic expressions. Several strains are
used to getmore points for thefitting procedure involved in the calculation of the elastic constants. The
equilibrium supercell is optimizedwith high accuracy to avoid zero strain. TheVoight-Reuss-Hill
approximation [57]was used to calculate bulkmodulus (B), Shearmodulus (G), Young’smodulus (E), and
Poisson ratio (n).

The formula to computeB,G, E, and n are
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TheGrüneisen-Debye approximationwas applied to compute the thermal expansion coefficient and
Grüneisen constantG [58]. The internal energy-volume equation of state provided byMayer et al [59]was used
tofind theGrüneisen constantG

⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( ) ( )
g g

=
-

-
-

+
g-

¥E v
BV V

V

V

V
E

5

6

ln
1

5

6

, 2

G G

0

0

5
6

0

G

whereV0 is equilibrium volume andB is bulkmodulus.
After calculating the γG, Debye temperature is calculated as,
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whereV0 is volume, q represents atoms in the unit cell, , and BK are Planks andBoltzmann constant,
respectively. The specific heat capacity, C ,V as a function of temperature,T, is estimated as,
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3. Results and discussion

3.1. Structural properties
Various parameter calculations were performedwhich can predict the phase of RHEAs. The entropy ofmixing
(ΔSmix) [60], enthalpy ofmixing (ΔHmix) [61], unitless parameter (Ω) [62], atomic size difference (δ), and
valence electron concentration (VEC) [63] of the alloys, were calculated by the following formula:
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whereR is ideal gas constant; x and xi j are the atomic percentages of the ith and jth element, respectively; ri is
the radius of the ith element; r̄ is averaged atomic radius; and ( )VEC i is the valence electron concentration of ith
element.

From the report of Zhang et al [61] and Sheng et al [64], the required conditions forHEAs to form a solid
stable solution are: 11�ΔSmix�19.5 (J/K.mol),−22�ΔHmix�7 (kJmol−1), andΩ>1.1 and δ<6.6%.
The calculated parameters are shown in table 1, which suggest that two current RHEAswill form a solid solution
structure as it satisfies the conditions proposed by references [61, 62]. According toGuo et al [63], if the
calculatedVEC of alloy is lower than 6.67, it will form aBCC crystal structure and bothRHEAs haveVEC<6.67

Figure 2.Comparison of calculated lattice constant ofHfNbTaTiZr andHf0.5Nb0.5Ta0.5Ti1.5Zrwith available experimental data.

Table 1.The calculated parameterΔSmix,ΔHmix,VEC,Ω, δ, andTm of RHEAs.

Name of alloys ΔSmix(J Kmol−1) ΔHmix (KJmol−1) VEC Ω δ Tm (K)

HfNbTaTiZr 13.38 2.72 4.40 12.41 4.9 2523

Hf0.5Nb0.5Ta0.5Ti1.5Zr 12.41 1.84 4.24 15.63 4.63 2322

Figure 3.Calculated elastic constant ofHfNbTaTiZr andHf0.5Nb0.5Ta0.5Ti1.5Zr from100-atom supercell simulation.
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indicating the existence of BCCphase in them. The experimental reports [27, 29, 31, 33] showonly BCCphase
exists for both RHEAs, which confirms theVEC could be the indicative parameter to identify the phase in alloys.

The lattice constant of both RHEAswas calculated using the relaxed super cell volume and results were
comparedwith available experiment data which is shown infigure 2. The calculated lattice constant of
HfNbTaTiZr is 3.403Åwhich is equal to the experimental values of 3.40 Å [27, 29] and 3.405Å [31]. Similarly,
the calculated lattice constant ofHf0.5Nb0.5Ta0.5Ti1.5Zrwas equal to 3.391 and its experimental value is 3.405
[33]. It is seen that the changes in the atomic concentration of alloys from equimolar to non-equimolar lowers
the atomic size of alloys as shown in table 1. This lowering of atomic size is responsible for lattice contraction
which slightly decrease the lattice constant ofHf0.5Nb0.5Ta0.5Ti1.5Zr [65].

