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1 | INTRODUCTION

Gene-environment (G-E) interactions have important
implications beyond main G and E effects for understand-
ing and modeling complex human diseases. Compared
to main-effect-only analysis, G-E interaction analysis
is uniquely challenged by higher data dimensionality,

Abstract

Gene-environment (G-E) interaction analysis plays a critical role in understand-
ing and modeling complex diseases. Compared to main-effect-only analysis,
it is more seriously challenged by higher dimensionality, weaker signals, and
the unique “main effects, interactions” variable selection hierarchy. In joint
G-E interaction analysis under which a large number of G factors are analyzed
in a single model, effort tailored to rare features (e.g., SNPs with low minor
allele frequencies) has been limited. Existing investigations on rare features have
been mostly focused on marginal analysis, where various data aggregation tech-
niques have been developed, and hypothesis testings have been conducted to
identify significant aggregated features. However, such techniques cannot be
extended to joint G-E interaction analysis. In this study, building on a very
recent tree-based data aggregation technique, which has been developed for
main-effect-only analysis, we develop a new G-E interaction analysis approach
tailored to rare features. The adopted data aggregation technique allows for more
efficient information borrowing from neighboring rare features. Similar to some
existing state-of-the-art ones, the proposed approach adopts penalization for
variable selection, regularized estimation, and respect of the variable selection
hierarchy. Simulation shows that it has more accurate identification of impor-
tant interactions and main effects than several competing alternatives. In the
analysis of NFBC1966 study, the proposed approach leads to findings different
from the alternatives and with satisfactory prediction and stability performance.
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weaker signals, and the unique “main effects, interactions”
hierarchy (which postulates that a G-E interaction term
cannot be identified if the corresponding main G effect
is not identified). G-E interaction analysis can be classi-
fied as marginal and joint. In marginal analysis one or
a small number of G measurements are analyzed at a
time, and thus many analyses are needed. In comparison,
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in joint analysis, a large number of G measurements are
analyzed in a single model. In the past decade, we have wit-
nessed significant developments in G-E interaction anal-
ysis methodology, computation, theory, and application.
For reviews and representative studies, we refer to [1-3].
In this article, we conduct joint G-E interaction analy-
sis and note that joint and marginal analyses are two
different analysis paradigms, have different implications,
and cannot replace each other, although joint analysis
may better fit the biology of complex diseases. For recent
developments in joint G-E interaction analysis, we refer to
(4, 5].

Our literature review suggests that, in most of the
existing joint G-E interaction analyses, attention has been
on “simple” data, for example, continuously distributed
gene expressions [6] and single nucleotide polymorphisms
(SNPs) with moderate to high MAFs (minor allele fre-
quencies). Comparatively, attention to rare features, for
example, SNPs with low MAFs (often defined as MAF <
5%) and certain methylation data, has been limited. Rare
features are not uncommon in practice. In Figure 1 (Data
S1), for the NFBC1996 data to be analyzed in Section 4,
we show the genotype distributions of the rare features
(post screening). Published studies have established that
“ordinary” statistical methods lose power with rare fea-
tures [7, 8], and that as features get increasingly rare, an
unreasonably large sample size will be needed to detect
their effects. Here, it is noted that such conclusions have
been drawn for main-effect-only methods, most of which
conduct marginal analysis. However, it is sensible to expect
similar conclusions for interaction analysis. Some early
studies inappropriately drop rare features from analysis
[9]. With the development of personalized medicine, the
significance of rare features for complex human diseases
has been firmly recognized [10-12]. Its theoretical basis is
that features that strongly predispose to diseases are likely
to be deleterious and thus kept at low frequencies by puri-
fying selection [13, 14]. Examining rare features can assist
identifying subpopulations that may benefit from targeted
treatment.

In main-effect-only analysis, it has been recognized
that the most effective and possibly the only feasible strat-
egy for identifying rare features is pooling. That is, as
opposed to identifying the individual effects of rare fea-
tures, the combined effects of “related” rare features, for
example those in the same genetic region, are identi-
fied. Popular data pooling/collapsing strategies include
gene-based bins [15, 16], windows of a fixed length [17],
windows of a fixed number of variants [18, 19], and oth-
ers. A common limitation of these approaches is that
they do not take into account the directions of fea-
tures’ effects on a response variable. Generically, meth-
ods for analyzing rare features can be classified into
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FIGURE 1 A small example of aggregating features within
branches

four main categories: burden tests using linear statistics
[20, 21], variance-components-type tests using quadratic
statistics [22, 23], hybrid methods combining burden
and variance-components-type tests [15, 24], and other
dimension-reduction-based approaches. Examples in the
last category include [25, 26 ], which conduct unsupervised
clustering to create denser features. Another example is
a penalization method called ConvexConcave Rare vari-
ant Selection (CCRS) [27]. However, it has been found
that, even after applying the aforementioned aggrega-
tion methods, a large portion of aggregated rare features
may still be too sparse, and they may still have to be
discarded. Here, we note that the aforementioned and
many other approaches are limited to marginal anal-
ysis in the hypothesis testing framework and are not
directly applicable to joint analysis. Recognizing limita-
tions of the existing data aggregation techniques, in a
recent study, Yan and Bien [28] develop a more effec-
tive strategy for aggregating and selecting rare features,
which leverage side information (additional prior infor-
mation) in the form of a tree. A tree-based param-
eterization strategy is introduced to translate the fea-
ture aggregation problem into a sparse modeling one.
Statistical and numerical investigations show that this
approach can significantly improve over the existing ones.
This flexible, data-adaptive, and tree-based aggregation
approach is integrated into a log-contrast regression model
in Reference [29]. It is noted that this approach has
only been applied to main-effect-only analysis.

With the high significance of G-E interaction analy-
sis, there has been some effort on detecting interactions
between rare features and E variables. For example, Lu
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and others [30] propose an aggregated statistic, which is
derived from the MAF-based logistic principal component
analysis (MLPCA). A limitation of this approach is that
the adopted unsupervised technique is not ideal to indi-
cate how genetic variants are modified by environment
factors to affect disease risk and traits. Zhao and others [31]
aggregate genetic and G-E interaction information across
markers and construct score tests to identify important
G-E interactions. Yang and others [32] develop a family
of data-adaptive G-E interaction tests in the framework
of adaptive powered score testing. It is noted that these
works mostly belong to the marginal analysis paradigm.
For joint analysis, Lin and others [33] develop a variance
component score test within the induced generalized lin-
ear mixed model (GLMM) framework and apply ridge
regression to estimate the nuisance main effects. Lim and
others [34] adopt a kernel-based method to leverage joint
information across rare variants under the GLMM frame-
work. However, in these studies, there has been no atten-
tion to the “main effects, interactions” variable selection
hierarchy [35, 36].

In this article, we consider joint G-E interaction anal-
ysis where a significant number of candidate G features
are rare. Although certain individual components of this
analysis share some common ground with the existing
studies, overall, this study complements and advances
published literature in the following aspects. Unlike most
of the existing G-E interaction studies, there is special
attention to rare features. It differs from most of the
existing rare feature studies by conducting joint analy-
sis (which differs significantly from “marginal analysis +
hypothesis testing”) and by accommodating interactions
(and the accompanying unique challenges in particular
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the “main effects, interactions” variable selection hierar-
chy). It also advances from many existing pooling studies
for rare features by adopting the cutting-edge tree-based
aggregation technique [32] and from Reference [32] by
conducting joint interaction analysis. In addition, the pro-
posed approach can directly go beyond rare features and
be applied to other types of data that also have individual
weak effects, and hence data integration is needed.

2 | METHODS

2.1 | Data and model

Y is denoted as the disease outcome/phenotype. In
what follows, we consider a continuously distributed
outcome and corresponding linear regression. The
proposed approach can be directly applied to other
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The tree structure 7 of p leaves with (p, m, s) = (200,20,0.4). Gray leaves have zero effects, leaves with the other colors have
nonzero effects, and leaves with the same color have the same effects
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types of outcomes/phenotypes by adopting corre- X, Z, and W as the matrices composed of X;’s, z;’s,

sponding regression models and likelihood functions.
Z=(Z, ... ,Zp)' is denoted as the p rare features.
In our data analysis, we consider SNPs with low
MAFs. Further, X = (X1, ... ,Xq)’ is denoted as the g
clinical/environmental risk factors. Following strong
advocate in the recent literature, we also consider the
interactions with demographic and clinical variables.
It is also possible to limit interactions to narrowly
defined E factors. Consider the joint regression model:
q p q
Y=Y aXc+ ) </3,zj + anjxkzj> +e, (1)
j k=1

k=1 Jj=1

where a;’s, f;’s, and n;;’s are the regression coefficients for
the main E effects, main G effects, and their interactions,
respectively. ¢ is the random error. With proper normaliza-
tion, the intercept term has been omitted. There are mul-
tiple ways of respecting the “main effects, interactions”
variable selection hierarchy. Here, we adopt the decompo-
sition strategy [37], where #y; = f;&y. Then, model (1) can
be rewritten as:

q p q
V= Yax+d <ﬂjz,. ; zﬁjgijkzj) re
k= j k=1

1 j=1

Denote a = (a1,...,aq) 1, = (Pr..... 8y) 1, and & = (&a,
,ékp) /. Assume n iid observations {(y;,x;,z),i=1,
.,n}. Denote y as the n-vector composed of y;s,

(o _

and w; = (xl-kzil, ,xikzl-p) 1s, respectively. In the

matrix form, the least squares objective function is
2
L) = ZLHy ~Xa-2p-Y! WY @0 5k)||2, where 0 =

(a8, ... ,5[1)', Il 1l2 is the I, norm, and © is the
component-wise product.

We note that the data and model settings have been
extensively adopted in the literature, with the difference
that Z represents rare features. It is expected that other
loss functions, for example, the robust ones, can also be
adopted.

2.2 | Estimation

With data aggregation, one of the most critical steps is
to determine the regions within which rare features are
pooled. Quite a few approaches have been developed
for this purpose. Some utilize biological information, for
example, functionalities of SNPs. However, this may be not
sufficiently effective as the functions of many SNPs, espe-
cially those in noncoding regions, are unknown. Another
family of approaches utilizes information on features’
physical locations, which is usually known. When SNPs
are densely measured, those physically close can be in high
linkage disequilibrium (LD) and have similar biological
functions and/or statistical effects [38]. In our numerical
study, for SNP data, we follow [28] and conduct hierar-
chical clustering analysis of the physical locations of SNPs
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to form a tree 7, as showcased in Figures 2, 3, and 4.
The consideration is that features physically close to each
other tend to have related biological functions, which has
been established for SNP and some other types of data.
We refer to Reference [28] for more discussions on the
tree construction. Advancing from Reference [28], we also
incorporate interactions and propose densifying f and &
using the same tree structure.

Let u be a node, which is a branching point in a tree.
A node is called a leaf node, if it has no additional nodes
coming out of it. For example, in Figure 2, those in the red
box are leaf nodes. The ancestor (u) and descendant(u) are
denoted as the ancestors and descendants of node u in 7,
respectively. The set of nodes in the path from the root of 77

to the jth leaf can be written as ancestor(j) U {,j}. Assign
a parameter yo, (yky) to each node u in 7. Similar to [28],
we can conduct a tree-based parameterization to associate
p; and &; with 7. Specifically, f; and &k =1, ... ,q) are
decomposed into the sum of all the parameters on the path:

B = Z You, 5kj= Z Yiw- (2)

ueancestor (j)U{j} ueancestor (j)U{;}

When Y0descendant (u) = 0 (7/kdescendant ) = 0)9 ﬂj,s (ékj’s) asso-
ciated with the leaves lying beneath node u are equal. For
example, with the tree in Figure 2, coefficients of all the
nodes beneath nodes u; and u, are zero. According to (2),
pj’s are aggregated into two groups: f; = f2 = you, + You,
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and f3 = f4 = fis = you, + You,- As such, feature aggrega-
tion can be achieved by introducing sparsity to yo(yx).

For regularized estimation and selection of important
interactions and main effects, we propose the penalized
objective function:

7] q
Qu(0,1) = L(6) +aly, le lyoel + Y ook Iml]

=1 k=1

p q
+(1-a)A), l50/ 18] + Y@y |§kj|]v

j=1 k=1

st. B=Ayy & =Ay k=1, ... ,9), 3)

where T' = (74,71, ... ,yq)/ eR@NTI 1 >0 and a e
[0,1] are tuning parameters, oz, ke, @o;, Dk are
covariate-specific weights (more details below), | 7T |
denotes the number of nodes in 7, A e {0,1}P¥I7
is a matrix with elements Aj := Liy cancestor (Hutj}} =
1 jedescendant (u,)u{y, } }» ADd B = Ay, and & = Ay, are the

compact forms of (2). Similar to other penalized interac-
tion analyses, interactions, and main effects with nonzero
coefficients are identified as being important for the
response.

Rationale The overall strategy is similar to other
penalizations, with the first term quantifies lack-of-fit—it
can be revised to accommodate other data types/models.
The two penalty terms induce different types of sparsity,
which are controlled by 4 and balanced by a. The second
penalty is relatively “simple” and has been considered in
the existing penalized G-E interaction studies. In partic-
ular, the Lasso penalty is directly imposed to g and &,
identifying important main effects and interactions. With
the decomposition strategy, the variable selection hierar-
chy is guaranteed. The weights @y, @y lead to weighted
(adaptive) penalization. For choosing weights, we refer to
Reference [28] and many other publications. The most
straightforward choice, which is adopted in our numerical
study, is to set the weights equal to 1. The most significant
advancement over the existing G-E interaction analysis is
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TABLE 1 Simulation Scenario 1
I:TPR I:FPR M:TPR M:FPR RSSE PMSE

m =20

Oracle Lasso 0.97(0.07) 0.03(0.01) 1.00(0.00) 0.21(0.13) 4.63(0.54) 0.21(0.08)
L1_dense 0.62(0.08) 0.04(0.01) 0.78(0.07) 0.22(0.04) 6.43(0.77) 3.12(1.08)
Ll_ag h 0.84(0.09) 0.13(0.05) 1.00(0.04) 0.68(0.16) 5.68(1.06) 3.69(0.72)
Lasso 0.74(0.06) 0.02(0.00) 0.95(0.04) 0.19(0.03)) 6.43(0.8) 2.64(1.00)
Proposed 0.82(0.13) 0.01(0.01) 1.00(0.00) 0.08(0.07) 4.85(0.58) 0.82(0.47)
m =40

Oracle Lasso 0.98(0.03) 0.03(0.01) 1.00(0.00) 0.09(0.06) 5.62(0.86) 0.39(0.16)
L1_dense 0.61(0.09) 0.05(0.02) 0.77(0.08) 0.24(0.05) 7.12(0.82) 3.72(1.56)
L1_ag h 0.75(0.11) 0.15(0.08) 0.99(0.06) 0.84(0.05) 7.03(1.68) 5.66(1.15)
Lasso 0.74(0.07) 0.03(0.01) 0.94(0.06) 0.19(0.03) 7.05(0.76) 2.79(1.21)
Proposed 0.89(0.09) 0.01(0.01) 1.00(0.01) 0.09(0.04) 5.80(0.56) 1.06(0.42)
m = 60

Oracle Lasso 0.94(0.06) 0.02(0.01) 1.00(0.01) 0.04(0.03) 6.42(0.98) 0.59(0.34)
L1_dense 0.61(0.09) 0.04(0.01) 0.75(0.10) 0.22(0.03) 6.74(0.66) 3.47(1.20)
Ll_ag h 0.56(0.18) 0.14(0.12) 1.00(0.00) 0.9(0.08) 8.04(1.82) 6.22(1.09)
Lasso 0.73(0.06) 0.03(0.00) 0.93(0.05) 0.19(0.03) 6.54(0.64) 2.66(1.15)
Proposed 0.88(0.09) 0.02(0.01) 1.00(0.01) 0.08(0.03) 6.48(0.48) 1.13(0.39)
m = 80

Oracle Lasso 0.91(0.05) 0.02(0.01) 1.00(0.02) 0.02(0.02) 6.88(0.74) 0.81(0.44)
L1 _dense 0.59(0.08) 0.05(0.01) 0.74(0.09) 0.23(0.04) 7.38(0.70) 4.35(1.29)
Ll ag h 0.57(0.16) 0.15(0.18) 0.98(0.05) 0.93(0.06) 7.85(2.03) 6.48(1.76)
Lasso 0.71(0.07) 0.03(0.01) 0.93(0.05) 0.19(0.03) 7.24(0.59) 3.53(1.52)
Proposed 0.89(0.07) 0.03(0.01) 1.00(0.02) 0.12(0.04) 7.07(1.84) 1.56(0.62)
m =100

Oracle Lasso 0.86(0.05) 0.02(0.01) 0.97(0.03) 0.02(0.02) 7.05(0.87) 1.23(0.55)
L1_dense 0.60(0.07) 0.05(0.01) 0.76(0.08) 0.23(0.04) 7.20(0.60) 4.56(1.57)
Ll_ag h 0.20(0.16) 0.15(0.16) 0.95(0.09) 0.85(0.13) 8.62(1.66) 7.71(1.22)
Lasso 0.73(0.07) 0.03(0.01) 0.94(0.04) 0.18(0.03) 7.16(0.64) 3.53(1.43)
Proposed 0.88(0.06) 0.03(0.01) 0.97(0.03) 0.13(0.04) 7.09(0.57) 1.84(0.87)

