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I n bi o m e di c al d at a a n al y si s, cl u st e ri n g i s c o m m o nl y c o n d u ct e d. Bi cl u st e ri n g a n al y si s

c o n d u ct s cl u st e ri n g i n b ot h t h e s a m pl e a n d c o v a ri at e di m e n si o n s a n d c a n m o r e c o m -

p r e h e n si v el y d e s c ri b e d at a h et e r o g e n eit y. I n m o st of t h e e xi sti n g bi cl u st e ri n g a n al y s e s,

s c al a r m e a s u r e m e nt s a r e c o n si d e r e d. I n t hi s st u d y, m oti v at e d b y ti m e - c o u r s e g e n e

e x p r e s si o n d at a a n d ot h e r e x a m pl e s, w e t a k e t h e ‘‘ n at u r al n e xt st e p’’ a n d c o n si d e r t h e

bi cl u st e ri n g a n al y si s of f u n cti o n al s u n d e r w hi c h, f o r e a c h c o v a ri at e of e a c h s a m pl e, a

f u n cti o n (t o b e e x a ct, it s v al u e s at di s c r et e m e a s u r e m e nt p oi nt s) i s p r e s e nt. W e d e v el o p

a d o u bl y p e n ali z e d f u si o n a p p r o a c h, w hi c h i n cl u d e s a s m o ot h n e s s p e n alt y f o r e sti m ati n g

f u n cti o n al s a n d, m o r e i m p o rt a ntl y, a f u si o n p e n alt y f o r cl u st e ri n g. St ati sti c al p r o p e rti e s

a r e ri g o r o u sl y e st a bli s h e d, p r o vi di n g t h e p r o p o s e d a p p r o a c h a st r o n g g r o u n d. W e al s o

d e v el o p a n eff e cti v e A D M M al g o rit h m a n d a c c o m p a n yi n g R c o d e. N u m e ri c al a n al y si s,

i n cl u di n g si m ul ati o n s, c o m p a ri s o n s, a n d t h e a n al y si s of t w o ti m e - c o u r s e g e n e e x p r e s si o n

d at a, d e m o n st r at e s t h e p r a cti c al eff e cti v e n e s s of t h e p r o p o s e d a p p r o a c h.

© 2 0 2 1 El s e vi e r I n c. All ri g ht s r e s e r v e d.

. I n t r o d u c ti o n

I n bi o m e di c al d at a a n al y si s, cl u st e ri n g h a s b e e n r o uti n el y c o n d u ct e d. T h e cl u st e ri n g of s a m pl e s c a n a s si st b ett e r

n d e r st a n di n g s a m pl e h et e r o g e n eit y, a n d t h e cl u st e ri n g of c o v a ri at e s c a n i d e ntif y t h o s e t h at b e h a v e si mil a rl y a c r o s s

a m pl e s a n d t h e n, f o r e x a m pl e, i m p r o v e o u r u n d e r st a n di n g of c o v a ri at e f u n cti o n aliti e s. Cl u st e ri n g c a n al s o s e r v e a s

h e b a si s of ot h e r a n al y si s, f o r e x a m pl e, r e g r e s si o n. Bi cl u st e ri n g a n al y si s h a s al s o b e e n d e v el o p e d, i d e ntif yi n g cl u st e ri n g

t r u ct u r e s i n b ot h s a m pl e a n d c o v a ri at e di m e n si o n s. It i n cl u d e s s a m pl e - a n d c o v a ri at e - cl u st e ri n g a s s p e ci al c a s e s a n d, i n

s e n s e, c a n b e m o r e c o m p r e h e n si v e. F o r g e n e ri c r e vi e w s of t e c h ni q u e s, t h e o ri e s, a n d a p pli c ati o n s of cl u st e ri n g, w e r ef e r

o [1 9 ,4 6 ].

T hi s st u d y h a s b e e n p a rtl y m oti v at e d b y t h e a n al y si s of g e n e e x p r e s si o n d at a, f o r w hi c h s a m pl e - a n d c o v a ri at e -

l u st e ri n g a s w ell a s bi cl u st e ri n g h a v e b e e n e xt e n si v el y c o n d u ct e d [ 2 1 ,4 5 ]. M o st g e n e e x p r e s si o n st u di e s g e n e r at e

‘ s n a p s h ot’’ v al u e s. U nli k e s o m e t y p e s of o mi c s m e a s u r e m e nt s, g e n e e x p r e s si o n v al u e s c a n b e ti m e - d e p e n d e nt, a n d t h e

e m p o r al t r e n d s of g e n e e x p r e s si o n s c a n h a v e i m p o rt a nt bi ol o gi c al i m pli c ati o n s [ 1 6 ]. A c c o r di n gl y, ti m e - c o u r s e g e n e

x p r e s si o n st u di e s h a v e b e e n c o n d u ct e d, g e n e r ati n g m ulti pl e m e a s u r e m e nt s at diff e r e nt ti m e p oi nt s f o r e a c h g e n e of

a c h s a m pl e. I n t h e a n al y si s of ti m e - c o u r s e g e n e e x p r e s si o n d at a, b e si d e s si m pl e st ati sti c s, f u n cti o n al d at a a n al y si s ( F D A)

e c h ni q u e s, h a v e b e e n a d o pt e d a n d s h o w n a s p o w e rf ul [ 1 2 ].
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F D A d e al s wit h d at a s a m pl e s t h at c o n si st of c u r v e s o r ot h e r i nfi nit e - di m e n si o n al d at a o bj e ct s. O v e r t h e l a st t w o d e c a d e s,

w e h a v e wit n e s s e d si g nifi c a nt d e v el o p m e nt s i n it s t h e o r y, m et h o d, c o m p ut ati o n, a n d a p pli c ati o n. F o r s y st e m ati c r e vi e w s,

w e r ef e r t o [ 2 ,1 5 ,2 3 ,4 0 ]. I n F D A, cl u st e ri n g a n al y si s h a s b e e n of p a rti c ul a r i nt e r e st. A p o p ul a r a p p r o a c h p r oj e ct s f u n cti o n al

d at a i nt o a fi nit e - di m e n si o n al s p a c e a n d t h e n a p pli e s e xi sti n g cl u st e ri n g m et h o d s. F o r e x a m pl e, A b r a h a m et al. [ 1 ] c o n d u ct

B - s pli n e e x p a n si o n s, a n d cl u st e r s t h e e sti m at e d c o effi ci e nt s u si n g a k - m e a n s al g o rit h m. P e n g a n d M üll e r [ 3 0 ] d e v el o p a

di st a n c e f o r s p a r s e f u n cti o n al d at a, a n d a p pl y a k - m e a n s al g o rit h m t o f u n cti o n al p ri n ci pl e c o m p o n e nt a n al y si s ( P C A)

s c o r e s. Ot h e r a p p r o a c h e s, s u c h a s B a y e si a n [ 3 7 ], s u b s p a c e [3 ,9 ,1 0 ], a n d m o d el - b a s e d [1 8 ,2 0 ], h a v e al s o b e e n d e v el o p e d.

W e r ef e r t o [ 1 7 ,4 0 ] f o r s u r v e y s o n f u n cti o n al d at a cl u st e ri n g. M o st w o r k s i n t hi s a r e a, h o w e v e r, h a v e f o c u s e d o n eit h e r

s a m pl e - o r c o v a ri at e - cl u st e ri n g.

F o r bi cl u st e ri n g a n al y si s ( of g e n e e x p r e s si o n a n d ot h e r t y p e s of d at a), i n t hi s a rti cl e, w e t a k e t h e ‘‘ n at u r al n e xt st e p’’

a n d c o n si d e r t h e s c e n a ri o w h e r e f o r e a c h c o v a ri at e of e a c h s a m pl e, a f u n cti o n o r it s r e ali z ati o n s at di s c r et e ti m e p oi nt s

a r e a v ail a bl e. W e n ot e t h at, alt h o u g h t hi s st u d y h a s b e e n p a rtl y m oti v at e d b y g e n e e x p r e s si o n d at a a n d s o m e of t h e

di s c u s si o n s a r e f o c u s e d o n s u c h d at a, t h e c o n si d e r e d d at a s c e n a ri o a n d p r o p o s e d t e c h ni q u e c a n h a v e a p pli c ati o n s f a r

b e y o n d s u c h d at a. F o r e x a m pl e, i n bi o m e di c al st u di e s, m a n y bi o m a r k e r s m e a s u r e d i n bl o o d t e st s v a r y a c r o s s ti m e, a n d

t h ei r v al u e s c a n b e o bt ai n e d f r o m m e di c al r e c o r d s. I n fi n a n ci al st u di e s, m a n y m e a s u r e s of a c o m p a n y, f o r e x a m pl e si z e

a n d st o c k p ri c e, v a r y a c r o s s ti m e. A s s u c h, o u r i n v e sti g ati o n c a n h a v e b r o a d a p pli c ati o n s.

T h e r e i s a v a st lit e r at u r e o n bi cl u st e ri n g a n al y si s wit h s c al a r m e a s u r e m e nt s. Di r e ctl y a p pl yi n g s u c h t e c h ni q u e s t o t h e

p r e s e nt p r o bl e m will i n v ol v e eit h e r t r e ati n g f u n cti o n al m e a s u r e m e nt s a s s c al a r s a n d t h e n c o m p uti n g di st a n c e s ( b et w e e n

c o v a ri at e s a n d s a m pl e s) – w hi c h m a y b e i n eff e cti v e b y n ot s uffi ci e ntl y a c c o u nti n g f o r t h e f u n cti o n al n at u r e of d at a, o r fi r st

e sti m ati n g f u n cti o n al s a n d t h e n c o m p uti n g di st a n c e s b et w e e n t h e e sti m at e s – w hi c h m a y al s o e n c o u nt e r c h all e n g e s w h e n

a l a r g e n u m b e r of f u n cti o n al s n e e d t o b e j oi ntl y e sti m at e d. O u r lit e r at u r e r e vi e w s u g g e st s t h at t h e r e a r e al s o a h a n df ul

r e c e nt bi cl u st e ri n g m et h o d s d e si g n e d f o r f u n cti o n al ( e s p e ci all y i n cl u di n g l o n git u di n al) d at a. F o r e x a m pl e, Sli m e n et al. [ 3 5 ]

p r o p o s e a bi cl u st e ri n g m et h o d f o r m ulti v a ri at e f u n cti o n al d at a b a s e d o n t h e G a u s si a n l at e nt bl o c k m o d el ( L B M) u si n g t h e

fi r st f u n cti o n al P C A s c o r e s. B o u v e y r o n et al. [4 ] d e v el o p a n e xt e n si o n of t h e G a u s si a n L B M b y m o d eli n g t h e w h ol e s et of

f u n cti o n al P C A s c o r e s. I n a n ot h e r w o r k [2 8 ], a bi cl u st e ri n g m et h o d wit h a pl ai d m o d el i s e xt e n d e d t o t h r e e - di m e n si o n al

d at a a r r a y s, of w hi c h m ulti v a ri at e l o n git u di n al d at a i s a s p e ci al c a s e.

F o r t h e bi cl u st e ri n g a n al y si s of f u n cti o n al s, i n t hi s a rti cl e, w e d e v el o p a p e n ali z e d f u si o n b a s e d a p p r o a c h. M o r e

s p e cifi c all y, a n o n p a r a m et ri c m o d el i s a s s u m e d f o r e a c h c o v a ri at e of e a c h s a m pl e, all o wi n g f o r s uffi ci e nt fl e xi bilit y i n

m o d eli n g. A d o u bl y p e n ali z ati o n t e c h ni q u e i s a d o pt e d, w hi c h i n cl u d e s a s m o ot h n e s s p e n alt y t o r e g ul at e n o n p a r a m et ri c

e sti m ati o n. T h e m o st si g nifi c a nt a d v a n c e m e nt i s t h e s e c o n d, f u si o n p e n alt y, w hi c h ‘‘t r a n sf o r m s’’ cl u st e ri n g i n b ot h s a m pl e

a n d c o v a ri at e di m e n si o n s t o a p e n ali z e d e sti m ati o n p r o bl e m. St ati sti c al a n d n u m e ri c al i n v e sti g ati o n s a r e c o n d u ct e d,

p r o vi di n g t h e p r o p o s e d a p p r o a c h a s oli d g r o u n d. T hi s st u d y m a y c o m pl e m e nt a n d a d v a n c e f r o m t h e e xi sti n g o n e s

i n m ulti pl e a s p e ct s. C o m p a r e d t o di r e ct a p pli c ati o n s of bi cl u st e ri n g m et h o d s f o r s c al a r s (t h at eit h e r di r e ctl y c o m p ut e

di st a n c e s wit h o ut f u n cti o n al e sti m ati o n o r e sti m at e f u n cti o n al s s e p a r at el y), t h e p r o p o s e d a p p r o a c h c a n m o r e eff e cti v el y

a c c o m m o d at e t h e f u n cti o n al n at u r e of d at a o r g e n e r at e m o r e eff e cti v e e sti m ati o n. T hi s i s b e c a u s e it ‘‘ c o m bi n e s’’ cl u st e ri n g

a n d e sti m ati o n, a n d a s s u c h, e sti m ati o n o nl y n e e d s t o b e c o n d u ct e d f o r cl u st e r s a s o p p o s e d t o i n di vi d u al c o v a ri at e s,

p ot e nti all y l e a di n g t o a s m all e r n u m b e r of p a r a m et e r s a n d h e n c e m o r e eff e cti v e e sti m ati o n. C o m p a r e d t o s o m e of t h e

e xi sti n g bi cl u st e ri n g m et h o d s f o r f u n cti o n al s, s u c h a s [ 4 ,3 5 ], t h e p r o p o s e d a p p r o a c h h a s a m u c h e a si e r w a y of d et e r mi ni n g

t h e n u m b e r of cl u st e r s. I n a d diti o n, u nli k e [ 4 ,3 5 ], it d o e s n ot m a k e st ri n g e nt di st ri b uti o n al a s s u m pti o n s (f o r e x a m pl e,

n o r m alit y). M e a n w hil e, ri g o r o u s t h e o r eti c al i n v e sti g ati o n s a r e c o n d u ct e d b e y o n d m et h o d ol o gi c al d e v el o p m e nt s, g r a nti n g

t h e p r o p o s e d a p p r o a c h a st r o n g e r st ati sti c al b a si s. It al s o a d v a n c e s f r o m t h e cl u st e ri n g of f u n cti o n al c o v a ri at e eff e ct s

( a s s u mi n g h o m o g e n e o u s s a m pl e s) b y si m ult a n e o u sl y e x a mi ni n g s a m pl e h et e r o g e n eit y, t h u s b ei n g m o r e c o m p r e h e n si v e.

A d diti o n all y, t hi s st u d y m a y al s o a d v a n c e a n d e n ri c h t h e p e n ali z e d f u si o n t e c h ni q u e. Cl u st e ri n g vi a p e n ali z e d f u si o n h a s

b e e n pi o n e e r e d i n [ 8 ] a n d ot h e r st u di e s. C o m p a r e d t o alt e r n ati v e cl u st e ri n g t e c h ni q u e s, it i s m o r e r e c e nt a n d h a s n ot a bl e

st ati sti c al a n d n u m e ri c al a d v a nt a g e s [ 4 4 ]. C o m p a r e d t o t h e e xi sti n g p e n ali z e d f u si o n b a s e d cl u st e ri n g, t hi s st u d y diff e r s

b y c o n d u cti n g bi cl u st e ri n g a n d b y h a vi n g u n k n o w n p a r a m et e r s g e n e r at e d f r o m t h e b a si s e x p a n si o n of f u n cti o n al s. L a st

b ut n ot l e a st, t hi s st u d y al s o p r o vi d e s a p r a cti c all y u s ef ul a n d n e w w a y of a n al y zi n g ti m e - c o u r s e g e n e e x p r e s si o n d at a

( a n d ot h e r d at a wit h si mil a r c h a r a ct e ri sti c s).

T h e r e m ai n d e r of t hi s a rti cl e i s o r g a ni z e d a s f oll o w s: S e cti o n 2 i nt r o d u c e s t h e n e w bi cl u st e ri n g a p p r o a c h vi a p e n ali z e d

f u si o n a n d d e v el o p s a n eff e cti v e c o m p ut ati o n al al g o rit h m. St ati sti c al p r o p e rti e s a r e e st a bli s h e d t o p r o vi d e o u r m et h o d

a st r o n g t h e o r eti c al s u p p o rt. Si m ul ati o n st u di e s a n d t h e a n al y si s of t w o ti m e - c o u r s e e x p r e s si o n d at a a r e c o n d u ct e d i n

S e cti o n s 3 a n d 4 , r e s p e cti v el y. S e cti o n 5 c o n cl u d e s wit h a b ri ef di s c u s si o n. T h e p r o of s of t h e m ai n r e s ult s a r e p r e s e nt e d

i n A p p e n di x A .

2. M e t h o d s

2. 1. D at a a n d m o d el s etti n g s

F o r t h e j ∈ { 1 , . . . , q }t h c o v a ri at e of s a m pl e i ∈ { 1 , . . . , N }, d e n ot e Y i,j = (Y i,j,1 , . . . , Y i,j,n i,j )
⊤ a s t h e o r d e r e d

m e a s u r e m e nt s ( o r d e r e d b y ti m e f o r ti m e - c o u r s e g e n e e x p r e s si o n d at a), w hi c h a r e t h e di s c r et e r e ali z ati o n s of a n u n k n o w n
2
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n d e rl yi n g f u n cti o n al. F u rt h e r d e n ot e Y i = (Y ⊤
i,1 , . . . , Y ⊤

i,q )⊤ , Y = (Y ⊤
1 , . . . , Y ⊤

N )⊤ , a n d n =
∑ N

i= 1

∑ q

j= 1 n i,j. U n d e r t h e

i cl u st e ri n g a n al y si s f r a m e w o r k, a s s u m e t h at d at a c a n b e ‘‘ d e c o m p o s e d’’ i nt o K r s a m pl e ( r o w) g r o u p s a n d K c c o v a ri at e

c ol u m n) g r o u p s. N ot e t h at a d v a n ci n g f r o m m a n y e xi sti n g a p p r o a c h e s, t h e n u m b e r s of t w o di m e n si o n al g r o u p s a r e n ot

r e - s p e cifi e d. D e n ot e t ′
i,j,m s ∈ T = [ 0 , 1 ] a s t h e o b s e r v e d ti m e p oi nt s. If ( s a m pl e i, c o v a ri at e j) b el o n g s t o t h e k r t h s a m pl e

r o u p a n d t h e k c t h c o v a ri at e g r o u p, t h e n

Y i,j,m = g (k r ,k c ) (ti,j,m ) + ϵ i,j,m , ( 1)

h e r e g (k r ,k c ) (t ) i s t h e u n k n o w n m e a n f u n cti o n, a n d ϵ ′
i,j,m s a r e t h e r a n d o m e r r o r s wit h m e a n z e r o.