3.2.Mechanical properties
To explore themechanical properties of twoRHEAs, we obtained the elastic constants which are important
parameters in determining the stability ofmaterials and calculated values are shown infigure 3. According to the
BornRule, themechanical stability criteria required formaterials are + > - > >C C C C C2 0, 0,11 12 11 12 44 0,
and ∣ ∣>C C .11 12 The values of the elastic constants C ,11 C ,12 and C44meet the Born stability criteria for both
RHEAs, showing that their crystal structures aremechanically stable. The experiment conducted byDirras et al
[32] found the C11 and C44 ofHfNbTaTiZr are 172±6GPa and 28±1.5GPa, respectively, which is closer to
our simulation value. Similarly, Fazakas et al [66] calculated the value of C11 and C44 ofHfNbTaTiZr by first-
principlesmethod, which are 160GPa and 62.4GPa, respectively. Thefirst-principles calculations overestimate
the C44 value and underestimate the value of C .11 The elastic constants C11 and C12 ofHfNbTaTiZr are larger than
Hf0.5Nb0.5Ta0.5Ti1.5Zr. The reason for higher elastic constant ofHfNbTaTiZr could be the lattice distortion
brought by size difference in atomic radii of elements [67]. However, there is no significant changes in the C44

value for both alloys and the existingfirst-principlesmethod is not able to provide a conclusive explanation. The
Cauchy pressure (C11–C44) ofmaterials is useful in predicting the nature of bondingwhich, if positive, is likely to
form ametallic bondwith ductile behaviors [68]. It is found that the value of Cauchy pressure for both alloys are
positive which indicates the formation ofmetallic bonds exists in them and they are ductile in nature. The
anisotropy factor (A) [69] is an excellent parameter that reveals howmuch anisotropy a cubic crystal possesses
which is calculated by the following equation

( )=
-

A
C

C C

2
1144

11 12

For isotropic crystals, the anisotropy factormust equal one, and any value of A less ormore than one relates
to the crystal’s degree of elastic anisotropy. The calculated A from elastic constants is 0.87 and 0.91 for
HfNbTaTiZr andHf0.5Nb0.5Ta0.5Ti1.5Zr RHEAs, respectively. As a result, one can conclude that
Hf0.5Nb0.5Ta0.5Ti1.5Zr is somewhatmore anisotropic thanHfNbTaTiZr. Furthermore, the higher value of
elastic constants C11 and C12 increases the othermechanical properties like bulkmodulus (B), shearmodulus
(G), Young’smodulus (E) andVickers’s hardness (Hv) inHfNbTaTiZr. The theoretically calculated density (ρ),
B,G,E andHv for bothRHEAs are shown in table 2. The Tian’s et al [70]model was used to calculate theVickers
hardness (Hv) as

( )= ´ ´H K G0.92 12v
1.137 0.708

where =K
G

B
.

The hardness of theHfNbTaTiZrwas found to be 2.92GPa,which is higher than theHf0.5Nb0.5Ta0.5Ti1.5Zr.
The increased hardness ofHfNbTaTiZr could be due to the cocktail effect [72]which can result in unexpected
properties changes inmetallic alloys. Formetallic alloys, the cocktail effect can be achieved by changing the
composition and alloying ofmaterials. According to Pugh’s rule [73], ductilematerial will have a B/G ratio
>1.75 and brittlematerial will have B/G<1.75. The calculated B/G ratio for both RHEAs is greater than 1.75,
which suggests that these RHEAswill have a ductile nature. The calculated Young’smodulus of
Hf0.5Nb0.5Ta0.5Ti1.5Zr is 86GPawhich is lower than theHfNbTaTiZr. Due to the lower elasticmodulus,

Table 2.Calculated ρ (g cm−3),B (GPa),G (GPa), E (GPa),Hv (GPa) and their comparisons with the available experiments.

