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1 | INTRODUCTION

Heterogeneity is a hallmark of cancer. Interestingly, the definitions of cancer heterogeneity are very “heterogeneous”,
ranging from very “micro” (eg, pertained to differences between cancer cells) to very “macro” (eg, pertained to clinical
characteristics). In this article, we consider an analysis which has been popular in the statistical literature, in which there
is a cancer outcome/phenotype of interest, and its associations with a set of covariates differ across seemingly similar
patients.’? For this analysis, the most popular technique is perhaps FMR (finite mixture of regression), under which
subjects form subgroups, those in the same subgroup share the same regression model (for the outcome/phenotype of
interest), and different subgroups have different regression models. FMR is a relatively mature technique, and there have
been extensive methodological developments® and applications.!
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FIGURE 1 Pipelines for extracting Type 1 (upper) and Type 2 (lower) imaging features

In early cancer FMR analysis, clinical, and demographic variables have been extensively analyzed. With the
development of profiling techniques, molecular data has brought additional insight beyond clinical/demographic vari-
ables, leading to finer model structures. Relatively recently, an alternative source data coming from histopathological
images has drawn increasing attention. Such images are generated by biopsy, which is routinely ordered for cancer
patients and suspected ones. As such, compared to molecular and some other types of data, histopathological imag-
ing data can be highly advantageous with broader availability and higher cost-effectiveness. Histopathological images
contain rich information on tumors’ micro properties and microenvironment, and have been long used for the pur-
poses of diagnosis and staging. In a series of recent studies, histopathological imaging features have been successfully
used for modeling cancer outcomes and phenotypes.* Here it is noted that only a handful of studies have ana-
lyzed histopathological imaging data for quantifying differences across cancer patients (especially under the regression
framework).>®

This study aims to further advance histopathological imaging data-based mixture modeling analysis, which can
complement the existing cancer mixture modeling analysis based on other types of data as well as that based on
histopathological imaging data but with simple statistical techniques. More importantly, significantly advancing from
the existing literature, we will simultaneously use two types of features extracted from the same histopathological images.
As shown in the upper panel of Figure 1, the generation of the first type of imaging features involves labeling regions of
interest, painting different types of cells using different colors, and then computing a small number of features based on
the painting.” Such features have been motivated by long clinical practice and have a strong biological ground. On the
negative side, this process is labor-intensive, and the extracted information is limited by the available biological knowl-
edge. Applications of the first type of imaging features have been considered by Li et al,® Zhang et al,” and others. The
pipeline for extracting the second type of imaging features is sketched in the lower panel of Figure 1 and based on auto-
mated signal processing. With unlabeled images, it involves chopping images into small subimages, randomly selecting
subimages, extracting features using signal processing software such as CellProfiler,'*!! and averaging over subimages to
generate final imaging features. They demand very limited human labor and have been shown as able to extract features
not visible to human eyes. On the negative side, the extracted features do not have direct biological interpretations. In
addition, this type of imaging features usually has a higher dimensionality than the first type and may contain substantial
noises. Applications of the second type of imaging features have been examined by Yu et al,* Luo et al,> and others. Here
it is worth re-emphasizing that the two types of imaging features are generated on the same pathological slides. In the
current clinical practice, the first type of features is “automatically” generated, and the second type of features is getting
increasingly popular.

When including both types of imaging features in the same analysis, we note that they have a natural order. In partic-
ular, the second type of imaging features has a shorter history, has been developed to represent information not visible to
human eyes (as reflected in the first type of features), and may provide finer information. Accordingly, this study targets
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FIGURE 2 Analysis scheme: different colors represent different (sub-)subgroups

at addressing the question: once a “rough” subgrouping structure has been identified using the first type of imaging features,
can we further refine the structure by adding the second type of imaging features? This analysis scheme is sketched in
Figure 2. With a set of subjects (upper panel), “ordinary” mixture modeling analysis separates them into subgroups (mid-
dle panel). In our analysis, as shown in the lower panel, the goal is to separate subjects into “rough” subgroups based on
the first type of imaging features and, at the same time, further separate subjects in the same subgroups into sub-subgroups
by additionally using the second type of imaging features. Hierarchical grouping structures are very common in unsu-
pervised clustering analysis. In clustering analysis, distances are calculated based on observed covariate values. In our
analysis, “distance” between two subjects is defined based on their unobservable regression models. Model estimation
and grouping need to be simultaneously conducted, making the analysis significantly more challenging and different
from hierarchical clustering.

Most of the existing mixture modeling studies conduct “one-level” analysis. In such studies, both frequentist and
Bayesian techniques have been adopted, and it has been well recognized that both types of techniques have pros and
cons, with no one dominating the other. As such, it is of interest to develop new analysis methods in both domains.
We refer to the works by McLachlan et al® and Schlattmann' for representative examples of the existing methods. In a
recent study,'? mixture modeling with a hierarchical structure is conducted using the penalization technique. It involves
pairwise fusion, which is computationally highly expensive. In this article, we focus on the scenario with low-dimensional
covariates—which the logical first step, but note that in the literature there have also been developments tailored to
high-dimensional data.>!*!4

This study may have high significance in the following aspects. First, it can further advance cancer mixture modeling
analysis. In particular, it is based on histopathological imaging data, which has great potential but has been limitedly
studied for cancer modeling. Second, the analysis scheme, as sketched in Figure 2, significantly differs from the existing
one-level analysis. It is noted that, when the second type of imaging features brings no new information, it simplifies to
the “ordinary” mixture modeling analysis and hence includes it as a special case. It is also noted that this analysis scheme
is not limited to histopathological imaging data—in fact, it can be studied as long as there are multiple types of covariates
collected from the same subjects and with a natural order. Third, a new Bayesian approach is developed, which may
further enrich the family of Bayesian FMR techniques. It is fundamentally different from the penalization technique.'?
Its computational and empirical properties are carefully investigated. Last but not least, this study may provide a new

-2



look at the TCGA data and lung cancer heterogeneity and also serve as a prototype for future analysis using the proposed
approach.

