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Abstract: This study has been motivated by cancer research, in which heterogene-
ity analysis plays an important role and can be roughly classified as unsupervised
or supervised. In supervised heterogeneity analysis, the finite mixture of regres-
sion (FMR) technique is used extensively, under which the covariates affect the
response differently in subgroups. High-dimensional molecular and, very recently,
histopathological imaging features have been analyzed separately and shown to
be effective for heterogeneity analysis. For simpler analysis, they have been
shown to contain overlapping, but also independent information. In this article,
our goal is to conduct the first and more effective FMR-based cancer hetero-
geneity analysis by integrating high-dimensional molecular and histopathological
imaging features. A penalization approach is developed to regularize estimation,

select relevant variables, and, equally importantly, promote the identification of
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independent information. Consistency properties are rigorously established. An
effective computational algorithm is developed. A simulation and an analysis of
The Cancer Genome Atlas (TCGA) lung cancer data demonstrate the practical
effectiveness of the proposed approach. Overall, this study provides a practical

and useful new way of conducting supervised cancer heterogeneity analysis.

Key words and phrases: Cancer heterogeneity; Data integration; FMR; Molecular

and imaging features.

1. Introduction

Heterogeneity is a hallmark of cancer, and thus has gainered extensive
research (Turajlic et al., 2019). Heterogeneity analysis can be roughly
classified as unsupervised or supervised. In unsupervised analysis, out-
comes/phenotypes are not involved, and clustering and other techniques
are adopted (Wiwie et al., 2015). Unsupervised analysis can be useful,
for example, for identifying new disease subtypes, but it is often diffi-
cult to associate clinical implications with findings. In contrast, super-
vised analysis directly addresses the heterogeneity associated with a clinical
outcome/phenotype, and often has more important practical implications
(Bair, 2013). In such analysis, it is postulated that covariates affect the
response differently in subject subgroups (Stadler et al., 2010; Hui et al.,

2015). This may manifest as different covariates being associated with the



Statistica Sinica: Preprint
doi:10.5705/s5.202021.0002

response and /or the same covariates having different magnitudes of effects.
Note that, here, subject subgroups are unknown a priori and need to be esti-
mated. This is different to the analysis that considers interactions between
known subject groups and biomarkers, which is sometimes also referred
to as “heterogeneity analysis” and is often conducted to study treatment
effects (Coppock et al., 2018).

In “classic” heterogeneity analysis, clinical/demographic/environmental
variables have been considered. In the past two decades, molecular data
have played an increasingly important role in cancer research, and, in par-
ticular, in supervised heterogeneity analysis (Ahmad and Frohlich, 2017).
Another type of data, recently suggested as informative for modeling cancer
outcomes/phenotypes, comes from histopathological images. Such images
are generated in a biopsy, which is ordered for most suspected cases, and are
used extensively for definitive diagnosis and staging. They contain informa-
tion on a tumor’s “micro” properties and surrounding microenvironment.
They differ significantly from radiological images, which are generated by
CT, PET, and other techniques, and provide information on a tumor’s
“macro” properties, such as location, size, and density. Recent studies,
such as Luo et al. (2017), have analyzed high-dimensional histopathological

imaging features for modeling biomarkers, survival, and other outcomes.
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Furthermore, a handful of studies, such as Kothari et al. (2013) and Altho-
biti et al. (2018), conduct imaging-based heterogeneity analysis. However,
they often analyze low-dimensional imaging features and adopt relatively
simple techniques.

A tumor’s properties and microenvironment, as reflected in histopatho-
logical images, are affected but not fully regulated by molecular changes.
As such, molecular and imaging data contain overlapping and independent
information. This is supported by recent studies that have explicitly ana-
lyzed the relationship between the two types of data. For example, Yu et
al. (2017) use a random forest to correlate molecular data with histopatho-
logical imaging data, finding that these two types of data have overlap-
ping information, with some significant associations detected. Zhong et al.
(2019) adopt a hypothesis testing approach, showing that the two types
of data have independent information, when modeling cancer prognosis.
Under the homogeneity assumption, studies such as Sun et al. (2018) and
Mobadersany et al. (2018) show that integrating the two types of data leads
to biologically sensible models with improved estimation/prediction perfor-
mance. Complementing and advancing the existing literature, in this study;,
we take the natural next step and conduct cancer heterogeneity analysis by

integrating high-dimensional molecular and imaging data.
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In supervised heterogeneity analysis, the finite mixture of regression
(FMR) technique has been adopted extensively because of its lucid inter-
pretations and satisfactory statistical and numerical properties (McLach-
lan and Peel, 2000). Here, the conditional distribution of the response y
given the covariates X is a mixture with multiple components, and the
relationship between y and X varies across such components. For ex-
ample, under the “classic” mixture of two normal distributions, y|X ~
uN(Xay,0?) + (1 — u)N(X aw, 0?) with different coefficient vectors ay
and ay. Examples of FMR-based studies with low-dimensional covari-
ates include Chen et al. (2001) and Atienza et al. (2007), and those with
high-dimensional covariates include Khalili and Chen (2007) and Hui et
al. (2015). Note that these and other similar studies in the literature are
limited to a single type of covariate.