F o r e sti m ati o n, w e a d o pt t h e b a si s e x p a n si o n t e c h ni q u e. S p e cifi c all y, d e n ot e U p (t ) = (U 1 ,p (t ), . . . , U p ,p (t ))⊤ a s t h e

oll e cti o n of p r e s c al e d b a si s f u n cti o n s. I n t h e lit e r at u r e, t h e r e a r e e xt e n si v e st u di e s o n c h o o si n g t h e f o r m a n d n u m b e r of

a si s f u n cti o n s [ 3 2 ], w hi c h will n ot b e r eit e r at e d h e r e. I n o u r n u m e ri c al st u d y, w e a d o pt B - s pli n e b a si s f u n cti o n s of o r d e r

= 3. L et g i,j(t ) b e t h e u n k n o w n m e a n f u n cti o n f o r t h e jt h c o v a ri at e of t h e it h s a m pl e, t h e n w e h a v e

g i,j(t ) ≈ U ⊤
p (t )β i,j,

h e r e β i,j = (β i,j,1 , . . . , βi,j,p )⊤ i s t h e v e ct o r of u n k n o w n c o effi ci e nt s. F u rt h e r d e n ot e U i,j = (U p (ti,j,1 ), . . . , U p (ti,j,n i,j ))
⊤ . F o r

sti m ati o n ( wit h o ut cl u st e ri n g), c o n si d e r t h e o bj e cti v e f u n cti o n

Q (β ) =
1

2
∥ Y − U β ∥ 2

2 +
1

2
γ 1 β

⊤ M β =
1

2

N∑

i= 1

q∑

j= 1

(
∥ Y i,j − U i,jβ i,j∥

2
2 + γ 1 β

⊤
i,jD β i,j

)
, ( 2)

h e r e U = di a g( U 1 ,1 , . . . , U 1 ,q , . . . , U N ,q ), β = (β ⊤
1 ,1 , . . . , β ⊤

1 ,q , . . . , β ⊤
N ,q )⊤ , M = di a g( D , . . . , D ), D = δ ⊤ δ , δ i s a (p − 2) × p

at ri x r e p r e s e nti n g t h e s e c o n d o r d e r diff e r e nti al o p e r at o r, a n d γ 1 i s a n o n - n e g ati v e t u ni n g p a r a m et e r. I n t hi s o bj e cti v e

u n cti o n, t h e fi r st t e r m i s t h e l a c k - of -fit, a n d t h e p e n alt y t e r m c o nt r ol s t h e s m o ot h n e s s of e sti m ati o n.

. 2. Bi cl u st e ri n g vi a p e n ali z e d f u si o n

U n d e r t h e cl u st e ri n g vi a p e n ali z e d f u si o n f r a m e w o r k, t w o s a m pl e s ( c o v a ri at e s) b el o n g t o t h e s a m e cl u st e r if a n d o nl y if

h e y h a v e t h e s a m e r e g r e s si o n c o effi ci e nt s. A s s u c h, cl u st e ri n g a m o u nt s t o d et e r mi ni n g w h et h e r t w o s a m pl e s ( c o v a ri at e s)

a v e t h e s a m e e sti m at e d c o effi ci e nt s. F o r s a m pl e s i1 , i2 ∈ { 1 , . . . , N }, d e n ot e β (r )

i1
, β (r )

i2
a s t h e l e n gt h p × q v e ct o r s of

o effi ci e nt s. F o r c o v a ri at e s j1 , j2 ∈ { 1 , . . . , q }, d e n ot e β (c )

j1
, β (c )

j2
a s t h e l e n gt h p × N v e ct o r s of c o effi ci e nt s. F o r e sti m ati n g β

n d h e n c e d et e r mi ni n g t h e cl u st e ri n g st r u ct u r e, w e p r o p o s e mi ni mi zi n g t h e o bj e cti v e f u n cti o n:

L (β ) = Q (β ) +
∑

1 ≤ i1 < i2 ≤ N

p τ (∥ β (r )

i1
− β (r )

i2
∥ 2 , γ2 ) +

∑

1 ≤ j1 < j2 ≤ q

p τ (∥ β (c )

j1
− β (c )

j2
∥ 2 , (N / q ) 1 / 2 γ 2 ). ( 3)

e r e p τ (, ) i s a p e n alt y f u n cti o n, τ i s a r e g ul a ri z ati o n p a r a m et e r, ∥ · ∥ 2 i s t h e ℓ 2 n o r m, a n d γ 2 i s a d at a - d e p e n d e nt t u ni n g

a r a m et e r. ( N / q ) 1 / 2 i s a d d e d t o m a k e t h e t w o p e n alti e s c o m p a r a bl e. I n o u r n u m e ri c al st u d y, w e a d o pt M C P [4 7 ], t h at i s,

τ (t , γ ) = γ
∫ t

0
( 1 − x / (τ γ ))+ d x wit h τ > 1. H e r e ( x )+ = x if x > 0, a n d ( x )+ = 0 ot h e r wi s e. N ot e t h at S C A D [ 1 4 ] a n d s o m e

t h e r p e n alti e s a r e al s o a p pli c a bl e. D e n ot e t h e e sti m at o r a s β̂ . L et { α̂ (r )

1 , . . . , α̂ (r )

K̂ r
} b e t h e di sti n ct v al u e s of β̂

(r )

i ’ s. Si mil a rl y,

et { α̂ (c )

1 , . . . , α̂ (c )

K̂ c
} b e t h e di sti n ct v al u e s of β̂

(c )

j ’ s. W e c a n t h e n o bt ai n t h e bl o c k st r u ct u r e of β̂ b y { α̂ (r ,c )

1 ,1 , . . . , α̂ (r ,c )

K̂ r ,K̂ c
}, w hi c h

r e t h e di sti n ct v al u e s of β̂ i,j, a n d s et K̂ b = K̂ r × K̂ c .

I n ( 3), p e n alt y i s i m p o s e d t o t h e n o r m s of all p ai r wi s e diff e r e n c e s t o p r o m ot e e q u alit y, a s i n ‘‘ st a n d a r d’’ p e n ali z e d

u si o n [8 ]. H e r e it i s n ot e d t h at, a s i n [8 ], si n c e t h e r e i s n o i nf o r m ati o n o n t h e o r d e r of s a m pl e s/ c o v a ri at e s, all p ai r wi s e

iff e r e n c e s a r e t a k e n, w hi c h diff e r s f r o m, f o r e x a m pl e, f u s e d L a s s o a n d ot h e r f u s e d p e n ali z ati o n s. Diff e r e nt f r o m [ 8 ],

s cl u st e ri n g n e e d s t o b e c o n d u ct e d i n b ot h t h e s a m pl e a n d c o v a ri at e di m e n si o n s, t w o f u si o n p e n alti e s a r e i m p o s e d,

r o m oti n g e q u alit y i n t w o di r e cti o n s. It i s al s o n ot e d t h at e a c h s p e cifi c c o effi ci e nt s h o w s u p i n t h r e e diff e r e nt p e n alti e s.

s t o b e s h o w n b el o w, wit h p r o p e rl y c h o s e n t u ni n g s, t h e r e i s n ot a n o v e r p e n ali z ati o n p r o bl e m. I n a d diti o n, it i s n ot r a r e

o h a v e a p a r a m et e r i n v ol v e d i n t w o o r m o r e p e n alti e s [ 7 ].

T h e p r o p o s e d a p p r o a c h i n v ol v e s t w o t u ni n g s, w hi c h h a v e ‘‘ o r di n a r y’’ i m pli c ati o n s, wit h o n e c o nt r olli n g s m o ot h n e s s

n d t h e ot h e r d et e r mi ni n g t h e st r u ct u r e of cl u st e ri n g. O n e p o s si bilit y i s t o c o n d u ct a t w o - di m e n si o n al g ri d s e a r c h. H e r e

e a d o pt t h e alt e r n ati v e p r o p o s e d i n [ 4 8 ], w hi c h h a s t w o st e p s a n d a l o w e r c o m p ut ati o n al c o st. I n p a rti c ul a r, i n t h e fi r st

t e p, w e s et γ 2 = 0 a n d s el e ct t h e o pti m al γ 1 b y mi ni mi zi n g:

BI C( γ 1 ) =

N∑

i= 1

q∑

j= 1

{

l o g

(
∥ Y i,j − ĝ i,j∥

2
2

n i,j

)

+
l o g(n i,j)

n i,j
df i,j

}

,

h e r e df = t r a c e

{
U (U ⊤ U + γ D )− 1 U ⊤

}
a n d ĝ = ( ĝ (t ), . . . , ĝ (t ))⊤ wit h ĝ (t ) = U ⊤ (t ) β̂ .
i,j i,j i,j i,j 1 i,j i,j i,j i,j,1 i,j i,j,n i,j i,j p i,j

3



K. F a n g, Y. C h e n, S. M a et al. J o u r n al of M ulti v a ri at e A n al y si s 1 8 9 ( 2 0 2 2) 1 0 4 8 7 4

w

w

Λ

a

I n t h e s e c o n d st e p, w e fi x t h e v al u e of γ 1 at t h e o pti m al a n d s el e ct γ 2 b y mi ni mi zi n g

BI C( γ 2 ) = l o g

(
∥ Y − ĝ ∥ 2

2

N q

)

+
l o g(N q )

N q
df ,

h e r e df = ( K̂ r K̂ c / N q )
∑ N

i= 1

∑ q

j= 1 df i,j a n d ĝ = ( ĝ ⊤
1 ,1 , . . . , ĝ ⊤

N ,q )⊤ .

2. 3. C o m p ut ati o n

W e d e v el o p a n eff e cti v e al g o rit h m b a s e d o n t h e A D M M t e c h ni q u e. S p e cifi c all y, w e fi r st r ef o r m ul at e ( 3) a s

a r g mi n Q (β ) +
∑

δ ∈ ∆ (r )

p τ (∥ η (r )

δ ∥ 2 , γ2 ) +
∑

δ ∈ ∆ (c )

p τ (∥ η (c )

δ ∥ 2 , (N / q ) 1 / 2 γ 2 ),

s u bj e ct t o β (r )

i1
− β (r )

i2
= η (r )

δ , β (c )

j1
− β (c )

j2
= η (c )

δ ,

w h e r e ∆ (r ) = { δ = (i1 , i2 ) : 1 ≤ i1 < i2 ≤ N } a n d ∆ (c ) = { δ = (j1 , j2 ) : 1 ≤ j1 < j2 ≤ q }. O pti mi zi n g t h e c o n st r ai n e d

o bj e cti v e f u n cti o n i s e q ui v al e nt t o o pti mi zi n g t h e a u g m e nt e d L a g r a n gi a n f u n cti o n:

L θ (β , H r , H c , Λ r , Λ c ) =
1

2
∥ Y − U β ∥ 2

2 +
1

2
γ 1 β

⊤ M β +
∑

δ ∈ ∆ (r )

p τ (∥ η (r )

δ ∥ 2 , γ2 ) +
∑

δ ∈ ∆ (r )

λ (r )⊤
δ (η (r )

δ − β (r )

i1
+ β (r )

i2
)

+
θ

2

∑

δ ∈ ∆ (r )

∥ η (r )

δ − β (r )

i1
+ β (r )

i2
∥ 2

2 +
∑

δ ∈ ∆ (c )

p τ (∥ η (c )

δ ∥ 2 , (N / q ) 1 / 2 γ 2 )

+
∑

δ ∈ ∆ (c )

λ (c )⊤
δ (η (c )

δ − β (c )

j1
+ β (c )

j2
) +

θ

2

∑

δ ∈ ∆ (c )

∥ η (c )

δ − β (c )

j1
+ β (c )

j2
∥ 2

2 ,

( 4)

h e r e θ i s a s m all p o siti v e c o n st a nt, H r = (η (r )

( 1,2) , . . . , η (r )

(N − 1 ,N ) ), H c = (η (c )

( 1,2) , . . . , η (c )

(q − 1 ,q ) ), Λ r = (λ (r )

( 1,2) , . . . , λ (r )

(N − 1 ,N ) ), a n d

c = (λ (c )

( 1,2) , . . . , λ (c )

(q − 1 ,q ) ). H e r e w e i nt r o d u c e t h e d u al v a ri a bl e s λ (r )

δ a n d λ (c )

δ c o r r e s p o n di n g t o t h e p ai r δ i n ∆ (r ) a n d ∆ (c ) ,

n d t h e c a r di n alit y of ∆ (r ) a n d ∆ (c ) a r e d e n ot e d b y |∆ (r ) | a n d |∆ (c ) |.
W e c o n si d e r a n it e r ati v e al g o rit h m, w h e r e t h e u p d at e s i n st e p m + 1 a r e:

β (m + 1) = a r g mi n
β

L θ

(
β , H (m )

r , H (m )
c , Λ (m )

r , Λ (m )
c

)
, H (m + 1)

r = a r g mi n
H r

L θ

(
β (m + 1) , H r , Λ (m )

r

)
,

H (m + 1)
c = a r g mi n

H c

L θ

(
β (m + 1) , H c , Λ (m )

c

)
, λ (r )(m + 1)

δ = λ (r )(m )

δ + θ
(
η (r )(m + 1)

δ − β (r )(m + 1)

i1
+ β (r )(m + 1)

i2

)
, δ ∈ ∆ (r ) ,

λ (c )(m + 1)

δ = λ (c )(m )

δ + θ
(
η (c )(m + 1)

δ − β (c )(m + 1)

j1
+ β (c )(m + 1)

j2

)
, δ ∈ ∆ (c ) .

( 5)

M o r e s p e cifi c all y, w h e n o pti mi zi n g o v e r β , w e c o n si d e r

f (β ) =
1

2
∥ Y − U β ∥ 2

2 +
1

2
γ 1 β

⊤ M β +
θ

2

( ∑

δ ∈ ∆ (r )

∥ η̃ (r )(m )

δ − B
(r )

δ β ∥ 2
2 +

∑

δ ∈ ∆ (c )

∥ η̃ (c )(m )

δ − B
(c )

δ β ∥ 2
2

)
, ( 6)

w h e r e η̃ (r )

δ = η (r )

δ + 1
θ
λ (r )

δ , η̃ (c )

δ = η (c )

δ + 1
θ
λ (c )

δ , B
(r )

δ = (e
(r )

i1
− e

(r )

i2
)⊤ ⊗ Iq p , B

(c )

δ = IN ⊗ [ (e
(c )

j1
− e

(c )

j2
)⊤ ⊗ Ip ], e

(r )

i i s a n N × 1 z e r o

v e ct o r e x c e pt t h at it s it h el e m e nt i s 1, e
(c )

j i s a q × 1 z e r o v e ct o r e x c e pt t h at it s jt h el e m e nt i s 1, ⊗ i s t h e K r o n e c k e r p r o d u ct,

a n d Ip i s a p × p i d e ntit y m at ri x. D e n ot e B r = (B
(r )⊤
( 1,2) , . . . , B

(r )⊤
(N − 1 ,N ) )

⊤ , B c = (B
(c )⊤
( 1,2) , . . . , B

(c )⊤
(q − 1 ,q ) )

⊤ , H̃ r = ( η̃ (r )

( 1,2) , . . . , η̃ (r )

(N − 1 ,N ) ),

a n d H̃ c = ( η̃ (c )

( 1,2) , . . . , η̃ (c )

(q − 1 ,q ) ). T h e n t h e u p d at e f o r β i s

β (m + 1) =
(

U ⊤ U + γ 1 M + θ B ⊤
r B r + θ B ⊤

c B c

) − 1 (
U ⊤ Y + θ B ⊤

r v e c
(
H̃ (m )

r

)
+ θ B ⊤

c v e c
(
H̃ (m )

c

) )
, ( 7)

w h e r e v e c( Z ) i s t h e v e ct o ri z ati o n of m at ri x Z b y c ol u m n s.

F o r H r , w e c o n si d e r

f (η (r )

δ ) = p τ (∥ η (r )

δ ∥ 2 , γ2 ) +
θ

2



 η (r )

δ − β (r )(m + 1)

i1
+ β (r )(m + 1)

i2
+ λ (r )(m )

δ / θ




2

2
. ( 8)

D e n ot e z
(r )(m + 1)

δ = β (r )(m + 1)

i1
− β (r )(m + 1)

i2
− λ (r )(m )

δ / θ . Wit h t h e K K T c o n diti o n s of ( 8), w e c a n g et a cl o s e d f o r m s ol uti o n of

H r :

η (r )(m + 1)

δ =

⎧
⎪⎨

⎪⎩

z
(r )(m + 1)

δ , if ∥ z
(r )(m + 1)

δ ∥ 2 ≥ τ γ 2 ,

τ θ
( 1 −

γ 2 / θ
(r )(m + 1)

)+ z
(r )(m + 1)

δ , if ∥ z
(r )(m + 1)

δ ∥ 2 < τ γ 2 .
( 9)
τ θ − 1 ∥ z δ ∥ 2

4
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b
T

a

(

{

b

|

Si mil a rl y, d e n ot e z
(c )(m + 1)

δ = β (c )(m + 1)

j1
− β (c )(m + 1)

j2
− λ (c )(m )

δ / θ , a n d w e c a n g et a cl o s e d f o r m s ol uti o n of H c :

η (c )(m + 1)

δ =

⎧
⎪⎨

⎪⎩

z
(c )(m + 1)

δ , if ∥ z
(c )(m + 1)

δ ∥ 2 ≥ (N / q ) 1 / 2 τ γ 2 ,

τ θ

τ θ − 1
( 1 −

(N / q ) 1 / 2 γ 2 / θ

∥ z
(c )(m + 1)

δ ∥ 2

)+ z
(c )(m + 1)

δ , if ∥ z
(c )(m + 1)

δ ∥ 2 < (N / q ) 1 / 2 τ γ 2 .
( 1 0)

C o n si d e r t h e i niti al v al u e s β ( 0) = (U ⊤ U + γ 1 M )
− 1

U ⊤ Y , η (r )( 0)

δ = β (r )( 0)

i1
− β (r )( 0)

i2
, a n d η (c )( 0)

δ = β (c )( 0)

j1
− β (c )( 0)

j2
, a n d Λ

( 0)
r a n d

Λ
( 0)
c a r e s et a s z e r o. T h e A D M M b a s e d al g o rit h m i s s u m m a ri z e d i n Al g o rit h m 1 .