2 | METHODS
2.1 | Modeling

Consider a set of n independent subjects {(y;,x;,w;), i =1,...,n}. For subject i, y; is the response variable. x; is
the p-dimensional vector for conducting the “rough” subgrouping. In data analysis, beyond the first type of imag-
ing features, x; may also include demographic and clinical variables—such variables have been traditionally con-
sidered along with manually examining histopathological images to make cancer diagnosis, staging, etc. w; is the
g-dimensional vector for conducting the refined subgrouping. In our analysis, it contains the second type of imaging
features. We first consider a continuous response with a Gaussian distribution, which matches the data analyzed in
Section 4:

y!lxlswl;ﬁpeho.z ]B" N (xlrﬁ{ +w3‘91, 0.2) , 1= 13---1”‘ (1)

The n subjects are assumed to be independent, as in the published mixture modeling studies. For the TCGA study
to be analyzed in Section 4 and many others, this independence assumption is sensible. Exploring more general correla-
tion assumption is beyond our scope. Here f8; and 0; are the vectors of regression coefficients for x; and w;, respectively,
and the superscript “T” represents transpose. As in many published studies, we conclude two subjects as in the same
subgroup (sub-subgroup) if and only if they have the same B; (6;). As such, determining the mixture modeling structure
amounts to examining the values of regression coefficients. Let = (81, ..., 8,)T and p = (p1, ..., pn)” denote the vectors
of the latent subgroup and sub-subgroup memberships for the n subjects. Advancing from the existing one-level anal-
yses, to accommodate the more complex subgrouping structure, two latent membership vectors are needed. Denote K
as the number of subgroups defined based on x (ie, there are K distinct values of ;’s). In general, it is challenging to
determine the value of K. In some of the existing Bayesian studies, K is assumed to be known. In our analysis, we take
a more flexible strategy, do not assume a known value, and also impose a prior on K. Such a strategy has been referred
to as Mixture of Finite Mixture (MFM) modeling."> Given K, let * = (B}". ..., Y ) " denote the vector composed of all
subgroup-specific regression coefficients for x. Here we note that g, = (ﬁ;‘ 0By ﬁ;,p)r is (p + 1)-dimensional, and
the first component corresponds to intercept. Without mixture modeling, intercept can be easily omitted with normal-
ization. However, this is not the case in our analysis. Let p; = (py1, ..., p1.x)T be the vector of the relative sizes of the K
subgroups, where the subscript “1” stresses the first level of mixture modeling. Now consider the dth subgroup. Condition-
ing on K, denote K as the number of sub-subgroups for d = 1, ..., K. Here it is also flexibly assumed that K is unknown,

and a prior will be imposed. Let 8% = (9:;, s B;C:I d]T denote the sub-subgroup-specific regression coefficients for w,

where Bfl i= (QJ,*I 417 e Gj*l d q) "is g-dimensional and corresponds to the jth sub-subgroup (within the dth subgroup). Let

P24 = (P21, ---»P2x,)" be the vector of the relative sizes of the K; sub-subgroups. Collectively, denote 6* = (BTT, . B’I*(T) !

T T \T
and p, = (Pz,l* =P2,K) :
We make the following distributional specifications:

ind
yildi=d,pi = 8.1, p_if",0", 1. P2 0> ~ N(x[ By +w[6};, o), i=1,..om c=1,.. . Ka d=1,....K,

pil6i = d, py g, Ka, K ~ Multinomial(1; po1, ... pa)s i=1,...,m, (22)
0 |Ka.K ~ Ng(m.Zo), ¢=1,....Kg, d=1,...,K, (2b)

P21, ---» P2k, | K4, K ~ Dirichlet(ys, ... ,p2), d=1,... K, (2¢)

KalK % pg,(), d=1,2,....K, (2d)

5:|py. K 9 Multinomial(1: pyy,- - .pi), i=1,....n, (2€)
P, pL. Pix
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B3Ik X Ny(mp. 2p), d=1,... K, (2f)
P11, ---»P1k|K ~ Dirichlet(yy, ..., y1), (2g)
K ~ px(), (2h)

o* ~ Inverse Gamma(ay, by). (2i)

Here, loosely speaking, the MFM technique is applied at two levels. In particular, (2e) to (2h) define the first
level subgrouping structure. Within each subgroup, (2a) to (2d) define the second level sub-subgrouping structure. By
applying the MFM technique within each subgroup, the hierarchical structure is guaranteed. For each level, the distri-
butional specifications have high similarity with those in the existing studies. For example, the Gaussian distribution
for y;, multinomial distributions for p; and &;, Gaussian distributions for 6’s and f’s, and inverse Gamma distribu-
tion for o2 have all been extensively adopted. For K and Kj's, multiple proper priors with support on {1,2,...}, for
example Geometric and Poisson, can be taken. In our numerical study, we take the Geometric prior. For the sizes of
the subgroups and sub-subgroups (within subgroups), Dirichlet distributions are assumed. It is noted that we assume
symmetric Dirichlet distributions with single parameters, which may be less flexible than those with possibly differ-
ent parameters. This simplification has been taken in published studies!> and can significantly simplify computation: it
allows the subgroup and sub-subgroup sizes and numbers to be marginalized by summation or integration, removing
the trans-dimensional problem that arises from different dimensional parameters at different values of the numbers of
(sub-)subgroups. Under such a specification, the distribution of the partition of subjects takes a form that can be readily
computed.'®

Different from the “standard” MFM where partition is defined only by &, the above model induces a hierarchical
partition of subjects, C, defined by the (sub-)subgroup memberships (8, p). By extending published results,'* we obtain
the distribution over C: p(C) = p(p|8)p(d) = [Hdeép(pd)] p(6),where p; = {p; : i € Rg}and Ry = {i : §; = d}. Following
the literature,'> we have p(8) = V(1) [ c5 y;"d) and p(pg) = Vi, (ta) [1cep, y;n"d), where ng = |{i : 8; = d}|is the size of the
dth subgroup, ¢ is the number of distinct values of 6, nqg = |{i : §; = d, p; = c}| is the size of the cth sub-subgroup of the
dth subgroup, t4 = | p4| is the number of unique values in py, and V,(t) = Y1, ﬁgmpx(k), a®=a@+1)...(a+b-1),

a® =a(@-1)...(a—-b+1)witha® =g = 1.