When there are two or more types of covariates from different sources
and with different properties, the simplest solution is to stack them to-
gether, after which variable selection or dimension reduction techniques
can be applied. Examples include the Lasso-based approach in Boulesteix
et al. (2017) and the elastic net and sparse principal component analysis
in Jiang et al. (2016). However, such a strategy fails to account for over-

lapping information, which can manifest statistically as correlation. Ap-
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proaches such as collaborative regression (Gross and Tibshirani, 2015) and
canonical variate regression (Luo et al., 2016) can accommodate overlap-
ping information via canonical correlation analysis. As another example,
the assisted robust marker identification (ARMI) approach developed in
Chai et al. (2017) borrows overlapping information from one type of covari-
ate to assist more accurate identification on the other type(s) of covariates.
However, these approaches model the response using each type of covariate
separately, and cannot effectively accommodate independent information
contained in multiple types of covariates. In addition, they have not been
applied to heterogeneity analysis. There are approaches that decompose
data and use only non-overlapping information in modeling based on pe-
nalization (Zhu et al., 2016) and Bayesian (Wang et al., 2013) techniques.
However, the decomposed data do not have clear interpretations, and these
studies are also limited to the homogeneity case.

This study has been motivated by the critical importance of supervised
cancer heterogeneity analysis, the increase in the number of studies that
collect both molecular and histopathological imaging data, the overlapping
and independent information contained in such data, and a lack of studies
that integrate them for heterogeneity analysis. Our study complements and

advances the existing literature in multiple ways. In particular, we extend
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those works limited to a single type of covariate by effectively integrat-
ing molecular and histopathological imaging data. We also extend studies
limited to low-dimensional covariates (and thus limited information) by
accommodating high-dimensional and noisy covariates using a penalization
technique. Furthermore, we advance the collaborative regression and ARMI
by building models using both types of data (thus, using more information).
In addition, without data decomposition, the resulting models can be bi-
ologically more interpretable. We also rigorously show that the proposed
approach has satisfactory theoretical and numerical properties. Overall,
this study provides a new and practically useful way of modeling cancer
heterogeneity. Note that supervised heterogeneity analysis is not limited to
cancer, and data integration is not limited to molecular and imaging data.
As such, the proposed approach can enjoy broad applicability far beyond

that proposed here.

2. Methods

2.1 Integrated heterogeneity analysis

Assume n independent subjects. For the ith subject, denote y; as the
response of interest, and X, = (x;1,--- ,x;,) and Z;. = (21, - , 2iq) as the

p- and ¢-dimensional molecular and imaging measurements, respectively.
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2.1 Integrated heterogeneity analysis

The conditional density of y; given X;. and Z;. is

K
Fyis X, Zi,0) =Y g (i M( X o + Zi.By), o) - (2.1)
k=1
Here, K is the number of mixture components (subgroups), g = (1, - -+ , ptx)’

is the vector of mixing proportions satisfying p; > 0 and Zszl e = 1,
g(+) is the known density function, A(-) is the known link function, o =
(01, ,0k)" is an unknown parameter vector usually related to the vari-
ance, o, = (a1, -+, ) and By = (B, -+, Brg) are the coefficient vec-
tors for the molecular and imaging measurements, respectively, and @ =
(W o', /.3 = (W, o, al, -, ak, B By) = (0;)erxtKptKex1-

We propose the following penalized objective function:

Quo(0) = > log {Zukg (s (X + Zi~,6k>7(7k)} —ny Y pllasliv M)

i=1 k=1 k=1 j=1
K q K p gq

- nz P Bril; v, A1) — nAg Z Z Z cil(ag; # 0)1(Bu # 0), (2.2)
k=1 1=1 k=1 j=1 I=1

v

where p(|v]; v, M) = M [

<1 — ﬁ>+ dz is the Minimax Concave Penalty
(MCP) with regularization parameter v, (a); = max{a,0}, 1(-) is the indi-
cator function, and A\; and Ay are the tuning parameters. Here, v controls
the unbiasedness and concavity of the estimator, with a larger value lead-

