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1. Introduction

In biomedical data analysis, clustering has been routinely conducted. The clustering of samples can assist better
understanding sample heterogeneity, and the clustering of covariates can identify those that behave similarly across
samples and then, for example, improve our understanding of covariate functionalities. Clustering can also serve as
the basis of other analysis, for example, regression. Biclustering analysis has also been developed, identifying clustering
structures in both sample and covariate dimensions. It includes sample- and covariate-clustering as special cases and, in
a sense, can be more comprehensive. For generic reviews of techniques, theories, and applications of clustering, we refer
to [19,46].

This study has been partly motivated by the analysis of gene expression data, for which sample- and covariate-
clustering as well as biclustering have been extensively conducted [21,45]. Most gene expression studies generate
“snapshot” values, Unlike some types of omics measurements, gene expression values can be time-dependent, and the
temporal trends of gene expressions can have important biological implications [16]. Accordingly, time-course gene
expression studies have been conducted, generating multiple measurements at different time points for each gene of
each sample. In the analysis of time-course gene expression data, besides simple statistics, functional data analysis (FDA)
techniques, have been adopted and shown as powerful [12].
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FDA deals with data samples that consist of curves or other infinite-dimensional data objects. Over the last two decades,
we have witnessed significant developments in its theory, method, computation, and application. For systematic reviews,
we refer to [2,15,23,40]. In FDA, clustering analysis has been of particular interest. A popular approach projects functional
data into a finite-dimensional space and then applies existing clustering methods. For example, Abraham et al. [ 1] conduct
B-spline expansions, and clusters the estimated coefficients using a k-means algorithm. Peng and Miiller [30] develop a
distance for sparse functional data, and apply a k-means algorithm to functional principle component analysis (PCA)
scores. Other approaches, such as Bayesian [37], subspace [3,9,10], and model-based [18,20], have also been developed.
We refer to [17,40] for surveys on functional data clustering. Most works in this area, however, have focused on either
sample- or covariate-clustering,.

For biclustering analysis (of gene expression and other types of data), in this article, we take the “natural next step”
and consider the scenario where for each covariate of each sample, a function or its realizations at discrete time points
are available. We note that, although this study has been partly motivated by gene expression data and some of the
discussions are focused on such data, the considered data scenario and proposed technique can have applications far
beyond such data. For example, in biomedical studies, many biomarkers measured in blood tests vary across time, and
their values can be obtained from medical records. In financial studies, many measures of a company, for example size
and stock price, vary across time, As such, our investigation can have broad applications.

There is a vast literature on biclustering analysis with scalar measurements. Directly applying such techniques to the
present problem will involve either treating functional measurements as scalars and then computing distances (between
covariates and samples) — which may be ineffective by not sufficiently accounting for the functional nature of data, or first
estimating functionals and then computing distances between the estimates — which may also encounter challenges when
a large number of functionals need to be jointly estimated. Our literature review suggests that there are also a handful
recent biclustering methods designed for functional (especially including longitudinal) data. For example, Slimen et al. [35]
propose a biclustering method for multivariate functional data based on the Gaussian latent block model (LBM) using the
first functional PCA scores. Bouveyron et al. [4] develop an extension of the Gaussian LBM by modeling the whole set of
functional PCA scores. In another work [28], a biclustering method with a plaid model is extended to three-dimensional
data arrays, of which multivariate longitudinal data is a special case.

For the biclustering analysis of functionals, in this article, we develop a penalized fusion based approach. More
specifically, a nonparametric model is assumed for each covariate of each sample, allowing for sufficient flexibility in
modeling. A doubly penalization technique is adopted, which includes a smoothness penalty to regulate nonparametric
estimation. The most significant advancement is the second, fusion penalty, which “transforms” clustering in both sample
and covariate dimensions to a penalized estimation problem. Statistical and numerical investigations are conducted,
providing the proposed approach a solid ground. This study may complement and advance from the existing ones
in multiple aspects. Compared to direct applications of biclustering methods for scalars (that either directly compute
distances without functional estimation or estimate functionals separately), the proposed approach can more effectively
accommodate the functional nature of data or generate more effective estimation. This is because it “combines” clustering
and estimation, and as such, estimation only needs to be conducted for clusters as opposed to individual covariates,
potentially leading to a smaller number of parameters and hence more effective estimation. Compared to some of the
existing biclustering methods for functionals, such as [4,35], the proposed approach has a much easier way of determining
the number of clusters. In addition, unlike [4,35], it does not make stringent distributional assumptions (for example,
normality). Meanwhile, rigorous theoretical investigations are conducted beyond methodological developments, granting
the proposed approach a stronger statistical basis. It also advances from the clustering of functional covariate effects
(assuming homogeneous samples) by simultaneously examining sample heterogeneity, thus being more comprehensive,
Additionally, this study may also advance and enrich the penalized fusion technique. Clustering via penalized fusion has
been pioneered in [8] and other studies. Compared to alternative clustering techniques, it is more recent and has notable
statistical and numerical advantages [44]. Compared to the existing penalized fusion based clustering, this study differs
by conducting biclustering and by having unknown parameters generated from the basis expansion of functionals. Last
but not least, this study also provides a practically useful and new way of analyzing time-course gene expression data
(and other data with similar characteristics).

The remainder of this article is organized as follows: Section 2 introduces the new biclustering approach via penalized
fusion and develops an effective computational algorithm. Statistical properties are established to provide our method
a strong theoretical support. Simulation studies and the analysis of two time-course expression data are conducted in
Sections 3 and 4, respectively. Section 5 concludes with a brief discussion. The proofs of the main results are presented
in Appendix A.

2. Methods
2.1. Data and model settings

For the j € {1,...,q}th covariate of sample i € {1,...,N}, denote Y;; = (Y,-‘j-J,...,Y,-j‘nU)T as the ordered
measurements (ordered by time for time-course gene expression data), which are the discrete realizations of an unknown
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underlying functional. Further denote Y; = (Y,,....Y[)". Y = (¥{,....,¥y)". and n = P i1 Mij. Under the
biclustering analysis framework, assume that data can be ‘decomposed” mto KIr sample (row) groups and K, covariate
(column) groups. Note that advancing from many existing approaches, the numbers of two dimensional groups are not
pre-specified. Denote t; ijmS €T =1[0,1]as the observed time points. If (sample i, covariate j) belongs to the k,th sample
group and the k.th covariate group, then

Yijm = 8k ke)(tijm) + €ijms (1)
where g, k)(t) is the unknown mean function, and €/; s are the random errors with mean zero.
For estimation, we adopt the basis expansion technique. Specifically, denote Uy(t) = (U1 p(t), ..., Upp(t))" as the

collection of p rescaled basis functions. In the literature, there are extensive studies on choosing the form and number of
basis functions [32], which will not be reiterated here. In our numerical study, we adopt B-spline basis functions of order
d = 3. Let g; j(t) be the unknown mean function for the jth covariate of the ith sample, then we have

8ij(t) ~ U;—(t)ﬁf‘js

where B;; = (Bij1,---» Bijp)' is the vector of unknown coefficients. Further denote U;j = (Up(tij1). - -, Up(t,-‘j‘nu.))T. For
estimation (without clustering), consider the objective function

Q(B) = SIY ~UBIE + 311 Mﬂ—222(um UiByj3 + 71BIDBy). 2)

i=1 j=1

where U = diag(Uy,1,...,U1gq,-..,Ung) B = (BT IR lq,.. ﬁNq) T,M = diag(D,...,D),D=48"8,8isa(p—2)xp
matrix representing the second order differential operator, and y; is a non-negative tuning parameter, In this objective
function, the first term is the lack-of-fit, and the penalty term controls the smoothness of estimation.