Note: In each cell, mean (SD) based on 500 replicates.

the first term. Penalty is imposed to yo, and yxs, which,
with the constraint defined in (2), induces fusion to the
coefficients in f and &,. This fusion is built on the tree
structure (as showcased in Figures 2 and 3). In particu-
lar, following [28], we leave the root (ygr fork =0, ... ,q)
unpenalized with {@yrj=0},_,, . This allows all
features to be aggregated into one single group with coefti-
cients fused to a nonzero value. Under 7, nearby features,
which are expected to have similar effects, are put into
the same data aggregating sets. Their effects are fused

to be similar, which allows nearby rare features to bor-
row strength from their neighbors. The aggregated effects
can be considerably larger than the individual ones, mak-
ing them more likely to be identified. It is noted that,
with the pI'OpOSGd penalty’ Y0 descendant (u) (deescendant(u)) is
encouraged but not forced to be zero. As such, with this
fusion/data aggregation technique, features in the same
aggregating sets not necessarily have the same coefficients,
making this approach more flexible than, for example,
those directly adding up rare features.
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LD heatmap

A toy example To better appreciate working char-
acteristics of the proposed method, we simulate a small
dataset with n = 100 and p = 100. The tree structures for
the main G effects and (components of) G-E interactions
are shown in Figure 3. The true aggregating sets are deter-
mined based on Figure 3. In particular, the main G effects
p; are aggregated into two groups, corresponding to nodes
u; and u,. All the leaves under u; have coefficients zero.
p; under node u, are set to be 1.5. &;’s are aggregated into
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Laso Proposed

Pairwise LD analysis of rare single nucleotide polymorphisms (SNPs) (post screening). Top: LD decay plot; bottom:

three groups, corresponding to nodes u;, us, us. &’s under
node u, are set as 0, and those under nodes uz and u, are
set as 0.75 and 2.25, respectively. Finally, the G-E interac-
tions are calculated as ; = ;. There are in total 10 main
G effects and 30 G-E interactions with nonzero coeffi-
cients, and they satisfy the variable selection hierarchy. We
graphically show the true regression coefficients in the left
column of Figure 5. The SNP measurements are simulated
from a Poisson(0.02) distribution and truncated at 2 if
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needed. We then simulate three E variables as having
a Bernoulli distribution with probability of success 0.7.
The response variable is generated from a linear regres-
sion model with a standard normally distributed random
error. Beyond the proposed approach, we also consider the
Lasso approach as a benchmark, which shares the same

R? Color Key

Pairwise LD analysis of all single nucleotide polymorphisms (SNPs) (post screening). Top: LD decay plot; bottom:

penalization framework as the proposed approach but
does not conduct data aggregation. The estimation results
using the proposed and Lasso approaches are graphically
presented in Figure 5. By borrowing strength and effec-
tively aggregating data, the proposed approach is observed
to have significantly better identification and estimation
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accuracy. More definitive results based on larger-scale sim-
ulations are presented below in Section 3.

2.3 | Computation

With fixed tuning parameters, the optimization of (3) can
be conducted using an iterative coordinate descent (CD)
algorithm, which optimizes the objective function with
respect to one of the three (sets of) vectors a, 8, and &;’s

at a time and iteratively cycles through all of the param-
eters until convergence. Let a®, 8, and 61(:) denote the
estimates of a, §, and &, at iteration ¢, respectively. The
proposed algorithm proceeds as follows:

Step 1 Initialize t =0, g =0, fg) =0, and a® =
(X'X)"'Xy.

Step 2 Update t =t + 1. With &, and « fixed at 5;:_1)
and a~D, optimize (3) with respect to B. Let 3V =y —

~ !
Xa' and 2" =z + ZZ=1W(k) 0 <1nx1< ;{H)) > with
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TABLE 2  Analysis of the NFBC1996 data using the proposed approach: identified main effects and interactions
SNP Main effect Gender CRP Glucose TC HDL
rs12208417 0.015 0.045 0.014 — 0.005 0.046
1s6488338 —-0.017 —0.037 0.074 = —-0.014 ==
152453244 —0.015 —0.044 —-0.007 0.022 —-0.067 —
rs11042023 —0.008 —0.057 — — — 0.027
rs2511841 -0.012 —0.081 0.014 0 —0.028 0.076
154965685 0.016 0.037 = 0.005 = 0.029
rs489487 0.01 0.05 — —0.011 — —
1s7306908 —0.016 —0.069 — —0.015 — —
1s10949732 0.017 0.039 —0.095 — — 0.013
rs4575188 0.011 0.036 0.016 — 0.017 —
rs4720078 —0.016 —0.048 — —0.012 —0.003 0.013
1s7039156 —0.018 —0.034 = = —0.022 —0.011
1s1676996 0.017 0.053 — 0.042 0.026 0.01
rs1386894 0.009 0.057 = = -0.014 —
rs1180819 —-0.015 —0.051 0.005 — —0.008 —0.053
rs10512052 0.014 0.042 —0.041 = 0.011 =
rs1237044 —-0.016 —0.03 0.007 — — —0.109
rs10773484 —0.013 —0.065 — —0.01 — —
rs1284412 0.012 0.029 0.055 0.051 — —
1s2571249 0.016 0.052 0.05 = —-0.027 —0.001
rs4149570 0.009 0.031 —_ — —_ —0.005
rs1372555 —-0.013 —0.049 —0.011 0.001 = —0.035
rs3782631 0.013 0.06 0.01 — — —
1s2121671 0.015 0.048 —0.004 —0.011 —-0.016 —
rs1870591 —0.011 —0.084 — — — 0.008
rs10508924 0.015 0.043 0.018 —0.018 = —0.011
152834889 —-0.011 —0.025 0.019 — 0.019 —0.003
157186722 —0.022 —0.069 — 0.006 0.046 0.094
rs3092379 0.013 0.038 — — 0.008 0.006
rs2150855 —-0.017 —0.051 —0.005 = 0.017 0.046
rs516783 0.013 0.058 — 0.009 — —0.009
157506974 0.012 0.022 — —0.049 — 0.009
rs3898586 0.014 0.061 0.04 — 0.003 —
rs344386 —0.024 —0.045 —0.02 — — 0.038
1,1 =(, ... ,1)ua. Then To simplify notation, we consider the representative set-
ting with wor; = 0 and {wo, = 1,Wo; = 1}{#”']_6{1“_"[)}}.
2 Problem (4) can be efficiently solved with the
pY = arg mﬁln%‘i( = E(t)ﬂ consensus ADMM algorithm [28]. Taking the form of a
71 2 » decomposition-coordination procedure, it combines the

+ 4 aZWo;f lvoel + (1 — 0)2\7101' |5
=1 J

=1

s.t. p=Ay,.

4

benefit of dual decomposition and augmented Lagrangian
methods for constrained optimization.

Step 3 With g and « fixed at B and a~?, optimize
(3) with respect to &= (&, ....&,). Let yO=y-
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TABLE 3 Simulation Scenario 2

I:TPR I:FPR M:TPR M:FPR RSSE PMSE

m =20

Oracle Lasso 1.00(0.02) 0.05(0.03) 1.00(0.00) 0.65(0.13) 3.01(1.08) 0.31(0.17)
L1_dense 0.14(0.07) 0.00(0.00) 0.42(0.19) 0.02(0.01) 7.03(1.00) 6.64(3.60)
Ll_ag h 0.89(0.09) 0.08(0.04) 0.98(0.08) 0.61(0.16) 6.18(0.94) 3.84(1.08)
Lasso 0.14(0.07) 0.00(0.00) 0.42(0.19) 0.02(0.01) 6.94(0.99) 6.46(3.36)
Proposed 0.67(0.20) 0.01(0.01) 0.94(0.09) 0.18(0.08) 5.03(1.00) 3.11(2.38)
m =40

Oracle Lasso 0.95(0.06) 0.05(0.02) 0.99(0.04) 0.57(0.11) 4.58(1.11) 0.96(0.70)
L1 _dense 0.12(0.07) 0.00(0.00) 0.36(0.19) 0.02(0.02) 7.47(0.95) 7.39(3.07)
Ll ag h 0.85(0.13) 0.24(0.08) 1.00(0.00) 0.76(0.15) 7.19(0.94) 5.61(1.93)
Lasso 0.12(0.07) 0.00(0.00) 0.36(0.19) 0.02(0.02) 7.4(0.89) 7.37(2.96)
Proposed 0.56(0.22) 0.01(0.01) 0.90(0.09) 0.18(0.09) 5.99(1.01) 4.41(1.99)
m = 60

Oracle Lasso 0.88(0.08) 0.03(0.02) 0.98(0.04) 0.48(0.11) 5.33(1.38) 1.93(1.18)
L1_dense 0.14(0.07) 0.00(0.00) 0.42(0.19) 0.02(0.02) 7.19(0.77) 6.86(2.41)
Ll ag h 0.60(0.21) 0.26(0.15) 0.94(0.12) 0.83(0.11) 7.76(1.32) 7.13(4.07)
Lasso 0.14(0.07) 0.00(0.00) 0.42(0.19) 0.02(0.02) 7.22(0.76) 6.75(2.38)
Proposed 0.50(0.19) 0.02(0.01) 0.87(0.11) 0.22(0.08) 6.21(0.68) 4.92(2.09)
m = 80

Oracle Lasso 0.75(0.10) 0.04(0.03) 0.96(0.06) 0.41(0.11) 6.25(1.03) 2.97(1.27)
L1 _dense 0.09(0.06) 0.00(0.00) 0.30(0.18) 0.02(0.01) 7.79(0.52) 7.98(2.60)
Ll ag h 0.42(0.18) 0.30(0.17) 0.86(0.12) 0.82(0.15) 8.39(0.91) 7.98(2.48)
Lasso 0.09(0.06) 0.00(0.00) 0.30(0.18) 0.02(0.01) 7.76(0.50) 7.85(2.53)
Proposed 0.34(0.17) 0.01(0.01) 0.76(0.15) 0.25(0.10) 7.03(0.66) 6.63(2.21)
m =100

Oracle Lasso 0.69(0.11) 0.04(0.03) 0.93(0.06) 0.40(0.12) 6.31(1.13) 3.06(1.38)
L1_dense 0.11(0.08) 0.00(0.00) 0.33(0.19) 0.02(0.02) 7.61(0.69) 7.86(3.35)
Ll _ag h 0.41(0.13) 0.26(0.13) 0.84(0.13) 0.76(0.18) 8.42(1.04) 8.34(2.78)
Lasso 0.11(0.08) 0.00(0.00) 0.33(0.19) 0.02(0.02) 7.60(0.80) 7.91(3.40)
Proposed 0.38(0.17) 0.02(0.01) 0.78(0.13) 0.25(0.09) 6.73(0.70) 5.75(2.59)

Note: In each cell, mean (SD) based on 500 replicates.

~(k (t) . . . . .
Xa™) — ZB® and <W( )> —wh o <1n><1 ( ﬂ(z))’) Then The algorithm is similar to that in Step 2.

®

& = ’
f(t)—Z(W ) Sk

Step 4 Compute a® = (X’X)_lX' (y-2zpY - Y]

ED = argmin 1 k=1
2n ~ , w® < Ko, 5;:)) >
171 g P g
+ A az ZW}({ kel + (1 — a)z ZVNij &5 Step 5 Repeat Steps 2-4 until convergence. In
¢=1k=1 j=lk=1 our numerical study, convergence is concluded if

| Qn (9(1)’1"(0)_Qn(e(tfl)’r(l—l))|

-4
st.é& =Ay, k=1, ... .q. [Q. (6701 D)] <107
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TABLE 4 Simulation Scenario 3
I:TPR I:FPR M:TPR M:FPR RSSE PMSE
m =20
Oracle Lasso 1.00(0.01) 0.06(0.05) 1.00(0.00) 0.70(0.14) 3.11(0.98) 0.36(0.24)
L1_dense 0.16(0.07) 0.00(0.00) 0.43(0.17) 0.02(0.01) 7.03(1.02) 7.92(3.93)
Ll_ag h 0.91(0.09) 0.09(0.04) 1.00(0.04) 0.67(0.17) 5.73(1.27) 3.51(1.59)
Lasso 0.16(0.07) 0.00(0.00) 0.43(0.17) 0.02(0.01) 6.95(0.99) 7.67(3.91)
Proposed 0.68(0.21) 0.01(0.01) 0.94(0.09) 0.18(0.07) 5.24(1.09) 3.49(2.02)
m =40
Oracle Lasso 0.95(0.06) 0.05(0.05) 0.99(0.03) 0.59(0.12) 4.65(1.38) 1.29(0.77)
L1_dense 0.14(0.06) 0.00(0.00) 0.39(0.15) 0.02(0.01) 7.69(0.92) 8.36(3.42)
Ll_ag h 0.79(0.20) 0.23(0.10) 0.99(0.06) 0.81(0.10) 7.03(1.23) 6.18(2.52)
Lasso 0.14(0.06) 0.00(0.00) 0.39(0.15) 0.02(0.01) 7.66(1.15) 8.55(5.08)
Proposed 0.55(0.21) 0.02(0.01) 0.87(0.14) 0.20(0.08) 6.25(0.85) 5.00(1.74)
m = 60
Oracle Lasso 0.84(0.10) 0.03(0.02) 0.96(0.06) 0.50(0.10) 5.18(0.89) 1.89(1.00)
L1_dense 0.14(0.06) 0.00(0.00) 0.38(0.16) 0.02(0.01) 7.14(0.64) 6.73(2.76)
Ll_ag h 0.57(0.17) 0.24(0.13) 0.96(0.11) 0.83(0.14) 7.16(0.85) 6.54(3.20)
Lasso 0.14(0.06) 0.00(0.00) 0.38(0.16) 0.02(0.01) 7.13(0.68) 6.70(2.78)
Proposed 0.48(0.18) 0.02(0.01) 0.85(0.12) 0.23(0.09) 5.98(0.83) 4.82(2.10)
m = 80
Oracle Lasso 0.77(0.09) 0.03(0.02) 0.96(0.05) 0.42(0.10) 6.65(1.16) 3.58(2.22)
L1_dense 0.11(0.06) 0.00(0.00) 0.30(0.16) 0.02(0.01) 7.93(0.68) 9.09(3.69)
Ll ag h 0.48(0.16) 0.38(0.18) 0.87(0.13) 0.81(0.17) 8.90(1.11) 10.33(5.29)
Lasso 0.11(0.06) 0.00(0.00) 0.30(0.16) 0.02(0.01) 7.99(0.89) 8.87(3.45)
Proposed 0.37(0.16) 0.02(0.01) 0.78(0.12) 0.25(0.09) 6.97(0.71) 6.99(3.32)
m =100
Oracle Lasso 0.68(0.10) 0.04(0.02) 0.91(0.08) 0.41(0.10) 6.30(0.98) 3.18(1.38)
L1_dense 0.11(0.08) 0.00(0.00) 0.32(0.20) 0.02(0.02) 7.72(0.66) 8.29(3.28)
Ll _ag h 0.44(0.13) 0.30(0.14) 0.89(0.12) 0.81(0.17) 8.35(1.21) 9.28(5.37)
Lasso 0.11(0.08) 0.00(0.00) 0.32(0.20) 0.02(0.02) 7.66(0.63) 8.00(3.06)
Proposed 0.36(0.18) 0.02(0.01) 0.76(0.15) 0.25(0.10) 6.79(0.64) 6.36(2.63)

Note: In each cell, mean (SD) based on 500 replicates.

The proposed objective function is bounded from
below. In each iteration step, its value decreases. As such,
convergence is guaranteed. It is satisfactorily achieved
with a moderate number of iterations in all of our numer-
ical studies. The tuning parameters (4, a) are chosen
using a modified BIC criterion with the degree of freedom
defined as the effective number of parameters [39]. With
simple updates, the proposed computational algorithm is
affordable. For one simulation replicate (details described
below), computation can be accomplished within 3 min

on a regular desktop. To facilitate numerical analysis
within and beyond this study, we have developed R
code and made it publicly available at http://github.com/
shuanggema/.