Al g o ri t h m 1

I n p u t:

R e s p o n s e v e ct o r Y , b a si s e x p a n si o n d e si g n m at ri x U , a n d diff e r e n c e m at ri x M ;

T u ni n g p a r a m et e r s γ 1 a n d γ 2 . S p e cifi c t o M C P, r e g ul a ri z ati o n p a r a m et e r τ ;

O u t p u t:

C o effi ci e nt v e ct o r β , s plitti n g v a ri a bl e s H r a n d H c , a n d d u al v a ri a bl e s Λ r a n d Λ c ;

1: r e p e a t

2: f o r m = 0 , 1 , 2 · · · d o

3: U p d at e β b y ( 7).

4: U p d at e H r b y ( 9).

5: U p d at e H c b y ( 1 0).

6: U p d at e Λ r a n d Λ c b y ( 5).

7: e n d f o r

8: u n til t h e st o p pi n g c rit e ri a a r e m et, w hi c h a r e s et a s ||r (m + 1)
r ||2 ≤ ϵ p ri

1 , ||r (m + 1)
c ||2 ≤ ϵ p ri

2 , ||s (m + 1)
r ||2 ≤ ϵ d u al

1 , a n d

||s (m + 1)
c ||2 ≤ ϵ d u al

2 i n o u r n u m e ri c al st u d y.

P r o p o si ti o n 1. D e n ot e t h e t w o p ri m al r e si d u al s a s r
(m + 1)
r = B r β

(m + 1) − v e c (H
(m + 1)
r ) a n d r

(m + 1)
c = B c β

(m + 1) − v e c (H
(m + 1)
c ),

a n d t h e t w o d u al r e si d u al s a s s
(m + 1)
r = θ B ⊤

r

[
v e c (H

(m + 1)
r ) − v e c (H

(m )
r )

]
a n d s

(m + 1)
c = θ B ⊤

c

[
v e c (H

(m + 1)
c ) − v e c (H

(m )
c )

]
. T h e n

li m
m → ∞

∥ r (m + 1)
r ∥ 2

2 = 0 , li m
m → ∞

∥ r (m + 1)
c ∥ 2

2 = 0 , li m
m → ∞

∥ s (m + 1)
r + s (m + 1)

c ∥ 2
2 = 0 .

T hi s r e s ult e st a bli s h e s c o n v e r g e n c e of t h e p r o p o s e d al g o rit h m. I n n u m e ri c al a n al y si s, w e st o p t h e al g o rit h m a n d

c o n cl u d e c o n v e r g e n c e w h e n ∥ r
(m + 1)
r ∥ 2 ≤ ϵ p ri

1 , ∥ r
(m + 1)
c ∥ 2 ≤ ϵ p ri

2 , ∥ s
(m + 1)
r ∥ 2 ≤ ϵ d u al

1 a n d ∥ s
(m + 1)
c ∥ 2 ≤ ϵ d u al

2 . F oll o wi n g [5 ],
w e s et t h e t ol e r a n c e p a r a m et e r s a s f oll o w s:

ϵ p ri

1 =
√

|∆ (r ) |p q ϵ a b s + ϵ r el m a x

{

∥ B r β
(m + 1) ∥ 2 , ∥ v e c( H (m + 1)

r )∥ 2

}

,

ϵ p ri

2 =
√

|∆ (c ) |p N ϵ a b s + ϵ r el m a x

{

∥ B c β
(m + 1) ∥ 2 , ∥ v e c( H (m + 1)

c )∥ 2

}

,

ϵ d u al
1 =

√
N q p ϵ a b s + ϵ r el ∥ B ⊤

r v e c( Λ (m + 1)
r )∥ 2 , ϵ d u al

2 =
√

N q p ϵ a b s + ϵ r el ∥ B ⊤
c v e c( Λ (m + 1)

c )∥ 2 .

( 1 1)

H e r e ϵ a b s a n d ϵ r el a r e p r e d et e r mi n e d s m all v al u e s, f o r e x a m pl e 1 0 − 3 . I n all of o u r n u m e ri c al a n al y si s, c o n v e r g e n c e i s
s ati sf a ct o ril y a c hi e v e d wit hi n a s m all t o m o d e r at e n u m b e r of it e r ati o n s. T h e c o d e a n d e x a m pl e a r e p u bli cl y a v ail a bl e at
htt p s:// git h u b. c o m/ r ui q w y/ Bi cl u st e ri n g .

2. 4. St ati sti c al p r o p e rti e s

F o r a v e ct o r z = (z 1 , . . . , z s )
⊤ ∈ R s , l et ∥ z ∥ ∞ = m a x 1 ≤ l≤ s |z l|. F o r a m at ri x Z s × h , l et ∥ Z ∥ 2 = m a x v ∈ R h ,∥ v ∥ 2 = 1 ∥ Z v ∥ 2

a n d ∥ Z ∥ ∞ = m a x 1 ≤ i≤ s

∑ h

j= 1 |Z i,j|. F o r a n y t w o s e q u e n c e s of r e al n u m b e r s {a n } ≥ 1 a n d {b n } ≥ 1, d e n ot e b n ≪ a n if

n / a n = o ( 1). L et r b e a p o siti v e i nt e g e r, v ∈ ( 0, 1 ], a n d κ = r + v > 1 .5. L et H b e t h e c oll e cti o n of f u n cti o n s g o n
= [ 0 , 1 ], w h e r e t h e r t h d e ri v ati v e g (r ) e xi st s a n d s ati sfi e s t h e Li p s c hit z c o n diti o n wit h o r d e r v :

|g (r ) (z 1 ) − g (r ) (z 2 )| ≤ C |z 1 − z 2 |
v , 0 ≤ z 1 , z 2 ≤ 1 ,

n d C i s a p o siti v e c o n st a nt.

D efi n e t h e f oll o wi n g c oll e cti o n s of i n d e x s et s f o r cl u st e ri n g m e m b e r s hi p s: G (r ) = (G
(r )

1 , . . . , G
(r )

K r
) f o r s a m pl e s, G (c ) =

G
(c )

1 , . . . , G
(c )

K c
) f o r c o v a ri at e s, a n d G (r ,c ) = (G

(r ,c )

1 ,1 , . . . , G
(r ,c )

k r ,k c
, . . . , G

(r ,c )

K r ,K c
) f o r b ot h s a m pl e s a n d c o v a ri at e s. D efi n e M G =

β ∈ R N q p : β i1 ,j1
= β i2 ,j2

, f o r a n y (i1 , j1 ), (i2 , j2 ) ∈ G
(r ,c )

k r ,k c
, 1 ≤ k r ≤ K r , 1 ≤ k c ≤ K c }. L et |G (r )

k r
|, |G (c )

k c
|, a n d |G (r ,c )

k r ,k c
|

e t h e si z e s of G
(r )

k r
, G

(c )

k c
, a n d G

(r ,c )

k r ,k c
, r e s p e cti v el y. F u rt h e r d efi n e |G (r )

mi n | = mi n 1 ≤ k r ≤ K r |G (r )

k r
|, |G (c )

mi n | = mi n 1 ≤ k c ≤ K c |G (c )

k c
|, a n d

G
(r ,c ) | = |G (r ) | × |G (c ) |. |G (r ,c ) | c a n b e d efi n e d a c c o r di n gl y. L et ρ (t ) = γ − 1 p (t , γ ). A s s u m e t h e f oll o wi n g c o n diti o n s.
mi n mi n mi n m a x τ
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S
s
t
s
c
e

w

a

T
1

w

∥

T

γ

T

3

(
t
f
m
t
o
a
a
l
t
o

w

( C 1) g k r ,k c ∈ H f o r all k r ∈ { 1 , . . . , K r }, k c ∈ { 1 , . . . , K c }, a n d |G (r ,c )
m a x |

1 / ( 2κ )
≪ p ≪ | G

(r ,c )

mi n |
1 / 3

.

( C 2) T h e di st ri b uti o n of ti,j,m ’ s, i ∈ { 1 , . . . , N }, j ∈ { 1 , . . . , q }, m ∈ { 1 , . . . , n i,j} f oll o w s a d e n sit y f u n cti o n fT , w hi c h i s
a b s ol ut el y c o nti n u o u s. T h e r e e xi st c o n st a nt s c 1 a n d C 1 s u c h t h at 0 < c 1 ≤ mi n t ∈ T fT (t ) ≤ m a x t ∈ T fT (t ) ≤ C 1 < ∞ .

( C 3) n i,j’ s a r e u nif o r ml y b o u n d e d f o r all i ∈ { 1 , . . . , N }, j ∈ { 1 , . . . , q }.
( C 4) p τ (t , γ ) i s s y m m et ri c, n o n - d e c r e a si n g, a n d c o n c a v e i n t f o r t ∈ [ 0 , ∞] . T h e r e e xi st s a c o n st a nt 0 < a < ∞ s u c h

t h at ρ (t ) i s a c o n st a nt f o r all t ≥ a γ , a n d ρ ( 0) = 0. ρ ′(t ) e xi st s a n d i s c o nti n u o u s e x c e pt f o r a fi nit e n u m b e r of t
a n d ρ ′( 0+ ) = 1.

( C 5) L et ϵ i,j = (ϵ i,j,1 , . . . , ϵi,j,n i,j )
⊤ , w h e r e ϵ i,j,m ’ s a r e i n d e p e n d e nt a c r o s s (i, j) ( a m o n g diff e r e nt i n di vi d u al o b s e r v ati o n al

v e ct o r s) a n d c o r r el at e d a c r o s s m ( wit hi n t h e s a m e (i, j)). F u rt h e r m o r e, t h e r e e xi st F > 0 a n d c 2 > 0, s u c h t h at f o r
all i ∈ { 1 , . . . , N } a n d j ∈ { 1 , . . . , q },

E
(
e x p {F |n − 1

i,j ϵ ⊤
i,jϵ i,j|

1 / 2
}
)

≤ c 2 .

i mil a r c o n diti o n s h a v e b e e n a s s u m e d i n t h e lit e r at u r e. T h e fi r st c o n diti o n i n ( C 1) e n s u r e s t h at t h e H öl d e r’ s c o n diti o n i s
ati sfi e d [ 3 6 ]. T h e s e c o n d c o n diti o n i n ( C 1) p e rt ai n s t o t h e g r o wt h r at e of t h e n u m b e r of i nt e r n al k n ot s, i n a w a y si mil a r
o [2 5 ] a n d [2 4 ]. C o n diti o n ( C 2) a s s u m e s t h e b o u n d e d n e s s of t h e d e n sit y f u n cti o n, si mil a rl y t o [ 4 8 ] a n d ot h e r s. C o n diti o n s
i mil a r t o ( C 3) h a v e b e e n c o m m o nl y m a d e. I n t h e a n al y si s of hi g h - di m e n si o n al d at a, c o n diti o n s si mil a r t o ( C 4) h a v e b e e n
o m m o n, a n d it i s e a s y t o v e rif y t h at M C P a n d S C A D s ati sf y ( C 4). C o n diti o n ( C 5) gi v e s t h e b o u n d e d n e s s c o n diti o n f o r t h e
r r o r t e r m s, a n d a si mil a r c o n diti o n c a n b e f o u n d i n [ 1 1 ].

W h e n t h e t r u e cl u st e ri n g st r u ct u r e i s k n o w n, t h e o r a cl e e sti m at o r f o r β c a n b e d efi n e d a s

β̂
o r

= a r g mi n
β ∈ M G

1

2

K r∑

k r = 1

K c∑

k c = 1

∑

(i,j)∈ G
(r ,c )
k r ,k c

{
∥ Y i,j − U i,jβ i,j∥

2
2 + γ 1 β

⊤
i,jD β i,j

}
,

h e r e ĝ o r
(k r ,k c ) i s d efi n e d a s t h e o r a cl e e sti m at o r of g (k r ,k c ) b a s e d o n β̂

o r
. L et β ∗ b e t h e u n d e rl yi n g t r u e c o effi ci e nt v e ct o r

n d g ∗
(k r ,k c ) b e t h e t r u e v al u e of g (k r ,k c ) . F o r a n y L 2 -i nt e g r a bl e f u n cti o n g , d e n ot e ∥ g ∥ = (

∫
t ∈ T

g 2 (t )fT (t )dt ) 1 / 2 .

h e o r e m 1. A s s u m e t h at ( C 1) –( C 5) h ol d. If γ 1 = o (|G (r ,c )

mi n |
− 1 / 2

) a n d p l o g(N q ) ≪ | G
(r ,c )

mi n |, t h e n wit h p r o b a bilit y at l e a st
− 3 K r K c p / (N q ),

s u p
1 ≤ i≤ N ,1 ≤ j≤ q

∥ β̂
o r

i,j − β ∗
i,j∥ 2 ≤ ψ , s u p

1 ≤ k r ≤ K r ,1 ≤ k c ≤ K c

∥ ĝ o r
(k r ,k c ) − g ∗

(k r ,k c ) ∥ ≤ ψ ,

h e r e ψ = C ∗
(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

, a n d C∗ i s a l a r g e c o n st a nt.

T hi s t h e o r e m e st a bli s h e s c o n si st e n c y of t h e o r a cl e e sti m at e s wit h a hi g h p r o b a bilit y. D e n ot e b = mi n (k r ,k c )̸ =(k ′
r ,k ′

c )

g ∗
(k r ,k c ) − g ∗

(k ′
r ,k ′

c )
∥ . W e c a n f u rt h e r e st a bli s h t h e f oll o wi n g r e s ult.

h e o r e m 2. A s s u m e t h at ( C 1) –( C 5) a n d c o n diti o n s i n T h e o r e m 1 h ol d. If b ≫ γ 2 |G
(c )

mi n |
− 1 / 2

, b ≫ (N / q ) 1 / 2 γ 2 |G
(r )

mi n |
− 1 / 2

, a n d

2 ≫
(
p q

) 1 / 2
l o g(N q )/ mi n {|G (r )

mi n |, |G (c )

mi n |}, t h e n t h e r e e xi st s a l o c al mi ni mi z e r β̂ of L (β ) s ati sf yi n g

P ( β̂ = β̂
o r

) → 1 a s N , q → ∞ .

T hi s t h e o r e m e st a bli s h e s t h at t h e o r a cl e e sti m at o r i s a l o c al mi ni mi z e r of t h e o bj e cti v e f u n cti o n wit h a hi g h p r o b a bilit y.
h e e sti m ati o n c o n si st e n c y al o n g wit h t h e s e p a r at e n e s s of t h e t r u e f u n cti o n s c a n l e a d t o t h e cl u st e ri n g c o n si st e n c y.

. Si m ul a ti o n

W e c o n d u ct si m ul ati o n t o a s s e s s p e rf o r m a n c e of t h e p r o p o s e d a p p r o a c h a n d g a u g e a g ai n st t h e f oll o wi n g alt e r n ati v e s:
a) t h e b K m e a n s m et h o d [1 ], w hi c h fi r st fit s e a c h c u r v e u si n g B - s pli n e s a n d t h e n cl u st e r s t h e e sti m at e d c o effi ci e nt s u si n g
h e k - m e a n s t e c h ni q u e b y r o w s a n d c ol u m n s, ( b) t h e f u n H D D C m et h o d [ 3 3 ], w hi c h h a s b e e n d e v el o p e d f o r m ulti v a ri at e
u n cti o n al d at a cl u st e ri n g b a s e d o n l at e nt mi xt u r e m o d el s. It h a s b e e n a p pli e d t o l o n git u di n al d at a, a n d ( c) t h e f u n L B M
et h o d [ 4 ], w hi c h h a s b e e n d e v el o p e d f o r f u n cti o n al d at a bi cl u st e ri n g b a s e d o n l at e nt bl o c k m o d el s. H e r e w e n ot e t h at
h e p r o p o s e d a n d f u n L B M m et h o d s c o n d u ct bi cl u st e ri n g di r e ctl y, w h e r e a s t h e b K m e a n s a n d f u n H D D C m et h o d s h a v e b e e n
ri gi n all y d e si g n e d f o r o n e - w a y cl u st e ri n g – h e n c e t h e y a r e a p pli e d t wi c e t o a c hi e v e b ot h r o w a n d c ol u m n cl u st e ri n g s. I n
d diti o n, t h e f u n H D D C a n d f u n L B M m et h o d s a r e n ot di r e ctl y a p pli c a bl e t o f u n cti o n al d at a wit h u n e q u al m e a s u r e m e nt s. W e
p pl y i m p ut ati o n [ 2 6 ] t o t a c kl e t hi s p r o bl e m. A s di s c u s s e d i n S e cti o n 1 , bi cl u st e ri n g m et h o d s f o r f u n cti o n al d at a a r e v e r y
i mit e d. It i s p o s si bl e t o m o dif y ot h e r e xi sti n g o n e - w a y f u n cti o n al cl u st e ri n g m et h o d s t o a c hi e v e bi cl u st e ri n g, h o w e v e r,
hi s d e m a n d s a d diti o n al m et h o d ol o gi c al d e v el o p m e nt s. T h e t h r e e alt e r n ati v e s c o n si d e r e d h e r e h a v e b e e n c h o s e n b e c a u s e
f t h ei r cl o s el y r el at e d f r a m e w o r k s a n d c o m p etiti v e p e rf o r m a n c e.