2.2. Biclustering via penalized fusion

Under the clustering via penalized fusion framework, two samples (covariates) belong to the same cluster if and only if
they have the same regression coefficients, As such, clustering amounts to determmmg whether two samples (covariates)
have the same estimated coefficients. For samples 11, 12 € {1 ., N}, denote ﬁ( ,,8 as the length p x q vectors of

coefficients. For covariates jq, j» € {1, ..., q}, denote ,8 ,8 as the lengthp x N vectors of coefficients. For estimating 8
and hence determining the clustering structure, we propose minimizing the objective function:

B=B) + > plBY =B )+ Y pelBY — B 2. (N/g) ). (3)

1=iy<ip=N 1=j1<j2=q

Here p.(, ) is a penalty function, 7 is a regularization parameter, || - ||, is the £; norm, and y» is a data-dependent tuning
parameter. (N jq)” 2 is added to make the two penalties comparable. In our numerical study, we adopt MCP [47], that is,
p(t,y)=y fu (1—x/(ty)).dx with T > 1. Here (x), = xif x > 0, and (x), = 0 otherwise. Note that SCAD [14] and some

other penalties are also applicable, Denote the estimator as 3. Let {r:.s1 yees ‘('}} be the distinct values of ,8 s Similarly,

A{c

let {&, .. ) be the distinct values of ,8 hs. We can then obtain the block structure of B by {“1‘1 s K’ ‘K }, which

are the distmct values of ,8,,], and set K, = K; x K.

In (3), penalty is imposed to the norms of all pairwise differences to promote equality, as in “standard” penalized
fusion [8]. Here it is noted that, as in [8], since there is no information on the order of samples/covariates, all pairwise
differences are taken, which differs from, for example, fused Lasso and other fused penalizations. Different from [8],
as clustering needs to be conducted in both the sample and covariate dimensions, two fusion penalties are imposed,
promoting equality in two directions. It is also noted that each specific coefficient shows up in three different penalties.
As 1o be shown below, with properly chosen tunings, there is not an over penalization problem. In addition, it is not rare
to have a parameter involved in two or more penalties [7].

The proposed approach involves two tunings, which have “ordinary” implications, with one controlling smoothness
and the other determining the structure of clustering. One possibility is to conduct a two-dimensional grid search. Here
we adopt the alternative proposed in [48], which has two steps and a lower computational cost. In particular, in the first
step, we set ¥, = 0 and select the optimal y; by minimizing:

BIC(y;) = EZI ("Yu gIJ||2) IOg(nlJ)df”]

i=1 j=1 t

where df;j = trace{U.J(U Ui+ D)~ ‘UL-} and & = (&j(tij1). - - - &ijltijm,))T with §ij(t) = U (6)By;.
3
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In the second step, we fix the value of y; at the optimal and select y; by minimizing

Y —§II§) 4 log(Nq)

df,
Ngq Ngq

BIC(y,) = log(
where df = (K;K./Nq) 1iL, 3L dfij and & = (/... &n )"
2.3. Computation

We develop an effective algorithm based on the ADMM technique. Specifically, we first reformulate (3) as

argmin Q(B)+ Y Pl llz. v2) + Y pelllnsll2. (N/9)?2),

Fealrn) seAlc)
subject to ﬁg:] - ﬁf_? =7, ;3}(-:) 5;(;} =1y,

where AT = {§ = (i;,i3) : 1 < i; < i, < N} and A©) = {§ = (j1.j») : 1 < ji < j» < q}. Optimizing the constrained
objective function is equivalent to optimizing the augmented Lagrangian function:

L(B. Hr,Hc,Ar,AcJ——nY UBI3 + wﬁ MB+ Y pellind Il ) + Y AT — B + BY)

seAlr) seAln
+= E 5" — B+ B0+ D pellngll2, (N/q)2y2) 4)
SEAV} aegif)
T
+ 3 AT - B +ﬁf})+ 3 1Y - B9 + B2,
SeAlc) EEA(CJ
where 6 is a small posm\.re constant, H, = [r; ..,r;N 1)) HC = [q“ 2]] __,,,(;) Lok Ar = {1(;)2}, - l{; L) and

= (1{1 2 l[q ) Here we introduce the dual variables l and l corresponding to the pair § in A™ and A©),

and the cardmahry of A" and A are denoted by |A®)| and |A(C I.
We consider an iterative algorithm, where the updates in step m + 1 are:

g+ — arg;nin Lg(ﬁ, H™), H™, AE'"),AE"']), HmD = argmm Lg(ﬁm+] H,,A,(r'")),

i1 2

H£m+l} — argminLg(ﬁ('"H},Hc,A?")), l‘{;xmﬂ} — lgr)(m +9(ﬂ‘{§r](m+1}_ﬁgr)(m+1)+ﬁ(r)(m+1]), se A[r), (5)
Hc

lgc)(m+1) _ lgc)(m)+9(ngc)(m+1}_ﬁ§;:)(m+1)+ﬁ};)[m+1)), se A

More specifically, when optimizing over f, we consider

f(B) = —||v UBIZ + - ;« BTMB+ > ( > ™ —BPBE+ Y 1™ - BOBIR), (6)

seAlr) sealc)
where 7 = 3¢ + 11[;), 7 =gl 4 1 l = (e ) Qlp. B =y @ [(ej; ej(-;})T ®1,], e isan N x 1 zero
vector except that its ith element isl,e } isa q X 1 zero \.rector except that its jth element is 1, ® is the Kronecker product,
andIpisapx p 1dent1ty matrix. Denote B, = {B y 2}, .. BEJI,,N))T, B. = (BE';E}, . {q ,q i H, = [r; T2y f;EQ_LN}),

and H, = (r} 1.2)> --’?l(q 1q ) Then the update for g is

BV = (UTU+ 1M + 6B B, + BBCTBC)_ (UTY + 6B vec((™) -+ 0B vec(A(™)), )

where vec(Z) is the vectorization of matrix Z by columns.
For H,, we consider

2
1 1
FO) = pellnllz, 72) + 5 [ — B 4 gD g ®)
Denote z/X™) = ﬁgxmﬂ} - BE;J("’H] — A" /9 With the KKT conditions of (8), we can get a closed form solution of
H;:
z{Xm, if 1287V > o,
(r)(m+1)
R = 76 Y2/0 (r)m+1) (rXm+1) (9)
70 — .1(1 - ||Zgr](m+1]||2 )+2; ., if|lz; lz < Ty2.
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Similarly, denote z\ ™+ = ﬁj(.f)['"“) - ﬁj(.;)('"“) — %™ /9 and we can get a closed form solution of H,:

2N, if 20|, > (N/q) 21y,
U S S (N/D?¥2/6 . (exmst) e 1 o(cXme) 12 (10)
—— (- R ) 2NN 2N < (Ng) ey

Consider the initial values 8 = (UTU + ;M) ~'UTY, 5 = ﬁf:](OJ ﬁ(']("} and 7% = ﬁff)(m ,81(;]("} and A and

A\{r"} are set as zero. The ADMM based algorithm is summarized in Algorithm 1.

Algorithm 1

Input:
Response vector Y, basis expansion design matrix U, and difference matrix M;
Tuning parameters y; and y,. Specific to MCP, regularization parameter t;
Output:
Coefficient vector B, splitting variables H, and H, and dual variables A, and A(;
1: repeat
22 form=0,1,2--- do
3 Update g by (7).
4 Update H; by (9).
5: Update H, by (10).
6
7
8:

Update A; and A, by (5).
end for
until the stopping criteria are met, which are set as |[r™ ™|, < € K™V, < &7 s, < €%, and

[1s™ )|, < e in our numerical study.

Proposition 1. Denote the two primal residudls as r™ — g ﬁ('"“ vec{H My and 1™ = B MY _ yec(H™Y),
and the two dual residuals as s'™* " = 6B [vec(H™ ") — vec(H{'" )] and s™*" = 6B] [vec(HI"*") — vec(H!™))]. Then

lim ™12 = o, lim [rm+1)12 = o, lim s 4 sm)2 = o.

This result establishes convergence of the proposed algonthm In numerical analysns we stop the algorithm and

1
conclude convergence when ™ V), < " f™ ), < &7 sV, < €®@ and s™Y), < €2 Following [5],
we set the tolerance parameters as follows

= /| A")|pge™ + e“‘max' 1B, 8™ V15, [[vec(H™ D), }

& = 1A pNes + e""max[ [BeA™ V], [vec(HI+ D), } (1)

€$ual — queabs +€rel|IB;I'vec(A{rm+1))"2, €2duﬂl — .f'queﬂbs +€rei ||B:\FEC(A[J"+1])"2.