2.2 | Computation

We develop a Gibbs sampler to draw samples from the posterior distribution of interest, which can be written as:

p(8,p,B*.6°,6°|y) x f¥|8,p, B*, 6%, 6%)p(B, 6% 8, p)p(8, p)p(c?). €))

In (3), the dependence on x and w is suppressed for convenience, and we continue this convention throughout this
article unless otherwise specified. We adopt the auxiliary variable method,'>!® which consecutively updates latent group
memberships, parameters for heterogeneous effects, and parameters for homogeneous effects. As described above, (8, p)
induces partitions of [n] := {1, ..., n} that have a hierarchical structure. In the algorithm presented below, as in published
studies, the values of (8, p) do not carry any numerical meaning and are solely used to indicate which subjects belong to
which (sub-)subgroups.

We first describe updating the latent (sub-)subgroup memberships. Notation-wise, for a vector v = (v, ..., v,)T € R",
where v can bey, 8, or p, let v_; denote v with its ith component removed. For any d (which takes value in the components
of 8), let vq = {v; : §; = d}, ng denote its size, vg_; denote v4 with its ith component removed, and n4_; denote its size.
For c (which takes value in the components of p,), let Ryg = {j : 6§ =d, pj = c}. Pqd = {pj 1 j € Reja}s and denote its size
as ngq. Let pyg _; denote the vector p 4 with components corresponding to the ith subject removed, and denote its size as

Ngq_;- Let t and t; denote the numbers of unique values in 8_; and p; _;, respectively. Let ;" = (B;]1. ... B;},) and 63" =
(0552050, 050415 -, 05 11)» Where 0] = (6;,,...,6;,,) ford =1,....t, denote a set of m and (¢ + m)m auxiliary

variables that are identically and independently distributed from their priors specified in the previous subsection. Then



the full conditional distribution of (;, p;) is:

P =d,p; =clb_i,p_;)

-

Ny i+ . .
(d—-i + 1)+ —h £ if d =6, and c = py forsome k #i,
71,":_#] o) Y2ty _itraty
i Vnd_i+1[‘d+1)
o4 Vg _j+10td) . .
(Rg—i + 1) Tt D if d = 8 and c # py forsome k # i,
—Vﬂd,_i“ ) Y2ty _itraty
V, (+1) . .
“on ifd# &6 and c# p, forall k #i.
2
p(&i=d, pi = c|b_i, p_i, B, B3, 0", 05,57, y)
[ Rgd ity . .
(a-i + 1) T — f0ilB0;4.0")  ifd=6 and c=p forsome k#1i,
AT Ztng_i+rata
‘_lvnd‘_i-+1('d+1) 2
o 4 Vag_ 1) m 2 . .
(Mai + 1) Vo fOilBy.0540")  ifd=8 and c # p forsome k # i,
T Zing_itrat
YoltD 11 £ 1B°, 6° . 62) ifd# 6, and c# p forall k#i.
L V() m? g eld?

Updating the rest of the parameters is relatively straightforward. Specifically, for * and 6*, we sample from:

p(B°16.6",0%y) = [ [p(B;18.6".0%y) « [ |f (val B} 03 0> p(BY):
deé

deé

p(6°18.8°.0%y) = [[[ [ (6418 8°-6% ) « [T I/ (veia B3 €2y ) PO )-

dedospy dedeepy

Under the priors specified above, the full conditional distribution of g, is:

B}10. 6%, ya ~ N(ug,, 07Qp,),

where Qg = [ > X oxx + 522;1]‘1, M = Q| XX X — w6+ azzglmﬁ]. The full conditional distribution
cEpyieR CEPIER, 4

of 9:|d is:

0alP o o>\ Ve ~ N(ue,,» UzQec,d),

where Qg , = [ > wiwir+o-22;1]‘1 and pg,, = Qo l ¥ wi(y —x;‘nﬁ;)+o-22;lmg]. Lastly, the full conditional
i€R g i€R,y

distribution of &2 is:
o2|p*. 6,y ~ Inverse Gamma(ai, by),

wherea; = 2 +apandby ==Y ¥ ¥ i—x! B —w'6] )% + bo.
2 24 . i i “el
E&EpdlERdd
To facilitate data analysis within and beyond this study, we develop Julia code and make it publicly available at www.

github.com/shuanggema.

3 | SIMULATION

Simulation is conducted to assess the proposed approach and gauge against relevant alternatives. In what follows, we
consider a sample with 200 independent subjects generated from model (1). For subject i, x; follows a multivariate nor-
mal distribution with marginal means one and covariance matrix X, = (pj)pxp- Wi = (Wi, ... ,w,;q)T follows a multivariate
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normal distribution with marginal means one and covariance matrix X,, = (pjj)qxq. We consider four setups, which have
different ways of generating x; and wj. In setup 1, both x;’s and w;’s have an auto-regressive (AR) correlation structure
with p;; = pl*~l and p = 0.3. In setup 2, we randomly select 0.3p components of x; and 0.4q components of w; generated in
setup 1 and dichotomize at 1. Here we note that histopathological imaging features have continuous distributions. We also
simulate binary variables with the consideration that certain clinical/demographic variables (eg, sex) may be categorical,
and that the proposed approach can be potentially applied to other data settings that contain categorical components. In
setup 3, both x;’s and w; have a banded correlation (BC) structure, where p; = 1—j + 0.331ji_jj=1). In setup 4, we ran-
domly select 0.3p components of x; and 0.4g components of w; generated in setup 3 and dichotomize at 1. The random
errors are independently generated from a normal distribution with mean 0. We consider two variance values: 62 = 0.25
and 0.5.