3 | SIMULATION

We consider a total of six scenarios to examine the
dependence of performance on distributional properties,


http://github.com/shuanggema/
http://github.com/shuanggema/
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TABLE 5 Simulation Scenario 4
I:TPR I:FPR M:TPR M:FPR RSSE PMSE
m =20
Oracle Lasso 0.99(0.02) 0.05(0.04) 1.00(0.00) 0.69(0.14) 3.41(1.90) 1.02(1.19)
L1_dense 0.17(0.07) 0.01(0.00) 0.41(0.10) 0.02(0.01) 8.57(2.02) 9.95(4.83)
Ll_ag h 0.91(0.13) 0.10(0.05) 0.98(0.12) 0.65(0.16) 6.99(1.89) 6.14(3.6)
Lasso 0.17(0.07) 0.01(0.00) 0.41(0.10) 0.02(0.01) 8.46(1.86) 9.63(4.38)
Proposed 0.64(0.16) 0.01(0.01) 0.90(0.12) 0.19(0.06) 6.86(2.82) 5.83(4.37)
m =40
Oracle Lasso 0.90(0.09) 0.06(0.04) 0.99(0.03) 0.65(0.10) 6.12(1.96) 3.57(3.17)
L1_dense 0.16(0.06) 0.01(0.00) 0.38(0.13) 0.02(0.01) 8.92(1.75) 12.11(6.68)
Ll_ag h 0.88(0.12) 0.29(0.08) 0.99(0.06) 0.83(0.11) 7.43(1.90) 11.15(6.73)
Lasso 0.16(0.06) 0.01(0.00) 0.38(0.13) 0.02(0.01) 9.07(1.89) 12.71(7.06)
Proposed 0.55(0.16) 0.02(0.01) 0.89(0.12) 0.22(0.08) 7.04(1.52) 9.00(7.59)
m = 60
Oracle Lasso 0.82(0.09) 0.04(0.03) 0.97(0.06) 0.54(0.09) 6.00(1.46) 4.43(3.64)
L1_dense 0.15(0.06) 0.01(0.00) 0.39(0.10) 0.03(0.01) 7.66(0.80) 9.24(3.39)
Ll_ag h 0.72(0.18) 0.35(0.10) 0.98(0.06) 0.84(0.12) 7.48(1.00) 9.96(4.20)
Lasso 0.15(0.06) 0.01(0.00) 0.39(0.1) 0.03(0.01) 7.86(1.23) 9.59(4.18)
Proposed 0.53(0.12) 0.02(0.01) 0.90(0.09) 0.22(0.09) 6.61(0.92) 6.69(3.21)
m = 80
Oracle Lasso 0.69(0.11) 0.05(0.03) 0.94(0.08) 0.46(0.11) 7.32(1.46) 6.43(2.90)
L1_dense 0.14(0.07) 0.01(0.00) 0.35(0.14) 0.03(0.01) 8.80(1.36) 12.12(5.52)
Ll ag h 0.60(0.16) 0.50(0.16) 0.93(0.1) 0.90(0.10) 8.78(1.23) 13.18(6.26)
Lasso 0.14(0.07) 0.01(0.00) 0.35(0.14) 0.03(0.01) 8.67(1.11) 11.97(5.70)
Proposed 0.46(0.14) 0.03(0.01) 0.84(0.10) 0.24(0.09) 7.33(0.96) 9.55(4.85)
m =100
Oracle Lasso 0.63(0.11) 0.04(0.02) 0.89(0.08) 0.43(0.08) 7.50(1.53) 5.79(3.04)
L1_dense 0.13(0.05) 0.01(0.00) 0.36(0.12) 0.03(0.02) 8.68(1.58) 10.78(5.38)
Ll_ag h 0.56(0.14) 0.38(0.15) 0.94(0.10) 0.88(0.10) 9.01(1.72) 14.04(10.54)
Lasso 0.13(0.05) 0.01(0.00) 0.36(0.12) 0.03(0.02) 8.69(1.39) 10.26(3.83)
Proposed 0.41(0.13) 0.03(0.01) 0.80(0.12) 0.26(0.09) 7.54(1.22) 8.53(3.28)

Note: In each cell, mean (SD) based on 500 replicates.

especially correlation. To mimic data analyzed in the next
section, we simulate G variables with properties similar
to SNPs. Under Scenario 1, the G variables are indepen-
dently generated from a Poisson(0.02) distribution and
truncated at 2 if needed. The five E variables are gen-
erated from a Bernoulli distribution with probability of
success 0.7. Under Scenarios 2-6, we first generate p con-
tinuous variables from multivariate normal distributions,
and then dichotomize the continuous variables at the
0.98 and 0.995 percentiles to generate the three-level

G measurements. The multivariate normal distributions
have marginal means 0 and variances 1. Two correla-
tion structures with different parameters are considered
and referred to as Bandl, Band2, AR(0.3), AR(0.5), and
AR(0.8). Here, Band1 and Band2, the two banded corre-
lation structures, have correlation coefficients of variables
j and k as 0.3V ¥(j — k| < 2) and 0.3V7H[(j — k| = 2) +
0.5V74(j — k| < 2), respectively. The three auto-regressive
structures correspond to weak, moderate, and strong
correlations, respectively. We note that such correlation
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TABLE 6 Simulation Scenario 5
I:TPR I:FPR M:TPR M:FPR RSSE PMSE

m =20

Oracle Lasso 1.00(0.01) 0.05(0.03) 1.00(0.00) 0.68(0.14) 2.76(0.82) 0.33(0.32)
L1_dense 0.11(0.09) 0.00(0.00) 0.34(0.22) 0.02(0.01) 6.67(0.97) 5.54(2.47)
Ll_ag h 0.91(0.07) 0.07(0.03) 1.00(0.00) 0.59(0.18) 6.28(0.82) 3.73(0.84)
Lasso 0.11(0.09) 0.00(0.00) 0.34(0.22) 0.02(0.01) 6.64(1.03) 5.57(2.45)
Proposed 0.65(0.24) 0.01(0.01) 0.95(0.09) 0.18(0.11) 4.73(0.82) 2.49(1.13)
m =40

Oracle Lasso 0.93(0.08) 0.05(0.03) 0.98(0.05) 0.55(0.13) 4.26(0.81) 1.07(0.76)
L1_dense 0.10(0.08) 0.00(0.00) 0.29(0.19) 0.02(0.02) 7.3(0.7) 6.89(2.40)
Ll_ag h 0.79(0.13) 0.22(0.07) 0.99(0.06) 0.77(0.12) 6.74(1.00) 4.95(1.61)
Lasso 0.10(0.08) 0.00(0.00) 0.29(0.19) 0.02(0.02) 7.21(0.67) 6.79(2.32)
Proposed 0.54(0.24) 0.02(0.01) 0.88(0.14) 0.25(0.12) 5.68(0.84) 4.04(1.82)
m = 60

Oracle Lasso 0.89(0.08) 0.04(0.02) 0.99(0.04) 0.49(0.13) 5.17(1.26) 1.95(1.39)
L1_dense 0.14(0.07) 0.00(0.00) 0.41(0.17) 0.02(0.01) 7.15(0.73) 7.03(3.15)
Ll_ag h 0.57(0.18) 0.24(0.12) 0.92(0.13) 0.78(0.12) 7.45(1.15) 6.36(2.38)
Lasso 0.14(0.07) 0.00(0.00) 0.41(0.17) 0.02(0.01) 7.11(0.68) 6.84(3.00)
Proposed 0.57(0.16) 0.02(0.01) 0.87(0.09) 0.29(0.11) 5.99(0.64) 4.77(2.14)
m = 80

Oracle Lasso 0.75(0.09) 0.03(0.01) 0.96(0.07) 0.4(0.09) 6.57(1.37) 2.85(1.36)
L1 _dense 0.09(0.08) 0.00(0.00) 0.28(0.18) 0.02(0.02) 7.79(0.69) 7.64(2.67)
Ll ag h 0.42(0.19) 0.29(0.18) 0.9(0.13) 0.85(0.12) 8.62(1.09) 8.43(2.50)
Lasso 0.09(0.08) 0.00(0.00) 0.28(0.18) 0.02(0.02) 7.74(0.70) 7.41(2.61)
Proposed 0.39(0.20) 0.02(0.01) 0.83(0.14) 0.27(0.11) 6.87(0.73) 5.87(2.35)
m =100

Oracle Lasso 0.69(0.10) 0.04(0.03) 0.92(0.06) 0.41(0.11) 6.20(1.20) 3.20(1.56)
L1_dense 0.10(0.07) 0.00(0.00) 0.30(0.18) 0.02(0.02) 7.56(0.65) 7.48(2.09)
Ll_ag h 0.40(0.15) 0.24(0.13) 0.88(0.12) 0.82(0.13) 8.41(1.25) 8.25(2.52)
Lasso 0.10(0.07) 0.00(0.00) 0.30(0.18) 0.02(0.02) 7.52(0.65) 7.43(2.20)
Proposed 0.38(0.17) 0.02(0.01) 0.81(0.11) 0.28(0.10) 6.84(0.69) 6.20(2.21)

Note: In each cell, mean (SD) based on 500 replicates.

structures have been considered in quite a few 3 stud-
ies. For the E variables, we first generate five contin-
uous variables from a multivariate normal distribution
with marginal means 0, marginal variances 1, and an
AR(0.3) correlation structure. Then, two variables are
dichotomized at O to create two binary variables, leading
to three continuous and two binary E variables. Under
all scenarios, the G variables have low (MAF 1%-5%) and
very low (MAF < 1%) frequencies. In practical data anal-
ysis, more common variants are expected. Here, we focus

on rare variants whose effects are more difficult to quan-
tify. The proposed approach is expected to have better
performance for variants that are less rare.

The nonzero main effects and interactions are gener-
ated as follows. For the SNPs, based on their adjacency
(correlation) information, the true tree structure 7 of the

p leaves is shown in Figure 6. These leaves form m aggre-
gating sets (clusters) with varying sizes, which are indexed

by B*. This construction is similar to that in [28]. To gen-
erate the main G and G-E interaction effects, we first
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TABLE 7 Simulation Scenario 6
I:TPR I:FPR M:TPR M:FPR RSSE PMSE

m =20

Oracle Lasso 1.00(0.02) 0.05(0.04) 1.00(0.00) 0.67(0.15) 2.96(1.00) 0.36(0.22)
L1_dense 0.16(0.07) 0.01(0.00) 0.48(0.15) 0.02(0.01) 7.00(1.34) 7.57(3.81)
Ll_ag h 0.91(0.09) 0.08(0.04) 1.00(0.00) 0.63(0.18) 5.31(0.77) 3.91(0.91)
Lasso 0.16(0.07) 0.01(0.00) 0.48(0.15) 0.02(0.01) 7.02(1.38) 7.43(3.82)
Proposed 0.65(0.16) 0.01(0.01) 0.95(0.06) 0.13(0.07) 4.95(1.01) 2.95(1.90)
m =40

Oracle Lasso 0.96(0.05) 0.05(0.03) 0.99(0.04) 0.60(0.13) 4.44(1.22) 1.29(0.82)
L1_dense 0.15(0.07) 0.00(0.00) 0.40(0.16) 0.02(0.01) 7.52(0.68) 8.04(2.91)
Ll_ag h 0.83(0.14) 0.25(0.11) 0.99(0.04) 0.78(0.14) 7.02(1.16) 6.28(2.71)
Lasso 0.15(0.07) 0.00(0.00) 0.40(0.16) 0.02(0.01) 7.66(1.04) 8.15(3.24)
Proposed 0.49(0.14) 0.01(0.01) 0.87(0.11) 0.16(0.08) 6.24(0.90) 4.85(2.04)
m = 60

Oracle Lasso 0.86(0.12) 0.04(0.03) 0.98(0.06) 0.52(0.13) 5.61(1.53) 2.37(1.75)
L1_dense 0.13(0.07) 0.00(0.00) 0.39(0.18) 0.02(0.01) 7.16(0.65) 7.82(3.50)
Ll_ag h 0.60(0.21) 0.27(0.13) 0.95(0.12) 0.84(0.13) 7.52(0.97) 8.22(3.82)
Lasso 0.13(0.07) 0.00(0.00) 0.39(0.18) 0.02(0.01) 7.18(0.67) 7.79(3.45)
Proposed 0.46(0.17) 0.01(0.01) 0.85(0.11) 0.18(0.07) 6.09(0.89) 5.57(3.10)
m = 80

Oracle Lasso 0.77(0.11) 0.04(0.02) 0.96(0.07) 0.42(0.10) 7.01(1.82) 4.39(3.22)
L1_dense 0.11(0.07) 0.01(0.00) 0.37(0.17) 0.02(0.02) 8.08(0.70) 9.37(3.90)
Ll ag h 0.48(0.15) 0.38(0.17) 0.89(0.14) 0.84(0.17) 8.95(1.29) 9.81(3.44)
Lasso 0.11(0.07) 0.01(0.00) 0.37(0.17) 0.02(0.02) 8.05(0.76) 9.32(3.96)
Proposed 0.40(0.17) 0.02(0.01) 0.80(0.14) 0.19(0.08) 7.08(0.70) 7.12(3.37)
m =100

Oracle Lasso 0.71(0.10) 0.04(0.02) 0.91(0.06) 0.44(0.12) 6.66(1.29) 3.85(2.50)
L1_dense 0.10(0.07) 0.00(0.00) 0.28(0.19) 0.02(0.02) 7.67(0.57) 7.87(3.17)
Ll_ag h 0.44(0.14) 0.27(0.16) 0.89(0.12) 0.81(0.16) 8.25(1.06) 8.14(2.77)
Lasso 0.10(0.07) 0.00(0.00) 0.28(0.19) 0.02(0.02) 7.58(0.59) 7.73(3.14)
Proposed 0.31(0.17) 0.01(0.01) 0.74(0.15) 0.18(0.09) 6.93(0.69) 6.08(2.59)

Note: In each cell, mean (SD) based on 500 replicates.

generate a matrix Ap. € RP*™ with binary components
Apjt = Ljjeicustery- Then, the coefficient vectors are
generated via these aggregating sets as: g* =AB*E*,
& = AB*EZ(), where E*E; € R™ have mxs elements
zeroed out, and the remaining elements are indepen-
dently drawn from a Uniform(0.8, 1.5) distribution. Here,
s controls the true level of sparsity. For the main E effects,
their nonzero coefficients a;’s are generated from Uni-

form (0.8,1.2). The response y € R" values are simulated

from (1) with independent Gaussian errors and variances
ol =Y (xwa* +z B+ ZzzlxikZi' (o 5;))2/(5"1)-
The above data generation satisfies the “main effects,
interactions” hierarchical structure and aggregative effects
of the nearby G features.

We set n = 200, p = 200, g = 5, s = 0.4. It is noted that
the combined number of unknown parameters is much
larger than the sample size. We consider a sequence of m
values up to p/2. The proposed approach is applied based
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TABLE 8
overlaps (off-diagonal)

Lasso

Main G effects Lasso 31

L1_dense -
Ll ah -
Proposed -

Interactions Lasso 84

L1_dense -
Ll _a h -

Proposed =

on the tree 7. To gauge its performance, we further con-
sider the following alternatives. The first is Oracle Lasso,
under which the true aggregation structure XAg- is known,
and Lasso (which is the proposed approach with a = 0)
is applied for regularized selection and estimation. The
second is L1_dense, which applies Lasso after first discard-
ing all features with MAF < 1%. It represents approaches
that focus on dense features. The third is L1_ag_h, which
applies Lasso to features aggregated in the same clusters
after the tree is cut at a certain height. This approach
conducts feature aggregation based on 7', however, in a rel-
atively “brutal” manner. It represents approaches that first
conduct clustering, then group features in an unsupervised
way, and finally conduct modeling and estimation based
on the postaggregation features. Lastly, we also consider
the Lasso approach as for the toy example. For each setting,
we simulate 500 replicates.

We evaluate identification performance using the
true-positive rate (TPR) and false-positive rate (FPR) for
main G effects (M:TPR and M:FPR) and interactions
(I:TPR and I:FPR) separately. Here, it is noted that the pro-
posed approach conducts penalized variable selection as
opposed to hypothesis testing. As such, it does not have a
direct false discovery rate control. Nevertheless, TPR and
FPR are still highly informative performance measures.
We further evaluate estimation performance using the root
sum of squared errors (RSSE) defined as “@ -0
addition, we calculate the best mean-squared estimation

2
/P +
q + pq), where A represents a method’s tuning param-
eter(s). For evaluating prediction performance, for each
simulation replicate, we generate an independent testing
dataset with size 200 and compute the prediction mean
squared error (PMSE).

Summary results are presented in Tables 1 and 3-7
(Data S1). Across all of the simulation scenarios, the pro-
posed approach is observed to perform similarly to the

. In
2

error as a function of m, that is, miny ”5(/\) -0

NFBC1996 data analysis: numbers of main G effects and interactions identified by different approaches (diagonal) and their

L1_dense Ll a_h Proposed
22 20 27

29 20 24

- 23 21

- - 34

50 34 68

65 33 54

_ 40 36

- - 107

Oracle Lasso and has superior performance compared to
the other alternatives. Specifically, it can more accurately
identify both the true main effects and interactions while
having a small number of false positives. For example,
in Table 1, under Scenario 1 and m = 40, the proposed
approach has (M:TPR, M:FPR, L:TPR, I.FPR) = (0.89,
0.01, 1, 0.09), compared to (0.61, 0.05, 0.77, 0.24) for
L1_dense, (0.75, 0.15, 0.99, 0.84) for L1_ag_h, and (0.74,
0.03, 0.94, 0.19) for Lasso. This result and those alike can
establish the effectiveness of accommodating rare features
(when compared to L1_dense), data aggregation (when
compared to Lasso), and more effective data aggregation
(when compared to L1_ag _h). We also observe the supe-
riority of the proposed approach in estimation. For
example, in Table 6 (Data S1), under Scenario 5 and
m = 60, the proposed approach has RSSE = 5.99, com-
pared to 7.15(L1_dense), 7.45(L1_ag h), and 7.11(Lasso).
This superiority is further shown in Figure 7 (Data S1).
In particular, under Scenario 1 with Z simulated from
a Poisson(0.02) distribution, the proposed approach per-
forms nearly as well as the oracle. As m increases,
borrowing strength from neighbors decreases, and so
estimation performance deteriorates. L1_dense performs
very similarly to Lasso. Last but not least, the proposed
approach also has satisfactory prediction performance. For
example, in Table 1, under Scenario 1, the PMSEs are
3.12 (L1_dense), 3.69 (L1_ag h), 2.64 (Lasso), and 0.82
(proposed) (Figure 8).