Here €™ and €™ are predetermined small values, for example 10~3, In all of our numerical analysis, convergence is
satisfactorily achieved within a small to moderate number of iterations. The code and example are publicly available at
https://github.com/ruiqwy/Biclustering,

2.4. Statistical properties

For a vector z = (z;,...,z)" € R, let ||zl = MaX;<<|z|. For a matrix Zsp, let [|IZ[lz = max,cgn yyy,—1 1ZVIl2

and ||Z]| = maxqu 1 |Zij|. For any two sequences of real numbers {a,} > 1 and {b,} > 1, denote b, < a, if
n,r‘a" = o(1). Letr be a posm\.re inte er v € (0,1], and k = r + v > 1.5. Let H be the collection of functions g on
= [0, 1], where the rth derivative g'") exists and satisfies the Lipschitz condition with order v:

87(21) — g"@) < Clzn — 22", 0<z1,2, <1,
and C is a positive constant.
Define the following collections of index sets for clustering memberships el (glIr y e (r}) for samples, G(9) =
G, ..., 69 for covariates, and "9 = (g9, ... g™ ,G"%) ) for both samples and covariates. Def ne Mg =
1 Kc 1.1 kr Kr Kc

(r.c

{ﬁ € RN ﬁ'l[]l) - ﬁl’z}z!for any (!hJ‘l) {12,12) S gk ke ,1 = k = Kr 1 = kc = Kc} Let |gkr}| Ig I and Igj{;;J
be the sizes of gk ,gk ) and gk k , respectively. Further define |g,f;,}"| = MiNq<k, <k, |(_}kr [ |gmm| = MiNq<k, <k, |gkc |, and
1659 = 161 | x 161 ). 1659 can be defined accordingly. Let p(t) = y~1p,(t, y ). Assume the following conditions.
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(C1) g i € Hforallk, € {1,....K}. ke € {1,..., K}, and 16521 "*) « p « 169"

(C2) The distribution of t;j,'s, i € {1,...,N},j € {1,...,q},m € {1,...,n;;} follows a density function fr, which is
absolutely continuous. There exist constants ¢; and C; such that 0 < ¢; < minge7 fr(t) < max,e7 fr(t) < C; < o0.

(C3) ny s are uniformly bounded for alli e {1,...,N},je{1,...,q}.

(C4) p.(t, y) is symmetric, non-decreasing, and concave in t for t € [0, oc]. There exists a constant 0 < a < o0 such
that p(t) is a constant for all t = ay, and p(0) = 0. p’(t) exists and is continuous except for a finite number of t
and p'(04) = 1.

(C5) Let €ij = (€ij1,-- -, €ijny )T, where €; s are independent across (i, j) (among different individual observational
vectors) and correlated across m (within the same (i, j)). Furthermore, there exist F > 0 and c; > 0, such that for
allie {1,...,N}andje {1 -, qh

E(exp(FIn;;'€/jei J| }) <.

Similar conditions have been assumed in the literature, The first condition in (C1) ensures that the Holder's condition is
satisfied [36]. The second condition in (C1) pertains to the growth rate of the number of internal knots, in a way similar
to [25] and [24]. Condition (C2) assumes the boundedness of the density function, similarly to [48] and others. Conditions
similar to (C3) have been commonly made. In the analysis of high-dimensional data, conditions similar to (C4) have been
common, and it is easy to verify that MCP and SCAD satisfy (C4). Condition (C5) gives the boundedness condition for the
error terms, and a similar condition can be found in [11].

When the true clustering structure is known, the oracle estimator for # can be defined as

B _argmm—EE 2 {IIY.J Ui Bijl5 + 11B; Dﬁu}

ﬁEMC kr=1kc=1 (I j)Eg;{r i:::
where g{k ko) 1S defined as the oracle estimator of gy, k) based on ﬁor. Let B* be the underlying true coefficient vector
and gj 4 be the true value of g, k). For any L*-integrable function g, denote [|g|| = ( /, .- g2(t)fr(t)dt)">.

Theorem 1. Assume that (C1)-(C5) hold. If y, = o{|gr;r:} ) and plog(Nq) <« |gmm | then with probability at least
1 - 3K;K.p/(Nq).

~ar N
sup I8 — Bijl2 = v, sup 186, ke) — &k )|l < ¥
1=<i=N,1=j<q 1<kr<Kr 1<k <K

where ¢ = C*(p log( Nq)/16%:¢ |)”2 and C* is a large constant.

This theorem establishes consistency of the oracle estimates with a high probability. Denote b = ming, k). k)
II g[",;r‘kc} — g&, kE)"' We can further establish the following result.

—1/2

Theorem 2. Assume that (C1)- (CS) and conditions in Theorem 1 hold. If b > y2|gnfi}"|_1"2, b> (qu)1r‘2y2|ggl.]"| , and

Y2 > (pq)”2 log(Nq)/ min{|gf;l}n| |gmm|} then there exists a local minimizer ,8 of L(B) satisfying
PB=8")=>1 asN,q— .

This theorem establishes that the oracle estimator is a local minimizer of the objective function with a high probability.
The estimation consistency along with the separateness of the true functions can lead to the clustering consistency.

3. Simulation

We conduct simulation to assess performance of the proposed approach and gauge against the following alternatives:
(a) the bKmeans method [ 1], which first fits each curve using B-splines and then clusters the estimated coefficients using
the k-means technique by rows and columns, (b) the funHDDC method [33], which has been developed for multivariate
functional data clustering based on latent mixture models. It has been applied to longitudinal data, and (c) the funLBM
method [4], which has been developed for functional data biclustering based on latent block models. Here we note that
the proposed and funLBM methods conduct biclustering directly, whereas the bKmeans and funHDDC methods have been
originally designed for one-way clustering-hence they are applied twice to achieve both row and column clusterings. In
addirion, the funHDDC and funLBM methods are not directly applicable to functional data with unequal measurements. We
apply imputation [26] to tackle this problem. As discussed in Section 1, biclustering methods for functional data are very
limited. It is possible to modify other existing one-way functional clustering methods to achieve biclustering, however,
this demands additional methodological developments. The three alternatives considered here have been chosen because
of their closely related frameworks and competitive performance.

In evaluation, we examine both clustering and estimation accuracy. Specifically, when examining clustering accuracy,
we consider the estimated numbers of row clusters K;, column clusters K., and biclusters K},. In addition, we use the Rand
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Table 1
Example 1: Mean, median, and standard error (SE) of K;, K., and K, as defined in Section 2, as well as the percentage of identifying the corresponding
true numbers based on 100 replicates.

N Method & K. K
Mean Median SE Per Mean Median SE Per Mean Median SE Per
30 Proposed 2.83 3.00 0.53 0.90 2.83 3.00 053 0.90 8.29 9.00 2.18 0.90
bKmeans 276 3.00 0.64 0.66 1.13 1.00 0.46 0.05 3.09 3.00 1.34 0.03
funHDDC 2.63 2.00 0.86 0.28 276 3.00 043 076 7.27 6.00 270 0.21
funLBM 4.66 5.00 0.64 0.09 443 5.00 0.83 0.22 20.88 25.00 5.31 0.09
60 Proposed 291 3.00 0.43 093 290 3.00 041 0.94 8.61 9.00 174 0.93
bKmeans 2.86 3.00 0.57 0.66 1.18 1.00 0.54 0.07 343 3.00 1.97 0.05
funHDDC 2.20 2.00 0.64 0.04 299 3.00 0.10 0.99 6.58 6.00 1.92 0.04
funLBM 3.42 3.00 0.64 0.66 3.24 3.00 0.55 0.82 11.15 9.00 331 0.55
90 Proposed 293 3.00 0.36 0.96 293 3.00 0.36 0.96 871 9.00 145 0.96
bKmeans 2.83 3.00 0.51 074 1.23 1.00 0.58 0.08 3.51 3.00 1.87 0.08
funHDDC 214 2.00 0.38 0.12 2.96 3.00 0.20 0.96 6.33 6.00 1.17 0.11
funLBM 325 3.00 0.46 0.76 3.30 3.00 0.54 074 10.68 9.00 2.03 0.52

index and adjusted Rand index to assess the accuracy of clustering, including RI; and ARI, for row clustering, RI; and ARI,
for column clustering, and RI, and ARI; for biclustering. The Rand index is defined by RI = (TP +TN)/(TP+FP +FN+TN),
where for example TP is the true positive count, defined as the number of sample pairs from the same cluster and assigned
to the same cluster, and the other counts can be defined accordingly. As the Rand index tends to be large even under
random clusterings, we also examine the adjusted Rand index defined as ARI = (RI — E(RI))/(max(RI) — E(RI)), which can
partly correct this problem. To evaluate estimation accuracy, we examine the integrated squared error (ISE) defined as