There are two subgroups, and within each subgroup, there are two sub-subgroups. As such, there are two subgroup
specific regression parameters: B} and B; and there are four sub-subgroup specific parameters: 6}, 6,,,, 6} ,, and 6,,,
with the first two coupled with f7, and the latter two coupled with 7. We set (p, q) = (4,4) and (p, q) = (9. 5). We have also
examined other p, g values of the same order and made similar observations. Each subgroup has a unique intercept. In
addition, the first two and four components of x; and w; have nonzero coefficients, respectively. The nonzero components
of #] and f; are generated from Unif(—1.2, —0.8) and Unif(0.8, 1.2), respectively. And the nonzero components of 9;1 and
9;”, for j = 1,2, are generated from Unif(—1.2, —0.8) and Unif(0.8, 1.2), respectively. Fori =1, ..., n, §; equals ] and
with probabilities p; and p,, respectively, and denote pr = (p1, p2). For subjects belonging to the subgroup that corresponds
to B, 6; equals 9;|1 and 9;|1 with probabilities p; and p,, respectively. Similar settings and notations hold for the other
subgroup/sub-subgroups. We set pr = (0.5, 0.5) and (0.4, 0.6). We have also examined highly imbalanced cases and found
inferior results, which is as expected (details omitted). For each specific setting, 100 replicates are simulated.

When applying the proposed method, we set Geometric(s) priors with s=0.1 for K and Kz and
(11, Y2, Mg, L, My, Ty, ag, bp) = (1,1,0,,10L,,,,04,10I,,1,1). Here we set the hyperparameter values as s=1 and
Y1 = r2 = 1, reflecting our vague prior knowledge on the number of subgroups and their sizes. For the hyperparameters
like X5 and X4 that do not have straightforward interpretations and default values, we conduct sensitivity analysis. As
shown in Table S4 (Supporting Information), the analysis results are not sensitive to their values. We run the Gibbs
sampler described in Section 2.2 for 20,000 iterations, with the first half discarded as burn-in. Convergence of the chain
is assessed by inspecting trace plots of individual parameters. For all of our simulation settings/datasets, satisfactory
convergence is observed. Computation is affordable. For example, for one simulated dataset with p = 9 and q = 5, it takes
about one minute on a laptop with standard configurations.

To gain more insight into the working characteristics of the proposed approach, we examine the uncertainty in esti-
mation. With one simulated dataset, in Figure S3 (Supporting Information), we show the posterior distributions of the
numbers of subgroups and sub-subgroups. It is observed that the values are highly “concentrated” on the true values (of
two and four). The uncertainty of grouping can be assessed by the posterior similarity matrix, whose (i, j)th entry rep-
resents the posterior probability of subjects i and j belonging to the same (sub-)subgroup. This is graphically presented
in Figure S4 (Supporting Information). Note that subjects have been rearranged to improve visualization. The darker
(red) color corresponds to a higher posterior probability. Clear (sub-)subgrouping structures are observed. We have also
examined a few other plots and made similar observations.

For comparison, we consider the following relevant alternatives. (a) BFMRp: this is a Bayesian MFM approach, has
a prior on K, and applies FMR to y; ~ x; + w;. It determines the number of subgroups and subgrouping structure in a
way similar to the proposed approach. However, it is limited to one-level subgrouping. (b) BEMR{: this is also a Bayesian
FMR approach. The difference from the above approach is that the value of K is prespecified and fixed (see below for its
candidate values). (c) The one-step FMR approach, denoted as FMR1. This is a frequentist approach and realized using
R package flexmix. (d) The response-based clustering approach, denoted as Respclust]1, first clusters subjects into K
subgroups using K-means based on the response variable, and then conducts linear regression with MCP penalization!’
within each subgroup. Here we note that penalization is not necessary with the low dimensionality. We apply it to be
consistent with the literature and find that it changes estimation minimally. (e) The residual-based clustering approach,
denoted as Resiclustl, first conducts linear regression with MCP penalization under the homogeneity assumption, and
then separates subjects into K subgroups based on the residuals using K-means. Linear regression with MCP penalization
is then conducted within each subgroup. It is noted that the above five approaches can only generate one-level sub-
grouping. To better “match” the proposed approach, for the three frequentist approaches, we also consider their two-step
versions, which can achieve two levels of grouping. It may also be possible to repeatedly apply the two Bayesian approaches
to generate two-level groupings. However, this would involve fixing random variables at for example modes of their



distributions—-this is not very natural and hence not pursued. We additionally consider the following approaches. (f) The
two-step FMR approach, denoted as FMR2, conducts FMR with y; ~ x; + w;, followed by FMR with y; — lTﬁ ; ~wj; for
each subgroup. (g) The two-step response-based clustering approach, denoted as Respclust2, first separates subjects into
K subgroups using K-means based on the response variable, and then repeat the same procedure for each subgroup. For
estimation with each (sub-)subgroup, linear regression with MCP is conducted. (h) The two-step residual-based clustering
approach, denoted as Resiclust2, first conducts linear regression assuming homogeneity and applies MCP penalization.
Then subjects are clustered based on the residuals. The same procedure is then repeated for each subgroup. For approaches
(b) to (e), the number of subgroups is chosen from {2, 3,4, 5, 6}. For approaches (f) to (h), the numbers of subgroups and
sub-subgroups are chosen from {2, 3}. We note that limiting the numbers of (sub-)subgroups close to the true may favor
the alternative methods. We note that there exist other alternatives. The above may be “sufficiently relevant™ and can be
readily realized.