I n e v al u ati o n, w e e x a mi n e b ot h cl u st e ri n g a n d e sti m ati o n a c c u r a c y. S p e cifi c all y, w h e n e x a mi ni n g cl u st e ri n g a c c u r a c y,
ˆ ˆ ˆ
e c o n si d e r t h e e sti m at e d n u m b e r s of r o w cl u st e r s K r , c ol u m n cl u st e r s K c , a n d bi cl u st e r s K b . I n a d diti o n, w e u s e t h e R a n d
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T

E

t

i

f

E

s

E

E

s

c

E

p

t

n

R

Y

n

a bl e 1

x a m pl e 1 : M e a n, m e di a n, a n d st a n d a r d e r r o r ( S E) of K̂ r , K̂ c , a n d K̂ b a s d efi n e d i n S e cti o n 2 , a s w ell a s t h e p e r c e nt a g e of i d e ntif yi n g t h e c o r r e s p o n di n g

r u e n u m b e r s b a s e d o n 1 0 0 r e pli c at e s.

N M et h o d K̂ r K̂ c K̂ b

M e a n  M e di a n S E P e r  M e a n  M e di a n S E P e r  M e a n  M e di a n S E P e r

3 0 P r o p o s e d 2. 8 3 3. 0 0 0. 5 3 0. 9 0 2. 8 3 3. 0 0 0. 5 3 0. 9 0 8. 2 9 9. 0 0 2. 1 8 0. 9 0

b K m e a n s 2. 7 6 3. 0 0 0. 6 4 0. 6 6 1. 1 3 1. 0 0 0. 4 6 0. 0 5 3. 0 9 3. 0 0 1. 3 4 0. 0 3

f u n H D D C 2. 6 3 2. 0 0 0. 8 6 0. 2 8 2. 7 6 3. 0 0 0. 4 3 0. 7 6 7. 2 7 6. 0 0 2. 7 0 0. 2 1

f u n L B M 4. 6 6 5. 0 0 0. 6 4 0. 0 9 4. 4 3 5. 0 0 0. 8 3 0. 2 2 2 0. 8 8 2 5. 0 0 5. 3 1 0. 0 9

6 0 P r o p o s e d 2. 9 1 3. 0 0 0. 4 3 0. 9 3 2. 9 0 3. 0 0 0. 4 1 0. 9 4 8. 6 1 9. 0 0 1. 7 4 0. 9 3

b K m e a n s 2. 8 6 3. 0 0 0. 5 7 0. 6 6 1. 1 8 1. 0 0 0. 5 4 0. 0 7 3. 4 3 3. 0 0 1. 9 7 0. 0 5

f u n H D D C 2. 2 0 2. 0 0 0. 6 4 0. 0 4 2. 9 9 3. 0 0 0. 1 0 0. 9 9 6. 5 8 6. 0 0 1. 9 2 0. 0 4

f u n L B M 3. 4 2 3. 0 0 0. 6 4 0. 6 6 3. 2 4 3. 0 0 0. 5 5 0. 8 2 1 1. 1 5 9. 0 0 3. 3 1 0. 5 5

9 0 P r o p o s e d 2. 9 3 3. 0 0 0. 3 6 0. 9 6 2. 9 3 3. 0 0 0. 3 6 0. 9 6 8. 7 1 9. 0 0 1. 4 5 0. 9 6

b K m e a n s 2. 8 3 3. 0 0 0. 5 1 0. 7 4 1. 2 3 1. 0 0 0. 5 8 0. 0 8 3. 5 1 3. 0 0 1. 8 7 0. 0 8

f u n H D D C 2. 1 4 2. 0 0 0. 3 8 0. 1 2 2. 9 6 3. 0 0 0. 2 0 0. 9 6 6. 3 3 6. 0 0 1. 1 7 0. 1 1

f u n L B M 3. 2 5 3. 0 0 0. 4 6 0. 7 6 3. 3 0 3. 0 0 0. 5 4 0. 7 4 1 0. 6 8 9. 0 0 2. 0 3 0. 5 2

n d e x a n d a dj u st e d R a n d i n d e x t o a s s e s s t h e a c c u r a c y of cl u st e ri n g, i n cl u di n g RIr a n d A RI r f o r r o w cl u st e ri n g, RIc a n d A RI c

o r c ol u m n cl u st e ri n g, a n d RIb a n d A RI b f o r bi cl u st e ri n g. T h e R a n d i n d e x i s d efi n e d b y RI = ( T P + T N) / ( T P + F P + F N + T N),

w h e r e f o r e x a m pl e T P i s t h e t r u e p o siti v e c o u nt, d efi n e d a s t h e n u m b e r of s a m pl e p ai r s f r o m t h e s a m e cl u st e r a n d a s si g n e d

t o t h e s a m e cl u st e r, a n d t h e ot h e r c o u nt s c a n b e d efi n e d a c c o r di n gl y. A s t h e R a n d i n d e x t e n d s t o b e l a r g e e v e n u n d e r

r a n d o m cl u st e ri n g s, w e al s o e x a mi n e t h e a dj u st e d R a n d i n d e x d efi n e d a s A RI = ( RI − E( RI)) / ( m a x( RI) − E( RI)), w hi c h c a n

p a rtl y c o r r e ct t hi s p r o bl e m. T o e v al u at e e sti m ati o n a c c u r a c y, w e e x a mi n e t h e i nt e g r at e d s q u a r e d e r r o r (I S E) d efi n e d a s

I S E =
1

n

K r∑

k r = 1

K c∑

k c = 1

∑

(i,j)∈ G
(r ,c )
k r ,k c

n ij∑

m = 1

{
g (k r ,k c ) (ti,j,m ) − ĝ i,j(ti,j,m )

} 2

.

W e c o n si d e r a t ot al of K b = 9 bi cl u st e r s, w hi c h a r e f o r m e d b y K r = 3 s a m pl e ( r o w) cl u st e r s a n d K c = 3 c o v a ri at e

( c ol u m n) cl u st e r s. Y i,j,m = g (k r ,k c ) (ti,j,m ) + ϵ i,j,m wit h ti,j,m ’ s, m ∈ { 1 , . . . , 1 0 }, e q u all y s p a c e d o n [0 , 1 ]. T h e ni n e t r u e

f u n cti o n al f o r m s a r e g ( 1,1) (t ) = c o s ( 2π t ), g ( 2,1) (t ) = 1 − 2 e x p (− 6 t ), g ( 3,1) (t ) = − 1 .5 t , g ( 1,2) (t ) = 1 + si n ( 2π t ), g ( 2,2) (t ) = 2 t 2 ,

g ( 3,2) (t ) = t + 1, g ( 1,3) (t ) = 2
(
si n ( 2π t ) + c o s ( 2π t )

)
, g ( 2,3) (t ) = 1 + t 3 , a n d g ( 3,3) (t ) = 2

√
t + 1. T h e y a r e al s o g r a p hi c all y

p r e s e nt e d i n Fi g. 1 . T o b ett e r mi mi c r e al d at a, w e all o w a c e rt ai n p r o p o rti o n (ζ ) of t h e c u r v e s f r o m e a c h bi cl u st e r t o

h a v e 2 0 % mi s si n g m e a s u r e m e nt s. W h e n i m pl e m e nti n g t h e p r o p o s e d a p p r o a c h, w e c h o o s e s m o ot hi n g s pli n e s wit h t h e

n u m b e r of i nt e r n al k n ot s J = 3. W e al s o fi x θ = 1 a n d τ = 3. I n w h at f oll o w s, u n d e r E x a m pl e s 1 a n d 2 , N > q , w h e r e a s

u n d e r E x a m pl e 3 , N = q . U n d e r E x a m pl e s 1 – 3 , t h e r a n d o m e r r o r s a r e i n d e p e n d e nt, w h e r e a s u n d e r E x a m pl e 4 , t h e y

a r e c o r r el at e d. N ot e t h at u n d e r E x a m pl e s 1 – 4 , si m ul ati o n r e s ult s a r e c al c ul at e d b a s e d o n a ut o m ati c cl u st e r s el e cti o n.

E x a m pl e 5 i s d e si g n e d t o i n v e sti g at e t h e p e rf o r m a n c e of t h e s e m et h o d s w h e n t h e n u m b e r s of cl u st e r s a r e c o r r e ctl y

p r e s p e cifi e d. A t ot al of 1 0 0 r e pli c at e s a r e si m ul at e d u n d e r e a c h s etti n g.

E x a m pl e 1. N = 3 0, 6 0, a n d 9 0. q = 9. T h e cl u st e r s a r e b al a n c e d, wit h e a c h r o w cl u st e r c o nt ai ni n g N / 3 s a m pl e s a n d

e a c h c ol u m n cl u st e r c o nt ai ni n g q / 3 c o v a ri at e s. ζ = 0 .3. T h e r a n d o m e r r o r s a r e ii d N ( 0, 0 .6 2 ).

x a m pl e 2. T h e s etti n g s a r e t h e s a m e a s i n E x a m pl e 1 , e x c e pt t h at t h e cl u st e r s a r e u n b al a n c e d. T h e r o w cl u st e r s h a v e

i z e s 1: 2: 3, a n d t h e c ol u m n cl u st e r s h a v e si z e s 2: 3: 4.

x a m pl e 3. S et ( N , q ) = ( 3 0, 3 0), ( 3 9 , 3 9), ( 4 5 , 4 5), ζ = 0 .3 a n d 0. 4. T h e r e st a r e t h e s a m e a s i n E x a m pl e 1 .

x a m pl e 4. T h e s etti n g s a r e si mil a r t o t h o s e u n d e r E x a m pl e 1 . T h e r a n d o m e r r o r s a r e c o r r el at e d wit h a n A R( 1) c o r r el ati o n

t r u ct u r e, w h e r e A R st a n d s f o r a ut o - c o r r el ati o n. C o n si d e r A R c o effi ci e nt φ = 0 .2 a n d 0. 8, r e p r e s e nti n g w e a k a n d st r o n g

o r r el ati o n s.

x a m pl e 5. T h e s etti n g s a r e t h e s a m e a s t h o s e i n E x a m pl e 1 . T h e diff e r e n c e i s t h at t h e n u m b e r s of cl u st e r s a r e c o r r e ctl y

r e s p e cifi e d i n st e a d of b ei n g s el e ct e d b y t h e BI C c rit e ri o n.

R e s ult s f o r E x a m pl e 1 a r e p r e s e nt e d i n Fi g s. 1 a n d 2 a s w ell a s T a bl e s 1 a n d 2 . M o r e s p e cifi c all y, i n Fi g. 1 , w e s h o w

h e t r u e f u n cti o n s f o r all cl u st e r s a s w ell a s s a m pl e o b s e r v e d d at a a n d e sti m at e d f u n cti o n s. I n T a bl e 1 , w e s u m m a ri z e t h e

u m b e r s of i d e ntifi e d r o w a n d c ol u m n cl u st e r s a s w ell a s bi cl u st e r s. I n T a bl e 2 , w e s u m m a ri z e t h e R a n d a n d a dj u st e d

a n d i n d e x v al u e s. I n Fi g. 2 , w e p r e s e nt t h e b o x pl ot s of I S E ( n ot e t h at diff e r e nt p a n el s h a v e diff e r e nt r a n g e s f o r t h e

- a xi s). R e s ult s f o r E x a m pl e s 2 – 5 a r e p r e s e nt e d i n t h e S u p pl e m e nt a r y s e cti o n. Alt h o u g h diff e r e nt e x a m pl e s h a v e diff e r e nt

u m e ri c al r e s ult s, o v e r all, t h e a d v a nt a g e of t h e p r o p o s e d a p p r o a c h i s cl e a rl y o b s e r v e d. C o n si d e r f o r e x a m pl e T a bl e 1 wit h
7
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x a m pl e 1 : M e a n a n d st a n d a r d e r r o r ( s h o w n i n p a r e nt h e s e s) of RI r , A RIr , RIc , A RIc , RIb , a n d A RIb b a s e d o n 1 0 0 r e pli c at e s.

N M et h o d  RI r A RI r RI c A RI c RI b A RI b

3 0 P r o p o s e d 0. 9 4 0 ( 0. 1 8 9) 0. 9 1 1 ( 0. 2 7 8) 0. 9 3 6 ( 0. 2 0 3) 0. 9 1 0 ( 0. 2 7 9) 0. 9 2 7 ( 0. 2 3 8) 0. 9 0 9 ( 0. 2 8 1)

b K m e a n s 0. 8 6 0 ( 0. 1 7 3) 0. 7 4 0 ( 0. 2 9 0) 0. 2 9 6 ( 0. 1 6 3) 0. 0 5 2 ( 0. 1 9 4) 0. 6 7 3 ( 0. 1 7 4) 0. 3 0 7 ( 0. 1 6 7)

f u n H D D C 0. 7 4 4 ( 0. 0 3 1) 0. 4 9 3 ( 0. 0 7 4) 0. 9 4 0 ( 0. 1 0 7) 0. 8 8 0 ( 0. 2 1 5) 0. 8 8 9 ( 0. 0 5 1) 0. 5 9 8 ( 0. 1 2 0)

f u n L B M 0. 9 1 3 ( 0. 0 5 3) 0. 7 8 6 ( 0. 1 0 9) 0. 9 1 3 ( 0. 0 6 4) 0. 7 4 6 ( 0. 1 5 3) 0. 9 5 1 ( 0. 0 2 9) 0. 7 0 8 ( 0. 1 1 3)

6 0 P r o p o s e d 0. 9 6 6 ( 0. 1 3 8) 0. 9 4 7 ( 0. 2 0 8) 0. 9 6 3 ( 0. 1 5 2) 0. 9 4 5 ( 0. 2 1 2) 0. 9 5 9 ( 0. 1 7 7) 0. 9 4 3 ( 0. 2 1 6)

b K m e a n s 0. 8 8 7 ( 0. 1 3 2) 0. 7 8 0 ( 0. 2 4 8) 0. 3 1 6 ( 0. 1 9 5) 0. 0 7 7 ( 0. 2 3 9) 0. 7 0 4 ( 0. 1 4 2) 0. 3 3 9 ( 0. 1 9 1)

f u n H D D C 0. 7 6 7 ( 0. 0 2 1) 0. 5 4 6 ( 0. 0 4 9) 0. 9 9 8 ( 0. 0 2 5) 0. 9 9 5 ( 0. 0 5 0) 0. 9 2 2 ( 0. 0 1 4) 0. 6 9 2 ( 0. 0 4 4)

f u n L B M 0. 9 1 8 ( 0. 1 1 0) 0. 8 2 8 ( 0. 2 2 1) 0. 9 2 9 ( 0. 1 1 9) 0. 8 4 0 ( 0. 2 5 7) 0. 9 5 3 ( 0. 0 5 2) 0. 7 9 6 ( 0. 1 9 8)

9 0 P r o p o s e d 0. 9 7 8 ( 0. 1 1 7) 0. 9 6 6 ( 0. 1 7 6) 0. 9 7 5 ( 0. 1 3 1) 0. 9 6 5 ( 0. 1 7 8) 0. 9 7 1 ( 0. 1 5 4) 0. 9 6 4 ( 0. 1 8 0)

b K m e a n s 0. 8 8 6 ( 0. 1 3 4) 0. 7 7 8 ( 0. 2 5 1) 0. 3 4 2 ( 0. 2 2 6) 0. 1 0 9 ( 0. 2 7 9) 0. 7 0 9 ( 0. 1 5 2) 0. 3 5 8 ( 0. 2 2 7)

f u n H D D C 0. 7 6 9 ( 0. 0 1 7) 0. 5 5 1 ( 0. 0 4 0) 0. 9 9 0 ( 0. 0 4 9) 0. 9 8 0 ( 0. 0 9 8) 0. 9 1 9 ( 0. 0 2 5) 0. 6 8 6 ( 0. 0 6 1)

f u n L B M 0. 9 0 9 ( 0. 1 2 1) 0. 8 1 3 ( 0. 2 4 1) 0. 9 0 8 ( 0. 1 3 0) 0. 7 9 3 ( 0. 2 7 6) 0. 9 4 4 ( 0. 0 5 6) 0. 7 6 4 ( 0. 2 1 0)

i g. 1. E x a m pl e 1 : C u r v e s of o b s e r v e d d at a ( bl a c k d ott e d), e sti m at e d ( bl u e s oli d) b y t h e p r o p o s e d m et h o d, a n d t r u e ( r e d s oli d) f u n cti o n s wit h ( a)

= 3 0 a n d ( b) N = 9 0 f o r o n e r e pli c at e. ( F o r i nt e r p r et ati o n of t h e r ef e r e n c e s t o c ol o r i n t hi s fi g u r e l e g e n d, t h e r e a d e r i s r ef e r r e d t o t h e w e b v e r si o n

f t hi s a rti cl e.)

= 3 0. T h e p r o p o s e d a p p r o a c h h a s t h e m e a n n u m b e r of r o w cl u st e r s 2. 8 3, c o m p a r e d t o 2. 7 6, 2. 6 3, a n d 4. 6 6 of t h e

h r e e alt e r n ati v e s. W h e n N = 9 0, t h e p r o p o s e d a p p r o a c h h a s t h e m e a n n u m b e r of bi cl u st e r s 8. 7 1, c o m p a r e d t o 3. 5 1,

. 3 3, a n d 1 0. 6 8 of t h e t h r e e alt e r n ati v e s. T h e i m p r o v e d cl u st e ri n g a c c u r a c y i s f u rt h e r p r o v e d b y t h e R a n d i n d e x v al u e s i n

a bl e 2 . F o r e x a m pl e wit h N = 9 0, t h e a dj u st e d R a n d i n d e x v al u e f o r bi cl u st e ri n g wit h t h e p r o p o s e d a p p r o a c h i s 0. 9 6 4,

o m p a r e d t o 0. 3 5 8, 0. 6 8 6, a n d 0. 7 6 4 wit h t h e t h r e e alt e r n ati v e s. Fi g. 2 s h o w s t h at a s N i n c r e a s e s, e sti m ati o n a c c u r a c y of

h e p r o p o s e d a p p r o a c h ( a n d t w o alt e r n ati v e s) i n c r e a s e s. U n d e r all t h r e e N v al u e s, t h e p r o p o s e d a p p r o a c h h a s si g nifi c a ntl y

m all e r I S E v al u e s. M o r e o v e r, c o m p a ri n g t h e r e s ult s of E x a m pl e 5 wit h E x a m pl e 1 , w e o b s e r v e si mil a r p e rf o r m a n c e a n d

h at t h e p r o p o s e d a p p r o a c h still p e rf o r m s b ett e r w h e n t h e n u m b e r s of cl u st e r s a r e c o r r e ctl y p r e s p e cifi e d.