K K¢ Nij

ISE = % D Z{g[knkc){tij,m) —g"u(fu,m)r-

kr=1kc=1 ("J)Egﬁi',?c m=1

We consider a total of K, = 9 biclusters, which are formed by K, = 3 sample (row) clusters and K. = 3 covariate
(column) clusters. Yijm = & k)(tijm) + €ijm With t;;m's, m € {1,...,10}, equally spaced on [0, 1]. The nine true
functional forms are g(1,1)(t) = cos(2mt), g2,1)(t) = 1—2exp(—6t), gz.1)(t) = —1.5¢t, g1.2)(t) = 14sin(2mt), go,2)(t) = 262,
83.2)(t) =t + 1, gu,3(t) = 2(sin(27t) + cos(27t)), go3)(t) = 1+ 2, and g3 3(t) = 24/t + 1. They are also graphically
presented in Fig. 1. To better mimic real data, we allow a certain proportion (¢) of the curves from each bicluster to
have 20% missing measurements. When implementing the proposed approach, we choose smoothing splines with the
number of internal knots | = 3. We also fix # = 1 and t = 3. In what follows, under Examples 1 and 2, N > g, whereas
under Example 3, N = gq. Under Examples 1-3, the random errors are independent, whereas under Example 4, they
are correlated. Note that under Examples 1-4, simulation results are calculated based on automatic cluster selection.
Example 5 is designed to investigate the performance of these methods when the numbers of clusters are correctly
prespecified. A total of 100 replicates are simulated under each setting.

Example 1. N = 30, 60, and 90. g = 9. The clusters are balanced, with each row cluster containing N/3 samples and
each column cluster containing q/3 covariates, { = 0.3. The random errors are iid A/(0, 0.62).

Example 2. The settings are the same as in Example 1, except that the clusters are unbalanced. The row clusters have
sizes 1:2:3, and the column clusters have sizes 2:3:4.

Example 3. Set (N, q) = (30, 30), (39, 39), (45, 45), ¢ = 0.3 and 0.4. The rest are the same as in Example 1.

Example 4. The settings are similar to those under Example 1. The random errors are correlated with an AR(1) correlation
structure, where AR stands for auto-correlation. Consider AR coefficient ¢ = 0.2 and 0.8, representing weak and strong
correlations.

Example 5. The settings are the same as those in Example 1, The difference is that the numbers of clusters are correctly
prespecified instead of being selected by the BIC criterion.

Results for Example 1 are presented in Figs. 1 and 2 as well as Tables 1 and 2. More specifically, in Fig. 1, we show
the true functions for all clusters as well as sample observed data and estimated functions. In Table 1, we summarize the
numbers of identified row and column clusters as well as biclusters. In Table 2, we summarize the Rand and adjusted
Rand index values. In Fig. 2, we present the boxplots of ISE (note that different panels have different ranges for the
Y-axis). Results for Examples 2-5 are presented in the Supplementary section. Although different examples have different
numerical results, overall, the advantage of the proposed approach is clearly observed. Consider for example Table 1 with
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Table 2
Example 1: Mean and standard error (shown in parentheses) of Rl;, ARI;, RI., ARL, Rl;, and ARI; based on 100 replicates.
N Method RI; ARI; RI; ARl Rlp ARl
30 Proposed 0.940 (0.189) 0.911 (0.278) 0.936 (0.203) 0.910 (0.279) 0.927 (0.238) 0.909 (0.281)
bKmeans 0.860 (0.173) 0.740 (0.290) 0.296 (0.163) 0.052 (0.194) 0.673 (0.174) 0.307 (0.167)
funHDDC 0.744 (0.031) 0.493 (0.074) 0.940 (0.107) 0.880 (0.215) 0.889 (0.051) 0.598 (0.120)
funLBM 0.913 (0.053) 0.786 (0.109) 0.913 (0.064) 0.746 (0.153) 0.951 (0.029) 0708 (0.113)
60 Proposed 0.966 (0.138) 0.947 (0.208) 0.963 (0.152) 0.945 (0.212) 0.959 (0.177) 0.943 (0.216)
bKmeans 0.887 (0.132) 0.780 (0.248) 0.316 (0.195) 0.077 (0.239) 0704 (0.142) 0.339 (0.191)
funHDDC 0.767 (0.021) 0.546 (0.049) 0.998 (0.025) 0.995 (0.050) 0.922 (0.014) 0.692 (0.044)
funLBM 0.918 (0.110) 0.828 (0.221) 0.929 (0.119) 0.840 (0.257) 0.953 (0.052) 0.796 (0.198)
90 Proposed 0.978 (0.117) 0.966 (0.176) 0.975 (0.131) 0.965 (0.178) 0.971 (0.154) 0.964 (0.180)
bKmeans 0.886 (0.134) 0778 (0.251) 0.342 (0.226) 0.109 (0.279) 0709 (0.152) 0.358 (0.227)
funHDDC 0.769 (0.017) 0.551 (0.040) 0.990 (0.049) 0.980 (0.098) 0.919 (0.025) 0.686 (0.061)
funLBM 0.909 (0.121) 0.813 (0.241) 0.908 (0.130) 0793 (0.276) 0.944 (0.056) 0.764 (0.210)
— Data — Estimated function — True function -— Data — Estimated function — True function
Bicluster 1 Bicluster 4 Bicluster 7 Bicluster 1 Bicluster 4 Bicluster 7

Bicluster 2 Bicluster 5 Bicluster 8 Bicluster 2 Bicluster 5 Bicluster 8

> 00-

Bicluster 3 Bicluster 6 Bicluster 9 Bicluster 3 Bicluster 6 Bicluster 9

' ' ' [ ' ' ro ' ' ' ' ' ' ' ' [ ' ' ' (. ' '
000 025 050 075 00000 025 050 075 100000 025 OS50 OS5 .00 000 025 050 075 100000 025 050 Q75 100000 025 050 075 100

Time Time
(a) N =30 (b) N =90

Fig. 1. Example 1: Curves of observed data (black dotted), estimated (blue solid) by the proposed method, and true (red solid) functions with (a)
N = 30 and (b) N = 90 for one replicate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

N = 30. The proposed approach has the mean number of row clusters 2.83, compared to 2.76, 2.63, and 4.66 of the
three alternatives. When N = 90, the proposed approach has the mean number of biclusters 8.71, compared to 3.51,
6.33, and 10.68 of the three alternatives. The improved clustering accuracy is further proved by the Rand index values in
Table 2. For example with N = 90, the adjusted Rand index value for biclustering with the proposed approach is 0.964,
compared to 0.358, 0.686, and 0.764 with the three alternatives. Fig. 2 shows that as N increases, estimation accuracy of
the proposed approach (and two alternatives) increases. Under all three N values, the proposed approach has significantly
smaller ISE values. Moreover, comparing the results of Example 5 with Example 1, we observe similar performance and
that the proposed approach still performs better when the numbers of clusters are correctly prespecified.

4. Applications

Here we analyze two time-course gene expression data. Although in a sense the data characteristics are similar, the two
data analyses may serve different purposes. In particular, the first dataset is “older”, which has been analyzed multiple

8



K Fang Y. Chen, 5. Ma et al. Journal of Multivariate Analysis 189 (2022) 104874

0.14- 0.10-

0.75-
0.010- .

0.12-

0,09-

0.50- .

0.005- 0.07- E
0.10- .
0.25- 1 .
‘ 0,06~ .
0.000- 0.00- 0.08- 0.05-

N=30 N=860 N=90 N=30 N=60 N=90 N=30 N=60 N=90 N=30 N=60 N=90
(a) Proposed (b) bKmeans (c) funHDDC (d) funLBM

1
L I

Fig. 2. Example 1: Boxplots of ISE with (a) the proposed method, (b) bKmeans, (c) funHDDC, and (d) funLBM.

times in the literature, and has a clearer sample clustering structure. In contrast, the second dataset is more recent, and
its analysis may lead to a higher practical impact.