4 | DATA ANALYSIS

To demonstrate the practical applicability of the proposed
approach, we analyze the individual-level data from the
NFBC (Northern Finland Birth Cohorts) study [40]. This
study was conducted to very broadly examine risk factors
involved in preterm birth and intrauterine growth retar-
dation, as well as the consequences of these early adverse
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TABLE 9  Analysis of the NFBC1996 data using the proposed approach under an alternative marginal screening: identified main
effects and interactions

SNP Main effect Gender CRP Glucose TC HDL
1s12222221 —0.253 0.001 —0.001 0.031 —0.002 —_
1s4585672 —-0.270 —0.001 0.003 0.001 0.006 =
1s6743144 0.230 0.008 0.001 0.028 -0.010 —
112548107 0.285 0.009 0.002 —0.021 0.037 —
rs1470829 —0.329 —0.008 — 0.016 0.007 —
1s6127943 0.216 0.007 —-0.002 0.002 0.006 ==
rs4735825 0.291 0.009 —0.004 —0.007 —0.028 —0.001
rs1882681 —0.462 —0.007 0.001 0.061 —0.030 —0.001
rs4870024 0.300 0.008 — —0.008 0.039 —
1s937557 —0.236 0.001 — —0.019 —0.018 —
rs177195 —0.245 0.011 — —0.008 0.006 —
1517552964 0.251 0.005 = = 0.016 0.001
1s3771327 —0.292 0.012 0.001 —0.027 0.024 —
152833383 —0.421 0.007 —0.004 —0.005 0.016 —0.001
rs4077636 —0.285 0.002 0.003 0.035 -0.016 —
rs4512398 —0.244 0.003 0.004 —0.004 —0.006 ==
rs1025404 —0.288 0.008 —0.005 —0.002 —-0.024 —
152961725 —0.244 —0.003 0.001 —0.011 —0.011 —0.001
1s1934127 -0.272 0.002 0.002 —-0.030 0.028 —0.001
rs1293770 0.223 0.009 — 0.023 0.008 —
rs1407593 0.239 0.010 0.003 —0.007 —-0.010 —
1s10906021 0.225 0.004 —0.003 0.013 0.031 0.001
1s12475063 -0.231 0.004 0.004 0.032 0.032 0.001
152306970 —0.226 0.008 0.001 —0.015 —0.047 —0.001
1s2868975 0.213 0.008 0.001 0.010 -0.014 —
1s6737978 —0.305 0.005 —0.001 0.017 —0.043 —
rs881204 —-0.337 —0.006 —0.001 —0.009 —0.005 —
rs1886434 —0.244 0.009 —0.001 0.014 0.034 0.001
157962035 0.282 0.005 0.002 0.054 0.024 0.001
rs11854565 0.354 0.005 0.001 —0.003 0.033 —0.001
1s7209713 -0.307 0.002 —0.001 -0.027 0.010 —
1s2016327 —0.259 0.003 —-0.002 —0.003 0.009 0.001
154422244 0.225 0.007 —0.002 —0.034 0.002 0.002
rs11812486 —0.300 0.012 0.002 —0.006 0.075 =
rs1345981 -0.293 0.001 0.001 0.023 —-0.009 —
1s6122682 —0.233 — —0.002 —0.003 — 0.001
rs1920083 —-0.234 — 0.001 0.008 0.012 —
1s987648 —-0.292 == 0.002 —0.016 0.016 —0.001
rs7989689 —0.264 — 0.001 —0.008 0.005 0.001
rs3887251 —0.218 — — 0.017 —0.009 —

rs1202657 —0.066 — — — — _
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TABLE 10
by different approaches (diagonal) and their overlaps (off-diagonal)

Lasso

Main G effects Lasso 47

L1_dense -
Ll ah -
Proposed -

Interactions Lasso 102

L1_dense -
Ll _a h -

Proposed =

outcomes on subsequent morbidity. The data collected
from Northern Finland forms a unique resource, allowing
to study the emergence of diseases, which can be caused
by genetic, biological, social, and behavioral risk factors.
The NFBC1966 dataset contains 10 traits and 364,590 SNPs
for 5402 individuals whose expected year of birth is 1966.
In our data analysis, the response variable of interest is
BMI (body mass index), which is an important phenotype
and critical biomarker for many illness conditions. For the
G factors, we consider SNPs. And for the E factors, we
consider gender, C-reactive protein (CRP), glucose, total
cholesterol (TC), and high-density cholesterol (HDL). We
note that these factors are not environmental in the nar-
row sense. Rather, they are clinical biomarkers. In the
recent literature [41], the interactions between clinical/de-
mographic variables and G factors analyzed under the G-E
interaction analysis framework and have attracted strong
interest. Such analysis can reveal the interplay between
clinical/demographic variables and G factors on disease
outcomes and other biomarkers.

Data processing is first conducted, following similar
procedures as in published studies [42]. In particular,
we exclude individuals that have discrepancies between
reported sex and sex determined using the X chromosome.
Further, individuals with missingness in the response and
E variables or with genotype missing call-rates > 5% are
excluded. A SNP is removed from analysis if its MAF < 1%
or missing call-rate > 1%, or it fails the Hardy—Weinberg
equilibrium test. The SNP data quality control is con-
ducted using PLINK [43]. These processing procedures
lead to data on 5123 individuals and 319,147 SNPs. In
principle, the proposed approach can be directly applied.
Considering the limited sample size, we further conduct a
prescreening to improve estimation. In particular, we split
the data into two parts with sizes 2:3. Marginal regres-
sion analysis is conducted in smaller part, under which
one SNP is analyzed at a time using regression. The 5000
SNPs with the smallest marginal p-values are selected for

NFBC1996 data analysis under an alternative marginal screening: numbers of main G effects and interactions identified

L1_dense Ll_a h Proposed
17 17 23

24 10 10

- 24 12

- - 41

25 14 28

34 15 16

= 26 12

- - 163

downstream analysis. In Figure 9 (for the rare SNPs) and
8 (for all of the SNPs) in the Data S1, we examine the LD
structures for the SNPs that have passed screening. It is
observed that a relatively small number of rare SNPs have
high LD values, which may limit the power of information
borrowing (Figures 10 and 11).

The larger part of the data is analyzed using the pro-
posed and alternative approaches. It is recognized that
this may lead to a smaller sample size and loss of power,
compared to the analysis of the whole data. However, sep-
arating the screening and analysis data can lead to more
objective analysis and comparison and has been adopted
in many published studies. The tree 7 is constructed using
hierarchical clustering and the physical locations of SNPs
and shown in Figure 4 (Data S1). For all approaches,
tuning parameters are selected using the modified BIC
criterion [39]. The proposed approach identifies 34 main
G effects and 107 interactions. The detailed estimation
results are provided in Table 2. The summary comparison
results are presented in Table 8 (Data S1). It is observed
that the proposed approach identifies more effects. This
is sensible as, with fusion, it can pull some SNPs that
otherwise may not be identified. It is also noted that,
with the complexity of BMI, more main G effects and
interactions (than identified by the proposed and alter-
native methods) may be involved. In general, penaliza-
tion approaches, including the proposed, can only iden-
tify the relatively strong effects. Alternative techniques
will be needed for the identification of weaker effects
(Tables 9 to 14).

The alternative methods miss the rare SNP rs6488338,
which has MAF = 0.046 and belongs to gene CD163. Pub-
lished studies have suggested that gene CD163 is associ-
ated with pregravid obesity. The adipose tissue expression
of gene CD163 is elevated in obesity and type 2 diabetes,
and this gene is a novel immune marker for metabolic
inflammation [44]. Many other findings are also biologi-
cally meaningful. For example, LINGO?2 is a protein coding
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TABLE 11  Analysis of the NFBC1996 data with Glucose as the response variable using the proposed approach: identified main
effects and interactions

SNP Main effect Gender CRP TC HDL LDL
rs10504197 0.023 0.041 -0.017 — —0.020 —
rs1551547 0.022 0.061 — — —0.011 —
1s7460495 —-0.031 —0.033 —0.032 e — 0.010
152290526 —0.030 —0.064 == = = =
rs10108007 0.017 0.026 — — —0.005 —
rs11998308 0.023 0.049 — — — —
1s9692725 -0.027 -0.052 — — — 0.033
rs10091115 0.032 0.042 0.023 0.031 = =
1s979843 —-0.026 —-0.047 — — —0.043 -0.020
1s7836768 0.025 0.024 0.050 = = =
1s9643401 -0.044 —0.058 -0.017 — 0.009 —0.008
rs1896135 0.019 0.045 = = = —
rs2380540 —-0.032 —0.033 0.056 — — 0.028
152380607 0.018 0.020 — — 0.005 —
1512678469 0.015 0.018 — 0.003 — —
rs1383978 —0.021 —0.032 — 0.007 — —
rs1031177 0.018 0.030 0.005 — — —0.007
1s959974 —0.023 —0.033 — — — —
rs12334848 0.028 0.027 —0.016 —0.053 — —0.036
152941456 0.013 0.018 == = == =
1s998731 -0.022 —0.016 — — — —
rs6473219 —-0.018 —0.018 = = = =
1s272610 0.014 0.013 — — — —
154961056 —0.024 —0.048 = 0.009 0.004 —
rs7818882 0.039 0.017 —0.019 —-0.007 0.044 —0.083
rs1507883 —0.024 —0.021 0.024 — — —
rs1382101 -0.016 —0.016 — — — —
rs1487796 0.038 0.083 0.076 — = =
rs13262606 0.021 0.038 —0.009 — — —
rs551496 0.015 0.013 — — — —
rs1374633 —-0.031 —-0.072 0.028 — - 0.039
rs2890805 0.031 0.053 0.022 —0.032 0.062 —
1s3104966 -0.016 -0.017 — — — —
1s4263730 —0.024 —0.006 —0.038 = 0.032 =
rs2587000 —-0.036 —0.045 0.059 0.037 0.017 —
rs2513399 —0.036 —0.036 —0.118 —0.033 = —
rs2513402 0.038 — -0.071 0.036 0.010 0.023

rs998980 0.002 — — — — _
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TABLE 12
different approaches (diagonal) and their overlaps (off—diagonal)
Lasso
Main G effects Lasso 42
L1_dense -
Ll ah -
Proposed -
Interactions Lasso 55
L1_dense -
Ll _a h -

Proposed =

NFBC1996 data analysis with Glucose as the response variable: numbers of main G effects and interactions identified by

L1_dense Ll a_h Proposed
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FIGURE 12
insulin as the response variable

gene that is an important part of the cellular membrane.
It has been linked to obesity in GWAS [45]. Addition-
ally, the variants of LINGO2 have been linked to essential
tremor in Parkinson’s disease [46]. Thus, its linkage to obe-
sity via interactions with DA signaling seems possible [47].
RBFOX1 is an important RNA-binding protein mediat-
ing the incorporation of microexons into many transcripts
associated with neurological patterning and tissue devel-
opment. Its association with obesity has been suggested
[48]. Gene ANO2 has been suggested as playing a role
in the pathophysiology of childhood obesity [49]. Studies
[50] have revealed that ANO2 is a Ca?* —activated chloride
channel in vagal afferents of nodose neurons and a major
determinant of CCK-induced satiety, body weight control,

oo S

NFBC1996 data analysis: tree 7 of single nucleotide polymorphisms’ (SNPs)’ physical positions (post screening), with

and energy expenditure, making it a potential therapeutic
target in obesity. TNFRSF1 genotypes have been identified
as significantly associated with STNFR1 plasma levels in
obese women [51]. It has been suggested that TNFRSF1A
polymorphism can have functional significance in obesity.
In addition, genes TAF4B, PCSK5, LDLRAD4, and TENM4
have also been associated with obesity by GWAS [52].
With real data, it is hard to objectively evaluate the
accuracy of identification. To provide further insight and
“indirect” support, we apply a resampling-based approach
and evaluate prediction performance and stability. Specif-
ically, the dataset is randomly divided into a training
and testing set, with sizes 9:1. The model/parameters are
estimated using only the training set and then used to
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TABLE 13

SNP

rs2220326
rs9598811
rs359379
1s359361
rs396985
rs967958
rs1928955
rs1036995
1s7324254
rs11148750
rs1384607
1s9541273
rs9571979
rs7993187
rs1341525
r$9572442
1s9542369
rs1114564
r$9599903
1s936457
rs7333339
1s287553
rs1324061
rs4597197
rs1505149
rs9574389
1s2274554
rs1998452
157336627
rs1335852
159602002
1s985035
rs988474
rs1334166
rs7333936

rs184385

Analysis of the NFBC1996 data with insulin as the response variable using the proposed approach: identified
main effects and interactions

Main effect

0.021
—0.023
0.049
—0.035
0.060
—0.041
0.020
—0.037
—-0.019
—0.023
-0.071
—0.029
0.035
0.055
—0.040
—0.025
0.040
0.040
0.031
—0.046
—0.047
—0.028
0.041
0.049
0.056
—0.021
0.043
—0.023
0.035
—0.046
-0.019
0.030
—0.089
—0.039
0.032

0.040

Gender

0.021
—0.018
0.092
—0.032
0.120
—0.051
0.017
0.003
—0.008
—0.019
—0.182
—0.041
0.084
0.096
—0.006
—0.031
0.087
0.025
0.063
—0.016
—0.052
—0.066
0.045
0.065
0.121
—0.040
0.054
—0.014
0.058
—0.122
—-0.028
0.033
—0.085
—0.091
0.021

0.031

CRP

0.027
0.000

0.072

TC

—0.040

—0.067

0.002

—0.061

HDL

0.002

-0.111

—0.013

—0.026

—0.003

0.064

—0.034

0.041

—0.018

—0.090

LDL

—0.055

0.056

—0.023

0.015

0.003

-0.117

0.050

(Continues)
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TABLE 13 (Continued)
SNP Main effect Gender CRP TC HDL LDL
rs12855484 —0.052 —0.018 — —0.041 — —
1s9516496 0.022 0.040 — — — —
rs7321486 —0.042 —0.023 —0.030 — 0.041 —
1s913427 0.029 0.044 — — — —-0.014
rs9556889 0.041 0.032 —0.096 — — —
1s679363 —0.039 —0.060 —0.002 0.041 = =
rs1556799 —0.034 —0.045 — — — —
rs1998550 —0.048 —0.060 —0.003 0.045 —0.025 0.005
rs701556 0.045 0.033 — — — -0.073
rs1571513 —0.063 —0.025 —0.100 —0.083 0.020 =
rs1730649 0.054 0.067 0.031 — 0.112 —0.014
152067741 0.042 = —0.085 0.040 —0.044 0.022
rs937872 0.051 — 0.216 — 0.002 —
1s9317872 —0.055 — —-0.013 — 0.093 0.020
rs9572541 0.052 — —0.091 0.005 0.045 0.005
rs9300342 —0.020 = —0.025 = = =
rs1998535 0.040 — — —0.031 — —0.046
rs516872 —0.059 == = = 0.194 =
1s9572146 —0.011 — — — — —
14405440 —0.003 = = = = =
TABLE 14 NFBC1996 data analysis with insulin as the response variable: numbers of main G effects and interactions identified

by different approaches (diagonal) and their overlaps (off-diagonal)

Lasso

Main G effects Lasso 50
L1_dense -
Ll_a h -
Proposed -

Interactions Lasso 102

L1_dense -
Ll_a_h -

Proposed -

make prediction for samples in the testing set, where
prediction performance is evaluated using prediction
mean squared error (PMSE). This procedure is repeated
1000 times. The training set estimates are also used to
evaluate stability. This approach has been extensively
adopted in the literature. The squared roots of the aver-
age PMSEs are 1.057 (L1_ag h), 1.058 (L1_dense), 1.052
(Lasso), and 1.046 (Proposed). In the stability evaluation,

L1_dense Ll _a h Proposed
18 13 35

43 21 9

- 52 17

- - 56

24 30 64

90 35 16

= 99 29

= = 120

we compute the OOI (observed occurrence index) for
each effect. Briefly, the OOI is the probability of a spe-
cific effect being identified across replicates and mea-
sures the stability of finding. For the identified main
G effects, the mean OOI values are 0.599 (L1_ag h),
0.636 (L1_dense), 0.604 (Lasso), and 0.638 (Proposed).
And for the identified interaction effects, the mean OOI
values are 0.544 (L1_ag h), 0.572 (L1l_dense), 0.552
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(Lasso), and 0.553 (Proposed). The proposed approach has
competitive prediction performance and selection stability
(Figure 12).

5 | ADDITIONAL ANALYSIS

To complement the above analysis, additional analysis is
conducted and reported in the Data S1. In the first set of
analysis, we repeat the above analysis under a different
marginal screening approach, with which we select a block
of consecutive SNPs. In the second set of analysis, we con-
sider two alternative response variables. The findings have
the same patterns as above. The proposed approach is able
to make biologically sensible findings with satisfactory
prediction and stability performance.

6 | DISCUSSION

In this article, we have developed a new G-E interac-
tion analysis approach, taking advantage of the most
recent development in data aggregation. The proposed
approach can complement and advance from the existing
approaches by effectively accommodating rare features,
conducting joint analysis, more effectively aggregating
nearby features, and others. It is built on the existing penal-
ized joint G-E interaction analysis and state-of-the-art data
integration [28] and has a sensible formulation. Simula-
tion has demonstrated its competitive performance. In the
NFBC data analysis, it has generated findings different
from the alternatives and with satisfactory prediction and
stability performance.