To evaluate the accuracy of identifying subgrouping structures, we report the mean and standard deviation (SD)
of K (the estimated number of subgroups) and Y K; (the estimated total number of sub-subgroups). For the proposed
approach, such estimates are generated using the marginal posterior modes. For the alternatives, the numbers of sub-
groups and sub-subgroups are determined data-dependently following published practice. For further examination, we
also compute the mean and SD of grouping accuracy for both the subgroups and sub-subgroups. In particular, we adopt the
adjusted Rand index (ARI)'® as the accuracy measure. It quantifies the similarity between two grouping configurations,
with a higher value indicating a higher accuracy. When there is a perfect match, ARI takes the value of 1. It can be negative
when the similarity between two configurations is less than expected under a random assignment. With the proposed and
Bayesian alternative methods, accuracy is computed as the median of the ARIs between the truth and (sub-)subgrouping
configuration in each MCMC iteration. With the frequentist alternatives, the calculation is more straightforward. We also
evaluate the accuracy of estimating f and @ using mean squared error (MSE). For the proposed and alternative Bayesian

mSM g2 T M 8,2 » A
methods, the MSEs for # and € are calculated as M+w and M+lq"”3, where ﬁ(im) and 95"" are

the mth posterior samples generated by the Gibbs sampler for the ith individual after burn-in, and M is the number of
MCMC iterations after burn-in. For the frequentist alternatives, the MSEs of § and 6 are calculated as 4 / w and

5166113
ng :

Results for the balanced design with (p,q) = (4,4), (p,q) = (9,5) and o2 = 0.5 are summarized in Tables 1 and 2,
respectively. Results for the rest of the simulation settings are provided in Supporting Information. Across all simulation
settings, the proposed approach is observed to have competitive performance. Specifically, it can very accurately estimate
the numbers of subgroups and sub-subgroups, while the alternatives tend to over-estimate. Consider for example setup
1 in Table 1. For the (number of subgroups, total number of sub-subgroups) dual, the proposed approach has on average
(2.010, 4.040). The five one-step approaches have the estimated numbers of subgroups as 4.160 (BFMRp), 2.560 (BFMRf),
4.830 (FMR1), 2.860 (Resiclustl), and 2.890 (Respclustl). The three two-step alternatives have (2.970, 6.720) for FMR2,
(2.440, 5.570) for Resiclust2, and (2.440, 5.630) for Respclust2. The proposed approach is also observed to have competitive
ARI values. For the same specific setting, it has a significantly higher ARI value for subgrouping. For sub-subgrouping,
its ARI value is slightly higher than that of BFMRp and FMR1 but much higher than the other alternatives. The proposed
approach has more accurate estimation. For example, for this specific setting and for estimating 8, the average MSE values
are 0.511 (proposed), 0.754 (BFMRp), 0.960 (BFMR(), 0.633 (FMR1), 0.784 (FMR2), 1.292 (Resiclust1), 1.226 (Resiclust2),
1.279 (Respclustl), and 1.216 (Respclust2).

4 | DATA ANALYSIS

TCGA (The Cancer Genome Atlas) provides one of the most comprehensive and extensively analyzed data sources.
High-quality data has been published for multiple cancers. TCGA clinical and molecular data has been analyzed in a large
number of publications, and there has been a growing interest in its histopathological imaging data. Imaging-based studies
have been conducted by Azuaje et al,' Jain and Massoud,?® Xu et al,”! and others, which have convincingly demonstrated
the effectiveness of imaging features for modeling cancer outcomes/phenotypes. In this article, we analyze data on lung
adenocarcinoma (LUAD), which is the most common histological subtype of lung cancer. The differences across lung can-
cer patients have been studied in many publications including a few that analyze histopathological imaging data.* On the
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TABLE 1 Simulation results with (p, g, %) = (4,4, 0.5): mean(SD) based on 100 replicates