4.1. T-cell data

This data has been generated in a study of T-cell activation [31]. It is publicly available in the R package longitudinal
(http://www strimmerlab.org/software[longitudinal/) and contains two subsets; tcell.10 and tcell.34. The first subset
contains measurements for 10 samples and 58 genes at 10 unequally spaced time points, t € {0, 2, 4,6, 8, 18, 24, 32,
48,72}, whereas the second subset contains measurements for 34 samples and the same genes at the same time points.
In [31], the distinctions between the two subsets have been noted, and they have been combined for analysis. Prior to
analysis, we conduct data processing, including gene expression normalization using the method developed in [29] and
linearly transforming the observed times to [0, 1], and set the knots at 0.06, 0.2, and 0.4 as well as the order as 3.

The proposed approach identifies two sample clusters, with sizes 10 and 34, which exactly match the original subset
structure, The distinctions of the samples in the two subsets have been noted in [31]. As such, they are supposed to belong
to different clusters. In this sense, our “finding”, although as expected, is re-assuring. In addition, eight gene clusters are
identified, among which there are four trivial clusters with sizes one. The four non-trivial clusters have sizes 27, 18, 5, and
4, Detailed information on the gene clusters is available from the authors. The eight non-trivial biclusters are presented in
Fig. 3. Biclusters 1-4 correspond to tcell.10, and the rest correspond to tcell.34. It is observed that the estimated functions
clearly differ across biclusters. The observed temporal trends are highly similar to those reported in [28], which provides
support to the validity of our approach.

The three alternatives are also applied. The bKmeans approach identifies three sample clusters (with sizes 10, 17, and
17) and four gene clusters (with sizes 9, 15, 19, and 15). Compared to the proposed approach, the adjusted Rand index
values are 0.441 (sample), 0.619 (gene), and 0.430 (bicluster). The funHDDC approach identifies two sample clusters (with
sizes 10 and 34) and two gene clusters (with sizes 9 and 49). Compared to the proposed approach, the adjusted Rand
index values are 1.000 (sample), 0.286 (gene), and 0.452 (bicluster). The funLBM approach identifies two sample clusters
(with sizes 10 and 34) and six gene clusters (with sizes 9, 4, 12, 5, 18, and 10). Compared to the proposed approach, the
adjusted Rand index values are 1.000 (sample), 0.586 (gene), and 0.646 (bicluster). Unlike for the simulated dara, it is
difficult to objectively evaluate the accuracy of clustering, However, for the proposed approach, the matching with the
original sample distinction and published findings can provide a strong support, which is not shared by the alternatives.

4.2. Vaccine data

This data is generated in a relative recent study [43] and available at GEO with identifier GSE124533, The study settings
have been described in detail in [43]. Briefly, it concerns with the time course of whole blood gene expressions, and the
samples are healthy adults residing in an inpatient unit. The samples have been randomized into three protocols (305 A,
305B and 305C). Within each protocol, samples have been randomized to receive immunization via either vaccine or
saline placebo. The treatments have been referred to as YFV and VZV (under 305 A), HBV1 and HBV3 (under 305B), and
TIV and ATIV (under 305C). In this experiment, gene expression levels are measured at ¢t € {1,2,3,4,5,7, 14, 21, 28}
days after immunization. A total of 43 genes have been studied, which are selected from two gene modules defined in
the published literature [6,22]. Prior to analysis, gene expression normalization, rescaling of the time points (to the unit
interval), and the selection of knots order are conducted in a similar way as in the previous data analysis.

Two sets of analysis are conducted. In the first set, we focus on the samples under 305 A, which contain 20 samples
treated with VZV and 20 with YFV. In the second set, we pool all 122 samples from the three protocols. We note that
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Fig. 3. Analysis of T-cell data: Curves of observed data (black dotted) and estimated functions (blue solid) for the eight non-trivial bicluster, as well
as yellow points indicating the estimated values att < {0, 2, 4,6, 8, 18, 24, 32, 48,72} by the proposed method. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

although the gene time courses have been analyzed in [43], there is insufficient attention to clustering. Complementary to
the existing literature, our clustering analysis can potentially review sample heterogeneity as well as coordination among
genes.

Results for the first set of analysis are presented in Fig. 5, where we observe two sample clusters and two gene clusters,
leading to four biclusters. Here the two sample clusters match the VZV and YFV experimental conditions, which provides
support to the validity of our analysis. The two gene clusters contain 27 and 16 members, respectively, which are very
close to the module structure, Fig. 5 shows that the temporal trends of the four clusters differ significantly, with the level
of variation and position of “peak” varying significantly. The observed trends are similar to those reported in [43]. We
also refer to [43] for phamarcodynamic interpretations of the findings.

In the second set of analysis, we identify four sample clusters, with sizes 96, 5, 20, and 1, respectively. In what
follows, we focus on the non-trivial clusters. Clusters 1 and 2 contain samples treated with VZV, HBV1, HBV3, ATIV,
and TIV, and cluster 3 contains samples treated with YFV. In the original publication, there has been little attention to
sample similarity/difference across protocols. Our analysis may suggest the significant difference between YFV and other
treatments as well as the relative similarity of the five treatments (YFV excluded). Our analysis leads to two gene clusters,
with sizes 25 and 18, respectively. This structure is again very similar to the module structure. The overall six non-trivial
biclusters are shown in Fig. 4, where we observe significant across-cluster differences. Among the six patterns, biclusters
5 and 6 are similar to those observed in the first set of analysis, where biclusters 1-4 are relatively different.

The three alternatives are also applied. The bKmeans approach identifies three sample clusters (with sizes 20, 27, and
75) and two gene clusters (with sizes 26 and 17). Compared to the proposed approach, the adjusted Rand index values
are 0.551 (sample), 0.907 (gene), and 0.666 (bicluster). The funHDDC approach identifies two sample clusters (with sizes
20 and 102) and three gene clusters (with sizes 26, 12 and 5). Compared to the proposed approach, the adjusted Rand
index values are 0.819 (sample), 0.774 (gene), and 0.758 (bicluster). The funLBM approach identifies four sample clusters
(with sizes 20, 39, 24 and 39) and two gene clusters (with sizes 20, 23). Compared to the proposed approach, the adjusted
Rand index values are 0.276 (sample), 0.818 (gene), and 0.386 (bicluster).

5. Discussion

In this article, we have conducted the biclustering analysis when functions (to be exact, their realizations at discrete
time points), as opposed to scalars, are present. The data structure fits time-course gene expression and other experiments.
The analysis objective is considerably more complex than the biclustering analysis of scalars and one-way clustering of
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Fig. 4. Analysis of vaccine data with samples under all three protocols: Curves of observed data (black dotted) and estimated functions (blue solid)
for non-trivial clusters, as well as yellow points indicating the estimated values at t € {1,2,3,4,5,7, 14, 21, 28} by the proposed method. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

functions. We have developed a novel approach based on the penalized fusion technique. Methodologically, it differs
significantly from the existing biclustering and fusion approaches. Theoretically, it has the much desired consistency
property, making it advantageous over some of the existing alternatives that do not have theoretical support. Numerically,
it has generated more accurate clustering and estimation in simulation and led to different findings in data analysis.