This study can be extended in multiple directions.
As briefly described above, it can be (almost) directly
applied to other data types/models. A closer examination
of the proposed estimation suggests that it may not be spe-
cific to SNPs, physical locations (for tree construction),
or rare features. When it is expected that certain features
may share similar effects, and when a similarity measure
can be defined statistically or functionally, the proposed
approach may be applicable. In some genetic studies, mul-
tiple responses that share related genetic basis are jointly
analyzed. In the NFBC1966 study, there are some traits
that may share main G effects and interactions. It will be
of interest to extend the proposed method to the collec-
tive analysis of multiple response variables. It may also
be of interest for future research to establish theoretical
properties, which may follow from Reference [28] and the
existing theoretical studies on penalized G-E interaction
analysis. In data analysis, the prediction and stability eval-
uation can provide some indirect support to the validity of

our analysis. It is of interest further examine and validate
the findings.
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in joint analysis, a large number of G measurements are
analyzed in a single model. In the past decade, we have wit-
nessed significant developments in G-E interaction anal-
ysis methodology, computation, theory, and application.
For reviews and representative studies, we refer to [1-3].
In this article, we conduct joint G-E interaction analy-
sis and note that joint and marginal analyses are two
different analysis paradigms, have different implications,
and cannot replace each other, although joint analysis
may better fit the biology of complex diseases. For recent
developments in joint G-E interaction analysis, we refer to
[4, 5].

Our literature review suggests that, in most of the
existing joint G-E interaction analyses, attention has been
on “simple” data, for example, continuously distributed
gene expressions [6] and single nucleotide polymorphisms
(SNPs) with moderate to high MAFs (minor allele fre-
quencies). Comparatively, attention to rare features, for
example, SNPs with low MAFs (often defined as MAF <
5%) and certain methylation data, has been limited. Rare
features are not uncommeon in practice. In Figure 1 (Data
51), for the NFBC1996 data to be analyzed in Section 4,
we show the genotype distributions of the rare features
{post screening). Published studies have established that
“ordinary” statistical methods lose power with rare fea-
tures [7, 8], and that as features get increasingly rare, an
unreasonably large sample size will be needed to detect
their effects. Here, it is noted that such conclusions have
been drawn for main-effect-only methods, most of which
conduct marginal analysis. However, it is sensible to expect
similar conclusions for interaction analysis. Some early
studies inappropriately drop rare features from analysis
[9]. With the development of personalized medicine, the
significance of rare features for complex human diseases
has been firmly recognized [10-12]. Its theoretical basis is
that features that strongly predispose to diseases are likely
to be deleterious and thus kept at low frequencies by puri-
fying selection [13, 14]. Examining rare features can assist
identifying subpopulations that may benefit from targeted
treatment.

In main-effect-only analysis, it has been recognized
that the most effective and possibly the only feasible strat-
egy for identifying rare features is pooling. That is, as
opposed to identifying the individual effects of rare fea-
tures, the combined effects of “related” rare features, for
example those in the same genetic region, are identi-
fied. Popular data pooling/collapsing strategies include
gene-based bins [15, 16], windows of a fixed length [17],
windows of a fixed number of variants [18, 19], and oth-
ers. A common limitation of these approaches is that
they do not take into account the directions of fea-
tures’ effects on a response variable. Generically, meth-
ods for analyzing rare features can be classified into

TS0000
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FIGURE 1 A small example of aggregating features within
branches

four main categories: burden tests using linear statistics
[20, 21], variance-components-type tests using quadratic
statistics [22, 23], hybrid methods combining burden
and variance-components-type tests [15, 24], and other
dimension-reduction-based approaches. Examples in the
last category include [ 25, 26], which conduct unsupervised
clustering to create denser features. Another example is
a penalization method called ConvexConcave Rare vari-
ant Selection (CCRS) [27]. However, it has been found
that, even after applying the aforementioned aggrega-
tion methods, a large portion of aggregated rare features
may still be too sparse, and they may still have to be
discarded. Here, we note that the aforementioned and
many other approaches are limited to marginal anal-
ysis in the hypothesis testing framework and are not
directly applicable to joint analysis. Recognizing limita-
tions of the existing data aggregation techniques, in a
recent study, Yan and Bien [28] develop a more effec-
tive strategy for aggregating and selecting rare features,
which leverage side information (additional prior infor-
mation) in the form of a tree. A tree-based param-
eterization strategy is introduced to translate the fea-
ture aggregation problem into a sparse modeling one.
Statistical and numerical investigations show that this
approach can significantly improve over the existing ones.
This flexible, data-adaptive, and tree-based aggregation
approach is integrated into a log-contrast regression model
in Reference [29]. It is noted that this approach has
only been applied to main-effect-only analysis.

With the high significance of G-E interaction analy-
sis, there has been some effort on detecting interactions
between rare features and E variables. For example, Lu
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and others [30] propose an aggregated statistic, which is
derived from the MAF-based logistic principal component
analysis (MLPCA). A limitation of this approach is that
the adopted unsupervised technique is not ideal to indi-
cate how genetic variants are modified by environment
factors to affect disease risk and traits. Zhao and others [31]
aggregate genetic and G-E interaction information across
markers and construct score tests to identify important
G-E interactions. Yang and others [32] develop a family
of data-adaptive G-E interaction tests in the framework
of adaptive powered score testing. It is noted that these
works mostly belong to the marginal analysis paradigm.
For joint analysis, Lin and others [33] develop a variance
component score test within the induced generalized lin-
ear mixed model (GLMM) framework and apply ridge
regression to estimate the nuisance main effects. Lim and
others [34] adopt a kernel-based method to leverage joint
information across rare variants under the GLMM frame-
work. However, in these studies, there has been no atten-
tion to the “main effects, interactions™ variable selection
hierarchy [35, 36].

In this article, we consider joint G-E interaction anal-
ysis where a significant number of candidate G features
are rare. Although certain individual components of this
analysis share some common ground with the existing
studies, overall, this study complements and advances
published literature in the following aspects. Unlike most
of the existing G-E interaction studies, there is special
attention to rare features. It differs from most of the
existing rare feature studies by conducting joint analy-
sis (which differs significantly from “marginal analysis +
hypothesis testing™) and by accommodating interactions
(and the accompanying unique challenges in particular
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FIGURE 2  Aggregating § (left) and £ (k =1, ... . 3; right) in
T

the “main effects, interactions™ variable selection hierar-
chy). It also advances from many existing pooling studies
for rare features by adopting the cutting-edge tree-based
aggregation technique [32] and from Reference [32] by
conducting joint interaction analysis. In addition, the pro-
posed approach can directly go beyond rare features and
be applied to other types of data that also have individual
weak effects, and hence data integration is needed.

2 | METHODS

21 | Dataand model

Y is denoted as the disease outcome/phenotype. In
what follows, we consider a continuously distributed
outcome and corresponding linear regression. The
proposed approach can be directly applied to other

FLh ) “T'
ATV

The tree structure T of p leaves with (p, m, 5) = (200,20,0.4). Gray leaves have zero effects, leaves with the other colors have
nonzero effects, and leaves with the same color have the same effects
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types of outcomes/phenotypes by

adopting corre-
sponding regression models and likelihood functions.

Z= (2, ...fzp}’ is denoted as the p rare features.
In our data analysis, we consider SNPs with low
MAFs. Further, X = (Xi, ... ,X,) is denoted as the g
clinical/environmental risk factors. Following strong
advocate in the recent literature, we also consider the
interactions with demographic and clinical wvariables.
It is also possible to limit interactions to narrowly
defined E factors. Consider the joint regression model:

q r q
Y= EI‘.‘H_-X&'FE (ﬂjzj' +Efﬂjxtzj) + &, (1)
=1 =] =1

where a;’s, fi’s, and ny's are the regression coefficients for
the main E effects, main G effects, and their interactions,
respectively. £ is the random error. With proper normaliza-
tion, the intercept term has been omitted. There are mul-
tiple ways of respecting the “main effects, interactions™
variable selection hierarchy. Here, we adopt the decompo-
sition strategy [37], where my = f;&i;. Then, model (1) can
be rewritten as:

q P q
Y=YaXe+ ) (,ﬁ;-z,- + E,ﬁ;g,gxkzj) +e.
k=1 k=1

=1

Denote @ = {111, . Elq} L= {ﬂlf...fﬂp} P, and & =&,
,g,q,} . Assume n iid observations {(y,x,Z).i=1,
... ;n}. Denote y as the n-vector composed of y's,

X, Z, and W' as the matrices composed of x;'s, z's,
and w}k} = (xaZa. ... .XuZip)rs, respectively. In the
matrix form, the least squares ubjecﬁvez function is
L@ = %"y—)frr ~Zp- 3 WO @h)”z, where 8 =
(. f. &, ... .&). ||l is the I, norm, and © is the
component-wise product.

We note that the data and model settings have been
extensively adopted in the literature, with the difference
that Z represents rare features. It is expected that other
loss functions, for example, the robust ones, can also be
adopted.

2.2 | Estimation

With data aggregation, one of the most critical steps is
to determine the regions within which rare features are
pooled. Quite a few approaches have been developed
for this purpose. Some utilize biological information, for
example, functionalities of SNPs. However, this may be not
sufficiently effective as the functions of many SNPs, espe-
cially those in noncoding regions, are unknown. Another
family of approaches utilizes information on features’
physical locations, which is usually known. When SNPs
are densely measured, those physically close can be in high
linkage disequilibrium (LD) and have similar biological
functions and/or statistical effects [38]. In our numerical
study, for SNP data, we follow [28] and conduct hierar-
chical clustering analysis of the physical locations of SNPs
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to form a tree T, as showcased in Figures 2, 3, and 4.
The consideration is that features physically close to each
other tend to have related biological functions, which has
been established for SNP and some other types of data.
We refer to Reference [28] for more discussions on the
tree construction. Advancing from Reference [28], we also
incorporate interactions and propose densifying § and &
using the same tree structure.

Let u be a node, which is a branching point in a tree.
A node is called a leaf node, if it has no additional nodes
coming out of it. For example, in Figure 2, those in the red
box are leaf nodes. The ancestor (i) and descendant(u) are
denoted as the ancestors and descendants of node uin T,
respectively. The set of nodes in the path from the root of T

to the jth leaf can be written as ancestor(j) U {j}. Assign
a parameter ypy (yi,) to each node u in 7. Similar to [28],
we can conduct a tree-based parameterization to associate
f; and &; with 7. Specifically, §; and &5(k =1, ... .g) are
decomposed into the sum of all the parameters on the path:

JHJ' = E ¥ou- gﬁ] = E Y (2)

weancestor (] i} weancestor (] i

When yodescendant(u) = 0 (Ykdescendantwy = 0), fj's (§i;'s) asso-
ciated with the leaves lying beneath node u are equal. For
example, with the tree in Figure 2, coefficients of all the
nodes beneath nodes w; and u; are zero. According to (2),

fi's are aggregated into two groups: fi = B2 = you, + rou,
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and fiz = fs = fs = you, + you,- As such, feature aggrega-
tion can be achieved by introducing sparsity to ypl(yx ).

For regularized estimation and selection of important
interactions and main effects, we propose the penalized
objective function:

I q
Qn(0.T) = L(0) + aA), |woe |yoel + ) one I’nu:‘l]
£=1 k=1
P g
+1— @AY, | 8]+ X |-
=1 k=1

&1 ﬁ = Afﬂf gk = Afk(k =L.. sq:lf [3‘]

where T'= (yg.11. ... ,rq}" e R 1>0 and ae
[0,1] are tuning parameters, e, wpe, @y, @y are
covariate-specific weights (more details below), |T |
denotes the number of nodes in 7, Ae (0,1}
is a matrix with elements Ay:=1 u eancestor (JUlj] } =
1{ jedescendant (u,)u{u, } }» @0d B = Ayg and &; = Ay, are the

compact forms of (2). Similar to other penalized interac-
tion analyses, interactions, and main effects with nonzero
coefficients are identified as being important for the
Tesponse.

Rationale The overall strategy is similar to other
penalizations, with the first term quantifies lack-of-fit—it
can be revised to accommodate other data types/models.
The two penalty terms induce different types of sparsity,
which are controlled by 4 and balanced by a. The second
penalty is relatively “simple” and has been considered in
the existing penalized G-E interaction studies. In partic-
ular, the Lasso penalty is directly imposed to § and &,
identifying important main effects and interactions. With
the decomposition strategy, the variable selection hierar-
chy is guaranteed. The weights @y;, @y lead to weighted
(adaptive) penalization. For choosing weights, we refer to
Reference [28] and many other publications. The most
straightforward choice, which is adopted in our numerical
study, is to set the weights equal to 1. The most significant
advancement over the existing G-E interaction analysis is
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TABLE 1 Simulation Scenario 1
I:TPR I:FPR M:TPR M:FPR RSSE PMSE

m =20

Oracle Lasso 0.97(0.07) 0.03(0.01) 1.00(0.00) 0.21(0.13) 4.63(0.54) 0.21(0.08)
L1_dense 0.62(0.08) 0.04(0.01) 0.78(0.07) 0.22(0.04) 6.43(0.77) 3.12(1.08)
Ll_ag h 0.84(0.09) 0.13(0.05) 1.00(0.04) 0.68(0.16) 5.68(1.06) 3.69(0.72)
Lasso 0.74(0.06) 0.02(0.00) 0.95(0.04) 0.19(0.03)) 6.43(0.8) 2.64(1.00)
Proposed 0.82(0.13) 0.01(0.01) 1.00(0.00) 0.08(0.07) 4.85(0.58) 0.82(0.47)
m =40

Oracle Lasso 0.98(0.03) 0.03(0.01) 1.00(0.00) 0.09(0.06) 5.62(0.86) 0.39(0.16)
L1_dense 0.61(0.09) 0.05(0.02) 0.77(0.08) 0.24(0.05) 7.12(0.82) 3.72(1.56)
L1_ag h 0.75(0.11) 0.15(0.08) 0.99(0.06) 0.84(0.05) 7.03(1.68) 5.66(1.15)
Lasso 0.74(0.07) 0.03(0.01) 0.94(0.06) 0.19(0.03) 7.05(0.76) 2.79(1.21)
Proposed 0.89(0.09) 0.01(0.01) 1.00(0.01) 0.09(0.04) 5.80(0.56) 1.06(0.42)
m =60

Oracle Lasso 0.94(0.06) 0.02(0.01) 1.00(0.01) 0.04(0.03) 6.42(0.98) 0.59(0.34)
L1_dense 0.61(0.09) 0.04(0.01) 0.75(0.10) 0.22(0.03) 6.74(0.66) 3.47(1.20)
Ll_ag h 0.56(0.18) 0.14(0.12) 1.00(0.00) 0.9(0.08) 8.04(1.82) 6.22(1.09)
Lasso 0.73(0.06) 0.03(0.00) 0.93(0.05) 0.19(0.03) 6.54(0.64) 2.66(1.15)
Proposed 0.88(0.09) 0.02(0.01) 1.00(0.01) 0.08(0.03) 6.48(0.48) 1.13(0.39)
m = 80

Oracle Lasso 0.91(0.05) 0.02(0.01) 1.00(0.02) 0.02(0.02) 6.88(0.74) 0.81(0.44)
L1_dense 0.59(0.08) 0.05(0.01) 0.74(0.09) 0.23(0.04) 7.38(0.70) 4.35(1.29)
Ll ag h 0.57(0.16) 0.15(0.18) 0.98(0.05) 0.93(0.06) 7.85(2.03) 6.48(1.76)
Lasso 0.71(0.07) 0.03(0.01) 0.93(0.05) 0.19(0.03) 7.24(0.59) 3.53(1.52)
Proposed 0.89(0.07) 0.03(0.01) 1.00(0.02) 0.12(0.04) 7.07(1.84) 1.56(0.62)
m = 100

Oracle Lasso 0.86(0.05) 0.02(0.01) 0.97(0.03) 0.02(0.02) 7.05(0.87) 1.23(0.55)
L1_dense 0.60(0.07) 0.05(0.01) 0.76(0.08) 0.23(0.04) 7.20(0.60) 4.56(1.57)
Ll_ag h 0.20(0.16) 0.15(0.16) 0.95(0.09) 0.85(0.13) 8.62(1.66) 7.71(1.22)
Lasso 0.73(0.07) 0.03(0.01) 0.94(0.04) 0.18(0.03) 7.16(0.64) 3.53(1.43)
Proposed 0.88(0.06) 0.03(0.01) 0.97(0.03) 0.13(0.04) 7.09(0.57) 1.84(0.87)

Note: In each cell, mean (SD) based on 500 replicates.

the first term. Penalty is imposed to yo, and yks, which,
with the constraint defined in (2), induces fusion to the
coefficients in f and &,. This fusion is built on the tree
structure (as showcased in Figures 2 and 3). In particu-
lar, following [28], we leave the root (ygr fork =0, ... ,q)
unpenalized with {@yrj=0},_,, . This allows all
features to be aggregated into one single group with coefti-
cients fused to a nonzero value. Under 7, nearby features,
which are expected to have similar effects, are put into
the same data aggregating sets. Their effects are fused

to be similar, which allows nearby rare features to bor-
row strength from their neighbors. The aggregated effects
can be considerably larger than the individual ones, mak-
ing them more likely to be identified. It is noted that,
with the pI'OpOSGd penalty’ Y0 descendant (u) (deescendant(u)) is
encouraged but not forced to be zero. As such, with this
fusion/data aggregation technique, features in the same
aggregating sets not necessarily have the same coefficients,
making this approach more flexible than, for example,
those directly adding up rare features.
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LD heatmap

A toy example To better appreciate working char-
acteristics of the proposed method, we simulate a small
dataset with n = 100 and p = 100. The tree structures for
the main G effects and (components of ) G-E interactions
are shown in Figure 3. The true aggregating sets are deter-
mined based on Figure 3. In particular, the main G effects
fi;" are aggregated into two groups, corresponding to nodes
uy and uz. All the leaves under u; have coefficients zero.
fi’ under node u; are set to be 1.5. £;'s are aggregated into
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Proposed

Pairwise LD analysis of rare single nucleotide polymorphisms (SNPs) (post screening). Top: LD decay plot; bottom:

three groups, corresponding to nodes uy, w3, . £i;'s under
node u; are set as 0, and those under nodes u; and u, are
set as 0.75 and 2.25, respectively. Finally, the G-E interac-
tions are calculated as ni; = f#;&. There arein total 10 main
G effects and 30G-E interactions with nonzero coeffi-
cients, and they satisfy the variable selection hierarchy. We
graphically show the true regression coefficients in the left
column of Figure 5. The SNP measurements are simulated
from a Poisson(0.02) distribution and truncated at 2 if
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needed. We then simulate three E variables as having
a Bernoulli distribution with probability of success 0.7.
The response variable is generated from a linear regres-
sion model with a standard normally distributed random
error. Beyond the proposed approach, we also consider the
Lasso approach as a benchmark, which shares the same

R? Color Key

Pairwise LD analysis of all single nucleotide polymorphisms (SNPs) (post screening). Top: LD decay plot; bottom:

penalization framework as the proposed approach but
does not conduct data aggregation. The estimation results
using the proposed and Lasso approaches are graphically
presented in Figure 5. By borrowing strength and effec-
tively aggregating data, the proposed approach is observed
to have significantly better identification and estimation
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accuracy. More definitive results based on larger-scale sim-
ulations are presented below in Section 3.