. A p pli c a ti o n s

H e r e w e a n al y z e t w o ti m e - c o u r s e g e n e e x p r e s si o n d at a. Alt h o u g h i n a s e n s e t h e d at a c h a r a ct e ri sti c s a r e si mil a r, t h e t w o

at a a n al y s e s m a y s e r v e diff e r e nt p u r p o s e s. I n p a rti c ul a r, t h e fi r st d at a s et i s ‘‘ ol d e r’’, w hi c h h a s b e e n a n al y z e d m ulti pl e
8
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Fi g. 2. E x a m pl e 1 : B o x pl ot s of I S E wit h ( a) t h e p r o p o s e d m et h o d, ( b) b K m e a n s, ( c) f u n H D D C, a n d ( d) f u n L B M.

i m e s i n t h e lit e r at u r e, a n d h a s a cl e a r e r s a m pl e cl u st e ri n g st r u ct u r e. I n c o nt r a st, t h e s e c o n d d at a s et i s m o r e r e c e nt, a n d

t s a n al y si s m a y l e a d t o a hi g h e r p r a cti c al i m p a ct.

. 1. T - c ell d at a

T hi s d at a h a s b e e n g e n e r at e d i n a st u d y of T - c ell a cti v ati o n [ 3 1 ]. It i s p u bli cl y a v ail a bl e i n t h e R p a c k a g e l o n git u di n al

htt p:// w w w. st ri m m e rl a b. o r g/ s oft w a r e/l o n git u di n al/ ) a n d c o nt ai n s t w o s u b s et s: t c ell. 1 0 a n d t c ell. 3 4. T h e fi r st s u b s et

o nt ai n s m e a s u r e m e nt s f o r 1 0 s a m pl e s a n d 5 8 g e n e s at 1 0 u n e q u all y s p a c e d ti m e p oi nt s, t ∈ { 0 , 2 , 4 , 6 , 8 , 1 8 , 2 4 , 3 2 ,
4 8 , 7 2 }, w h e r e a s t h e s e c o n d s u b s et c o nt ai n s m e a s u r e m e nt s f o r 3 4 s a m pl e s a n d t h e s a m e g e n e s at t h e s a m e ti m e p oi nt s.

I n [3 1 ], t h e di sti n cti o n s b et w e e n t h e t w o s u b s et s h a v e b e e n n ot e d, a n d t h e y h a v e b e e n c o m bi n e d f o r a n al y si s. P ri o r t o

a n al y si s, w e c o n d u ct d at a p r o c e s si n g, i n cl u di n g g e n e e x p r e s si o n n o r m ali z ati o n u si n g t h e m et h o d d e v el o p e d i n [ 2 9 ] a n d

li n e a rl y t r a n sf o r mi n g t h e o b s e r v e d ti m e s t o [0 , 1 ], a n d s et t h e k n ot s at 0. 0 6, 0. 2, a n d 0. 4 a s w ell a s t h e o r d e r a s 3.

T h e p r o p o s e d a p p r o a c h i d e ntifi e s t w o s a m pl e cl u st e r s, wit h si z e s 1 0 a n d 3 4, w hi c h e x a ctl y m at c h t h e o ri gi n al s u b s et

st r u ct u r e. T h e di sti n cti o n s of t h e s a m pl e s i n t h e t w o s u b s et s h a v e b e e n n ot e d i n [ 3 1 ]. A s s u c h, t h e y a r e s u p p o s e d t o b el o n g

t o diff e r e nt cl u st e r s. I n t hi s s e n s e, o u r ‘‘fi n di n g’’, alt h o u g h a s e x p e ct e d, i s r e - a s s u ri n g. I n a d diti o n, ei g ht g e n e cl u st e r s a r e

i d e ntifi e d, a m o n g w hi c h t h e r e a r e f o u r t ri vi al cl u st e r s wit h si z e s o n e. T h e f o u r n o n -t ri vi al cl u st e r s h a v e si z e s 2 7, 1 8, 5, a n d

4. D et ail e d i nf o r m ati o n o n t h e g e n e cl u st e r s i s a v ail a bl e f r o m t h e a ut h o r s. T h e ei g ht n o n -t ri vi al bi cl u st e r s a r e p r e s e nt e d i n

Fi g. 3 . Bi cl u st e r s 1 – 4 c o r r e s p o n d t o t c ell. 1 0, a n d t h e r e st c o r r e s p o n d t o t c ell. 3 4. It i s o b s e r v e d t h at t h e e sti m at e d f u n cti o n s

cl e a rl y diff e r a c r o s s bi cl u st e r s. T h e o b s e r v e d t e m p o r al t r e n d s a r e hi g hl y si mil a r t o t h o s e r e p o rt e d i n [ 2 8 ], w hi c h p r o vi d e s

s u p p o rt t o t h e v ali dit y of o u r a p p r o a c h.

T h e t h r e e alt e r n ati v e s a r e al s o a p pli e d. T h e b K m e a n s a p p r o a c h i d e ntifi e s t h r e e s a m pl e cl u st e r s ( wit h si z e s 1 0, 1 7, a n d

1 7) a n d f o u r g e n e cl u st e r s ( wit h si z e s 9, 1 5, 1 9, a n d 1 5). C o m p a r e d t o t h e p r o p o s e d a p p r o a c h, t h e a dj u st e d R a n d i n d e x

v al u e s a r e 0. 4 4 1 ( s a m pl e), 0. 6 1 9 ( g e n e), a n d 0. 4 3 0 ( bi cl u st e r). T h e f u n H D D C a p p r o a c h i d e ntifi e s t w o s a m pl e cl u st e r s ( wit h

si z e s 1 0 a n d 3 4) a n d t w o g e n e cl u st e r s ( wit h si z e s 9 a n d 4 9). C o m p a r e d t o t h e p r o p o s e d a p p r o a c h, t h e a dj u st e d R a n d

i n d e x v al u e s a r e 1. 0 0 0 ( s a m pl e), 0. 2 8 6 ( g e n e), a n d 0. 4 5 2 ( bi cl u st e r). T h e f u n L B M a p p r o a c h i d e ntifi e s t w o s a m pl e cl u st e r s

( wit h si z e s 1 0 a n d 3 4) a n d si x g e n e cl u st e r s ( wit h si z e s 9, 4, 1 2, 5, 1 8, a n d 1 0). C o m p a r e d t o t h e p r o p o s e d a p p r o a c h, t h e

a dj u st e d R a n d i n d e x v al u e s a r e 1. 0 0 0 ( s a m pl e), 0. 5 8 6 ( g e n e), a n d 0. 6 4 6 ( bi cl u st e r). U nli k e f o r t h e si m ul at e d d at a, it i s

diffi c ult t o o bj e cti v el y e v al u at e t h e a c c u r a c y of cl u st e ri n g. H o w e v e r, f o r t h e p r o p o s e d a p p r o a c h, t h e m at c hi n g wit h t h e

o ri gi n al s a m pl e di sti n cti o n a n d p u bli s h e d fi n di n g s c a n p r o vi d e a st r o n g s u p p o rt, w hi c h i s n ot s h a r e d b y t h e alt e r n ati v e s.

4. 2. V a c ci n e d at a

T hi s d at a i s g e n e r at e d i n a r el ati v e r e c e nt st u d y [ 4 3 ] a n d a v ail a bl e at G E O wit h i d e ntifi e r G S E 1 2 4 5 3 3. T h e st u d y s etti n g s

h a v e b e e n d e s c ri b e d i n d et ail i n [ 4 3 ]. B ri efl y, it c o n c e r n s wit h t h e ti m e c o u r s e of w h ol e bl o o d g e n e e x p r e s si o n s, a n d t h e

s a m pl e s a r e h e alt h y a d ult s r e si di n g i n a n i n p ati e nt u nit. T h e s a m pl e s h a v e b e e n r a n d o mi z e d i nt o t h r e e p r ot o c ol s ( 3 0 5 A,

3 0 5 B a n d 3 0 5 C). Wit hi n e a c h p r ot o c ol, s a m pl e s h a v e b e e n r a n d o mi z e d t o r e c ei v e i m m u ni z ati o n vi a eit h e r v a c ci n e o r

s ali n e pl a c e b o. T h e t r e at m e nt s h a v e b e e n r ef e r r e d t o a s Y F V a n d V Z V ( u n d e r 3 0 5 A), H B V 1 a n d H B V 3 ( u n d e r 3 0 5 B), a n d

TI V a n d A TI V ( u n d e r 3 0 5 C). I n t hi s e x p e ri m e nt, g e n e e x p r e s si o n l e v el s a r e m e a s u r e d at t ∈ { 1 , 2 , 3 , 4 , 5 , 7 , 1 4 , 2 1 , 2 8 }
a y s aft e r i m m u ni z ati o n. A t ot al of 4 3 g e n e s h a v e b e e n st u di e d, w hi c h a r e s el e ct e d f r o m t w o g e n e m o d ul e s d efi n e d i n

h e p u bli s h e d lit e r at u r e [ 6 ,2 2 ]. P ri o r t o a n al y si s, g e n e e x p r e s si o n n o r m ali z ati o n, r e s c ali n g of t h e ti m e p oi nt s (t o t h e u nit

nt e r v al), a n d t h e s el e cti o n of k n ot s o r d e r a r e c o n d u ct e d i n a si mil a r w a y a s i n t h e p r e vi o u s d at a a n al y si s.

T w o s et s of a n al y si s a r e c o n d u ct e d. I n t h e fi r st s et, w e f o c u s o n t h e s a m pl e s u n d e r 3 0 5 A, w hi c h c o nt ai n 2 0 s a m pl e s

r e at e d wit h V Z V a n d 2 0 wit h Y F V. I n t h e s e c o n d s et, w e p o ol all 1 2 2 s a m pl e s f r o m t h e t h r e e p r ot o c ol s. W e n ot e t h at
9
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i g. 3. A n al y si s of T - c ell d at a: C u r v e s of o b s e r v e d d at a ( bl a c k d ott e d) a n d e sti m at e d f u n cti o n s ( bl u e s oli d) f o r t h e ei g ht n o n -t ri vi al bi cl u st e r, a s w ell

s y ell o w p oi nt s i n di c ati n g t h e e sti m at e d v al u e s at t ∈ { 0 , 2 , 4 , 6 , 8 , 1 8 , 2 4 , 3 2 , 4 8 , 7 2 } b y t h e p r o p o s e d m et h o d. ( F o r i nt e r p r et ati o n of t h e r ef e r e n c e s

o c ol o r i n t hi s fi g u r e l e g e n d, t h e r e a d e r i s r ef e r r e d t o t h e w e b v e r si o n of t hi s a rti cl e.)

lt h o u g h t h e g e n e ti m e c o u r s e s h a v e b e e n a n al y z e d i n [ 4 3 ], t h e r e i s i n s uffi ci e nt att e nti o n t o cl u st e ri n g. C o m pl e m e nt a r y t o
h e e xi sti n g lit e r at u r e, o u r cl u st e ri n g a n al y si s c a n p ot e nti all y r e vi e w s a m pl e h et e r o g e n eit y a s w ell a s c o o r di n ati o n a m o n g
e n e s.

R e s ult s f o r t h e fi r st s et of a n al y si s a r e p r e s e nt e d i n Fi g. 5 , w h e r e w e o b s e r v e t w o s a m pl e cl u st e r s a n d t w o g e n e cl u st e r s,
e a di n g t o f o u r bi cl u st e r s. H e r e t h e t w o s a m pl e cl u st e r s m at c h t h e V Z V a n d Y F V e x p e ri m e nt al c o n diti o n s, w hi c h p r o vi d e s
u p p o rt t o t h e v ali dit y of o u r a n al y si s. T h e t w o g e n e cl u st e r s c o nt ai n 2 7 a n d 1 6 m e m b e r s, r e s p e cti v el y, w hi c h a r e v e r y

l o s e t o t h e m o d ul e st r u ct u r e. Fi g. 5 s h o w s t h at t h e t e m p o r al t r e n d s of t h e f o u r cl u st e r s diff e r si g nifi c a ntl y, wit h t h e l e v el
f v a ri ati o n a n d p o siti o n of ‘‘ p e a k’’ v a r yi n g si g nifi c a ntl y. T h e o b s e r v e d t r e n d s a r e si mil a r t o t h o s e r e p o rt e d i n [ 4 3 ]. W e
l s o r ef e r t o [ 4 3 ] f o r p h a m a r c o d y n a mi c i nt e r p r et ati o n s of t h e fi n di n g s.

I n t h e s e c o n d s et of a n al y si s, w e i d e ntif y f o u r s a m pl e cl u st e r s, wit h si z e s 9 6, 5, 2 0, a n d 1, r e s p e cti v el y. I n w h at
oll o w s, w e f o c u s o n t h e n o n -t ri vi al cl u st e r s. Cl u st e r s 1 a n d 2 c o nt ai n s a m pl e s t r e at e d wit h V Z V, H B V 1, H B V 3, A TI V,
n d TI V, a n d cl u st e r 3 c o nt ai n s s a m pl e s t r e at e d wit h Y F V. I n t h e o ri gi n al p u bli c ati o n, t h e r e h a s b e e n littl e att e nti o n t o
a m pl e si mil a rit y/ diff e r e n c e a c r o s s p r ot o c ol s. O u r a n al y si s m a y s u g g e st t h e si g nifi c a nt diff e r e n c e b et w e e n Y F V a n d ot h e r
r e at m e nt s a s w ell a s t h e r el ati v e si mil a rit y of t h e fi v e t r e at m e nt s ( Y F V e x cl u d e d). O u r a n al y si s l e a d s t o t w o g e n e cl u st e r s,
it h si z e s 2 5 a n d 1 8, r e s p e cti v el y. T hi s st r u ct u r e i s a g ai n v e r y si mil a r t o t h e m o d ul e st r u ct u r e. T h e o v e r all si x n o n -t ri vi al
i cl u st e r s a r e s h o w n i n Fi g. 4 , w h e r e w e o b s e r v e si g nifi c a nt a c r o s s - cl u st e r diff e r e n c e s. A m o n g t h e si x p att e r n s, bi cl u st e r s
a n d 6 a r e si mil a r t o t h o s e o b s e r v e d i n t h e fi r st s et of a n al y si s, w h e r e bi cl u st e r s 1 – 4 a r e r el ati v el y diff e r e nt.
T h e t h r e e alt e r n ati v e s a r e al s o a p pli e d. T h e b K m e a n s a p p r o a c h i d e ntifi e s t h r e e s a m pl e cl u st e r s ( wit h si z e s 2 0, 2 7, a n d

5) a n d t w o g e n e cl u st e r s ( wit h si z e s 2 6 a n d 1 7). C o m p a r e d t o t h e p r o p o s e d a p p r o a c h, t h e a dj u st e d R a n d i n d e x v al u e s
r e 0. 5 5 1 ( s a m pl e), 0. 9 0 7 ( g e n e), a n d 0. 6 6 6 ( bi cl u st e r). T h e f u n H D D C a p p r o a c h i d e ntifi e s t w o s a m pl e cl u st e r s ( wit h si z e s
0 a n d 1 0 2) a n d t h r e e g e n e cl u st e r s ( wit h si z e s 2 6, 1 2 a n d 5). C o m p a r e d t o t h e p r o p o s e d a p p r o a c h, t h e a dj u st e d R a n d
n d e x v al u e s a r e 0. 8 1 9 ( s a m pl e), 0. 7 7 4 ( g e n e), a n d 0. 7 5 8 ( bi cl u st e r). T h e f u n L B M a p p r o a c h i d e ntifi e s f o u r s a m pl e cl u st e r s
wit h si z e s 2 0, 3 9, 2 4 a n d 3 9) a n d t w o g e n e cl u st e r s ( wit h si z e s 2 0, 2 3). C o m p a r e d t o t h e p r o p o s e d a p p r o a c h, t h e a dj u st e d

a n d i n d e x v al u e s a r e 0. 2 7 6 ( s a m pl e), 0. 8 1 8 ( g e n e), a n d 0. 3 8 6 ( bi cl u st e r).

. Di s c u s si o n

I n t hi s a rti cl e, w e h a v e c o n d u ct e d t h e bi cl u st e ri n g a n al y si s w h e n f u n cti o n s (t o b e e x a ct, t h ei r r e ali z ati o n s at di s c r et e
i m e p oi nt s), a s o p p o s e d t o s c al a r s, a r e p r e s e nt. T h e d at a st r u ct u r e fit s ti m e - c o u r s e g e n e e x p r e s si o n a n d ot h e r e x p e ri m e nt s.
h e a n al y si s o bj e cti v e i s c o n si d e r a bl y m o r e c o m pl e x t h a n t h e bi cl u st e ri n g a n al y si s of s c al a r s a n d o n e - w a y cl u st e ri n g of
1 0



K. F a n g, Y. C h e n, S. M a et al. J o u r n al of M ulti v a ri at e A n al y si s 1 8 9 ( 2 0 2 2) 1 0 4 8 7 4

F

f

i

f

s

p

i

s

n

i

w

e

w

I

C

S

Z

A

w

Y

F

(

A

P

i g. 4. A n al y si s of v a c ci n e d at a wit h s a m pl e s u n d e r all t h r e e p r ot o c ol s: C u r v e s of o b s e r v e d d at a ( bl a c k d ott e d) a n d e sti m at e d f u n cti o n s ( bl u e s oli d)

o r n o n -t ri vi al cl u st e r s, a s w ell a s y ell o w p oi nt s i n di c ati n g t h e e sti m at e d v al u e s at t ∈ { 1 , 2 , 3 , 4 , 5 , 7 , 1 4 , 2 1 , 2 8 } b y t h e p r o p o s e d m et h o d. ( F o r

nt e r p r et ati o n of t h e r ef e r e n c e s t o c ol o r i n t hi s fi g u r e l e g e n d, t h e r e a d e r i s r ef e r r e d t o t h e w e b v e r si o n of t hi s a rti cl e.)

u n cti o n s. W e h a v e d e v el o p e d a n o v el a p p r o a c h b a s e d o n t h e p e n ali z e d f u si o n t e c h ni q u e. M et h o d ol o gi c all y, it diff e r s

i g nifi c a ntl y f r o m t h e e xi sti n g bi cl u st e ri n g a n d f u si o n a p p r o a c h e s. T h e o r eti c all y, it h a s t h e m u c h d e si r e d c o n si st e n c y

r o p e rt y, m a ki n g it a d v a nt a g e o u s o v e r s o m e of t h e e xi sti n g alt e r n ati v e s t h at d o n ot h a v e t h e o r eti c al s u p p o rt. N u m e ri c all y,

t h a s g e n e r at e d m o r e a c c u r at e cl u st e ri n g a n d e sti m ati o n i n si m ul ati o n a n d l e d t o diff e r e nt fi n di n g s i n d at a a n al y si s.