ing to a smoother estimation, but a larger bias and less accurate variable

selection (Zhang et al., 2010). In addition, c¢;; describes the amount of
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2.1 Integrated heterogeneity analysis

overlapping information between the jth component of X and the [th com-
ponent of Z, with a larger value indicating a higher level of overlapping. In
the literature, there are multiple ways of quantifying overlapping informa-
tion. Given that overlapping information can manifest as correlation, we
propose cj; = |ch " [1(|c} <" > ¢Fo), where ¢/’ is the Pearson’s corre-
lation between the jth molecular and /th imaging variables, and ¢ is the
cutoff. Correlation perhaps provides the simplest and most straightforward
quantification of overlapping information, and has been used extensively.
The cutoff ¢ is introduced to remove (a large number of) spurious cor-
relations. With the maximizer of (2.2), the nonzero components of oy, and
B correspond to the important molecular and imaging variables that are
associated with the response for the kth subgroup.

The discontinuity of the Lg penalty makes optimization challenging. To

improve computational feasibility, we further propose

n K K p
Q(6) = log {Z 19 (yi; M Xi.a + Z;.By), Uk)} =1 > pllawgli v, M)
i=1 k=1 k=1 j=1
el K »p a2, 52
_ kI _ Tkl
—nzzp(|5kz|;%/\1) —nAQZZZcﬂ <1 —e T ) (1 —e ) , (2.3)
k=1 1=1 k=1 j=1 I=1

where 7 is a small positive constant that controls the goodness and smooth-
ness of the approximation.

Rationale In contrast to existing FMR models, the proposed model includes
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2.1 Integrated heterogeneity analysis

two distinct types of high-dimensional variables. Furthermore, in contrast
to, for example, the collaborative regression and ARMI, both molecular
and imaging data are included in a single model to take advantage of their
independent information. Penalization is adopted for regularization and
sparsity. We adopt the MCP because of its satisfactory statistical prop-
erties, such as unbiasedness, and better numerical performance than some
other penalties, such as Lasso. In (2.2), the key advancement is the last
term, which promotes the identification of molecular and imaging variables
with smaller correlations (weaker overlapping information). In particular,
the indicator functions 1(ay; # 0) and 1(Sy # 0) pick up the selected
molecular and imaging variables, and the penalty is defined as the sum
of the absolute values of their pair-wise correlations. This way, the pro-
posed approach directly encourages the selection of molecular and imaging
variables with weak correlations, and effectively accommodates their over-
lapping information. Note that directly including two types of covariates
in a single model without properly accommodating their high correlations
may lead to unreliable and inaccurate estimation and identification. For
two molecular (imaging) variables with similar contributions to the model,
the proposed correlation-based penalty selects the one less correlated with

important imaging (molecular) variables. As a result, the identified model
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2.2 Statistical properties

contains less redundant information, leading to more reliable and accu-
rate estimation and identification. In addition, these important molecular
and imaging variables have more independent contributions, and may pro-
vide richer information for understanding the response. The smooth ap-
proximation of the indicator function simplifies the computation, and the
exponential-based approximation can be replaced by other smooth approx-

1mastions.

2.2 Statistical properties

Assume K is known. Determining its value under FMR is nontrivial,
but has been discussed in the literature (Khalili and Lin, 2013). Let
6" = (1) .(a") (@), (ef) (B .-+ . (BY)) be the vector of
true parameter values. Let Ay = {j : a}; # 0}, By = {l : B, # 0},
C={k:0)+#0} and C° = {k : 62 = 0}, where 6} is the kth element of
0°. Note that 1) and o) are nonzero. Denote |A| as the cardinality of set
A. Let ar, = |Ag|, by, = |B], and s = 2K + 3.5 ax + S0 br. Assume
that the nonsparsity size s < n. For a vector v and index set S, denote vg
as the components of v indexed by §. For a matrix M and two index sets
S and S, denote Mg, and Mg, . as the columns and rows, respectively, of

M indexed by &, and denote Mg, s, as the submatrix of M indexed by
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Sl and SQ.