2.3 | Computation

With fixed tuning parameters, the optimization of (3) can
be conducted using an iterative coordinate descent (CD)
algorithm, which optimizes the objective function with
respect to one of the three (sets of) vectors a, f, and &;'s

at a time and iteratively cycles through all of the param-
eters until convergence. Let a®, 8, and gi” denote the
estimates of a, B, and £, at iteration f, respectively. The
proposed algorithm proceeds as follows:

Step 1 Initialize t=0, f¥=0, &’ =0, and a® =
(XX)"'xy.

Step 2 Update ¢ =t + 1. With &, and « fixed at £
Xa and Z”=Z+ 31 W¥ o (1,“1 (&™) ) with

and a'~", optimize (3) with respect to §. Let
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TABLE 2  Analysis of the NFBC1996 data using the proposed approach: identified main effects and interactions
SNP Main effect Gender CRP Glucose TC HDL
rs12208417 0.015 0.045 0.014 — 0.005 0.046
1s6488338 —-0.017 —0.037 0.074 = —-0.014 ==
152453244 —0.015 —-0.044 —-0.007 0.022 —0.067 —
rs11042023 —0.008 —0.057 — — — 0.027
rs2511841 -0.012 —0.081 0.014 0 —0.028 0.076
154965685 0.016 0.037 = 0.005 = 0.029
15489487 0.01 0.05 — —0.011 — —
1s7306908 —0.016 —0.069 — —0.015 — —
rs10949732 0.017 0.039 —-0.095 — — 0.013
rs4575188 0.011 0.036 0.016 — 0.017 —
rs4720078 —0.016 —0.048 — —0.012 —0.003 0.013
1s7039156 —0.018 —0.034 = = —0.022 —0.011
1s1676996 0.017 0.053 — 0.042 0.026 0.01
rs1386894 0.009 0.057 = = -0.014 —
rs1180819 -0.015 -0.051 0.005 — —0.008 —0.053
rs10512052 0.014 0.042 —0.041 = 0.011 =
rs1237044 —0.016 -0.03 0.007 — — —0.109
rs10773484 —0.013 —0.065 — —0.01 — —
rs1284412 0.012 0.029 0.055 0.051 — —
1s2571249 0.016 0.052 0.05 = —-0.027 —0.001
154149570 0.009 0.031 —_ — —_ —0.005
rs1372555 —-0.013 —0.049 —-0.011 0.001 = —0.035
rs3782631 0.013 0.06 0.01 — — —
1s2121671 0.015 0.048 —0.004 —0.011 —-0.016 —
rs1870591 —0.011 —0.084 — — — 0.008
rs10508924 0.015 0.043 0.018 —0.018 = —0.011
152834889 —0.011 —-0.025 0.019 — 0.019 —0.003
157186722 —0.022 —0.069 — 0.006 0.046 0.094
rs3092379 0.013 0.038 — — 0.008 0.006
1s2150855 —-0.017 —0.051 —0.005 = 0.017 0.046
1s516783 0.013 0.058 e 0.009 — —0.009
157506974 0.012 0.022 — —0.049 — 0.009
rs3898586 0.014 0.061 0.04 — 0.003 —
rs344386 —0.024 —0.045 —0.02 — — 0.038
1.1 =(, ... ,1)ua. Then To simplify notation, we consider the representative set-
ting with wor; = 0 and {wo, = 1,Wo; = 1}{#”']_6{1“”’[)}}.
2 Problem (4) can be efficiently solved with the
pY = arg mﬁln%‘i( = E(t)ﬂ consensus ADMM algorithm [28]. Taking the form of a
7] 2 » decomposition-coordination procedure, it combines the

+ 4 aZWo;f lvos] + (1 — a)ZWOj |5
=1 J

=1

S.L. ﬂ = AyO.

4)

benefit of dual decomposition and augmented Lagrangian
methods for constrained optimization.

Step 3 With g and « fixed at B and a~?, optimize
(3) with respect to &= (&, ....&,). Let yO=y-
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TABLE 3 Simulation Scenario 2

I:TPR I:FPR M:TPR M:FPR RSSE PMSE

m =20

Oracle Lasso 1.00(0.02) 0.05(0.03) 1.00(0.00) 0.65(0.13) 3.01(1.08) 0.31(0.17)
L1_dense 0.14(0.07) 0.00(0.00) 0.42(0.19) 0.02(0.01) 7.03(1.00) 6.64(3.60)
Ll_ag h 0.89(0.09) 0.08(0.04) 0.98(0.08) 0.61(0.16) 6.18(0.94) 3.84(1.08)
Lasso 0.14(0.07) 0.00(0.00) 0.42(0.19) 0.02(0.01) 6.94(0.99) 6.46(3.36)
Proposed 0.67(0.20) 0.01(0.01) 0.94(0.09) 0.18(0.08) 5.03(1.00) 3.11(2.38)
m =40

Oracle Lasso 0.95(0.06) 0.05(0.02) 0.99(0.04) 0.57(0.11) 4.58(1.11) 0.96(0.70)
L1 _dense 0.12(0.07) 0.00(0.00) 0.36(0.19) 0.02(0.02) 7.47(0.95) 7.39(3.07)
Ll ag h 0.85(0.13) 0.24(0.08) 1.00(0.00) 0.76(0.15) 7.19(0.94) 5.61(1.93)
Lasso 0.12(0.07) 0.00(0.00) 0.36(0.19) 0.02(0.02) 7.4(0.89) 7.37(2.96)
Proposed 0.56(0.22) 0.01(0.01) 0.90(0.09) 0.18(0.09) 5.99(1.01) 4.41(1.99)
m = 60

Oracle Lasso 0.88(0.08) 0.03(0.02) 0.98(0.04) 0.48(0.11) 5.33(1.38) 1.93(1.18)
L1_dense 0.14(0.07) 0.00(0.00) 0.42(0.19) 0.02(0.02) 7.19(0.77) 6.86(2.41)
Ll ag h 0.60(0.21) 0.26(0.15) 0.94(0.12) 0.83(0.11) 7.76(1.32) 7.13(4.07)
Lasso 0.14(0.07) 0.00(0.00) 0.42(0.19) 0.02(0.02) 7.22(0.76) 6.75(2.38)
Proposed 0.50(0.19) 0.02(0.01) 0.87(0.11) 0.22(0.08) 6.21(0.68) 4.92(2.09)
m = 80

Oracle Lasso 0.75(0.10) 0.04(0.03) 0.96(0.06) 0.41(0.11) 6.25(1.03) 2.97(1.27)
L1_dense 0.09(0.06) 0.00(0.00) 0.30(0.18) 0.02(0.01) 7.79(0.52) 7.98(2.60)
Ll ag h 0.42(0.18) 0.30(0.17) 0.86(0.12) 0.82(0.15) 8.39(0.91) 7.98(2.48)
Lasso 0.09(0.06) 0.00(0.00) 0.30(0.18) 0.02(0.01) 7.76(0.50) 7.85(2.53)
Proposed 0.34(0.17) 0.01(0.01) 0.76(0.15) 0.25(0.10) 7.03(0.66) 6.63(2.21)
m =100

Oracle Lasso 0.69(0.11) 0.04(0.03) 0.93(0.06) 0.40(0.12) 6.31(1.13) 3.06(1.38)
L1_dense 0.11(0.08) 0.00(0.00) 0.33(0.19) 0.02(0.02) 7.61(0.69) 7.86(3.35)
Ll_ag h 0.41(0.13) 0.26(0.13) 0.84(0.13) 0.76(0.18) 8.42(1.04) 8.34(2.78)
Lasso 0.11(0.08) 0.00(0.00) 0.33(0.19) 0.02(0.02) 7.60(0.80) 7.91(3.40)
Proposed 0.38(0.17) 0.02(0.01) 0.78(0.13) 0.25(0.09) 6.73(0.70) 5.75(2.59)

Note: In each cell, mean (SD) based on 500 replicates.

~(k (t) . . . . .
Xa™ — ZB® and <W( )> —wh o <1n><1 ( ﬂ(z))’) Then The algorithm is similar to that in Step 2.

®

& = ’
f(t)—Z(W ) Sk

Step 4 Compute a® = (X’X)_lX' (y-2zpY - Y]

ED = argmin 1 k=1
2n ~ , w® < Y o 5;:)) >
171 g P 9
+ A az Zwkf kel + (1 — a)z ZVNij &5 Step 5 Repeat Steps 2-4 until convergence. In
¢=1k=1 j=lk=1 our numerical study, convergence is concluded if

| Qn (9(1)’1"(0)_Qn(e(tfl)’r(l—l))|

-4
st.é =Ay, k=1, ... .q. [Q. (6701 D)] <107




14 WI LEY LIU ET AL.
TABLE 4 Simulation Scenario 3
I:TPR I:FPR M:TPR M:FPR RSSE PMSE
m =20
Oracle Lasso 1.00(0.01) 0.06(0.05) 1.00(0.00) 0.70(0.14) 3.11(0.98) 0.36(0.24)
L1_dense 0.16(0.07) 0.00(0.00) 0.43(0.17) 0.02(0.01) 7.03(1.02) 7.92(3.93)
Ll_ag h 0.91(0.09) 0.09(0.04) 1.00(0.04) 0.67(0.17) 5.73(1.27) 3.51(1.59)
Lasso 0.16(0.07) 0.00(0.00) 0.43(0.17) 0.02(0.01) 6.95(0.99) 7.67(3.91)
Proposed 0.68(0.21) 0.01(0.01) 0.94(0.09) 0.18(0.07) 5.24(1.09) 3.49(2.02)
m =40
Oracle Lasso 0.95(0.06) 0.05(0.05) 0.99(0.03) 0.59(0.12) 4.65(1.38) 1.29(0.77)
L1_dense 0.14(0.06) 0.00(0.00) 0.39(0.15) 0.02(0.01) 7.69(0.92) 8.36(3.42)
Ll_ag h 0.79(0.20) 0.23(0.10) 0.99(0.06) 0.81(0.10) 7.03(1.23) 6.18(2.52)
Lasso 0.14(0.06) 0.00(0.00) 0.39(0.15) 0.02(0.01) 7.66(1.15) 8.55(5.08)
Proposed 0.55(0.21) 0.02(0.01) 0.87(0.14) 0.20(0.08) 6.25(0.85) 5.00(1.74)
m = 60
Oracle Lasso 0.84(0.10) 0.03(0.02) 0.96(0.06) 0.50(0.10) 5.18(0.89) 1.89(1.00)
L1_dense 0.14(0.06) 0.00(0.00) 0.38(0.16) 0.02(0.01) 7.14(0.64) 6.73(2.76)
Ll_ag h 0.57(0.17) 0.24(0.13) 0.96(0.11) 0.83(0.14) 7.16(0.85) 6.54(3.20)
Lasso 0.14(0.06) 0.00(0.00) 0.38(0.16) 0.02(0.01) 7.13(0.68) 6.70(2.78)
Proposed 0.48(0.18) 0.02(0.01) 0.85(0.12) 0.23(0.09) 5.98(0.83) 4.82(2.10)
m = 80
Oracle Lasso 0.77(0.09) 0.03(0.02) 0.96(0.05) 0.42(0.10) 6.65(1.16) 3.58(2.22)
L1_dense 0.11(0.06) 0.00(0.00) 0.30(0.16) 0.02(0.01) 7.93(0.68) 9.09(3.69)
Ll_ag h 0.48(0.16) 0.38(0.18) 0.87(0.13) 0.81(0.17) 8.90(1.11) 10.33(5.29)
Lasso 0.11(0.06) 0.00(0.00) 0.30(0.16) 0.02(0.01) 7.99(0.89) 8.87(3.45)
Proposed 0.37(0.16) 0.02(0.01) 0.78(0.12) 0.25(0.09) 6.97(0.71) 6.99(3.32)
m =100
Oracle Lasso 0.68(0.10) 0.04(0.02) 0.91(0.08) 0.41(0.10) 6.30(0.98) 3.18(1.38)
L1_dense 0.11(0.08) 0.00(0.00) 0.32(0.20) 0.02(0.02) 7.72(0.66) 8.29(3.28)
Ll_ag h 0.44(0.13) 0.30(0.14) 0.89(0.12) 0.81(0.17) 8.35(1.21) 9.28(5.37)
Lasso 0.11(0.08) 0.00(0.00) 0.32(0.20) 0.02(0.02) 7.66(0.63) 8.00(3.06)
Proposed 0.36(0.18) 0.02(0.01) 0.76(0.15) 0.25(0.10) 6.79(0.64) 6.36(2.63)

Note: In each cell, mean (SD) based on 500 replicates.

The proposed objective function is bounded from
below. In each iteration step, its value decreases. As such,
convergence is guaranteed. It is satisfactorily achieved
with a moderate number of iterations in all of our numer-
ical studies. The tuning parameters (4, a) are chosen
using a modified BIC criterion with the degree of freedom
defined as the effective number of parameters [39]. With
simple updates, the proposed computational algorithm is
affordable. For one simulation replicate (details described
below), computation can be accomplished within 3 min

on a regular desktop. To facilitate numerical analysis
within and beyond this study, we have developed R
code and made it publicly available at http://github.com/
shuanggema/.