I n o u r e sti m ati o n, w e h a v e a d o pt e d t h e p e n ali z e d s m o ot hi n g t e c h ni q u e. A n alt e r n ati v e, w hi c h m a y b e c o m p ut ati o n all y

i m pl e r, i s t o t a k e f e w e r b a si s f u n cti o n s, wit h w hi c h w e c a n eli mi n at e t h e s m o ot h n e s s p e n alt y. T h e o r eti c all y a n d

u m e ri c all y, w e e x p e ct si mil a r p e rf o r m a n c e. T h e f u si o n t e c h ni q u e i n v ol v e s p ai r wi s e diff e r e n c e s/ p e n alti e s, w hi c h m a y

n c u r hi g h e r c o m p ut ati o n al c o st w h e n N a n d/ o r q a r e l a r g e. I n o u r si m ul ati o n, w e h a v e c o n si d e r e d m o d e r at e v al u e s,

hi c h m at c h o u r d at a a n al y si s. It will b e of i nt e r e st t o d e v el o p c o m p ut ati o n all y m o r e s c al a bl e a p p r o a c h e s/ al g o rit h m s, f o r

x a m pl e vi a m o d el a v e r a gi n g. T hi s i s b e y o n d o u r s c o p e a n d will b e p o st p o n e d t o t h e f ut u r e. I n d at a a n al y si s, fi n di n g s

it h c e rt ai n s u p p o rt h a v e b e e n m a d e. I n t h e lit e r at u r e, m o st e xi sti n g st u di e s a r e o n t h e ‘‘ st ati c’’ f u n cti o n aliti e s of g e n e s.

t will b e i m p o rt a nt t o f u rt h e r u n d e r st a n d t h e d y n a mi c s of g e n e e x p r e s si o n s a n d m o r e s oli dl y i nt e r p r et t h e fi n di n g s.

R e di T a u t h o r s hi p c o n t ri b u ti o n s t a t e m e n t

K u a n g n a n F a n g: M et h o d ol o g y, F o r m al a n al y si s W riti n g – o ri gi n al d r aft. Y u a n xi n g C h e n: D at a c u r ati o n, I n v e sti g ati o n,

oft w a r e, W riti n g – o ri gi n al d r aft. S h u a n g g e M a: C o n c e pt u ali z ati o n, M et h o d ol o g y, W riti n g – r e vi e w & e diti n g. Qi n g z h a o

h a n g: C o n c e pt u ali z ati o n, M et h o d ol o g y, V ali d ati o n, W riti n g – r e vi e w & e diti n g, S u p e r vi si o n.

c k n o wl e d g m e n t s

W e t h a n k t h e E dit o r -i n - C hi ef, M a n a gi n g E dit o r, a n d t w o r e vi e w e r s f o r i n si g htf ul c o m m e nt s a n d s u g g e sti o n s. T hi s w o r k

a s s u p p o rt e d b y t h e N ati o n al N at u r al S ci e n c e F o u n d ati o n of C hi n a ( 1 1 9 7 1 4 0 4, 7 2 0 7 1 1 6 9), H u m a nit y a n d S o ci al S ci e n c e

o ut h F o u n d ati o n of Mi ni st r y of E d u c ati o n of C hi n a ( 1 9 YJ C 9 1 0 0 1 0), B a si c S ci e ntifi c P r oj e ct 7 1 9 8 8 1 0 1 of N ati o n al S ci e n c e

o u n d ati o n of C hi n a, 1 1 1 P r oj e ct ( B 1 3 0 2 8), N ati o n al I n stit ut e s of H e alt h ( C A 2 0 4 1 2 0), a n d N ati o n al S ci e n c e F o u n d ati o n

1 9 1 6 2 5 1).

p p e n di x A. P r o of s

r o of of P r o p o si ti o n 1 . B y t h e d efi niti o n s of H
(m + 1)
r a n d H

(m + 1)
c , f o r a n y H r a n d H c , w e h a v e

L

(
β (m + 1) , H (m + 1) , H (m + 1) , Λ (m ) , Λ (m )

)
≤ L

(
β (m + 1) , H , H , Λ (m ) , Λ (m )

)
.
θ r c r c θ r c r c

1 1
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F

y

c

L

i g. 5. A n al y si s of v a c ci n e d at a wit h s a m pl e s u n d e r 3 0 5 A: C u r v e s of o b s e r v e d d at a ( bl a c k d ott e d) a n d e sti m at e d f u n cti o n s ( bl u e s oli d), a s w ell a s

ell o w p oi nt s i n di c ati n g t h e e sti m at e d v al u e s at t ∈ { 1 , 2 , 3 , 4 , 5 , 7 , 1 4 , 2 1 , 2 8 } b y t h e p r o p o s e d m et h o d. ( F o r i nt e r p r et ati o n of t h e r ef e r e n c e s t o

ol o r i n t hi s fi g u r e l e g e n d, t h e r e a d e r i s r ef e r r e d t o t h e w e b v e r si o n of t hi s a rti cl e.)

et Ξ (β (m + 1) ) =
{

(H r , H c ) : B r β
(m + 1) − v e c( H r ) = 0 , B c β

(m + 1) − v e c( H c ) = 0

}
a n d P =

∑
δ ∈ ∆ (r ) p τ (∥ η (r )

δ ∥ 2 , γ2 ) +
∑

δ ∈ ∆ (c ) p τ (∥ η (c )

δ ∥ 2 , (N / q ) 1 / 2 γ 2 ). W e c a n d efi n e

f (m + 1) = i nf
Ξ (β (m + 1) )

{
1

2
∥ Y − U β (m + 1) ∥ 2

2 +
1

2
γ 1 β

(m + 1) ⊤ M β (m + 1) + P

}

= i nf
Ξ (β (m + 1) )

L θ

(
β (m + 1) , H r , H c , Λ (m )

r , Λ (m )
c

)
,

a n d t h e n L θ

(
β (m + 1) , H

(m + 1)
r , H

(m + 1)
c , Λ (m )

r , Λ (m )
c

)
≤ f (m + 1) .

F o r a n y i nt e g e r n , w e h a v e v e c(Λ (m + n − 1)
r ) = v e c( Λ (m )

r ) + θ
∑ n − 1

i= 1

[
v e c( H

(m + i)
r ) − B r β

(m + i)
]

a n d v e c( Λ (m + n − 1)
c ) =

v e c( Λ (m )
c ) + θ

∑ n − 1

i= 1

[
v e c( H

(m + i)
c ) − B c β

(m + i)
]
, a n d t h e n

L θ

(
β (m + n ) , H (m + n )

r , H (m + n )
c , Λ (m + n − 1)

r , Λ (m + n − 1)
c

)

=
1

2
∥ Y − U β (m + n ) ∥ 2

2 +
1

2
γ 1 β

(m + n )⊤ M β (m + n ) + P +

{

v e c( Λ (m )
r ) + θ

n − 1∑

i= 1

[
v e c( H (m + i)

r ) − B r β
(m + i)

] } ⊤

×
[
v e c( H (m + n )

r ) − B r β
(m + n )

]

+

{

v e c( Λ (m )
c ) + θ

n − 1∑

i= 1

[
v e c( H (m + i)

c ) − B c β
(m + i)

] } ⊤ [
v e c( H (m + n )

c ) − B c β
(m + n )

]
+

θ

2



 v e c( H (m + n )

r − B r β
(m + n ) )





2

2

+
θ 


 v e c( H (m + n ) − B c β

(m + n ) )





2

≤ f (m + n ) .

2 c

2

1 2
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S

r

F

T

B

T

n

L
{

P
e

L
t

w

i n c e t h e a u g m e nt e d L a g r a n gi a n f u n cti o n L θ

(
β , H r , H c , Λ r Λ c

)
i s diff e r e nti a bl e wit h r e s p e ct t o β a n d i s c o n v e x wit h

e s p e ct t o e a c h η (r )

δ a n d η (c )

δ . B y T h e o r e m 4. 1 of [3 8 ], t h e r e e xi st s a li mit p oi nt of (β (m ) , H
(m )
r , H

(m )
c ), d e n ot e d b y (β ∗ , H ∗

r , H ∗
c ).

T h e n w e h a v e

f ∗ = li m
m → ∞

f (m + 1) = li m
m → ∞

f (m + n ) = i nf
Ξ (β ∗ )

{
1

2
∥ Y − U β ∗ ∥ 2

2 +
1

2
γ 1 β

∗ ⊤ M β ∗ + P

}

.

o r all t ≥ 0, w e h a v e

li m
m → ∞

L θ

(
β (m + n ) , H (m + n )

r , H (m + n )
c , Λ (m + n − 1)

r , Λ (m + n − 1)
c

)

=
1

2
∥ Y − U β ∗ ∥ 2

2 +
1

2
γ 1 β

∗ ⊤ M β ∗ + P + li m
m → ∞

v e c( Λ (m )
r )⊤

[
v e c( H ∗

r ) − B r β
∗
]

+ (n −
1

2
)θ




 v e c( H ∗

r ) − B r β
∗






2

2

+ li m
m → ∞

v e c( Λ (m )
c )⊤

[
v e c( H ∗

c ) − B c β
∗
]

+ (n −
1

2
)θ




 v e c( H ∗

c ) − B c β
∗






2

2

≤ f ∗ .

T h u s

li m
m → ∞



 r (m + 1)

r





2

2
=



 B r β

∗ − v e c( H ∗
r )





2

2
= 0 , li m

m → ∞



 r (m + 1)

c





2

2
=



 B c β

∗ − v e c( H ∗
c )





2

2
= 0 .

B e si d e s, b y t h e d efi niti o n of β (m + 1) , w e h a v e t h at

∂ L θ

(
β (m + 1) , H (m + 1)

r , H (m + 1)
c , Λ (m )

r , Λ (m )
c

)
/ ∂ β

= − U ⊤ (Y − U β (m + 1) ) + γ 1 M β (m + 1) − θ B ⊤
r

[
v e c( H (m )

r ) + v e c( Λ (m )
r )/ θ − B r β

(m + 1)
]

− θ B ⊤
c

[
v e c( H (m )

c ) + v e c( Λ (m )
c )/ θ − B c β

(m + 1)
]

= − U ⊤ (Y − U β (m + 1) ) + γ 1 M β (m + 1) − B ⊤
r v e c( Λ (m )

r ) − θ B ⊤
r

[
v e c( H (m )

r ) − B r β
(m + 1)

]

− B ⊤
c v e c( Λ (m )

c ) − θ B ⊤
c

[
v e c( H (m )

c ) − B c β
(m + 1)

]

= − U ⊤ (Y − U β (m + 1) ) + γ 1 M β (m + 1) − B ⊤
r v e c( Λ (m + 1)

r ) + θ B ⊤
r

[
v e c( H (m + 1)

r ) − v e c( H (m )
r )

]

− B ⊤
c v e c( Λ (m + 1)

c ) + θ B ⊤
c

[
v e c( H (m + 1)

c ) − v e c( H (m )
c )

]
= 0 .

h e n w e c a n o bt ai n

s (m + 1)
r + s (m + 1)

c = U ⊤ (Y − U β (m + 1) ) − γ 1 M β (m + 1) + B ⊤
r v e c( Λ (m + 1)

r ) + B ⊤
c v e c( Λ (m + 1)

c ).

y



 B r β

∗ − v e c( H ∗
r )





2

2
= 0 a n d



 B c β

∗ − v e c( H ∗
c )





2

2
= 0, w e h a v e

li m
m → ∞

∂ L θ

(
β (m + 1) , H (m + 1)

r , H (m + 1)
c , Λ (m )

r , Λ (m )
c

)
/ ∂ β

= − U ⊤ (Y − U β (m + 1) ) + γ 1 M β (m + 1) − B ⊤
r v e c( Λ (m + 1)

r ) − B ⊤
c v e c( Λ (m + 1)

c ) = 0 .

h e r ef o r e li m m → ∞ s
(m + 1)
r + s

(m + 1)
c = 0 . □

L et |G (r ,c )∗
k r ,k c

| =
∑

(i,j)∈ G
(r ,c )
k r ,k c

n i,j a n d n m = m a x i∈{ 1 ,...,N },j∈{ 1 ,...,q } n i,j < ∞ . T h e n |G (r ,c )

k r ,k c
| ≤ |G (r ,c )∗

k r ,k c
| ≤ n m |G (r ,c )

k r ,k c
|. D e n ot e t h e

u m b e r of i nt e r n al k n ot s a s J a n d t h e n J = p − d . R e c all t h at b = mi n (k r ,k c )̸ =(k ′
r ,k ′

c ) ∥ g ∗
(k r ,k c ) − g ∗

(k ′
r ,k ′

c )
∥ .

e m m a 1. U n d e r C o n diti o n ( C 1), t h e r e e xi st s a s pli n e a p p r o xi m ati o n α ∗ ⊤
k r ,k c

U p (t ) of t h e t r u e f u n cti o n g ∗
(k r ,k c ) (t ) f o r kr ∈

1 , . . . , K r } a n d k c ∈ { 1 , . . . , K c }, s u c h t h at

s u p
t ∈ T

|g ∗
(k r ,k c ) (t ) − α ∗ ⊤

k r ,k c
U p (t )| = O (J − κ ).

r o of. L e m m a 1 f oll o w s f r o m C o r oll a r y 6. 2 1 of [3 4 ]. T hi s l e m m a h a s b e e n u s e d i n a n u m b e r of st u di e s t h at i n v ol v e s pli n e
x p a n si o n [ 2 5 ,4 2 ]. W e o mit t h e p r o of h e r e. □

e m m a 2. U n d e r C o n diti o n s ( C 1) –( C 3) a n d b ≫ J − κ , t h e r e e xi st s a c o n st a nt C2 > 0 s u c h t h at f o r all (k r , k c ) ̸ =(k ′
r , k ′

c ), s u c h
h at

∥ α ∗
k r ,k c

− α ∗
k ′

r ,k ′
c
∥ 2 ≥

1

2
C

− 1 / 2

2 b ,

h e n N a n d q a r e s uffi ci e ntl y l a r g e.
1 3
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P
 r o of. B y t h e t ri a n g ul a r i n e q u alit y, w e h a v e

∥ (α ∗
k r ,k c

− α ∗
k ′

r ,k ′
c
)⊤ U p ∥ ≥ ∥ g ∗

(k r ,k c ) − g ∗
(k ′

r ,k ′
c )

∥ − ∥ g ∗
(k r ,k c ) − α ∗ ⊤

k r ,k c
U p ∥ − ∥ g ∗

(k ′
r ,k ′

c )
− α ∗ ⊤

k ′
r ,k ′

c
U p ∥ . ( A. 1)

B e si d e s, b y T h e o r e m 5. 4. 2 of [ 1 3 ], C o n diti o n ( C 2), a n d t h e d efi niti o n of t h e r e s c al e d B - s pli n e b a si s, f o r a n y v e ct o r α ′
p × 1 ,

t h e r e e xi st s a c o n st a nt C 2 > 0 s u c h t h at

∥ α ′ ⊤U p ∥
2 ≤ C 2 ∥ α ′∥ 2

2 . ( A. 2)

C o m bi ni n g ( A. 1), ( A. 2), a n d L e m m a 1 , w e h a v e

∥ α ∗
k r ,k c

− α ∗
k ′

r ,k ′
c
∥ 2 ≥ C

− 1 / 2

2

{
∥ g ∗

(k r ,k c ) − g ∗
(k ′

r ,k ′
c )

∥ − ∥ g ∗
(k r ,k c ) − α ∗ ⊤

k r ,k c
U p ∥ − ∥ g ∗

(k r ,k c ) − α ∗ ⊤
k r ,k c

U p ∥
}

≥ C
− 1 / 2

2 (b − 2 M 2 J − κ ) > C
− 1 / 2

2 (b − 2 ×
1

4
b ) =

1

2
C

− 1 / 2

2 b ,

w h e r e t h e t hi r d i n e q u alit y i s o bt ai n e d w h e n N a n d q a r e s uffi ci e ntl y l a r g e si n c e b ≫ J − κ . □

L e m m a 3 (B e r n st ei n’ s I n e q u alit y, L e m m a 2. 2. 1 1 i n [ 3 9 ]). F o r i n d e p e n d e nt r a n d o m v a ri a bl e s Y 1 , . . . , Y n wit h m e a n s 0 a n d

E |Y i|
m ≤ m !M m − 2 v i/ 2 f o r s o m e c o n st a nt s M, v i, a n d e v e r y m ≥ 2 ,

P (|Y 1 + · · · + Y n | > x ) ≤ 2 e x p

{

−
1

2

x 2

v + M x

}

,

w h e r e v = v 1 + · · · + v n .