* * * * / * ! * / * / !
Denote 0 = (1) (@), (@t1,) s+ (@) s (Bis) s+ s (Bics) )
as the maximizer of
~ n K
Qu(Bc) = ) log {Z/Mcg (yis M( X 4,004, + Zi 5, Br,5y,) Uk)}
i=1 k=1
K o, 82
Y Y Yo (1 _e—x> <1 - ) |
k=1 jEA IEB;
Let f(yi; Xi, Zi, 0c) = Sy 1xg (s M( X ay @ a, + ZisBrs): 0n)s Co =
max{|corr(X;, Z))|, j € Ap,l € By, k =1,--- , K}, with corr(X;, Z;) being
the correlation between X; and Z;, and by = min {{|oz2j{ 7€ At {180,
le By}, k=1,---,K}. We first establish the estimation consistency of 6}

when the true sparsity structure is known. Assume the following conditions:

(C1) The density function f(y;; X;., Z;., @) has a common support, is identi-

fiable in @ up to the permutation of the component labels, and satisfies

E Olog f(y:;Xs.,Z;.,0) —0. E Olog f(yi; Xi.,Z;.,0) Olog f (yi; Xs.,Zi..0) | _
00; . - ) 26, a6,

El- 9% 1og f(yi;Xi.,Z;.,0)
96,00, '

(C2) The Fisher information matrix for c,

. dlog f(yi; Xi., Zi.,0c) | [Olog f(ys; Xi, Zi., 0c) /
[(8c) = E { { 26¢ 6. ’

is finite and positive definite at 8 = 62.
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2.2 Statistical properties

(C3) There exists an open set Ny that contains the true parameter 8°, such
that for almost all V; = (y;, X;., Z;.), the density f(y;; X;., Z;.,0) ad-
mits all third derivatives for all @ € N,. There exist two functions
My (V;) and Ma(V;), for all @ € N, such that )m?—ael log f(vs; Xu, Ze, 0)| <
Mi(V2), | g log f(yis X Zi.,e)‘ < My(V;), where E[M,(V})] <

oo and E[My(V;)] < oo.

(C4) For any constant € > 0, there exists a finite positive constant x;, such
that for j € Ag,l € By, k=1,--- K, P (]cﬁcm’ —corr(X;, Z;)| > e) <
2 exp (—%) Moreover, b3 > o7 with o > 2 and \/ﬁ/\gboe_é/T =
o(1), if ¢g > cfeorr.

Conditions (C1)—(C3) are commonly assumed in the literature (Khalili
and Lin, 2013; Hui et al., 2015). As suggested by Khalili and Chen (2007),
the identifiability of FMR models generally depends on the component den-
sity ¢(+), maximum order K, and design matrix. We refer to the aforemen-
tioned publications for detailed discussions and sufficient conditions on iden-
tifiability. Condition (C4) restricts the rate of Ay when the maximum value
of the absolute correlations between the important molecular and imaging

Peorr — Condition

variables under the true model is larger than the cutoff ¢
(C4) also provides a constraint on the error between the estimated sample

correlations and the true population correlations.
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2.2 Statistical properties

Theorem 1: Under Conditions (C1)—(C4), there exists a strict local max-
imizer 5 of Q,(8¢) such that ||6; — 62| = O,(/s/n).

The proof is provided in Appendix A. Theorem 1 shows that 6} has
the usual O,(1/s/n) convergence rate. Define 6 with 6 = 05 and G = 0.
Next, we show that 6 is a strict local maximizer of Q(8) in (2.3). Assume

the following additional conditions:

(C5) boA;! — oo, S/’\f/ﬁ — 00, and W@ — 00, a € (0, %)
(C6) log(p) = O(n"),log(q) = O(n?).

Condition (C5) puts constraints on the rate of A;, and similar conditions
have been commonly assumed in high-dimensional studies (Fan and Lv,
2011). In particular, the first subcondition establishes the rate at which
the nonzero coefficients can be distinguished from zero, and the other two
restrict the rate of A\; with respect to the sample size. Condition (C6) allows
the dimensionality p and ¢ to grow exponentially fast.
Theorem 2: Under Conditions (C1)-(C6), with probability tending to one,
6 is a strict local maximizer of Q(8).

The proof is provided in Appendix A. Theorem 2 establishes the se-
lection and estimation consistency under high-dimensional settings. This

result shows that the proposed approach has consistency comparable to
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2.3  Computation

that of simpler models, although its objective and form are much more

complicated.

2.3 Computation

We develop an expectation-maximization (EM) algorithm. First, for sub-
ject i(= 1,---,n), we introduce an unobserved indicator vector A; =
(Aj1, -+, Ay ), where Ay, = 1 if subject ¢ belongs to subgroup k, and

A, = 0 otherwise. The complete-data objective function is

n K 7 )
Qu0) = D> > Auwlog{ug (i h(Xiaw+ ZiBi) o)t =n 3 3 pllansliv, )
e k=1 j=1
K q K p q a%j le
- ”ZZP(Iﬁkll;% A1) — 1Ay ZZZ%‘I (1 — e_f) (1 — e—f) ‘
k=1 I=1 1 = =1

With fixed tuning parameters, the proposed algorithm proceeds as follows:

) _

Initialization: Set ¢ = 0. Initialize p,~ = for k = 1,--- K, and

%
randomly partition subjects into K subgroups with equal sizes. For each k,
initialize a,(co) and ﬁ,(go) using the MCP and a,io) as the MLE.