In our estimation, we have adopted the penalized smoothing technique. An alternative, which may be computationally
simpler, is to take fewer basis functions, with which we can eliminate the smoothness penalty. Theoretically and
numerically, we expect similar performance. The fusion technique involves pairwise differences/penalties, which may
incur higher computational cost when N and/or g are large. In our simulation, we have considered moderate values,
which martch our data analysis, It will be of interest to develop computationally more scalable approaches/algorithms, for
example via model averaging. This is beyond our scope and will be postponed to the future. In data analysis, findings
with certain support have been made. In the literature, most existing studies are on the “static” functionalities of genes.
It will be important to further understand the dynamics of gene expressions and more solidly interpret the findings.
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Appendix A. Proofs

m+1)

Proof of Proposition 1. By the definitions of HE and HE"'”), for any H; and H., we have

L, (ﬁ(m+l}, Hm+H) gD pm) A(m)) SLe(ﬁ[mH],Hr,Hc,A.(rm),fiffm})-

r C r : C
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Fig. 5. Analysis of vaccine data with samples under 305A: Curves of observed data (black dotted) and estimated functions (blue solid), as well as

yellow points indicating the estimated values at t  {1,2,3,4,5,7, 14, 21, 28} by the proposed method. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Let 2(™Y) = {{H,,Hc) : B, g™+ _ vec(H;) = 0,B.™" — vec(H,) = {I} and P = Y, o P10 1120 v2) +
Y5 a0 P15 112, (N/q)!2y2). We can define

1 1

f[ﬂ’H—l] — inf l_ |IY _ Uﬁ(ﬂ’H—'l)”% + _y1ﬁ(m+1)—rmﬁ(m+l] + P] inf I-B(ﬁ(m+1 Hr H A m] A{m )
Z(pm+1)) 2 2 F(gm+1))
and then Ly (A7), K™, K™D, A, AM) < flms)
For any integer n, we have vec(A!™" ") = veq(A™) 4+ 631" [\rec (H™y Brﬁ('"”]] and vec(AMm*n—1)

vec(A™) +6 31 [vec(HE'"”]) — B, ,8("”")], and then

Lg(ﬁ[mﬂi), Hl{rm+n), H£m+n}, Al[rm+n—l}, A[cm+n—l})
n—1

.
_ —||Y UpmH2 4 - }, BT\ 4 p |vec(A )+9E[\”3C H)) _Brﬁ(mm]]

i=1

x I:VEC(HE.m_M}) —B, ﬁ(m+"}:|

n—1
. ; a 2
+ |Vec(11£.m)) +6 Z:I:VEC(HE‘m+I)) _ B[‘ﬁ[m+l}:|] I:VEC( m+n}) B ﬁ(m+n ] + 5||VEC(HE.m+") _ Brﬁ(m+"}) .
i=1

+g “VEC{HE‘m+") _ B[‘ﬁ[m+"))H2 Sf[m+")-
2
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Since the augmented Lagrangian function Lg(ﬂ, H;,H., A,Ac) is differentiable with respect to g and is convex with
respect to each 5 and ). By Theorem 4.1 of [38], there exists a limit point of (8™, H™, H™), denoted by (8*, H¥, H?).
Then we have

f*=lim fmD = fim fm = Jnf I—uY U5+ - V1.3‘TM.8 +P]

m—00 m—00

For all t > 0, we have

FJLHgOLS(ﬁ(m+n},H£m+nj,H[cm+n],A£m+n—1],A£m+n—1])

2
vec(H}) — B, B*

1 1 1
= SIY—UB*3 + 5B TMB* +P + lim vec(A!™)T|vec(H) - B*| +(n — 5)e
2

2
+ "llewvec{AEm])T [vec(ﬂﬁ) - Bcﬁ*] +(n— %)9 vec(H) —B.B*| <f*.
2
Thus
2
lim |r™? || ‘ B* —vec(H})|| =0, lim |1'£'r"Jr1 || ||Bf,8
m—o0 2 m—o0

(m+1) e have that

oL (,6 me1) gme) gmen  pm) A(;"}) /a8
= —UT(Y - UB"™) + yyMB"™ Y —oB] [vec(HE’"}) +vec(A{™)/6 — Brﬁ“””]
— 6B [vec(H[c'"]) +vec(A™)/6 — BC,S['"“]]
— _UT(Y — UB™ D) 4 »,MB™ ) _ BTvec(A™) — gBT [\rec[HE"’)) _B, ﬁ('"“}]
— B[ vec(A™) — 6B] [\rec{HE’"}) — B[ﬁ('"“)]
= —UT(Y - UB™ ) 4y, MB™ ) _ BTvec(A™ V) 4 BT [\rec{HE’"”)) - vec[HEm))]

Besides, by the definition of ,8

v
— B vec(A™) 4 6B [vec(HE’"”)) — vec{H[E’"})] =0.
Then we can obtain
s£m+1] + s[Cri'l+1] — UT(Y _ Uﬁ(m+1)) _ V1Mﬁ(m+1) T B;I—VEC(AEm+1]) + BIVEC{A£m+1)).

By || B,A" — vec(H;)|

lim BLg(,S m+1) gm+1) glmen) pm) A[E"']);‘&ﬁ

2
=0and B.g* — vec(H})

2
= 0, we have
2

m—o0
= —UT(Y — U™ D) 4 3, MB™Y) _ BTvec(A™ 1)) — BT vec(A™ 1) = 0.
Therefore limy, .o s +s™ Y —0, O
Let ngr c}*l = Z U}eg[”] njj and n,; = MaXie,. .Nljell,...q Mij < ©Q. Then |Gk k | =< |gkr kc | = nmlg{r o |. Denote the

number of internal knots asj and then | = p — d. Recall that b = ming, k. )2u i) 18, k) — k, iyl

Lemma 1. Under Condition (C1), there exists a spline approximation oy kop{t) of the true function gj} (kr ko) (£) for ke €
{1,...,K;}and k. € {1, ..., K.}, such that

SUP (85, ko)) — . kop(t)I =0(7™).
teT

Proof. Lemma 1 follows from Corollary 6.21 of [34]. This lemma has been used in a number of studies that involve spline
expansion [25,42]. We omit the proof here. O

Lemma 2. Under Conditions (C1)-(C3) and b > | 7%, there exists a constant C; > 0 such that for all (k,, k.) # (k;, k_), such
that

1 —1/2
e, . — @ e ll2 > 56 7b,

when N and q are sufficiently large.
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Proof. By the triangular inequality, we have
* * T * * * *T * *T
"(akr‘kc - ak}‘k’c) Up" = I|g(kr‘kc) - g{k},k’c]” - ||g(kr‘kc) - akr‘kc Up" - I|g(k;‘]¢) - ak}‘k[- Up"- {A-l)

Besides, by Theorem 5.4.2 of [13], Condition (C2), and the definition of the rescaled B-spline basis, for any vector cc;m,
there exists a constant C; > 0 such that

leTUpI1% < Callel13- (A2)
Combining (A.1), (A.2), and Lemma 1, we have
It s — s l2 = G5 ) — &gyl — 18 ) — i Upll — 11 ) — i Upl }
> G (b—2My ) > ¢ (b —2 x %b) = %C;”Zb,
where the third inequality is obtained when N and q are sufficiently large since b > J=. O

Lemma 3 (Bernstein's Inequality, Lemma 2.2.11 in [39]). For independent random variables Yy, ..., Y, with means 0 and
ElY;|™ < m!M™2v;/2 for some constants M, v;, and every m > 2,

1 x?
P(]Y -1 Y, X) < 2expi{ —— s
(IYy + +Y>x)< pl 2v+Mx]

wherev=v;4+--- 4+ vy

Proof of Theorem 1. Given B’ & Mg, when the true block memberships gg'i;f}, cee, Ggrcgc are known, the oracle
estimators for all 8; ;s are the same if (i.j) € g,((ii)c Thus we can explore the properties of 3” by examining the properties

of the oracle common coefficient vector &” = (&', ..., & .. ..., &g )7, which is defined as
K K
" =argmin ) | I (e k).
o
kr=1ke=1

and
. 1
L (et e ) = 7 Wk ko) = Uk ko) ke 15 + 1 Igﬁ"i)clﬁl,hﬂwknkc,

where Y, k) = vec{Yij, (i,j) € Gk, k. } Uk ko) = [Ugj, (i,j) € Gk, .x.)". The corresponding true B-spline coefficient vector

is denoted by o* = (e}, ..., ", ..., @, )". Note that
AL (atg ) AL (etg ) _ ALl (ok k) «or .
e or Doy . Doy g Doy 5 (% ke = e k)
r ke iy o=y r ke B ke =0, kr ke O ke | ety oo =0, e

where ay, k. is between &, , and o« ; . Then we have

~ _1 ~
ot ( L (erk, k. ) ) AL (etg, k)
T %% ke — "\ 9.  a.T A
T K¢ oy ke = ke al'.!kr‘k{