B 0
pr = (0.5,0.5) K ARI MSE Y Ky ARI MSE
Setup 1 Proposed 2.010(0.10) 0.654(0.05) 0.511(0.04) 4.040(0.20) 0.689(0.04) 0.644(0.06)
BFMRp 4.160(0.37) 0.324(0.03) 0.754(0.10) 0.680(0.04) 0.756(0.09)
BFMRf 2.560(0.77) 0.161(0.06) 0.960(0.15) 0.307(0.14) 0.976(0.12)
FMR1 4.830(0.62) 0.315(0.05) 0.633(0.17) 0.669(0.07) 0.695(0.18)
FMR2 2.970(0.17) 0.211(0.05) 0.784(0.12) 6.720(0.98) 0.403(0.08) 0.939(0.17)
Resiclustl 2.860(1.10) 0.122(0.05) 1.292(0.29) 0.313(0.07) 0.884(0.08)
Resiclust2 2.440(0.50) 0.128(0.04) 1.226(0.28) 5.570(1.57) 0.361(0.09) 0.846(0.07)
Respclustl 2.890(1.12) 0.121(0.04) 1.279(0.28) 0.313(0.07) 0.876(0.06)
Respclust2 2.440(0.50) 0.127(0.04) 1.216(0.28) 5.630(1.57) 0.276(0.05) 0.905(0.08)
Setup 2 Proposed 2.010(0.10) 0.622(0.06) 0.548(0.05) 4.010(0.10) 0.647(0.05) 0.713(0.05)
BFMRp 4.280(0.45) 0.308(0.04) 0.874(0.12) 0.631(0.05) 0.890(0.11)
BFMRf 2.660(0.93) 0.155(0.07) 0.999(0.15) 0.287(0.14) 1.048(0.13)
FMR1 4.910(0.68) 0.292(0.06) 0.769(0.25) 0.616(0.10) 0.833(0.24)
FMR2 2.970(0.17) 0.202(0.06) 0.812(0.16) 6.780(0.97) 0.376(0.09) 1.024(0.21)
Resiclustl 2.780(1.05) 0.134(0.06) 1.182(0.27) 0.309(0.07) 0.898(0.08)
Resiclust2 2.400(0.49) 0.140(0.05) 1.131(0.22) 5.290(1.55) 0.367(0.09) 0.864(0.10)
Respclustl 2.830(1.07) 0.133(0.05) 1.182(0.27) 0.310(0.07) 0.893(0.06)
Respclust2 2.410(0.49) 0.141(0.05) 1.131(0.24) 5.510(1.43) 0.277(0.05) 0.903(0.06)
Setup 3 Proposed 2.030(0.17) 0.671(0.06) 0.506(0.04) 4.050(0.22) 0.695(0.04) 0.641(0.06)
BFMRp 4.250(0.48) 0.332(0.03) 0.783(0.13) 0.686(0.05) 0.775(0.12)
BFMRf 2.570(0.88) 0.166(0.07) 0.984(0.17) 0.308(0.16) 0.982(0.15)
FMR1 4.830(0.60) 0.323(0.04) 0.645(0.18) 0.681(0.08) 0.686(0.14)
FMR2 3.000(0.00) 0.214(0.04) 0.796(0.14) 7.000(0.83) 0.404(0.07) 0.923(0.15)
Resiclustl 2.760(1.20) 0.128(0.05) 1.301(0.27) 0.295(0.06) 0.894(0.07)
Resiclust2 2.360(0.48) 0.137(0.05) 1.219(0.23) 5.290(1.54) 0.371(0.09) 0.853(0.07)
Respclustl 2.730(1.15) 0.128(0.05) 1.296(0.26) 0.296(0.06) 0.890(0.07)
Respclust2 2.360(0.48) 0.137(0.05) 1.228(0.25) 5.320(1.52) 0.287(0.05) 0.894(0.09)
Setup 4 Proposed 2.000(0.00) 0.638(0.05) 0.541(0.05) 4.040(0.20) 0.660(0.04) 0.704(0.05)
BFMRp 4.240(0.50) 0.316(0.04) 0.858(0.13) 0.648(0.05) 0.875(0.11)
BFMRf 2.510(0.76) 0.146(0.07) 1.037(0.17) 0.278(0.14) 1.064(0.13)
FMR1 4.800(0.70) 0.306(0.06) 0.737(0.26) 0.638(0.09) 0.797(0.24)
FMR2 2.980(0.14) 0.214(0.05) 0.827(0.26) 6.760(0.84) 0.395(0.08) 1.027(0.18)
Resiclustl 2.840(1.13) 0.136(0.06) 1.208(0.24) 0.309(0.07) 0.904(0.07)
Resiclust2 2.380(0.49) 0.146(0.06) 1.156(0.22) 5.420(1.57) 0.364(0.08) 0.871(0.07)
Respclustl 2.840(1.13) 0.135(0.06) 1.217(0.27) 0.311(0.07) 0.906(0.08)
Respclust2 2.380(0.49) 0.146(0.06) 1.147(0.23) 5.450(1.40) 0.285(0.05) 0.904(0.06)

Note: K ( ¥ Kd): estimated number of subgroups (sub-subgroups).
Abbreviations: ARI, adjusted Rand index; MSE, mean squared error.



018 | Wi LEy->tatistics IMET AL
TABLE 2 Simulation results with (p, g, %) = (9, 5, 0.5): mean(SD) based on 100 replicates
B e
pr = (0.5,0.5) K ARI MSE ¥ K4 ARI MSE
Setup 1 Proposed 1.940(0.24) 0.638(0.16) 0.431(0.12) 3.960(0.49) 0.666(0.13) 0.654(0.19)
BFMRp 5.440(0.72) 0.240(0.05) 1.416(0.24) 0.532(0.08) 1.330(0.20)
BFMRf 2.550(1.00) 0.114(0.07) 1.006(0.19) 0.185(0.10) 1.056(0.15)
FMR1 5.500(0.82) 0.097(0.08) 1.509(0.45) 0.230(0.16) 1.373(0.35)
FMR2 2.700(0.46) 0.155(0.09) 0.923(0.33) 6.560(1.60) 0.258(0.12) 1.127(0.32)
Resiclustl 3.230(1.35) 0.123(0.06) 0.949(0.21) 0.300(0.06) 0.807(0.07)
Resiclust2 2.390(0.49) 0.140(0.06) 0.902(0.20) 5.450(1.59) 0.347(0.08) 0.795(0.11)
Respclust1 3.270(1.36) 0.121(0.06) 0.956(0.22) 0.305(0.06) 0.799(0.06)
Respclust2 2.420(0.50) 0.140(0.06) 0.883(0.20) 5.460(1.53) 0.276(0.04) 0.825(0.13)
Setup 2 Proposed 1.930(0.26) 0.591(0.16) 0.461(0.09) 3.970(0.540) 0.620(0.13) 0.776(0.19)
BFMRp 5.590(0.61) 0.208(0.05) 1.583(0.19) 0.450(0.09) 1.639(0.18)
BFMRf 2.420(0.93) 0.101(0.08) 1.026(0.19) 0.146(0.09) 1.190(0.16)
FMR1 5.460(1.02) 0.074(0.06) 1.600(0.43) 0.163(0.12) 1.718(0.39)
FMR2 2.550(0.50) 0.157(0.09) 0.974(0.35) 6.220(1.52) 0.230(0.11) 1.339(0.38)
Resiclustl 3.170(1.33) 0.157(0.08) 0.864(0.20) 0.307(0.06) 0.835(0.08)
Resiclust2 2.420(0.50) 0.174(0.08) 0.804(0.17) 5.530(1.49) 0.347(0.09) 0.807(0.07)
Respclustl 3.160(1.35) 0.159(0.08) 0.861(0.21) 0.308(0.06) 0.834(0.10)
Respclust2 2.420(0.50) 0.176(0.07) 0.801(0.17) 5.480(1.50) 0.283(0.05) 0.837(0.11)
Setup 3 Proposed 1.970(0.17) 0.638(0.12) 0.412(0.08) 3.990(0.33) 0.661(0.10) 0.624(0.20)
BFMRp 5.410(0.65) 0.248(0.04) 1.422(0.21) 0.543(1.32) 0.075(0.18)
BFMRf 2.290(0.78) 0.110(0.07) 1.011(0.19) 0.173(0.09) 1.071(0.15)
FMR1 5.450(0.97) 0.101(0.08) 1.506(0.54) 0.236(0.15) 1.385(0.37)
FMR2 2.680(0.47) 0.149(0.08) 0.953(0.40) 6.400(1.49) 0.250(0.11) 1.141(0.28)
Resiclustl 2.760(1.12) 0.124(0.05) 0.933(0.19) 0.298(0.07) 0.807(0.06)
Resiclust2 2.370(0.49) 0.134(0.05) 0.894(0.19) 5.460(1.55) 0.350(0.08) 0.787(0.08)
Respclust1 2.740(1.11) 0.126(0.04) 0.939(0.30) 0.302(0.07) 0.814(0.15)
Respclust2 2.370(0.49) 0.134(0.04) 0.890(0.19) 5.360(1.47) 0.274(0.04) 0.810(0.05)
Setup 4 Proposed 1.910(0.29) 0.587(0.18) 0.476(0.12) 4.020(0.64) 0.609(0.14) 0.796(0.27)
BFMRp 5.640(0.63) 0.207(0.05) 1.634(0.20) 0.448(0.08) 1.665(0.19)
BFMRf 2.370(0.69) 0.103(0.08) 1.027(0.20) 0.151(0.10) 1.199(0.24)
FMR1 5.480(0.99) 0.072(0.07) 1.577(0.44) 0.160(0.13) 1.690(0.43)
FMR2 2.550(0.50) 0.147(0.09) 1.015(0.43) 6.100(1.57) 0.224(0.11) 1.364(0.39)
Resiclustl 3.050(1.26) 0.154(0.06) 0.829(0.18) 0.316(0.07) 0.824(0.07)
Resiclust2 2.470(0.50) 0.172(0.06) 0.795(0.17) 5.650(1.56) 0.335(0.08) 0.845(0.29)
Respclustl 3.040(1.29) 0.154(0.06) 0.820(0.18) 0.311(0.07) 0.819(0.07)
Respclust2 2.450(0.50) 0.171(0.06) 0.791(0.17) 5.620(1.48) 0.269(0.05) 0.838(0.09)