3 | SIMULATION

We consider a total of six scenarios to examine the
dependence of performance on distributional properties,
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TABLE 5 Simulation Scenario 4
I:TPR I:FPR M:TPR M:FPR RSSE PMSE
m =20
Oracle Lasso 0.99(0.02) 0.05(0.04) 1.00(0.00) 0.69(0.14) 3.41(1.90) 1.02(1.19)
L1_dense 0.17(0.07) 0.01(0.00) 0.41(0.10) 0.02(0.01) 8.57(2.02) 9.95(4.83)
Ll_ag h 0.91(0.13) 0.10(0.05) 0.98(0.12) 0.65(0.16) 6.99(1.89) 6.14(3.6)
Lasso 0.17(0.07) 0.01(0.00) 0.41(0.10) 0.02(0.01) 8.46(1.86) 9.63(4.38)
Proposed 0.64(0.16) 0.01(0.01) 0.90(0.12) 0.19(0.06) 6.86(2.82) 5.83(4.37)
m = 40
Oracle Lasso 0.90(0.09) 0.06(0.04) 0.99(0.03) 0.65(0.10) 6.12(1.96) 3.57(3.17)
L1_dense 0.16(0.06) 0.01(0.00) 0.38(0.13) 0.02(0.01) 8.92(1.75) 12.11(6.68)
Ll_ag h 0.88(0.12) 0.29(0.08) 0.99(0.06) 0.83(0.11) 7.43(1.90) 11.15(6.73)
Lasso 0.16(0.06) 0.01(0.00) 0.38(0.13) 0.02(0.01) 9.07(1.89) 12.71(7.06)
Proposed 0.55(0.16) 0.02(0.01) 0.89(0.12) 0.22(0.08) 7.04(1.52) 9.00(7.59)
m = 60
Oracle Lasso 0.82(0.09) 0.04(0.03) 0.97(0.06) 0.54(0.09) 6.00(1.46) 4.43(3.64)
L1_dense 0.15(0.06) 0.01(0.00) 0.39(0.10) 0.03(0.01) 7.66(0.80) 9.24(3.39)
Ll_ag h 0.72(0.18) 0.35(0.10) 0.98(0.06) 0.84(0.12) 7.48(1.00) 9.96(4.20)
Lasso 0.15(0.06) 0.01(0.00) 0.39(0.1) 0.03(0.01) 7.86(1.23) 9.59(4.18)
Proposed 0.53(0.12) 0.02(0.01) 0.90(0.09) 0.22(0.09) 6.61(0.92) 6.69(3.21)
m = 80
Oracle Lasso 0.69(0.11) 0.05(0.03) 0.94(0.08) 0.46(0.11) 7.32(1.46) 6.43(2.90)
L1_dense 0.14(0.07) 0.01(0.00) 0.35(0.14) 0.03(0.01) 8.80(1.36) 12.12(5.52)
L1 ag h 0.60(0.16) 0.50(0.16) 0.93(0.1) 0.90(0.10) 8.78(1.23) 13.18(6.26)
Lasso 0.14(0.07) 0.01(0.00) 0.35(0.14) 0.03(0.01) 8.67(1.11) 11.97(5.70)
Proposed 0.46(0.14) 0.03(0.01) 0.84(0.10) 0.24(0.09) 7.33(0.96) 9.55(4.85)
m =100
Oracle Lasso 0.63(0.11) 0.04(0.02) 0.89(0.08) 0.43(0.08) 7.50(1.53) 5.79(3.04)
L1_dense 0.13(0.05) 0.01(0.00) 0.36(0.12) 0.03(0.02) 8.68(1.58) 10.78(5.38)
Ll_ag h 0.56(0.14) 0.38(0.15) 0.94(0.10) 0.88(0.10) 9.01(1.72) 14.04(10.54)
Lasso 0.13(0.05) 0.01(0.00) 0.36(0.12) 0.03(0.02) 8.69(1.39) 10.26(3.83)
Proposed 0.41(0.13) 0.03(0.01) 0.80(0.12) 0.26(0.09) 7.54(1.22) 8.53(3.28)

Note: In each cell, mean (SD) based on 500 replicates.

especially correlation. To mimic data analyzed in the next
section, we simulate G variables with properties similar
to SNPs. Under Scenario 1, the G variables are indepen-
dently generated from a Poisson(0.02) distribution and
truncated at 2 if needed. The five E variables are gen-
erated from a Bernoulli distribution with probability of
success 0.7. Under Scenarios 2-6, we first generate p con-
tinuous variables from multivariate normal distributions,
and then dichotomize the continuous variables at the
0.98 and 0.995 percentiles to generate the three-level

G measurements. The multivariate normal distributions
have marginal means 0 and variances 1. Two correla-
tion structures with different parameters are considered
and referred to as Bandl, Band2, AR(0.3), AR(0.5), and
AR(0.8). Here, Band1 and Band2, the two banded corre-
lation structures, have correlation coefficients of variables
j and k as 0.3V7¥(j — k| < 2) and 0.3V7H(j — k| = 2) +
0.5V74(j — k| < 2), respectively. The three auto-regressive
structures correspond to weak, moderate, and strong
correlations, respectively. We note that such correlation
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TABLE 6 Simulation Scenario 5
I:TPR I:FPR M:TPR M:FPR RSSE PMSE

m =20

Oracle Lasso 1.00(0.01) 0.05(0.03) 1.00(0.00) 0.68(0.14) 2.76(0.82) 0.33(0.32)
L1_dense 0.11(0.09) 0.00(0.00) 0.34(0.22) 0.02(0.01) 6.67(0.97) 5.54(2.47)
Ll_ag h 0.91(0.07) 0.07(0.03) 1.00(0.00) 0.59(0.18) 6.28(0.82) 3.73(0.84)
Lasso 0.11(0.09) 0.00(0.00) 0.34(0.22) 0.02(0.01) 6.64(1.03) 5.57(2.45)
Proposed 0.65(0.24) 0.01(0.01) 0.95(0.09) 0.18(0.11) 4.73(0.82) 2.49(1.13)
m =40

Oracle Lasso 0.93(0.08) 0.05(0.03) 0.98(0.05) 0.55(0.13) 4.26(0.81) 1.07(0.76)
L1_dense 0.10(0.08) 0.00(0.00) 0.29(0.19) 0.02(0.02) 7.3(0.7) 6.89(2.40)
Ll_ag h 0.79(0.13) 0.22(0.07) 0.99(0.06) 0.77(0.12) 6.74(1.00) 4.95(1.61)
Lasso 0.10(0.08) 0.00(0.00) 0.29(0.19) 0.02(0.02) 7.21(0.67) 6.79(2.32)
Proposed 0.54(0.24) 0.02(0.01) 0.88(0.14) 0.25(0.12) 5.68(0.84) 4.04(1.82)
m = 60

Oracle Lasso 0.89(0.08) 0.04(0.02) 0.99(0.04) 0.49(0.13) 5.17(1.26) 1.95(1.39)
L1_dense 0.14(0.07) 0.00(0.00) 0.41(0.17) 0.02(0.01) 7.15(0.73) 7.03(3.15)
Ll_ag h 0.57(0.18) 0.24(0.12) 0.92(0.13) 0.78(0.12) 7.45(1.15) 6.36(2.38)
Lasso 0.14(0.07) 0.00(0.00) 0.41(0.17) 0.02(0.01) 7.11(0.68) 6.84(3.00)
Proposed 0.57(0.16) 0.02(0.01) 0.87(0.09) 0.29(0.11) 5.99(0.64) 4.77(2.14)
m = 80

Oracle Lasso 0.75(0.09) 0.03(0.01) 0.96(0.07) 0.4(0.09) 6.57(1.37) 2.85(1.36)
L1_dense 0.09(0.08) 0.00(0.00) 0.28(0.18) 0.02(0.02) 7.79(0.69) 7.64(2.67)
Ll_ag h 0.42(0.19) 0.29(0.18) 0.9(0.13) 0.85(0.12) 8.62(1.09) 8.43(2.50)
Lasso 0.09(0.08) 0.00(0.00) 0.28(0.18) 0.02(0.02) 7.74(0.70) 7.41(2.61)
Proposed 0.39(0.20) 0.02(0.01) 0.83(0.14) 0.27(0.11) 6.87(0.73) 5.87(2.35)
m =100

Oracle Lasso 0.69(0.10) 0.04(0.03) 0.92(0.06) 0.41(0.11) 6.20(1.20) 3.20(1.56)
L1_dense 0.10(0.07) 0.00(0.00) 0.30(0.18) 0.02(0.02) 7.56(0.65) 7.48(2.09)
Ll_ag h 0.40(0.15) 0.24(0.13) 0.88(0.12) 0.82(0.13) 8.41(1.25) 8.25(2.52)
Lasso 0.10(0.07) 0.00(0.00) 0.30(0.18) 0.02(0.02) 7.52(0.65) 7.43(2.20)
Proposed 0.38(0.17) 0.02(0.01) 0.81(0.11) 0.28(0.10) 6.84(0.69) 6.20(2.21)

Note: In each cell, mean (SD) based on 500 replicates.

structures have been considered in quite a few 3 stud-
ies. For the E variables, we first generate five contin-
uous variables from a multivariate normal distribution
with marginal means 0, marginal variances 1, and an
AR(0.3) correlation structure. Then, two variables are
dichotomized at O to create two binary variables, leading
to three continuous and two binary E variables. Under
all scenarios, the G variables have low (MAF 1%-5%) and
very low (MAF < 1%) frequencies. In practical data anal-
ysis, more common variants are expected. Here, we focus

on rare variants whose effects are more difficult to quan-
tify. The proposed approach is expected to have better
performance for variants that are less rare.

The nonzero main effects and interactions are gener-
ated as follows. For the SNPs, based on their adjacency
(correlation) information, the true tree structure 7 of the

p leaves is shown in Figure 6. These leaves form m aggre-
gating sets (clusters) with varying sizes, which are indexed

by B*. This construction is similar to that in [28]. To gen-
erate the main G and G-E interaction effects, we first
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TABLE 7 Simulation Scenario 6
I:TPR I:FPR M:TPR M:FPR RSSE PMSE

m =20

Oracle Lasso 1.00(0.02) 0.05(0.04) 1.00(0.00) 0.67(0.15) 2.96(1.00) 0.36(0.22)
L1_dense 0.16(0.07) 0.01(0.00) 0.48(0.15) 0.02(0.01) 7.00(1.34) 7.57(3.81)
Ll_ag h 0.91(0.09) 0.08(0.04) 1.00(0.00) 0.63(0.18) 5.31(0.77) 3.91(0.91)
Lasso 0.16(0.07) 0.01(0.00) 0.48(0.15) 0.02(0.01) 7.02(1.38) 7.43(3.82)
Proposed 0.65(0.16) 0.01(0.01) 0.95(0.06) 0.13(0.07) 4.95(1.01) 2.95(1.90)
m =40

Oracle Lasso 0.96(0.05) 0.05(0.03) 0.99(0.04) 0.60(0.13) 4.44(1.22) 1.29(0.82)
L1_dense 0.15(0.07) 0.00(0.00) 0.40(0.16) 0.02(0.01) 7.52(0.68) 8.04(2.91)
Ll_ag h 0.83(0.14) 0.25(0.11) 0.99(0.04) 0.78(0.14) 7.02(1.16) 6.28(2.71)
Lasso 0.15(0.07) 0.00(0.00) 0.40(0.16) 0.02(0.01) 7.66(1.04) 8.15(3.24)
Proposed 0.49(0.14) 0.01(0.01) 0.87(0.11) 0.16(0.08) 6.24(0.90) 4.85(2.04)
m = 60

Oracle Lasso 0.86(0.12) 0.04(0.03) 0.98(0.06) 0.52(0.13) 5.61(1.53) 2.37(1.75)
L1_dense 0.13(0.07) 0.00(0.00) 0.39(0.18) 0.02(0.01) 7.16(0.65) 7.82(3.50)
Ll_ag h 0.60(0.21) 0.27(0.13) 0.95(0.12) 0.84(0.13) 7.52(0.97) 8.22(3.82)
Lasso 0.13(0.07) 0.00(0.00) 0.39(0.18) 0.02(0.01) 7.18(0.67) 7.79(3.45)
Proposed 0.46(0.17) 0.01(0.01) 0.85(0.11) 0.18(0.07) 6.09(0.89) 5.57(3.10)
m = 80

Oracle Lasso 0.77(0.11) 0.04(0.02) 0.96(0.07) 0.42(0.10) 7.01(1.82) 4.39(3.22)
L1_dense 0.11(0.07) 0.01(0.00) 0.37(0.17) 0.02(0.02) 8.08(0.70) 9.37(3.90)
Ll_ag h 0.48(0.15) 0.38(0.17) 0.89(0.14) 0.84(0.17) 8.95(1.29) 9.81(3.44)
Lasso 0.11(0.07) 0.01(0.00) 0.37(0.17) 0.02(0.02) 8.05(0.76) 9.32(3.96)
Proposed 0.40(0.17) 0.02(0.01) 0.80(0.14) 0.19(0.08) 7.08(0.70) 7.12(3.37)
m =100

Oracle Lasso 0.71(0.10) 0.04(0.02) 0.91(0.06) 0.44(0.12) 6.66(1.29) 3.85(2.50)
L1_dense 0.10(0.07) 0.00(0.00) 0.28(0.19) 0.02(0.02) 7.67(0.57) 7.87(3.17)
Ll_ag h 0.44(0.14) 0.27(0.16) 0.89(0.12) 0.81(0.16) 8.25(1.06) 8.14(2.77)
Lasso 0.10(0.07) 0.00(0.00) 0.28(0.19) 0.02(0.02) 7.58(0.59) 7.73(3.14)
Proposed 0.31(0.17) 0.01(0.01) 0.74(0.15) 0.18(0.09) 6.93(0.69) 6.08(2.59)

Note: In each cell, mean (SD) based on 500 replicates.

generate a matrix Ap. € RP*™ with binary components
Apjt = Ljjeicustery- Then, the coefficient vectors are
generated via these aggregating sets as: p* =AB*E*,
& = AB*EZ(), where E*E; € R™ have mxs elements
zeroed out, and the remaining elements are indepen-
dently drawn from a Uniform(0.8, 1.5) distribution. Here,
s controls the true level of sparsity. For the main E effects,
their nonzero coefficients a;’s are generated from Uni-

form (0.8,1.2). The response y € R" values are simulated

from (1) with independent Gaussian errors and variances
ol =Y (xwa* +z¢ B+ ZzzlxikZi' (B o 5;))2/(5"1)-
The above data generation satisfies the “main effects,
interactions” hierarchical structure and aggregative effects
of the nearby G features.

We set n = 200, p = 200, g = 5, s = 0.4. It is noted that
the combined number of unknown parameters is much
larger than the sample size. We consider a sequence of m
values up to p/2. The proposed approach is applied based
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TABLE 8
overlaps (off-diagonal)

Lasso

Main G effects Lasso 31

L1_dense -
Ll ah -
Proposed -

Interactions Lasso 84

L1_dense -
Ll_a h -

Proposed -

on the tree 7. To gauge its performance, we further con-
sider the following alternatives. The first is Oracle Lasso,
under which the true aggregation structure XAp- is known,
and Lasso (which is the proposed approach with a = 0)
is applied for regularized selection and estimation. The
second is L1_dense, which applies Lasso after first discard-
ing all features with MAF < 1%. It represents approaches
that focus on dense features. The third is L1_ag_h, which
applies Lasso to features aggregated in the same clusters
after the tree is cut at a certain height. This approach
conducts feature aggregation based on 7', however, in a rel-
atively “brutal” manner. It represents approaches that first
conduct clustering, then group features in an unsupervised
way, and finally conduct modeling and estimation based
on the postaggregation features. Lastly, we also consider
the Lasso approach as for the toy example. For each setting,
we simulate 500 replicates.

We evaluate identification performance using the
true-positive rate (TPR) and false-positive rate (FPR) for
main G effects (M:TPR and M:FPR) and interactions
(I:TPR and I:FPR) separately. Here, it is noted that the pro-
posed approach conducts penalized variable selection as
opposed to hypothesis testing. As such, it does not have a
direct false discovery rate control. Nevertheless, TPR and
FPR are still highly informative performance measures.
We further evaluate estimation performance using the root
sum of squared errors (RSSE) defined as ||?) -0
addition, we calculate the best mean-squared estimation

2
/P +
q + pq), where A represents a method’s tuning param-
eter(s). For evaluating prediction performance, for each
simulation replicate, we generate an independent testing
dataset with size 200 and compute the prediction mean
squared error (PMSE).

Summary results are presented in Tables 1 and 3-7
(Data S1). Across all of the simulation scenarios, the pro-
posed approach is observed to perform similarly to the

. In
2

error as a function of m, that is, miny ”5(/\) -0

NFBC1996 data analysis: numbers of main G effects and interactions identified by different approaches (diagonal) and their

L1_dense Ll_a h Proposed
22 20 27

29 20 24

- 23 21

- - 34

50 34 68

65 33 54

_ 40 36

- - 107

Oracle Lasso and has superior performance compared to
the other alternatives. Specifically, it can more accurately
identify both the true main effects and interactions while
having a small number of false positives. For example,
in Table 1, under Scenario 1 and m = 40, the proposed
approach has (M:TPR, M:FPR, L.-TPR, :FPR) = (0.89,
0.01, 1, 0.09), compared to (0.61, 0.05, 0.77, 0.24) for
L1_dense, (0.75, 0.15, 0.99, 0.84) for L1_ag_h, and (0.74,
0.03, 0.94, 0.19) for Lasso. This result and those alike can
establish the effectiveness of accommodating rare features
(when compared to L1_dense), data aggregation (when
compared to Lasso), and more effective data aggregation
(when compared to L1_ag _h). We also observe the supe-
riority of the proposed approach in estimation. For
example, in Table 6 (Data S1), under Scenario 5 and
m = 60, the proposed approach has RSSE = 5.99, com-
pared to 7.15(L1_dense), 7.45(L1_ag h), and 7.11(Lasso).
This superiority is further shown in Figure 7 (Data S1).
In particular, under Scenario 1 with Z simulated from
a Poisson(0.02) distribution, the proposed approach per-
forms nearly as well as the oracle. As m increases,
borrowing strength from neighbors decreases, and so
estimation performance deteriorates. L1_dense performs
very similarly to Lasso. Last but not least, the proposed
approach also has satisfactory prediction performance. For
example, in Table 1, under Scenario 1, the PMSEs are
3.12 (L1_dense), 3.69 (L1_ag h), 2.64 (Lasso), and 0.82
(proposed) (Figure 8).