-
acckr‘kcadkr,kc acckr‘kc

2 2

L ke T
’ aaknkcaaknkc “kr,kc:“:r,k;
Hence
-~ _1 -~
- AL (ot k) -1 9L (ot k. ) 1 2
168 1~ < 1 71 (k). 190 g = Ak XA
L e T

—a*
e ke = ke

(A3)

By Lemma A.8 of [41], Conditions (C1) and (C2), we can derive that there exists a constant C3 > 0 such that for any
1<k <K,1=<k <K,
Uk iUk k) | 711G 50 ID
1G5 IG5 |

B

PAY, <C)=P (

< Cz) > 1—p/(Nq). (A4)
2
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Besides, note that

@ Uk ko Gi i}l
2 T T Ke
A ke :H o (Ykr ke) — 8k dee) + &lke e U(kr,kc)u:r.kc) TV rox Doty ;.
Gk, k. | G k. | 2
Uik, ko) Uk, ko) . |G EEJ B0 L g L
= (r.c) Ekrike + (r.ch {g (kr .kc) U(kr’kf)mkr.kc) +[n (r.c)e kr ke || = Pk ke +Bkr,kc + B k-
G ke | 2 MG | 2 Gk, k| 2

(A5)

Since the rescaled B-spline values are finite, there exists constant M, > 0 such that Ujp(t) < M; for I € {1, ..., p}. Let
Ui, denote the [th column of Uy ;), and we verify the condition of Lemma 3 by Condition (C5)

m m/2 m/2 _ _ 1/2 —
B peeisl” < E(IUT 0™ - leljeisl™?) < (F~"Ma)"miE(exp{FIn'eljeij) *}) < (F~'MoJ"mic.

Applying Lemma 3, we have

1 x?
U yi€ij| > X <2ex _ A6
(5 o) 2ol ) o
((5) Senid
where v = Z[; pegl) v;j and v;j = 2F 2M7?c,.

Let Uk, k)4 dencte the Ith column of Uk, k.)- For some constant 0 < C < 00, combining Condition (C5) and (A.6), w
have

C

( g1 U{-;r,kc i k|| o > CF"Mi (log(Ng)/ 16 |)U2)

1/2
< ZP(lu(kr keyi€he dcl > CF~ "M (logNa)ig 1))

Ep: (‘ 2 Uui‘u

=1 gy

> CF~"M; (log(Ng)ig! %)) 2)

C2F- 2ﬂyfz(logu\rqngkr )]
“2M2c,|G %) | + CF-2M2 (log(Ng)IG"* 1)
Hence, we have that with probability at least 1 — 2p/(Nq),

1 - . 1/2
ko ke < CF~"M: (plog(Ng)/16(,5)1) .
By Lemma 1, there exists a constant M, > 0 such that

< 2pexp{—%2F i } < 2pexp{— log{Nq)} < 2p/Ng.

(A7)

UI Uk ke) —
By <P lg({rr::ki)| (& ko)~ Utk ko) k)| <P'? I g{ - H(g(kr,kc —Ug k), i, )| < MiMap'/?7%. (A8)
kr k¢ o0 kr kc 00
In addition,
|G|
Bk, < M {:;),| llet, 4 121D 112 < P71l g oo ID- (A9)
kn

Thus by (A.5), (A7), (A.8), and (A.9), forany 1 <k <K;,1 < k. < K, with probability at least 1 — 2p/(Nq),
Ay < CF'Mi (plog(Na)/IGiy1) " + MiMap'/%] ™ + max |l llooIDIoy1p*?

—1/2

By Condition (C1) and y; = 0[|g(Ir < ), when N and q are sufficiently large, we have

(r.c)

—x 1/2
Py~ < (plogNg)/IGwin 1) *, P11 < (plog(Ng)/Igi ).
Hence, forany 1 < k; < K;, 1 < k. < K., with probability at least 1 — 2p/(Nq),

1/2
A2, < CulplogNa)/ i) ",
where C, is a large constant. Together with (A.3) and (A4). forany 1 < kr <Kr, 1 <k < K,
A 2 1/2
(||a,‘;: et s < CCa(plogNay 16t ) —PAY, > G)— P(AE?,‘{ > Ca(plog(Ng)/16%1)" )

> 1—3p/(Nq).
15



K Fang Y. Chen, 5. Ma et al. Journal of Multivariate Analysis 189 (2022) 104874

By the Bonferroni’s inequality, we have

N c)n1/2
P( sup &, —af i ll2 < GoCa(plogNa)/iGi 1) )

1=kr <Kr 1=<kc=Kc

> 1= 3 3 P14, — o s ll2 > CiCa(plogiNa)/I51) V?) = 1— 3K,Kep/(Ng)
kr=1kc=1
By Lemma 1 and (A.2), we have
180 ke) — &ke o) | = ||“£:chu — oy Up + 0Ty Up — 8 il < 108, — et o) Upll + oy Up — &G sl
< G?C3Ca(plog(Ng)/ IG5 +MaJ ™ < (C2C5Ca + Ma/2)(p log(Ng)/165:01) *
1 2
= C*(plog(Ng)/1g%:21)

where C* = max{C3Cy, C,’*C3C4 + My/2}. That is,
P( swpIEF a0 —8haoll < ¥) = 1= 3KKep/(NG),
1<kr=Kr,1<kc <K

where y = C*(plog(Ng)/I6%0)) "%, O

Proof of Theorem 2. Let pi(t) = v, 'p«(t, y2) and pa(t) = ((N/q)"2y2)"'p.(t, (N/q)"/?y,). Define
1 N
QB =3 Z E(”YEJ —UijBijll3 + » ﬁaﬂﬁu),

Pen(p) = v, E pIBY = BDI2)+ (N/@) Py D" ool BY — B IL),

(il,iz)Edm (i1:j2)eAl0)

Q%) = Z 2 (||Y{kr,kc — Uk k)@, k13 + 1 IG;{;L log; . Doty k. )

kr_l ke=1
Pen(e) =y, ) 161Gy Ipi(lle) — e ll2) + (N/@)v2 ) 162165 paller) — o l2),
kr<k; ke <kl
{F}T T (e)T\T Iy (r)
whereak = (0 s---> qu) W1thakj_akr,k1fj€g ,cckc _{ 1kc aN‘k) W|thalkc_ak‘k{1f!€gk.bet

L(B) = Q(B) + Pen(B), L9(e) = Q%(er) + Pen®(c).
We define two mappings, T: Mg — Mg and T:RNP Mg, and the two subspaces are defined by

Mg = Icc € R5P : oy = Bij, for any (i,]) € g,((;:i]c, 1<k <K,1<k:< Kc},

-~

—1
Fg = Iu ERAKP gy = |g£;ic E Bij 1<k <K;,1<ke ch].

(if)egy s
For every B € Mg, we have Pen(f) = Peng[f{ﬂ)), and for every a € Mg, we have Pen[f‘l[a)) = Pen%(a). Hence
L(B) =19(T(B)), L9(e) =LT '(a). (A.10)
Consider the neighborhood of 8*:

={Ber®: sup 1By — Bl < v.

1<i=N,1<j<q

By the result in Theorem 1, there is an event E; such that on E;,

~0r
sup I —Bijll < ¥

1<i<N,1<j<q

and P[Ef) < 3K:K.p/(Nq). Hence ,@m € ® on E,. For any B € RV, let B = Af*[?{ﬂ)). Inspired by [27], we show that ﬁor
is a strictly local minimizer of objective function (3) with probability tending to 1 through the following two steps:

(i) On Ey, L(B) > L{fim) forany B € ® and B # 3m.
16
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(ii) There is an event E; such that P(ES) < c3/(Nq). On E; NE,, there is a neighborhood of 3”, denoted by @’, such that
L(B) = L(B) for any 8 € @' N © for sufficiently large N and q.

Therefore, by the results in (i) and (i), we have [(8) > L(B" ) forany B € @ N® and B # B”, so that B is a strictly
local minimizer of L(8) on E; N E; with P(El NE)=1-— 3K,Kpp,!{Nq) — cg,!(Nq) for suffnmem:ly Iarge N and q.