Note: K ( ¥ Kd): estimated number of subgroups (sub-subgroups).
Abbreviations: ARI, adjusted Rand index; MSE, mean squared error.
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TABLE 3 Dataanalysis: estimated coefficients (90% credible intervals)

Subgroup

Demographic/clinical variables + Type 1 imaging features 1 2

Sex —1.043 (~1.31, —0.76) 0.880(0.35, 1.39)
Age 0.626 (—0.02, 1.33) —1.025 (-2.39, 0.21)
tumor_size 1.453 (0.47, 2.46) -1.917 (-3.87, 0.90)
LymphocytesPN 1.676 (0.40, 2.73) —0.105 (~1.66, 1.34)
StromaPN 0.661 (—2.25, 3.35) —2.265 (—4.76, 0.70)
TumorPN 1.965 (0.21, 3.77) —0.045 (-2.14,1.77)
StromaSN —0.846 (—2.38, 0.81) 1.844 (0.07, 3.40)

Sub-subgroup

Type 2 imaging features 11 1-2 2-1
AreaShape_Zernike 8 2 0.344 (—0.14, 0.84) —0.131 (-0.66,0.42) 2.054(1.27, 2.78)
Granularity_12_ImageAfterMath 0.144 (-0.53, 0.81) 0453(-1.43,227)  —1.693(-2.74,-0.42)
Texture Contrast maskosingray 3 03 2.949 (1.34, 4.45) —1.093(-3.94,2.07) —0.036(-2.44,2.19)
Texture_SumVariance_maskosingray_3_01 —2.557(—-4.15,-0.84) —0.621(-3.68,2.46) 2.389(-0.03,4.81)
Threshold_FinalThreshold _Identifyhemasub2 —2.098(-3.13,-1.04) —0.605(-2.00,0.78) —1.809(-3.65, —0.08)

other hand, it is also commonly agreed that additional analysis is needed. Data is directly downloaded from TCGA. The
response variable is FEV1, which measures the percentage comparison to a normal value reference range of the volume air
that a patient can forcibly exhale from the lungs in one second prebronchodilator. FEV1 has been studied in many publi-
cations and shown as an important marker for lung capacity, cancer prognosis, and other outcomes. Exploratory analysis
suggests a square root transformation (which is a special case of the Box-Cox transformation). The histogram in Figure
S5 (Supporting Information) shows two peaks, suggesting that it may be of interest to conduct mixture modeling—this
has been ignored in many published studies.

TCGA whole-slide histopathological images have been captured at 20x or 40x magnification by the Aperio med-
ical scanner. Raw data is in the svs format. The pipelines for extracting the two types of imaging features have been
briefly described in Section 1. In Table 3, the four Type 1 imaging features are as follows: LymphocytesPN—Perimeter
of lymphocyte cell region/square root of image size, StromaPN—perimeter of stromal cell region/square root of
image size, TumorPN—perimeter of tumor cell region/square root of image size, and StromaSN—size of stromal cell
region/image size. It is noted that two other features (namely, LymphocytesSN—size of lymphocyte cell region/image
size, and TumorSN—size of tumor cell region/image size) have also been extracted. They are removed from analy-
sis because of very high correlations with the above features. As shown in Table 3, for subgrouping, we also consider
two demographic variables (sex and age) and one clinical variable (tumor size), all of which have been suggested
as having critical implications for lung cancer modeling. Using the automated pipeline described in the lower panel
of Figure 1, a total of 229 features can be extracted. However, as acknowledged in the literature,’> most of these
features may not be relevant for the response variable. As such, we conduct a supervised screening with linear
regression and select the top five features with the smallest marginal P-values, whose names are also provided in
Table 3.