Name of alloy ρ B G E Hv ν B/G

HfNbTaTiZr (this work) 9.96 119 35 97 2.92 0.36 3.35

Exp. [33] 9.94 [29] 134 [32] 42 [29] 112.74±4.66 3.14±0.12 0.40 [32]
9.92 [32] 38.5 [71] 97.9±6.9 [71]

Hf0.5Nb0.5Ta0.5Ti1.5Zr (this work) 8.26 111 31 86 2.49 0.37 3.56

Exp. [33] 98.57±4.18 3.02±0.11
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Hf0.5Nb0.5Ta0.5Ti1.5Zr could be a potential alloy for bone implants [71]. Furthermore, slightly higher value of
poison ratio ofHf0.5Nb0.5Ta0.5Ti1.5Zr indicates its better plastic property [74]. Higher plasticmaterial is easy to
handle than brittlematerial during themanufacturing process. There is a good agreement between the
calculated elastic constants, Young’smodulus, shearmodulus, Poison’s ratio (ν), Vickers hardness with the
available experimental reports which provides validation of the theoretical analysis. This demonstrates that the
random supercellmodelmergedwith theDFT-based calculation is a feasible approach to predict the elastic
constants and othermechanical properties correctly.

3.3. Thermal properties
It is very necessary to study the thermal stability of alloys at different temperatures in order to use them as a high
temperature structuralmaterial. Therefore, the thermal properties of both alloys have been studied. Debye
temperature (θD) has been calculatedwhich helps to identify the natural covalent bond of solidmaterials. It is
found that thematerial with larger θD has a higher chance of forming a strong covalent bond [75]. The calculated
θD, Grüneisen parameter, andVm ofHfNbTaTiZr are 235.7 K, 2.25, and 2136m s−1, respectively and those of
Hf0.5Nb0.5Ta0.5Ti1.5Zr are 242.9 K, 2.32, and 2205m s−1. The thermal coefficient of linear expansion (aL) of two
RHEAs is shown infigure 4. It is a very useful parameter for explaining how temperature can change the size of
materials and its value haswide application in determining the structural as well asmechanical applications. It
can be seen from the diagram that forHf0.5Nb0.5Ta0.5Ti1.5Zr, the aL value is almost the same asHfNbTaTiZr up
to 70K and becomes higher after 100K. The higher value of aL shows its sensitivity nature towards high
temperature. Since aL is inversely proportional to themelting temperature ofmaterials, Hf0.5Nb0.5Ta0.5Ti1.5Zr
has a highermelting temperature thanHfNbTaTiZr which results in increased aL as temperature increased. The
θD and aL ofHf0.5Nb0.5Ta0.5Ti1.5Zr is greater than theHfNbTaTiZrwhich implies it has better thermal
properties. There is no experimental and theoretical study of thermal properties related to bothRHEAs as per
the authors’ findings. Therefore, simulations of the thermal properties of current RHEAs could provide
important guidance for future experimental and ab-initio investigation.

It is clear from this computational study that changing the composition of elements of RHEAs could affect
themechanical and thermodynamic properties, often described by four core effects [76]. In this study, various
structural,mechanical, and thermal properties of RHEAs have been explored and comparedwith available
experiments.More experimental study is needed to validate some of our computational findings, and it is
expected to be confirmed in the near future.

4. Conclusion

Thefirst-principles DFT calculations have been performed to study the structural,mechanical, and thermal
properties of twoRHEAs,HfNbTaTiZr andHf0.5Nb0.5Ta0.5Ti1.5Zr, with BCC structure. The calculated elastic
constants indicate that both RHEAs aremechanically stable. The calculated lattice constant, density, Young’s
modulus, and hardness for both RHEAs are consistent with the experiments. It is found that the

Figure 4.Thermal coefficient of linear expansion (α) as a function of temperature.
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Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEAhave lowYoung’smodulus, high plasticity, and better thermal properties which is
likely to be a potential candidate for future biomedical application. The agreement of our computational
findings with the available experimental data confirms the efficiency and accuracy of 100 atoms supercellmodel
which is capable of predicting themechanical properties precisely. Therefore, DFT computational technique
could be an alternative cost-effective and efficientmethod, besides related experiments, to explore the
structures,mechanical, and thermodynamical properties of the novel RHEAs that have potential application in
biomedicalfields.
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