Firstly, we prove the result in (i) . Let T{ﬂ) =a= (ccm, .. “Kan )" and « [ [ﬁ. 1*Ts . ﬁﬁ’q )T forie gkr} Since
log) — el > lled* — Pl =2 sup [leg) — a5,
1=<kr <Kr
and

sup | e — e ||2— Sup IElc ‘ 3D Bi/GD 1G9 — ek,
=1

2]
1<kr <Kr =kr=Kr r) ;e 2

i€Gy " jeGy,
Kc
-1 2 2
< sup 1601 YN Y 1By —B1B<q  sup (18— B3

1<kr <Kr k=1 fegﬁ”jegﬁ? 1=i=N,1<j<q
T

(A11)

by Lemma 2, for any k; # k;
12 172
Nl — 112 = |gm.,. ¢;?b—2q"  sup By~ Bijll2
1<i<N,1<j<q

—Igmml _Uzb — 202Gy > ays.

The last inequality follows from the assumption that |gf:31|1"2b > 1> (pq)”2 log(Nq)/ min{|gf;l.}"|, |g£rff]"|} > q'2y.
Similarly, for any k. # k;, we have

Y2 _ 152 1/2
Nl — e ll2 > = |gm| G, *b—2N"*  sup  |IBij— Bijl2
1=i=N,15j=q

12 __
_Igmml CZ Uzb - 2NU2C3V:’ = H{Nx‘!qjvz}’).

Hence by Condition (C4), Pen9(T(f)) = Cpen, a constant, and hence Lg(T{,S)) = QY9(T(B)) + Cyen for all B € ©. Since &”
is the unique global minimizer of Q%(a), Qg[T{ﬂ)) > Q9(&") for all T(B) # &, and thus Lg[T{ﬂ)) > Lg(“”) for all
T(B) # & By (A.10), we have LS(T(B)) = L(B) and L9(&”) = L(B" ). Therefore L(B) > L(B") for all B # B”, and the
result (i) is proved.

Next we prove result (ii). For a positive sequence vy, let

; a(rlor
o =[pe®: sup 187~ Bl <ve, sup 187 —B 2 < ).

1<i<N 1=j<q

Pe(B) =y . piIBY —BDIL), Pen(B)=(N/@)7y: Y pallBY — B,
(i1.iz)eal? (i1:j2)eAl)

and Pen(fB) = Pen"(B) + Pen®(B). For B € ®' N @, by Taylor's expansion, we have
L(B) —L(B) = 21 + 2, + 23, (A12)

where

q
Z E[ T(Yij— UiiBij) + 7 D.éi,j]T(ﬁfJ - ﬁf‘j)s

N

i=1 j=1
N BPen’{ﬂ) n_ 50 T/ aPen<(B) T o 20
= ; 8',8 35” (r}) {ﬁ( ), = ;( 3,8}(-(} ﬁ}"=3}”) (ﬁj( - ﬁj ),

with 8 = [,@I,, e ﬁ;‘q)T and B;; = sBij + (1 —s)B;; for some s & (0, 1).
17
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Firstly, we have

D=7 Y KB — BB — B B — BT (8D — B

1 Y pIBY — BYIIEY - B3 B — BT - BY)
=7 Y PUBY = BB — BY15 B — BB - B — (BY — B

When iy, i, € G,E:], 3,-1 = ,9,-2. Thus

Kr
@2=nd X AR B — B 1B — B (B — By (Y - )

kr=1;
T="1y, |Zegk J]-\:IZ

+n Y. Y AR - B INEY - B BT - BB — B — (BT - B,

oKty el g
T

As shown in Theorem 1, sup; ||£¢Er] B2 = sup, ||“gr}_“kr 2 < qy2. Since ,8, =" [l—s)ﬁ?}, sup; ||ﬁ§r]—

sqV2y + (1 —s)qV2y = g2y For k, # k., iy € g,(( )i € g{,}, we have

ar) 3 3N —1 2
1B B> min IBD* — BN — 2max B — B0 > 2161 G — 24y > as,
i €G] Jzeg

and thus p;(||fi£:) - ﬁﬁ;]uz) = 0. Therefore,

Kr
renal™ g
D=vYy. Y. sl - B 1B - Bl

kr=1
="y, lzegkr Sy =iy

Kr q
SOVEDY P — B 1) DD 1By — Bl

k=1, Tzegk Liy<iy =1
r f
— alr) o
=yq " 2 Z 2 E P1(".\6 - ,3.-2 12)IIB;, j — By, jll2-
kr=Tke=1; i, lzegg} i <l2169[c)

Similarly to (A.11), sup; ||fi£r) — ﬁfr "ll2 < vu and sup; |B" — ,@Er)m l2 < v, Then we have

=iz

Hence p{{||ﬁ§:] - BE;)HQ) > p}(4vy,) by the concavity of p(-). As a result,

Kr Kc
2=pg Y 2 > pia)lIBiy i — Byl

kr=Tke=1; i1.iz Egk Wit <72_iE§,Ec]

Next we consider £2;. Similarly to the derivation of (A.13), we can derive

K Ke
B=pg Y E Z P3(4vn)ll Bijy, — Bij,llz-

ke =1 k‘_l_il ,_izegkc Ji<iz :egk

Lastly for £2,, we have

kK W], (B~ Bii)
[T R B} | 12.J2
=YYy h=- Yy Xy Healh)
i=1 j=1 kr=1k= ‘1rl Izegkr it 1269',(‘? kr.kc

18

=3
I <

ar) 4l o) %) 2r) ~ror 2(r) afror
sup 1B, — B2 < 2sup 1B — B2 < 25up 187~ Bl < 2(sup 187~ B o +sup 18"~ B " I12) < 4vn.
1 1 1 1

(A13)

(A.14)
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and

Kr K¢ L K K R
E 2 E E 'IJI(’S'le "812-}2)| < Sl.lp Iwijll2 Z 2 E Z II‘BIIJI (,flzdzllz

G Gl
kr=Tke=1; i1, lzegkr J1J2€gﬁ] rke kr=Tke= iy, Izegkr JIJZEg,((? T

< 2sup [[wi j 12 E Z 2 E 118i,j — B jll2 +2sup||wu||22 Z Z E I1Bij, — ;3”2”2’

G G
kr=1kc=1; g(r} | kr| kr_1kc_1J J2Egkc J1<iz :egm | kcl

i1,z € i -::zjeg[c]

where w;; = UJ(Y;j — Uj;B;;) — »1Dp;;. Note that

SUP llwijll2 = SUP IU(g; — Vil + SUP I(UjUij + »D)BY; — Byl + sup [lv1DB Iz +SlllJ 1U5€i1l2-
ij

By Lemma 1, sup;; [[U](g; — UiB{))ll> < nmM:M,p*/?]~*. Moreover, sup;  [|(U},Ui; + yiDXB;; — Byl < (gl "p"/*M; +
y1lIDlI2)y, sup;; ||y1D,8. 2 < p‘/z}q ID]12 11 B* | co- With the Bonferroni’s mequahty Markov's 1nequahty, and Condition (C5),

we have

M=
M=

Il

-
-
Il

P(sup UL y€iflls > 2n;F~'Mip'/2 0g(Ng) ) < P(IUT)€isll2 > 20 F~Mp"” log(Ng))
ij

j=1

M=
M-

Il

-
-
Il

P(Fni;lleijl > 21og(Na)) < c2/(Na).

j=1
Together with Conditions (C1) and (C3), we have
sup ||w; |2 = O(p"/? log(Ng)) (A.15)
ij

holds with probability at least 1 — c;/(Nq). Let v, = o(1), then pj(4v,) — 1 and pj(4v,) — 1. Since p, >
(pg) " log(Ng)/ min{ Gl |, |Gy}, then by (A.12)-(A.15)

K Kc

LB)—LB)= 21+ 25+ 23 > Z E Z 2 I:ygq_mp;(élv,,] —

G
ke=1ke=1; Jzegk ,ll'ﬂlzJeg,((c) I kr'

Kr K
12 2sup; ; [wijll2
+ E Z E Z [}Qq 1;2'02[4”") - Iajiu] |I|81_h 'SIJZ |I2 =

ke _lk‘_l.ildzegm J1=i2 IEQU} 19 k“

2 sup; j [[wijll2

]llﬂi,J—ﬂinllz

holds with probability at least 1 — ¢z /(Nq), which completes the proof of result (ii). O
Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2021.104874. The
Supplementary section contains additional tables and figures for Examples 2-5.
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