P r o of of T h e o r e m 1 . Gi v e n β̂
o r

∈ M G , w h e n t h e t r u e bl o c k m e m b e r s hi p s G
(r ,c )

1 ,1 , . . . , G
(r ,c )

K r ,K c
a r e k n o w n, t h e o r a cl e

e sti m at o r s f o r all β i,j’ s a r e t h e s a m e if (i.j) ∈ G
(r ,c )

k r ,k c
. T h u s w e c a n e x pl o r e t h e p r o p e rti e s of β̂

o r
b y e x a mi ni n g t h e p r o p e rti e s

of t h e o r a cl e c o m m o n c o effi ci e nt v e ct o r α̂ o r = ( α̂ o r ⊤
1 ,1 , . . . , α̂ o r ⊤

k r ,k c
, . . . , α̂ o r ⊤

K r ,K c
)⊤ , w hi c h i s d efi n e d a s

α̂ o r = a r g mi n
α

K r∑

k r = 1

K c∑

k c = 1

L̂ o r (α k r ,k c ),

a n d

L̂ o r (α k r ,k c ) =
1

2
∥ Y (k r ,k c ) − U (k r ,k c ) α k r ,k c ∥

2
2 + γ 1 |G

(r ,c )

k r ,k c
|α ⊤

k r ,k c
D α k r ,k c ,

w h e r e Y (k r ,k c ) = v e c {Y i,j, (i, j) ∈ G k r ,k c }, U (k r ,k c ) = (U ⊤
i,j, (i, j) ∈ G k r ,k c )⊤ . T h e c o r r e s p o n di n g t r u e B - s pli n e c o effi ci e nt v e ct o r

i s d e n ot e d b y α ∗ = (α ∗ ⊤
1 ,1 , . . . , α ∗ ⊤

k r ,k c
, . . . , α ∗ ⊤

K r ,K c
)⊤ . N ot e t h at

∂ L̂ o r (α k r ,k c )

∂ α k r ,k c

⏐
⏐
⏐
⏐

α k r ,k c = α̂ o r
k r ,k c

−
∂ L̂ o r (α k r ,k c )

∂ α k r ,k c

⏐
⏐
⏐
⏐

α k r ,k c = α ∗
k r ,k c

=
∂ L̂ o r (α k r ,k c )

∂ α k r ,k c ∂ α ⊤
k r ,k c

⏐
⏐
⏐
⏐

α k r ,k c = ᾱ k r ,k c

( α̂ o r
k r ,k c

− α ∗
k r ,k c

),

w h e r e ᾱ k r ,k c i s b et w e e n α̂ o r
k r ,k c

a n d α ∗
k r ,k c

. T h e n w e h a v e

α̂ o r
k r ,k c

− α ∗
k r ,k c

= −

(
∂ L̂ o r (α k r ,k c )

∂ α k r ,k c ∂ α ⊤
k r ,k c

⏐
⏐
⏐
⏐

α k r ,k c = ᾱ k r ,k c

) − 1
∂ L̂ o r (α k r ,k c )

∂ α k r ,k c

⏐
⏐
⏐
⏐

α k r ,k c = α ∗
k r ,k c

.

H e n c e

∥ α̂ o r
k r ,k c

− α ∗
k r ,k c

∥ 2 ≤




 |G (r ,c )∗

k r ,k c
|

(
∂ L̂ o r (α k r ,k c )

∂ α k r ,k c ∂ α ⊤
k r ,k c

⏐
⏐
⏐
⏐

α k r ,k c = ᾱ k r ,k c

) − 1 



2




 |G (r ,c )∗

k r ,k c
|
− 1 ∂ L̂ o r (α k r ,k c )

∂ α k r ,k c

⏐
⏐
⏐
⏐

α k r ,k c = α ∗
k r ,k c






2

: = A
( 1)

k r ,k c
× A

( 2)

k r ,k c
.

( A. 3)

B y L e m m a A. 8 of [ 4 1 ], C o n diti o n s ( C 1) a n d ( C 2), w e c a n d e ri v e t h at t h e r e e xi st s a c o n st a nt C 3 > 0 s u c h t h at f o r a n y

1 ≤ k r ≤ K r , 1 ≤ k c ≤ K c ,

P (A
( 1)

k r ,k c
≤ C 3 ) = P

( 





U ⊤
(k r ,k c ) U (k r ,k c )

(r ,c )∗
+

γ 1 |G
(r ,c )

k r ,k c
|D

(r ,c )∗







≤ C 3

)

≥ 1 − p / (N q ). ( A. 4)

|G k r ,k c

| |G k r ,k c
|

2

1 4
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B e si d e s, n ot e t h at

A
( 2)

k r ,k c
=




 −

U ⊤
(k r ,k c )

|G (r ,c )∗
k r ,k c

|

(
Y (k r ,k c ) − g ∗

(k r ,k c ) + g ∗
(k r ,k c ) − U (k r ,k c ) α

∗
k r ,k c

)
+ γ 1

|G (r ,c )

k r ,k c
|

|G (r ,c )∗
k r ,k c

|
D α ∗

k r ,k c






2

≤






U ⊤
(k r ,k c )

|G (r ,c )∗
k r ,k c

|
ϵ k r ,k c






2

+






U ⊤
(k r ,k c )

|G (r ,c )∗
k r ,k c

|
(g ∗

(k r ,k c ) − U (k r ,k c ) α
∗
k r ,k c

)






2

+




 γ 1

|G (r ,c )

k r ,k c
|

|G (r ,c )∗
k r ,k c

|
D α ∗

k r ,k c






2

: = B
( 1)

k r ,k c
+ B

( 2)

k r ,k c
+ B

( 3)

k r ,k c
.

( A. 5)

Si n c e t h e r e s c al e d B - s pli n e v al u e s a r e fi nit e, t h e r e e xi st s c o n st a nt M 1 > 0 s u c h t h at U l,p (t ) ≤ M 1 f o r l ∈ { 1 , . . . , p }. L et
U (i,j)·l d e n ot e t h e lt h c ol u m n of U (i,j) , a n d w e v e rif y t h e c o n diti o n of L e m m a 3 b y C o n diti o n ( C 5)

E |U ⊤
(i,j)·lϵ i,j|

m
≤ E

(
|U ⊤

(i,j)·lU (i,j)·l|
m / 2

· |ϵ ⊤
i,jϵ i,j|

m / 2
)

≤ (F − 1 M 1 ) m m !E
(

e x p
{
F |n − 1

i,j ϵ ⊤
i,jϵ i,j|

1 / 2 } )
≤ (F − 1 M 1 ) m m !c 2 .

A p pl yi n g L e m m a 3 , w e h a v e

P

( ⏐
⏐
⏐
⏐

∑

(i,j)∈ G
(r ,c )
k r ,k c

U ⊤
(i,j)·lϵ i,j

⏐
⏐
⏐
⏐ > x

)

≤ 2 e x p

{

−
1

2

x 2

v + F − 1 M 1 x

}

, ( A. 6)

w h e r e v =
∑

(i,j)∈ G
(r ,c )
k r ,k c

v i,j a n d v i,j = 2 F − 2 M 2
1 c 2 .

L et U (k r ,k c )·l d e n ot e t h e lt h c ol u m n of U (k r ,k c ) . F o r s o m e c o n st a nt 0 < C < ∞ , c o m bi ni n g C o n diti o n ( C 5) a n d ( A. 6), w e
h a v e

P

( ⏐
⏐
⏐
⏐|G (r ,c )∗

k r ,k c
|
− 1

U ⊤
(k r ,k c ) ϵ k r ,k c

⏐
⏐
⏐
⏐
∞

> C F − 1 M 1

(
l o g(N q )/ |G (r ,c )∗

k r ,k c
|
) 1 / 2

)

≤

p∑

l= 1

P

(
|U ⊤

(k r ,k c )·lϵ k r ,k c | > C F − 1 M 1

(
l o g(N q )|G (r ,c )∗

k r ,k c
|
) 1 / 2

)

=

p∑

l= 1

P

( ⏐
⏐
⏐
⏐

∑

(i,j)∈ G
(r ,c )
k r ,k c

U ⊤
(i,j)·lϵ i,j

⏐
⏐
⏐
⏐ > C F − 1 M 1

(
l o g(N q )|G (r ,c )∗

k r ,k c
|
) 1 / 2

)

≤ 2 p e x p

{
−

1

2

C 2 F − 2 M 2
1

(
l o g(N q )|G (r ,c )∗

k r ,k c
|
)

2 F − 2 M 2
1 c 2 |G

(r ,c )

k r ,k c
| + C F − 2 M 2

1

(
l o g(N q )|G (r ,c )∗

k r ,k c
|
) 1 / 2

}
≤ 2 p e x p

{
− l o g(N q )

}
≤ 2 p / N q .

H e n c e, w e h a v e t h at wit h p r o b a bilit y at l e a st 1 − 2 p / (N q ),

B
( 1)

k r ,k c
≤ C F − 1 M 1

(
p l o g(N q )/ |G (r ,c )

k r ,k c
|
) 1 / 2

. ( A. 7)

B y L e m m a 1 , t h e r e e xi st s a c o n st a nt M 2 > 0 s u c h t h at

B
( 2)

k r ,k c
≤ p 1 / 2






U ⊤
(k r ,k c )

|G (r ,c )∗
k r ,k c

|
(g ∗

(k r ,k c ) − U (k r ,k c ) α
∗
k r ,k c

)






∞

≤ p 1 / 2






U ⊤
(k r ,k c )

|G (r ,c )∗
k r ,k c

|






∞




 (g ∗

(k r ,k c ) − U (k r ,k c ) α
∗
k r ,k c

)






∞

≤ M 1 M 2 p 1 / 2 J − κ . ( A. 8)

I n a d diti o n,

B
( 3)

k r ,k c
≤ γ 1

|G (r ,c )

k r ,k c
|

|G (r ,c )∗
k r ,k c

|
∥ α ∗

k r ,k c
∥ 2 ∥ D ∥ 2 ≤ p 1 / 2 γ 1 ∥ α ∗

k r ,k c
∥ ∞ ∥ D ∥ 2 . ( A. 9)

T h u s b y ( A. 5), ( A. 7), ( A. 8), a n d ( A. 9), f o r a n y 1 ≤ k r ≤ K r , 1 ≤ k c ≤ K c , wit h p r o b a bilit y at l e a st 1 − 2 p / (N q ),

A
( 2)

k r ,k c
≤ C F − 1 M 1

(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

+ M 1 M 2 p 1 / 2 J − κ + m a x
k r ,k c

∥ α ∗
k r ,k c

∥ ∞ ∥ D ∥ 2 γ 1 p 1 / 2 .

B y C o n diti o n ( C 1) a n d γ 1 = o (|G (r ,c )

mi n |
− 1 / 2

), w h e n N a n d q a r e s uffi ci e ntl y l a r g e, w e h a v e

p 1 / 2 J − κ ≪
(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

, p 1 / 2 γ 1 ≪
(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

.

H e n c e, f o r a n y 1 ≤ k r ≤ K r , 1 ≤ k c ≤ K c , wit h p r o b a bilit y at l e a st 1 − 2 p / (N q ),

A
( 2)

k r ,k c
≤ C 4

(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

,

w h e r e C 4 i s a l a r g e c o n st a nt. T o g et h e r wit h ( A. 3) a n d ( A. 4), f o r a n y 1 ≤ k r ≤ K r , 1 ≤ k c ≤ K c ,

P

(
∥ α̂ o r

k r ,k c
− α ∗

k r ,k c
∥ 2 ≤ C 3 C 4

(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

)
≥ 1 − P (A

( 1)

k r ,k c
> C 3 ) − P

(
A

( 2)

k r ,k c
> C 4

(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

)

≥ 1 − 3 p / (N q ).

1 5
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B

B

w

w

P

w

W

F

C

B

a

i

y t h e B o nf e r r o ni’ s i n e q u alit y, w e h a v e

P

(
s u p

1 ≤ k r ≤ K r ,1 ≤ k c ≤ K c

∥ α̂ o r
k r ,k c

− α ∗
k r ,k c

∥ 2 ≤ C 3 C 4

(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

)

≥ 1 −

K r∑

k r = 1

K c∑

k c = 1

P

(
∥ α̂ o r

k r ,k c
− α ∗

k r ,k c
∥ 2 > C 3 C 4

(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

)
≥ 1 − 3 K r K c p / (N q ).

y L e m m a 1 a n d ( A. 2), w e h a v e

∥ ĝ o r
(k r ,k c ) − g ∗

(k r ,k c ) ∥ = ∥ α̂ o r ⊤
k r ,k c

U p − α ∗ ⊤
k r ,k c

U p + α ∗ ⊤
k r ,k c

U p − g ∗
(k r ,k c ) ∥ ≤ ∥ ( α̂ o r

k r ,k c
− α ∗

k r ,k c
)⊤ U p ∥ + ∥ α ∗ ⊤

k r ,k c
U p − g ∗

(k r ,k c ) ∥

≤ C
1 / 2

2 C 3 C 4

(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

+ M 2 J − κ ≤ (C
1 / 2

2 C 3 C 4 + M 2 / 2)
(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

= C ∗
(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

,

h e r e C ∗ = m a x {C 3 C 4 , C
1 / 2

2 C 3 C 4 + M 2 / 2 }. T h at i s,

P

(
s u p

1 ≤ k r ≤ K r ,1 ≤ k c ≤ K c

∥ ĝ o r
(k r ,k c ) − g ∗

(k r ,k c ) ∥ ≤ ψ
)

≥ 1 − 3 K r K c p / (N q ),

h e r e ψ = C ∗
(
p l o g(N q )/ |G (r ,c )

mi n |
) 1 / 2

. □

r o of of T h e o r e m 2 . L et ρ 1 (t ) = γ − 1
2 p τ (t , γ2 ) a n d ρ 2 (t ) = ((N / q ) 1 / 2 γ 2 )− 1 p τ (t , (N / q ) 1 / 2 γ 2 ). D efi n e

Q (β ) =
1

2

N∑

i= 1

q∑

j= 1

(
∥ Y i,j − U i,jβ i,j∥

2
2 + γ 1 β

⊤
i,jD β i,j

)
,

P e n (β ) = γ 2

∑

(i1 ,i2 )∈ ∆ (r )

ρ 1 (∥ β (r )

i1
− β (r )

i2
∥ 2 ) + (N / q ) 1 / 2 γ 2

∑

(j1 ,j2 )∈ ∆ (c )

ρ 2 (∥ β (c )

j1
− β (c )

j2
∥ 2 ),

Q G (α ) =
1

2

K r∑

k r = 1

K c∑

k c = 1

(
∥ Y (k r ,k c ) − U (k r ,k c ) α k r ,k c ∥

2
2 + γ 1 |G

(r ,c )

k r ,k c
|α ⊤

k r ,k c
D α k r ,k c

)
,

P e n G (α ) = γ 2

∑

k r < k ′
r

|G (r )

k r
∥ G

(r )

k ′
r
|ρ 1 (∥ α (r )

k r
− α (r )

k ′
r
∥ 2 ) + (N / q ) 1 / 2 γ 2

∑

k c < k ′
c

|G (c )

k c
∥ G

(c )

k ′
c
|ρ 2 (∥ α (c )

k c
− α (c )

k ′
c
∥ 2 ),

h e r e α (r )

k r
= (α (r )⊤

k r ,1 , . . . , α (r )⊤
k r ,q )⊤ wit h α (r )

k r ,j = α k r ,k if j ∈ G
(c )

k , α (c )

k c
= (α (c )⊤

1 ,k c
, . . . , α (c )⊤

N ,k c
)⊤ wit h α (c )

i,k c
= α k ,k c if i ∈ G

(r )

k . L et

L (β ) = Q (β ) + P e n (β ), L G (α ) = Q G (α ) + P e n G (α ).

e d efi n e t w o m a p pi n g s, T̃ : M G → ˜M G a n d T̂ : R N q p → ˆM G , a n d t h e t w o s u b s p a c e s a r e d efi n e d b y

˜M G =

{

α ∈ R K r K c p : α k r ,k c = β i,j, f o r a n y (i, j) ∈ G
(r ,c )

k r ,k c
, 1 ≤ k r ≤ K r , 1 ≤ k c ≤ K c

}

,

ˆM G =

{

α ∈ R K r K c p : α k r ,k c = | G
(r ,c )

k r ,k c
|
− 1 ∑

(i,j)∈ G
(r ,c )
k r ,k c

β i,j, 1 ≤ k r ≤ K r , 1 ≤ k c ≤ K c

}

.

o r e v e r y β ∈ M G , w e h a v e P e n (β ) = P e n G ( T̃ (β )), a n d f o r e v e r y α ∈ ˜M G , w e h a v e P e n ( T̃ − 1 (α )) = P e n G (α ). H e n c e

L (β ) = L G ( T̃ (β )), L G (α ) = L ( T̃ − 1 (α )). ( A. 1 0)

o n si d e r t h e n ei g h b o r h o o d of β ∗ :

Θ =
{
β ∈ R N q p : s u p

1 ≤ i≤ N ,1 ≤ j≤ q

∥ β i,j − β ∗
i,j∥ 2 ≤ ψ

}
.

y t h e r e s ult i n T h e o r e m 1 , t h e r e i s a n e v e nt E 1 s u c h t h at o n E 1 ,

s u p
1 ≤ i≤ N ,1 ≤ j≤ q

∥ β̂
o r

i,j − β ∗
i,j∥ 2 ≤ ψ ,

n d P (E C
1 ) ≤ 3 K r K c p / (N q ). H e n c e β̂

o r
∈ Θ o n E 1 . F o r a n y β ∈ R N q p , l et β̃ = T̃ − 1 ( T̂ (β )). I n s pi r e d b y [2 7 ], w e s h o w t h at β̂

o r

s a st ri ctl y l o c al mi ni mi z e r of o bj e cti v e f u n cti o n ( 3) wit h p r o b a bilit y t e n di n g t o 1 t h r o u g h t h e f oll o wi n g t w o st e p s:

˜ ˆ o r ˜ ˆ o r

(i) O n E 1 , L (β ) > L (β ) f o r a n y β ∈ Θ a n d β ̸ =β .

1 6
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T

l

b

T

S

H

i

T̂

r

a

w

w

(ii) T h e r e i s a n e v e nt E 2 s u c h t h at P (E C
2 ) ≤ c 2 / (N q ). O n E 1 ∩ E 2 , t h e r e i s a n ei g h b o r h o o d of β̂

o r
, d e n ot e d b y Θ ′, s u c h t h at

L (β ) ≥ L ( β̃ ) f o r a n y β ∈ Θ ′ ∩ Θ f o r s uffi ci e ntl y l a r g e N a n d q .

h e r ef o r e, b y t h e r e s ult s i n (i) a n d (ii), w e h a v e L (β ) > L ( β̂
o r

) f o r a n y β ∈ Θ ′ ∩ Θ a n d β̃ ̸ =β̂
o r

, s o t h at β̂
o r

i s a st ri ctl y

o c al mi ni mi z e r of L (β ) o n E 1 ∩ E 2 wit h P (E 1 ∩ E 2 ) ≥ 1 − 3 K r K p p / (N q ) − c 2 / (N q ) f o r s uffi ci e ntl y l a r g e N a n d q .