E-step: Updatet=t+1. Fork=1,--- ,K,and =1, - ,n, compute:

:ul(:)g (yz'; h <Xi.a§:_1) + Zz'ﬂ,(f_l)> 7‘71?_1))
f(vi; X, Z;.,00-) :

8D = Eguy[An] =

M-step: Optimize Egu—1)[Q.(0)] with respect to 8. For k = 1,--- | K,

carry out the following steps sequentially:
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(a) Compute uk =Ly Zk).
(b) Optimize Qg(0y, cu, Br) = = S0, 6 log [g (yi; h (Xio + Z:Br) , 01)]—
Sl 70~ 1l ) e S Sl e (1- ) (12 %)
with respect to oy, ay, and B;. This varies with A(-) and g(-). Below, we
take the Gaussian distribution g(y;; h(X;.ox+Z;.8x), 0x) = \/%Uk exp|—(ory;i—
X;.ap — Z;.B)%/2] as an example, and develop a coordinate descent (CD)
algorithm. Algorithms for other distributions can be developed accordingly.

(b.1) With a4 and (G fixed at « (t Y and ﬁl(f_l), optimize Qg with
respect to oy. Let r(t D= Xi.a,(ffl) + Ziﬂ,(f*l), i\ = ). 51(1?%2» and

5O (50 ~(t) )
~ b4/ (b +4na,” p,,
() _ (t),.(t=1) (t) _ k <’€)

b, = 2211 Ok i yi. Then, O = 260 :

(b.2) With oy and 3 fixed at a ) and ,Bk optimize Qg with respect

to a. For j =1,---  p, carry out the following steps sequentially. Compute

t t t—1 t—1
nl(c]) =1 Zz 1 1k)x12j7 7"68 k] 3 121 1 zk (0_k)y1_r1(k )> Lij +nl(€])al(e] )7

and u,(fj) = 26_(04;:] 1) "Sici (1 - e_(ﬁ’”i ) /T) Update

T

( <t>
res. ;. (t) (t) ()

0 ) et .—sgn(r@s“ij)h (® (1 0
Aj = n;(gj)+>\2u§ctg) 1y A1 < ’Tes_kj S Ay (nkj - Azukj) 7
0, else
\
and r(t V- Tfk Dy %O‘gj - mwoz,(fj V.

(b.3) With o and «, fixed at a,(f) and al(f), optimize Q) with respect to

Bir. Forl =1 --- ¢, carry out the following steps sequentially. Compute



Statistica Sinica: Preprint
doi:10.5705/s5.202021.0002

2.3  Computation

t n t t t—1 t—1
77121) = %Zz 151(13 12l7 res" Ll =1 Zz 1 zk) (Ul(c)yz _rz(k )> il "‘7715:1) ( )a

and u) = 2¢~ G 1)> / > e (1 —e ~(o45) /T). Update

T

( )

res. t t t
e ) ()
(t) es® ,—sgn res’ Ll A1 " t ¢
Ot = Til(ctz)Jr/\gu((t) 1/3 A< ‘Tes(*;d‘ S Ay <77’(“l) + Azu’(“l)> ’

0, else
\
and rg,i_l) = rg,i_l) + zilﬁ,(d zllﬁ (t=1),

We iterate the E and M steps until convergence, which is concluded in
our numerical study if [|@¢+Y) — @®)|| < 107*. In the literature, the con-
vergence properties of the EM and CD algorithms are well established, and
convergence is achieved in all of our numerical examples with a moderate
number of iterations. To improve the performance, as in published studies,
multiple random initializations of the subjects’ subgroup memberships are
considered, and the final estimator is chosen as the one with the smallest
BIC.

The proposed approach involves a few parameters. We set 7 in the L
penalty approximation as 0.01, and note that its value is not critical, as
long as it is sufficiently small. We set the cutoff ¢©*’" = (.15, which leads
to satisfactory numerical results. For the regularization parameter v in the

MCP, following the literature (Zhang et al., 2010), we examine a few values,

including 1.8, 3, 6, and 10, and find that v = 6 has satisfactory performance



Statistica Sinica: Preprint
doi:10.5705/s5.202021.0002

(see Table S1 of the Supplementary Materials). The two tuning parameters
A1 and Ay are selected using the BIC and a grid search, which is common
practice.

To facilitate the data analysis and broad utilization, we provide R code
and an example using The Cancer Genome Atlas (TCGA) lung cancer data.

The code and example are available at https://github.com /shuanggema /fmrGI.