4 | DATA ANALYSIS

To demonstrate the practical applicability of the proposed
approach, we analyze the individual-level data from the
NFBC (Northern Finland Birth Cohorts) study [40]. This
study was conducted to very broadly examine risk factors
involved in preterm birth and intrauterine growth retar-
dation, as well as the consequences of these early adverse
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TABLE 9  Analysis of the NFBC1996 data using the proposed approach under an alternative marginal screening: identified main
effects and interactions

SNP Main effect Gender CRP Glucose TC HDL
rs12222221 —0.253 0.001 —0.001 0.031 —0.002 —_
1s4585672 —-0.270 —0.001 0.003 0.001 0.006 =
rs6743144 0.230 0.008 0.001 0.028 -0.010 —
rs12548107 0.285 0.009 0.002 —0.021 0.037 —
rs1470829 —0.329 —0.008 — 0.016 0.007 —
1s6127943 0.216 0.007 —0.002 0.002 0.006 ==
rs4735825 0.291 0.009 —0.004 —0.007 —0.028 —0.001
rs1882681 —0.462 —0.007 0.001 0.061 —0.030 —0.001
rs4870024 0.300 0.008 — —0.008 0.039 —
1s937557 —0.236 0.001 — —0.019 —0.018 —
rs177195 —0.245 0.011 — —0.008 0.006 —
1517552964 0.251 0.005 = = 0.016 0.001
1s3771327 —0.292 0.012 0.001 —0.027 0.024 —_
152833383 —0.421 0.007 —0.004 —0.005 0.016 —0.001
rs4077636 —0.285 0.002 0.003 0.035 -0.016 —
rs4512398 —0.244 0.003 0.004 —0.004 —0.006 ==
151025404 —0.288 0.008 —0.005 —0.002 —-0.024 —_
152961725 —0.244 —0.003 0.001 —0.011 —0.011 —0.001
rs1934127 -0.272 0.002 0.002 —-0.030 0.028 —-0.001
rs1293770 0.223 0.009 — 0.023 0.008 —
rs1407593 0.239 0.010 0.003 —-0.007 -0.010 —
1s10906021 0.225 0.004 —0.003 0.013 0.031 0.001
rs12475063 —0.231 0.004 0.004 0.032 0.032 0.001
152306970 —0.226 0.008 0.001 —0.015 —0.047 —0.001
1s2868975 0.213 0.008 0.001 0.010 -0.014 —
1s6737978 —0.305 0.005 —0.001 0.017 —0.043 —
rs881204 —0.337 —0.006 —-0.001 —0.009 —0.005 —
rs1886434 —0.244 0.009 —0.001 0.014 0.034 0.001
1s7962035 0.282 0.005 0.002 0.054 0.024 0.001
rs11854565 0.354 0.005 0.001 —0.003 0.033 —0.001
1s7209713 —0.307 0.002 —0.001 -0.027 0.010 —
1s2016327 —0.259 0.003 —-0.002 —0.003 0.009 0.001
154422244 0.225 0.007 —-0.002 —0.034 0.002 0.002
rs11812486 —0.300 0.012 0.002 —0.006 0.075 =
rs1345981 —0.293 0.001 0.001 0.023 —-0.009 —
1s6122682 —0.233 — —0.002 —0.003 — 0.001
rs1920083 —-0.234 — 0.001 0.008 0.012 —
1s987648 —-0.292 == 0.002 —0.016 0.016 —0.001
rs7989689 —0.264 — 0.001 —0.008 0.005 0.001
rs3887251 —0.218 — — 0.017 —0.009 —

1s1202657 —0.066 — — — — —
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TABLE 10
by different approaches (diagonal) and their overlaps (off-diagonal)

Lasso

Main G effects Lasso 47

L1_dense -
Ll ah -
Proposed -

Interactions Lasso 102

L1_dense -
Ll_a h -

Proposed -

outcomes on subsequent morbidity. The data collected
from Northern Finland forms a unique resource, allowing
to study the emergence of diseases, which can be caused
by genetic, biological, social, and behavioral risk factors.
The NFBC1966 dataset contains 10 traits and 364,590 SNPs
for 5402 individuals whose expected year of birth is 1966.
In our data analysis, the response variable of interest is
BMI (body mass index), which is an important phenotype
and critical biomarker for many illness conditions. For the
G factors, we consider SNPs. And for the E factors, we
consider gender, C-reactive protein (CRP), glucose, total
cholesterol (TC), and high-density cholesterol (HDL). We
note that these factors are not environmental in the nar-
row sense. Rather, they are clinical biomarkers. In the
recent literature [41], the interactions between clinical/de-
mographic variables and G factors analyzed under the G-E
interaction analysis framework and have attracted strong
interest. Such analysis can reveal the interplay between
clinical/demographic variables and G factors on disease
outcomes and other biomarkers.

Data processing is first conducted, following similar
procedures as in published studies [42]. In particular,
we exclude individuals that have discrepancies between
reported sex and sex determined using the X chromosome.
Further, individuals with missingness in the response and
E variables or with genotype missing call-rates > 5% are
excluded. A SNP is removed from analysis if its MAF < 1%
or missing call-rate > 1%, or it fails the Hardy-Weinberg
equilibrium test. The SNP data quality control is con-
ducted using PLINK [43]. These processing procedures
lead to data on 5123 individuals and 319,147 SNPs. In
principle, the proposed approach can be directly applied.
Considering the limited sample size, we further conduct a
prescreening to improve estimation. In particular, we split
the data into two parts with sizes 2:3. Marginal regres-
sion analysis is conducted in smaller part, under which
one SNP is analyzed at a time using regression. The 5000
SNPs with the smallest marginal p-values are selected for

NFBC1996 data analysis under an alternative marginal screening: numbers of main G effects and interactions identified

L1_dense Ll_a h Proposed
17 17 23

24 10 10

- 24 12

- - 41

25 14 28

34 15 16

= 26 12

- - 163

downstream analysis. In Figure 9 (for the rare SNPs) and
8 (for all of the SNPs) in the Data S1, we examine the LD
structures for the SNPs that have passed screening. It is
observed that a relatively small number of rare SNPs have
high LD values, which may limit the power of information
borrowing (Figures 10 and 11).

The larger part of the data is analyzed using the pro-
posed and alternative approaches. It is recognized that
this may lead to a smaller sample size and loss of power,
compared to the analysis of the whole data. However, sep-
arating the screening and analysis data can lead to more
objective analysis and comparison and has been adopted
in many published studies. The tree T is constructed using
hierarchical clustering and the physical locations of SNPs
and shown in Figure 4 (Data S1). For all approaches,
tuning parameters are selected using the modified BIC
criterion [39]. The proposed approach identifies 34 main
G effects and 107 interactions. The detailed estimation
results are provided in Table 2. The summary comparison
results are presented in Table 8 (Data S1). It is observed
that the proposed approach identifies more effects. This
is sensible as, with fusion, it can pull some SNPs that
otherwise may not be identified. It is also noted that,
with the complexity of BMI, more main G effects and
interactions (than identified by the proposed and alter-
native methods) may be involved. In general, penaliza-
tion approaches, including the proposed, can only iden-
tify the relatively strong effects. Alternative techniques
will be needed for the identification of weaker effects
(Tables 9 to 14).

The alternative methods miss the rare SNP rs6488338,
which has MAF = 0.046 and belongs to gene CD163. Pub-
lished studies have suggested that gene CD163 is associ-
ated with pregravid obesity. The adipose tissue expression
of gene CD163 is elevated in obesity and type 2 diabetes,
and this gene is a novel immune marker for metabolic
inflammation [44]. Many other findings are also biologi-
cally meaningful. For example, LINGO2 is a protein coding
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TABLE 11  Analysis of the NFBC1996 data with Glucose as the response variable using the proposed approach: identified main
effects and interactions

SNP Main effect Gender CRP TC HDL LDL
rs10504197 0.023 0.041 -0.017 — —0.020 —
rs1551547 0.022 0.061 — — —0.011 —
1s7460495 —-0.031 —0.033 —0.032 — — 0.010
152290526 —0.030 —0.064 == = = =
rs10108007 0.017 0.026 — — —0.005 —
rs11998308 0.023 0.049 — — — —
1s9692725 -0.027 -0.052 — — — 0.033
rs10091115 0.032 0.042 0.023 0.031 = =
1s979843 —-0.026 —-0.047 — — —0.043 -0.020
1s7836768 0.025 0.024 0.050 = = =
1s9643401 —-0.044 —0.058 -0.017 — 0.009 —0.008
rs1896135 0.019 0.045 = = = —
152380540 —0.032 —0.033 0.056 — — 0.028
152380607 0.018 0.020 — — 0.005 —
1512678469 0.015 0.018 — 0.003 — e
rs1383978 —0.021 —0.032 — 0.007 — —
rs1031177 0.018 0.030 0.005 — —_ —0.007
1s959974 —0.023 —0.033 — — — —
1512334848 0.028 0.027 —0.016 —0.053 — —0.036
152941456 0.013 0.018 == = == =
rs998731 -0.022 -0.016 — — — —
rs6473219 —-0.018 —0.018 = = = =
1s272610 0.014 0.013 — — — —
154961056 —0.024 —0.048 = 0.009 0.004 —
rs7818882 0.039 0.017 —0.019 —0.007 0.044 —0.083
rs1507883 —0.024 —0.021 0.024 — — —
rs1382101 -0.016 -0.016 — — — —
rs1487796 0.038 0.083 0.076 — = =
rs13262606 0.021 0.038 —0.009 — — —
rs551496 0.015 0.013 — — — —
rs1374633 —-0.031 -0.072 0.028 — - 0.039
rs2890805 0.031 0.053 0.022 —0.032 0.062 —
rs3104966 -0.016 -0.017 — — — —
1s4263730 —0.024 —0.006 —0.038 = 0.032 =
rs2587000 —-0.036 —0.045 0.059 0.037 0.017 —
rs2513399 —0.036 —0.036 —0.118 —0.033 = —
rs2513402 0.038 — -0.071 0.036 0.010 0.023

rs998980 0.002 — — — — _
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TABLE 12
different approaches (diagonal) and their overlaps (off—diagonal)

NFBC1996 data analysis with Glucose as the response variable: numbers of main G effects and interactions identified by

Lasso L1_dense Llah Proposed
Main G effects Lasso 42 12 18 31
L1_dense - 31 21 11
Llah - - 33 16
Proposed - - - 38
Interactions Lasso 55 11 15 51
L1_dense - el 17 15
Llah - - 30 18
Proposed = - _ 86
.
&
ol
E
&
ol
I
a
}
I
2
3
@
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FIGURE 12 NFBC1996 data analysis: tree T of single nuclectide polymorphisms’ (SNPs) physical positions (post screening), with
insulin as the response variable

gene that is an important part of the cellular membrane.
It has been linked to obesity in GWAS [45]. Addition-
ally, the variants of LINGO2 have been linked to essential
tremor in Parkinson's disease [46]. Thus, its linkage to obe-
sity via interactions with DA signaling seems possible [47].
RBFOX1 is an important RNA-binding protein mediat-
ing the incorporation of microexons into many transcripts
associated with neurological patterning and tissue devel-
opment. Its association with obesity has been suggested
[48]. Gene ANO2 has been suggested as playing a role
in the pathophysiology of childhood obesity [49]. Studies
[50] have revealed that ANO2 is a Ca’*—activated chloride
channel in vagal afferents of nodose neurons and a major
determinant of CCK-induced satiety, body weight control,

and energy expenditure, making it a potential therapeutic
target in obesity. TNFR5F1 genotypes have been identified
as significantly associated with sTNFR1 plasma levels in
obese women [51]. It has been suggested that TNFRSF1A
polymorphism can have functional significance in obesity.
In addition, genes TAF4B, PCSKS, LDLRAD4, and TENM4
have also been associated with obesity by GWAS [52].
With real data, it is hard to objectively evaluate the
accuracy of identification. To provide further insight and
“indirect” support, we apply a resampling-based approach
and evaluate prediction performance and stability. Specif-
ically, the dataset is randomly divided into a training
and testing set, with sizes 9:1. The model/parameters are
estimated using only the training set and then used to
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TABLE 13

SNP

rs2220326
rs9598811
rs359379
1s359361
rs396985
rs967958
rs1928955
rs1036995
1s7324254
rs11148750
rs1384607
1s9541273
rs9571979
rs7993187
rs1341525
rs9572442
1s9542369
rs1114564
r$9599903
1s936457
rs7333339
1s287553
rs1324061
rs4597197
rs1505149
rs9574389
152274554
rs1998452
157336627
rs1335852
159602002
1s985035
rs988474
rs1334166
rs7333936

rs184385

Analysis of the NFBC1996 data with insulin as the response variable using the proposed approach: identified
main effects and interactions

Main effect

0.021
—0.023
0.049
—0.035
0.060
—0.041
0.020
—0.037
—-0.019
—0.023
—-0.071
—0.029
0.035
0.055
—0.040
—0.025
0.040
0.040
0.031
—0.046
—0.047
—0.028
0.041
0.049
0.056
—0.021
0.043
—0.023
0.035
—0.046
-0.019
0.030
—0.089
—0.039
0.032

0.040

Gender

0.021
—0.018
0.092
—0.032
0.120
—0.051
0.017
0.003
—0.008
—0.019
—0.182
—0.041
0.084
0.096
—0.006
—0.031
0.087
0.025
0.063
—0.016
—0.052
—0.066
0.045
0.065
0.121
—0.040
0.054
—0.014
0.058
—0.122
—-0.028
0.033
—0.085
—0.091
0.021

0.031

CRP

0.027
0.000

0.072

TC

—0.040

—0.067

0.002

—0.061

HDL

0.002

-0.111

—0.013

—0.026

—0.003

0.064

—0.034

0.041

—0.018

—0.090

LDL

—0.055

0.056

—0.023

0.015

0.003

-0.117

0.050

(Continues)
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TABLE 13 (Continued)
SNP Main effect Gender CRP TC HDL LDL
rs12855484 —0.052 —0.018 — —0.041 — —
1s9516496 0.022 0.040 — — — —
1s7321486 —0.042 —-0.023 —0.030 — 0.041 —
1s913427 0.029 0.044 — — — —-0.014
rs9556889 0.041 0.032 —0.096 — — —
1s679363 —0.039 —0.060 —0.002 0.041 = =
rs1556799 —0.034 —0.045 — — — —
rs1998550 —0.048 —0.060 —0.003 0.045 —0.025 0.005
rs701556 0.045 0.033 — — — -0.073
rs1571513 —0.063 —0.025 —0.100 —0.083 0.020 =
rs1730649 0.054 0.067 0.031 — 0.112 —0.014
152067741 0.042 = —0.085 0.040 —0.044 0.022
rs937872 0.051 — 0.216 — 0.002 —
rs9317872 —0.055 — —-0.013 — 0.093 0.020
1s9572541 0.052 — —-0.091 0.005 0.045 0.005
rs9300342 —0.020 = —0.025 = = =
rs1998535 0.040 — — —0.031 — —0.046
rs516872 —0.059 == = = 0.194 =
1s9572146 —0.011 — — — — —
14405440 —0.003 = = = = =
TABLE 14 NFBC1996 data analysis with insulin as the response variable: numbers of main G effects and interactions identified

by different approaches (diagonal) and their overlaps (off-diagonal)

Lasso

Main G effects Lasso 50
L1_dense -
Ll a h -
Proposed -

Interactions Lasso 102

L1_dense -
Ll_a_h -

Proposed -

make prediction for samples in the testing set, where
prediction performance is evaluated using prediction
mean squared error (PMSE). This procedure is repeated
1000 times. The training set estimates are also used to
evaluate stability. This approach has been extensively
adopted in the literature. The squared roots of the aver-
age PMSEs are 1.057 (L1_ag h), 1.058 (L1_dense), 1.052
(Lasso), and 1.046 (Proposed). In the stability evaluation,

L1_dense Ll _a h Proposed
18 13 35

43 21 9

- 52 17

- - 56

24 30 64

90 35 16

= 99 29

= = 120

we compute the OOI (observed occurrence index) for
each effect. Briefly, the OOI is the probability of a spe-
cific effect being identified across replicates and mea-
sures the stability of finding. For the identified main
G effects, the mean OOI values are 0.599 (L1_ag h),
0.636 (L1_dense), 0.604 (Lasso), and 0.638 (Proposed).
And for the identified interaction effects, the mean OOI
values are 0.544 (L1_ag h), 0.572 (L1l_dense), 0.552
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(Lasso), and 0.553 (Proposed). The proposed approach has
competitive prediction performance and selection stability
(Figure 12).

5 | ADDITIONAL ANALYSIS

To complement the above analysis, additional analysis is
conducted and reported in the Data S1. In the first set of
analysis, we repeat the above analysis under a different
marginal screening approach, with which we select a block
of consecutive SNPs. In the second set of analysis, we con-
sider two alternative response variables. The findings have
the same patterns as above. The proposed approach is able
to make biologically sensible findings with satisfactory
prediction and stability performance.

6 | DISCUSSION

In this article, we have developed a new G-E interac-
tion analysis approach, taking advantage of the most
recent development in data aggregation. The proposed
approach can complement and advance from the existing
approaches by effectively accommodating rare features,
conducting joint analysis, more effectively aggregating
nearby features, and others. Itis built on the existing penal-
ized joint G-E interaction analysis and state-of-the-art data
integration [28] and has a sensible formulation. Simula-
tion has demonstrated its competitive performance. In the
NFBC data analysis, it has generated findings different
from the alternatives and with satisfactory prediction and
stability performance.

This study can be extended in multiple directions.
As briefly described above, it can be (almost) directly
applied to other data types/models. A closer examination
of the proposed estimation suggests that it may not be spe-
cific to SNPs, physical locations (for tree construction),
or rare features. When it is expected that certain features
may share similar effects, and when a similarity measure
can be defined statistically or functionally, the proposed
approach may be applicable. In some genetic studies, mul-
tiple responses that share related genetic basis are jointly
analyzed. In the NFBC1966 study, there are some traits
that may share main G effects and interactions. It will be
of interest to extend the proposed method to the collec-
tive analysis of multiple response variables. It may also
be of interest for future research to establish theoretical
properties, which may follow from Reference [28] and the
existing theoretical studies on penalized G-E interaction
analysis. In data analysis, the prediction and stability eval-
uation can provide some indirect support to the validity of

our analysis. It is of interest further examine and validate
the findings.
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