Fi r stl y, w e p r o v e t h e r e s ult i n (i) . L et T̂ (β ) = α = (α ⊤
1 ,1 , . . . , α ⊤

K r ,K c
)⊤ a n d α (r )∗

k r
= (β (r )∗ ⊤

i,1 , . . . , β (r )∗ ⊤
i,q )⊤ f o r i ∈ G

(r )

k r
. Si n c e

∥ α (r )

k r
− α (r )

k ′
r
∥ 2 ≥ ∥ α (r )∗

k r
− α (r )∗

k ′
r

∥ 2 − 2 s u p
1 ≤ k r ≤ K r

∥ α (r )

k r
− α (r )∗

k r
∥ 2 ,

a n d

s u p
1 ≤ k r ≤ K r

∥ α (r )

k r
− α (r )∗

k r
∥ 2

2 = s u p
1 ≤ k r ≤ K r

{ K c∑

k c = 1

|G (c )

k c
| ·






∑

i∈ G
(r )
k r

∑

j∈ G
(c )
k c

β i,j/ (|G (r )

k r
∥ G

(c )

k c
|) − α ∗

k r ,k c






2

2

}

≤ s u p
1 ≤ k r ≤ K r

|G (r )

k r
|
− 1

K c∑

k c = 1

∑

i∈ G
(r )
k r

∑

j∈ G
(c )
k c

∥ β i,j − β ∗
i,j ∥ 2

2 ≤ q s u p
1 ≤ i≤ N ,1 ≤ j≤ q

∥ β i,j − β ∗
i,j∥

2
2

( A. 1 1)

y L e m m a 2 , f o r a n y k r ̸ =k ′
r

∥ α (r )

k r
− α (r )

k ′
r
∥ 2 ≥

1

2
|G (c )

mi n |
1 / 2

C
− 1 / 2

2 b − 2 q 1 / 2 s u p
1 ≤ i≤ N ,1 ≤ j≤ q

∥ β i,j − β ∗
i,j∥ 2

≥
1

2
|G (c )

mi n |
1 / 2

C
− 1 / 2

2 b − 2 q 1 / 2 C 3 ψ > a γ 2 .

h e l a st i n e q u alit y f oll o w s f r o m t h e a s s u m pti o n t h at |G (c )

mi n |
1 / 2

b ≫ γ 2 ≫
(
p q

) 1 / 2
l o g(N q )/ mi n {|G (r )

mi n |, |G (c )

mi n |} ≫ q 1 / 2 ψ .

i mil a rl y, f o r a n y k c ̸ =k ′
c , w e h a v e

∥ α (c )

k c
− α (c )

k ′
c
∥ 2 ≥

1

2
|G (r )

mi n |
1 / 2

C
− 1 / 2

2 b − 2 N 1 / 2 s u p
1 ≤ i≤ N ,1 ≤ j≤ q

∥ β i,j − β ∗
i,j∥ 2

≥
1

2
|G (r )

mi n |
1 / 2

C
− 1 / 2

2 b − 2 N 1 / 2 C 3 ψ > a (N / q ) 1 / 2 γ 2 .

e n c e b y C o n diti o n ( C 4), P e n G ( T̂ (β )) = C p e n , a c o n st a nt, a n d h e n c e L G ( T̂ (β )) = Q G ( T̂ (β )) + C p e n f o r all β ∈ Θ . Si n c e α̂ o r

s t h e u ni q u e gl o b al mi ni mi z e r of Q G (α ), Q G ( T̂ (β )) > Q G ( α̂ o r
) f o r all T̂ (β ) ̸ = α̂ o r

, a n d t h u s L G ( T̂ (β )) > L G ( α̂ o r
) f o r all

(β ) ̸ = α̂ o r
. B y ( A. 1 0), w e h a v e L G ( T̂ (β )) = L ( β̃ ) a n d L G ( α̂ o r

) = L ( β̂
o r

). T h e r ef o r e L ( β̃ ) > L ( β̂
o r

) f o r all β̃ ̸ = β̂
o r

, a n d t h e

e s ult (i) i s p r o v e d.

N e xt w e p r o v e r e s ult (ii). F o r a p o siti v e s e q u e n c e ν n , l et

Θ ′ =
{
β ∈ R N q p : s u p

1 ≤ i≤ N

∥ β (r )

i − β̂
(r )o r

i ∥ 2 ≤ ν n , s u p
1 ≤ j≤ q

∥ β (c )

j − β̂
(c )o r

j ∥ 2 ≤ ν n

}
,

P e n r (β ) = γ 2

∑

(i1 ,i2 )∈ ∆ (r )

ρ 1 (∥ β (r )

i1
− β (r )

i2
∥ 2 ), P e n c (β ) = (N / q ) 1 / 2 γ 2

∑

(j1 ,j2 )∈ ∆ (c )

ρ 2 (∥ β (c )

j1
− β (c )

j2
∥ 2 ),

n d P e n (β ) = P e n r (β ) + P e n c (β ). F o r β ∈ Θ ′ ∩ Θ , b y T a yl o r’ s e x p a n si o n, w e h a v e

L (β ) − L ( β̃ ) = Ω 1 + Ω 2 + Ω 3 , ( A. 1 2)

h e r e

Ω 1 =

N∑

i= 1

q∑

j= 1

[
− U ⊤

i,j(Y i,j − U i,j β̄ i,j) + γ 1 D β̄ i,j

] ⊤

(β i,j − β̃ i,j),

Ω 2 =

N∑

i= 1

(
∂ P e n r ( β̄ )

∂ β (r )

i

⏐
⏐
⏐
⏐

β
(r )
i

= β̄
(r )
i

) ⊤

(β (r )

i − β̃
(r )

i ), Ω 3 =

q∑

j= 1

(
∂ P e n c ( β̄ )

∂ β (c )

j

⏐
⏐
⏐
⏐

β
(c )
j

= β̄
(c )
j

) ⊤

(β (c )

j − β̃
(c )

j ),

it h β̄ = ( β̄
⊤

, . . . , β̄
⊤

)⊤ a n d β̄ = s β + ( 1 − s ) β̃ f o r s o m e s ∈ ( 0, 1).
1 ,1 N ,q i,j i,j i,j

1 7
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Fi r stl y, w e h a v e

Ω 2 = γ 2

∑

i1 < i2

ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 )∥ β̄

(r )

i1
− β̄

(r )

i2
∥ − 1

2 ( β̄
(r )

i1
− β̄

(r )

i2
)⊤ (β (r )

i1
− β̃

(r )

i1
)

+ γ 2

∑

i1 > i2

ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 )∥ β̄

(r )

i1
− β̄

(r )

i2
∥ − 1

2 ( β̄
(r )

i1
− β̄

(r )

i2
)⊤ (β (r )

i1
− β̃

(r )

i1
)

= γ 2

∑

i1 < i2

ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 )∥ β̄

(r )

i1
− β̄

(r )

i2
∥ − 1

2 ( β̄
(r )

i1
− β̄

(r )

i2
)⊤ [(β (r )

i1
− β̃

(r )

i1
) − (β (r )

i2
− β̃

(r )

i2
)].

W h e n i1 , i2 ∈ G
(r )

k r
, β̃ i1

= β̃ i2
. T h u s

Ω 2 = γ 2

K r∑

k r = 1

∑

i1 ,i2 ∈ G
(r )
k r

,i1 < i2

ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 )∥ β̄

(r )

i1
− β̄

(r )

i2
∥ − 1

2 ( β̄
(r )

i1
− β̄

(r )

i2
)⊤ (β (r )

i1
− β (r )

i2
)

+ γ 2

∑

k r < k ′
r

∑

i1 ∈ G
(r )
k r

,i2 ∈ G
(r )

k ′
r

ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 )∥ β̄

(r )

i1
− β̄

(r )

i2
∥ − 1

2 ( β̄
(r )

i1
− β̄

(r )

i2
)⊤ [(β (r )

i1
− β̃

(r )

i1
) − (β (r )

i2
− β̃

(r )

i2
)].

A s s h o w n i n T h e o r e m 1 , s u pi ∥ β̃
(r )

i − β (r )∗
i ∥ 2

2 = s u p k r
∥ α (r )

k r
− α (r )∗

k r
∥ 2

2 ≤ q ψ 2 . Si n c e β̄
(r )

i = s β (r )

i + ( 1− s ) β̃
(r )

i , s u pi ∥ β̄
(r )

i − β (r )∗
i ∥ 2 ≤

s q 1 / 2 ψ + ( 1 − s )q 1 / 2 ψ = q 1 / 2 ψ . F o r k r ̸ =k ′
r , i1 ∈ G

(r )

k r
, i2 ∈ G

(r )

k ′
r

, w e h a v e

∥ β̄
(r )

i1
− β̄

(r )

i2
∥ 2 ≥ mi n

i1 ∈ G
(r )
k r

,i2 ∈ G
(r )

k ′
r

∥ β (r )∗
i1

− β (r )∗
i2

∥ 2 − 2 m a x
i

∥ β̄
(r )

i − β (r )∗
i ∥ 2 ≥

1

2
|G (c )

mi n |
1 / 2

C
− 1 / 2

2 b − 2 q 1 / 2 ψ > a γ 2 ,

a n d t h u s ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 ) = 0. T h e r ef o r e,

Ω 2 = γ 2

K r∑

k r = 1

∑

i1 ,i2 ∈ G
(r )
k r

,i1 < i2

ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 )∥ β (r )

i1
− β (r )

i2
∥ 2

≥ γ 2

K r∑

k r = 1

∑

i1 ,i2 ∈ G
(r )
k r

,i1 < i2

ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 )q − 1 / 2

q∑

j= 1

∥ β i1 ,j − β i2 ,j∥ 2

= γ 2 q − 1 / 2

K r∑

k r = 1

K c∑

k c = 1

∑

i1 ,i2 ∈ G
(r )
k r

,i1 < i2

∑

j∈ G
(c )
k c

ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 )∥ β i1 ,j − β i2 ,j∥ 2 .

Si mil a rl y t o ( A. 1 1), s u pi ∥ β̃
(r )

i − β̂
(r )o r

i ∥ 2 ≤ ν n a n d s u p i ∥ β (r )

i − β̂
(r )o r

i ∥ 2 ≤ ν n . T h e n w e h a v e

s u p
i1 < i2

∥ β̄
(r )

i1
− β̄

(r )

i2
∥ 2 ≤ 2 s u p

i

∥ β̄
(r )

i − β̃
(r )

i ∥ 2 ≤ 2 s u p
i

∥ β (r )

i − β̃
(r )

i ∥ 2 ≤ 2

(
s u p

i

∥ β (r )

i − β̂
(r )o r

i ∥ 2 + s u p
i

∥ β̃
(r )

i − β̂
(r )o r

i ∥ 2

)
≤ 4 ν n .

H e n c e ρ ′
1 (∥ β̄

(r )

i1
− β̄

(r )

i2
∥ 2 ) ≥ ρ ′

1 ( 4ν n ) b y t h e c o n c a vit y of ρ (·). A s a r e s ult,

Ω 2 ≥ γ 2 q − 1 / 2

K r∑

k r = 1

K c∑

k c = 1

∑

i1 ,i2 ∈ G
(r )
k r

,i1 < i2

∑

j∈ G
(c )
k c

ρ ′
1 ( 4ν n )∥ β i1 ,j − β i2 ,j∥ 2 . ( A. 1 3)

N e xt w e c o n si d e r Ω 3 . Si mil a rl y t o t h e d e ri v ati o n of ( A. 1 3), w e c a n d e ri v e

Ω 3 ≥ γ 2 q − 1 / 2

K r∑

k r = 1

K c∑

k c = 1

∑

j1 ,j2 ∈ G
(c )
k c

,j1 < j2

∑

i∈ G
(r )
k r

ρ ′
2 ( 4ν n )∥ β i,j1

− β i,j2
∥ 2 . ( A. 1 4)

L a stl y f o r Ω 1 , w e h a v e

Ω 1 = −

N∑

i= 1

q∑

j= 1

w ⊤
i,j(β i,j − β̃ i,j) = −

K r∑

k r = 1

K c∑

k c = 1

∑

(r )

∑

(c )

w ⊤
i1 ,j1

(β i1 ,j1
− β i2 ,j2

)

|G (r ,c )

k r ,k c
|

,

i1 ,i2 ∈ G
k r

j1 ,j2 ∈ G
k c

1 8
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a

B

(

h

A

S

R

n d

K r∑

k r = 1

K c∑

k c = 1

∑

i1 ,i2 ∈ G
(r )
k r

∑

j1 ,j2 ∈ G
(c )
k c

|w ⊤
i1 ,j1

(β i1 ,j1
− β i2 ,j2

)|

|G (r ,c )

k r ,k c
|

≤ s u p
i,j

∥ w i,j∥ 2

K r∑

k r = 1

K c∑

k c = 1

∑

i1 ,i2 ∈ G
(r )
k r

∑

j1 ,j2 ∈ G
(c )
k c

∥ β i1 ,j1
− β i2 ,j2

∥ 2

|G (r ,c )

k r ,k c
|

≤ 2 s u p
i,j

∥ w i,j∥ 2

K r∑

k r = 1

K c∑

k c = 1

∑

i1 ,i2 ∈ G
(r )
k r

,i1 < i2

∑

j∈ G
(c )
k c

∥ β i1 ,j − β i2 ,j∥ 2

|G (r )

k r
|

+ 2 s u p
i,j

∥ w i,j∥ 2

K r∑

k r = 1

K c∑

k c = 1

∑

j1 ,j2 ∈ G
(c )
k c

,j1 < j2

∑

i∈ G
(r )
k r

∥ β i,j1
− β i,j2

∥ 2

|G (c )

k c
|

,

w h e r e w i,j = U ⊤
i,j(Y i,j − U i,j β̄ i,j) − γ 1 D β̄ i,j. N ot e t h at

s u p
i,j

∥ w i,j∥ 2 ≤ s u p
i,j

∥ U ⊤
i,j(g

∗
i,j − U i,jβ

∗
i,j)∥ 2 + s u p

i,j
∥ (U ⊤

i,jU i,j + γ 1 D )(β ∗
i,j − β̄ i,j)∥ 2 + s u p

i,j
∥ γ 1 D β ∗

i,j∥ 2 + s u p
i,j

∥ U ⊤
i,jϵ i,j∥ 2 .

y L e m m a 1 , s u pi,j ∥ U ⊤
i,j(g

∗
i,j − U i,jβ

∗
i,j)∥ 2 ≤ n m M 1 M 2 p 1 / 2 J − κ . M o r e o v e r, s u pi,j ∥ (U ⊤

i,jU i,j + γ 1 D )(β ∗
i,j − β̄ i,j)∥ 2 ≤ (n

1 / 2
m p 1 / 2 M 1 +

γ 1 ∥ D ∥ 2 )ψ , s u pi,j ∥ γ 1 D β ∗
i,j∥ 2 ≤ p 1 / 2 γ 1 ∥ D ∥ 2 ∥ β ∗ ∥ ∞ . Wit h t h e B o nf e r r o ni’ s i n e q u alit y, M a r k o v’ s i n e q u alit y, a n d C o n diti o n ( C 5),

w e h a v e

P

(
s u p

i,j
∥ U ⊤

(i,j) ϵ i,j∥ 2 > 2 n i,jF
− 1 M 1 p 1 / 2 l o g(N q )

)
≤

N∑

i= 1

q∑

j= 1

P

(
∥ U ⊤

(i,j) ϵ i,j∥ 2 > 2 n i,jF
− 1 M 1 p 1 / 2 l o g(N q )

)

≤

N∑

i= 1

q∑

j= 1

P

(
F n

− 1 / 2

i,j ∥ ϵ i,j∥ 2 > 2 l o g( N q )

)
≤ c 2 / (N q ).

T o g et h e r wit h C o n diti o n s ( C 1) a n d ( C 3), w e h a v e

s u p
i,j

∥ w i,j∥ 2 = O (p 1 / 2 l o g(N q )) ( A. 1 5)

h ol d s wit h p r o b a bilit y at l e a st 1 − c 2 / (N q ). L et ν n = o ( 1), t h e n ρ ′
1 ( 4ν n ) → 1 a n d ρ ′

2 ( 4ν n ) → 1. Si n c e γ 2 ≫

p q
) 1 / 2

l o g(N q )/ mi n {|G (r )

mi n |, |G (c )

mi n |}, t h e n b y ( A. 1 2)– ( A. 1 5)

L (β ) − L ( β̃ ) = Ω 1 + Ω 2 + Ω 3 ≥

K r∑

k r = 1

K c∑

k c = 1

∑

i1 ,i2 ∈ G
(r )
k r

,i1 < i2

∑

j∈ G
(c )
k c

[

γ 2 q − 1 / 2 ρ ′
1 ( 4ν n ) −

2 s u p i,j ∥ w i,j∥ 2

|G (r )

k r
|

]

∥ β i1 ,j − β i2 ,j∥ 2

+

K r∑

k r = 1

K c∑

k c = 1

∑

j1 ,j2 ∈ G
(c )
k c

,j1 < j2

∑

i∈ G
(r )
k r

[

γ 2 q − 1 / 2 ρ ′
2 ( 4ν n ) −

2 s u p i,j ∥ w i,j∥ 2

|G (c )

k c
|

]

∥ β i,j1
− β i,j2

∥ 2 ≥ 0

ol d s wit h p r o b a bilit y at l e a st 1 − c 2 / (N q ), w hi c h c o m pl et e s t h e p r o of of r e s ult (ii). □

p p e n di x B. S u p pl e m e n t a r y d a t a

S u p pl e m e nt a r y m at e ri al r el at e d t o t hi s a rti cl e c a n b e f o u n d o nli n e at htt p s:// d oi. o r g/ 1 0. 1 0 1 6/j.j m v a. 2 0 2 1. 1 0 4 8 7 4 . T h e
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