3. Simulation

Consider the following settings: (a) n = 300, p = 1000, ¢ = 500, and K = 2.
(b) X. is generated from a multivariate normal distribution with marginal
means zero and covariance matrix 2. Here, 3 has diagonal elements equal
to one and a block-diagonal structure, with two blocks corresponding to
the important and unimportant variables, of which the sizes are py and
P — Do, respectively. Detailed values of py are provided in Table 5 (Appendix
B). Within each block, variables have an autoregressive (AR) correlation
structure, where the jth and kth variables have correlation coefficient pli=*l
with p = 0.3,0.5, and 0.7. (c) To describe the overlapping information
between molecular and imaging variables, a set of 200 imaging variables C
is generated using a linear regression model Z;c = X;c9+ N (0,0.01%). Four

settings of ¥ are considered, where ¥, and 1 have 20 blocks with equal
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sizes, and 93 and 19,4 have 10 blocks with equal sizes. In each block, 9, and
13 have all elements equal to one, and ¥, and 194 have an AR structure
with p = 0.7. The rest of the imaging features are generated similarly to
X, and independent of the molecular variables. (d) Three settings (P1, P2,
and P3 in Table 5 of Appendix B) of important variables are considered. In
particular, we consider two subgroups with the same and different sets of
important variables, with different settings. (e) We consider the continuous
response computed from the FMR model, with o, = 0.5 and p; = us = 0.5
(balanced) and p; = 0.4, s = 0.6 (imbalanced). There are 72 scenarios,
comprehensively covering a wide spectrum with different levels of within-
and between-type correlations, as well as heterogeneity.

We consider the following alternatives. [FMR-MCP] analyzes the stacked
data (X, Z) under the FMR model (2.1) with the MCP for regularized es-
timation and selection. This is the most direct competitor, and does not
account for overlapping information. [Kmeans-MCP] first applies Kmeans
to the residuals computed from an MCP-penalized linear regression model,
with (X, Z) to identify subgroups, and then applies the MCP to each sub-
group separately. This approach accommodates heterogeneity using the
clustering technique, and there is no accounting for overlapping informa-

tion. [CoRe] conducts collaborative regression (Gross and Tibshirani, 2015)
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that accommodates overlapping information and encourages X and Z to
generate similar estimated effects. [DC-SVD] conducts a decomposition of
X and Z using a singular value decomposition (SVD) to extract overlap-
ping and independent information, and then conducts modeling (Zhu et
al., 2016). Both CoRe and DC-SVD are limited to the homogeneity case.
[MCP-MI], [MCP-M], and [MCP-I] analyze (X, Z), X, and Z, respectively,
using an MCP-penalized linear regression. We acknowledge that there are
other potential alternatives. However, the above are likely the most rele-
vant.

To get more intuition, we first simulate one dataset under AR(0.5),
w1 = pe = 0.5, P3, and 9¥,. Beyond the proposed approach, we also con-
sider its most direct competitor, FMR-MCP. The identification results are
presented in Figure S1 (Supplementary Materials). For this specific dataset,
both approaches correctly identify the important variables, with FMR-MCP
having more false positives. The molecular-imaging variable pairs identified
using the proposed approach have weaker correlations (fewer connections),
suggesting its effectiveness in promoting non-overlapping information.

To evaluate the identification performance, we adopt the true and false
positive rates computed for the molecular (M:TPR and M:FPR) and imag-

ing variables (I:TPR and :FPR) separately. The estimation performance is
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evaluated using the root sum of squared errors (RSSE), defined as ||&—a"||
and || B— 3°|| for molecular and imaging variables, respectively, where (&, B)
and (@, 3%) are the estimated and true values of (a, 3), respectively. Note
that, with the decomposition strategy, DC-SVD cannot generate the esti-
mated values of & and B For the proposed approach, FMR-MCP, and
Kmeans-MCP, we also use classification accuracy (Accuracy) to evaluate
the performance of the heterogeneity analysis. Moreover, an independent
set with 100 subjects is generated, and the prediction median squared error
(PMSE) is computed.

For each scenario, 500 replicates are simulated, and the medians and
median absolute deviations (MADs) of the evaluation measures are summa-
rized. The results for the scenarios with AR(0.5), p3 = o = 0.5, and 9, and
15 are summarized in Tables 1 and 2. The rest of the results are provided in
the Supplementary Materials. Across all simulation scenarios, the proposed
approach has favorable performance. For example, in Table 1, under the
scenario with correlation AR(0.5), balanced heterogeneity design, P1, and
Y1, the proposed approach identifies the majority of true positives and only
a few false positives with (M:TPR, M:FPR, I.TPR, I.FPR)=(1.00, 0.02,
1.00, 0.03), compared to (0.70, 0.02, 0.70, 0.04) for FMR-MCP, (0.15, 0.05,

0.05, 0.03) for Kmeans-MCP, (0.30,0.02, 0.10, 0.02) for CoRe, (0.40, 0.02,
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Table 1: Simulation results under the scenarios with AR(0.5), p1 = pus =
0.5, and overlapping pattern 1¥; with 20 blocks. In each cell, median (MAD)
based on 500 replicates.