For the proposed approach, we assign a Geometric prior—denoted as Geometric(s)—on K and Ky with s = 0.5. This
prior assigns a 99% probability to K(or K3) < 7 - a limited number of (sub-)subgroups is sensible given the limited sam-
ple size. An informative inverse gamma prior with (ao, bp) = (20, 2) is assigned on ¢2. For the rest of the hyperparmeters,
we use the same values as in Section 3: (y1, y2, mg, X, Mg, Zg) = (1,1, 0p, 101541, 0g, 101;). In Tables S11 and S12 (Support-
ing Information), we report sensitivity analysis results, which show that the estimation results are fairly robust to the
hyperparameter values.

Three independent MCMC runs are performed for 100 000 iterations, with the first half discarded as burn-in.
We carefully compare the three chains and observe high agreement, which suggests satisfactory MCMC convergence.
As an example, in Figure S7 (Supporting Information), we show the pairwise comparison of the estimates for the



(sub-)subgroup-specific regression coefficients. The final results are obtained by pooling the outputs from the three
chains.

The posterior distribution of the number of subgroups suggests that there are most likely two subgroups, with
very small probabilities for the other values. On average, these subgroups have sizes 74 and 42, respectively. Fur-
thermore, Figure S8 (Supporting Information) suggests that there are most likely two sub-subgroups within subgroup
1, and they have average sizes 59.9 and 14.1, respectively. In contrast, the second subgroup is highly unlikely to be
further split. In Table 3, we provide the posterior means and 90% credible intervals for the regression coefficients.
It is observed that different (sub-)subgroups have quite different regression models. Some relatively wide credible
intervals are at least partly caused by the limited sample size. Here we note that all inferences are based on the
postprocessed MCMC draws to address the label switching problems,?*?* conditioning on the number of most likely
(sub-)subgroups.

Data is also analyzed using the alternative approaches considered in simulation. Their estimation results are pre-
sented in Tables S13 to S20 (Supporting Information). In Table S21 (Supporting Information), for both subgrouping
and sub-subgrouping, we compute the concordance values between the heterogeneity structures obtained using dif-
ferent methods. It is noted that the Bayesian alternative BFMRp does not identify any subgrouping structure. With
BFMRY, the estimates for two subgroups are returned. However, a closer examination suggests that in the MCMC runs,
the two subgroups are highly imbalanced, the small subgroup is unstable, and all the subjects are concluded as in
one group based on their inclusion probabilities. Overall, it is observed that the proposed approach leads to hetero-
geneity structures and estimates significantly different from those of the alternatives. We note that our heterogeneity
analysis, similar to many published mixture modeling studies, is defined based on a specific biomarker. Our litera-
ture search does not suggest a good way of evaluating the validity of such analysis—this is “worsened” by the limited
research and understanding of histopathological imaging features. For the (sub-)subgroups obtained using the proposed
approach, we briefly compare clinical outcomes and find significant differences—this is “as expected” as FEV1 is a strong
biomarker for many clinical outcomes. This along with the simulation results can provide some support to our analysis
results.

5 | DISCUSSION

In this article, we have conducted cancer finite mixture modeling using histopathological imaging data, which can pro-
vide a viable alternative to molecular and some other types of expensive data. The most significant advancement is
that, recognizing that there are two types of imaging processing pipelines and extracted features with a natural order,
we have develop a novel approach that can generate sub-subgrouping (based on the second type of imaging features)
within subgrouping (based on the first type of imaging features). We have noted that hierarchical grouping structures
are common in some other types of analysis such as unsupervised clustering. The proposed approach is built on “fa-
miliar” Bayesian techniques—thus having a strong statistical ground—and significantly differs from the existing ones
in terms of the analysis objective and procedures. It has been effectively realized using a Gibbs sampling approach,
and the accompanying Julia code has been made available to facilitate additional applications. In simulation, the pro-
posed approach has been observed to have satisfactory performance and significantly outperforms several highly relevant
competitors. We recognize that there are many other approaches that can realize finite mixture modeling. The adopted
alternatives are popular and, equally importantly, can be readily realized (many alternatives do not have public soft-
ware and are difficult to code). We postpone more extensive comparison to future research. With the TCGA LUAD
data, for the association between FEV1 and imaging features+clinical/demographic variables, two subgroups and two
sub-subgroups within the first subgroup have been identified. This heterogeneity structure is more refined than those in
the literature and may provide additional insight into this important biomarker and lung cancer. The discrepancies in
the grouping structures identified by the proposed and alternative approaches may further suggest the necessity of this
analysis.

This study can be potentially extended in multiple directions. The proposed analysis pertains to estimation only, and
there is a lack of consideration on model complexity. In some data analysis with limited sample sizes, it is not desirable to
have too many (sub-)subgroups/“too refined” structures. It may be of interest to further take into account the numbers of
subgroups and sub-subgroups. An obvious potential extension is to accommodate high-dimensional variables by imposing
sparsity. Conceptually, this can be achieved by imposing spike-and-slab priors to the regression coefficients. Significant
computational developments may be needed and are postponed to the future. Objectively evaluating analysis results,
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especially with practical data, is desirable but highly challenging. Bayesian analysis may be further challenged as the
final results are based on averaging over a large number of iterations (and grouping structures and estimates change
across iterations). In addition, the subgrouping is defined based on regression models/coefficients. As such, tightness
measures commonly adopted in unsupervised clustering analysis may not be applicable. Biological studies that explore
implications of the identified mixture structures and model estimations will be of significant interest to ultimately prove
the validity of our analysis. It is also of interest to explore more applications of the hierarchical heterogeneity structure
and proposed estimation approach. Examining the proposed analysis suggests that it can be relatively “independent” of
histopathological images. As long as there are multiple types of variables with a natural order, the proposed analysis may
be conducted.
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