Method Accuracy M:TPR M:FPR M:RSSE LTPR LFPR LRSSE  PMSE
Pl
proposed 0.95(0.0) 1.00(0.0) 0.02(0.0) 0.63(0.2) 1.00(0.0) 0.03(0.0) 0.48(0.2) 1.82(1.2)
FMR-MCP  0.89(0.1) 0.70(0.4) 0.02(0.0) 2.03(2.6) 0.70(0.4) 0.04(0.0) 1.80(2.3) 7.84(10.7)
Kmeans-MCP 0. 52(0 0) 0.15(0.1) 0.05(0.0) 9.14(0.5) 0.05(0.1) 0.03(0.0) 5.48(0.7) 10.38(3.0)
CoRe 0.30(0.1) 0.02(0.0) 3.80(0.0) 0.10(0.1) 0.02(0.0) 3.00(0.0) 10.75(2.2)
DC-SVD — 040(0.1) 0.02(0.0) - 0.20(0.1) 0.01(0.0) -  12.06(3.7)
MCP-MI — 0.10(0.1) 0.05(0.0) 6.54(0.5) 0.10(0.1) 0.03(0.0) 4.10(0.5) 19.94(5.8)
MCP-M — 0.30(0.1) 0.14(0.0) 12.68(1.0) - —  42.00(9.8)
MCP-1 - - - — 0.00(0.0) 0.00(0.0) 3.00(0.0) 10.50(2.4)
P2
proposed 0.94(0.0) 1.00(0.0) 0.02(0.0) 0.67(0.3) 1.00(0.0) 0.03(0.0) 0.49(0.2) 1.57(1.1)
FMR-MCP  0.91(0.1) 0.80(0.3) 0.02(0.0) 1.65(1.9) 0.85(0.2) 0.04(0.0) 1.36(1.6) 4.55(5.7)
Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.04(0.0) 8.48(0.6) 0.10(0.1) 0.03(0.0) 5.15(0.7) 8.99(2.4)
CoRe — 0.28(0.1) 0.02(0.0) 3.64(0.1) 0.15(0.1) 0.02(0.0) 3.00(0.0) 10.67(2.3)
DC-SVD — 035(0.1) 0.02(00.0) - 0.15(0.1) 0.02(0.0) -  11.40(3.2)
MCP-MI — 0.15(0.1) 0.05(0.0) 6.34(0.3) 0.10(0.1) 0.03(0.0) 4.00(0.4) 18.15(3.9)
MCP-M — 0.25(0.1) 0.12(0.0) 11.97(0.8) - - —  40.61(9.8)
MCP-1 - \ = — 0.05(0.1) 0.00(0.0) 2.86(0.1) 10.67(2.3)
P3
proposed 0.88(0.1) 0.75(0.2) 0.02(0.0) 1.92(1.0) 0.70(0.3) 0.04(0.0) 1.59(0.9) 4.83(3.6)
FMR-MCP  0.69(0.2) 0.40(0.2) 0.04(0.0) 4.15(3.5) 0.25(0.2) 0.05(0.0) 2.96(1.6) 12.34(10.6)
Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.04(0.0) 8.52(0.6) 0.10(0.1) 0.03(0.0) 5.11(0.5) 8.84(2.6)
CoRe — 0.50(0.1) 0.01(0.0) 3.73(0.0) 0.20(0.1) 0.02(0.0) 3.00(0.0) 7.97(2.2)
DC-SVD — 050(0.1) 0.02(0.0) - 0.30(0.1) 0.01(0.0) - 9.25(3.0)
MCP-MI — 0.20(0.1) 0.04(0.0) 6.29(0.5) 0.10(0.1) 0.02(0.0) 4.01(0.4) 16.32(3.2)
MCP-M — 0.30(0.1) 0.13(0.0) 11.57(0.9) - 33.72(8.2)

MCP-I - - - — 0.10(0.1) 0.00(0.0) 3.00(0.1) 7.83(2.2)
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Table 2: Simulation results under the scenarios with AR(0.5), p1 = pe =
0.5, and overlapping pattern 9, with 20 blocks. In each cell, median (MAD)

based on 500 replicates.

Method Accuracy M:TPR M:FPR M:RSSE LTPR LFPR LRSSE  PMSE
P1
proposed 0.95(0.0) 1.00(0.0) 0.01(0.0) 0.66(0.3) 1.00(0.0) 0.04(0.0) 0.50(0.3) 1.80(1.5)
FMR-MCP  0.93(0.1) 0.90(0.1) 0.02(0.0) 1.06(1.1) 0.90(0.1) 0.04(0.0) 1.03(1.1) 3.14(3.5)
Kmeans-MCP 0. 52(0 0) 0.10(0.1) 0.05(0.0) 9.29(0.6) 0.05(0.1) 0.03(0.0) 5.43(0.6) 10.41(2.8)
CoRe 0.30(0.1) 0.02(0.0) 3.80(0.0) 0.10(0.1) 0.02(0.0) 3.00(0.0) 10.75(2.4)
DC-SVD — 040(0.1) 0.02(0.0) -~  0.20(0.1) 0.02(0.0) - 12.68(4.7)
MCP-MI — 0.10(0.0) 0.04(0.0) 6.43(0.5) 0.10(0.0) 0.03(0.0) 4.13(0.5) 20.48(6.2)
MCP-M — 0.30(0.1) 0.14(0.0) 12.68(1.0) - - » 42.00(9.8)
MCP-1 - - - — 0.40(0.3) 0.36(0.1) 17.83(6.1) 58.34(60.6)
P2
proposed 0.94(0.0) 1.00(0.0) 0.01(0.0) 0.62(0.2) 1.00(0.0) 0.04(0.0) 0.49(0.2) 1.76(1.3)
FMR-MCP  0.92(0.1) 0.85(0.2) 0.02(0.0) 1.36(1.6) 0.80(0.3) 0.04(0.0) 1.26(1.4) 2.80(3.4)
Kmeans-MCP 0.52(0.0) 0.10(0.1) 0.04(0.0) 8.53(0.5) 0.10(0.1) 0.03(0.0) 5.33(0.6) 8.78(2.8)
CoRe — 0.30(0.1) 0.02(0.0) 3.65(0.1) 0.15(0.1) 0.02(0.0) 3.00(0.0) 10.52(2.5)
DC-SVD — 0.35(0.1) 0.02(000) -~  0.2000.1) 0.02(00.0) - 11.55(3.3)
MCP-MI — 0.15(0.1) 0.04(0.0) 6.43(0.5) 0.10(0.1) 0.03(0.0) 4.16(0.4) 19.00(5.5)
MCP-M — 0.25(0.1) 0.12(0.0) 11.97(0.8) - - 40.61(9.8)
MCP-1 - \ = —~ 0.10(0.1) 0.01(0.0) 3.05(0.4) 13.78(9.1)
P3
proposed 0.85(0.1) 0.70(0.3) 0.02(0.0) 2.18(1.4) 0.65(0.4) 0.05(0.0) 1.65(1.0) 5.70(4.5)
FMR-MCP  0.68(0.2) 0.40(0.3) 0.04(0.0) 4.85(3.5) 0.25(0.3) 0.06(0.0) 3.05(1.6) 11.56(10.8)
Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.04(0.0) 8.57(0.6) 0.10(0.1) 0.03(0.0) 4.99(0.6) 8.49(2.3)
CoRe — 0.50(0.1) 0.02(0.0) 3.73(0.0) 0.20(0.1) 0.02(0.0) 3.00(0.0) 7.95(2.3)
DC-SVD — 050(0.1) 0.02(000) -~  0.30(0.1) 0.01(0.0) - 9.23(3.2)
MCP-MI — 0.20(0.1) 0.04(0.0) 6.13(0.4) 0.10(0.1) 0.03(0.0) 4.05(0.5) 17.15(4.3)
MCP-M — 0.30(0.1) 0.13(0.0) 11.57(0.9) - - 33.72(8.2)
MCP-1 - - - —~ 0.40(0.3) 0.35(0.1) 16.63(5.6) 49.28(54.1)
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0.20, 0.01) for DC-SVD, (0.10, 0.05, 0.10, 0.03) for MCP-MI, (0.30, 0.14,
—, —) for MCP-M, and (-, —, 0.00, 0.00) for MCP-I. It also performs better
in terms of estimation with, for example, (M:RSSE, :RSSE)=(0.67, 0.49)
under the scenario with P2 and 1, in Table 1, compared to (1.65, 1.36),
(8.48, 5.15), (3.64, 3.00), (), (6.34, 4.00), (11.97,-), and (-, 2.86) for the
alternatives. More satisfactory prediction accuracy is observed. Take the
scenario with P2 and 1, in Table 2 as an example. The PMSE values are
1.76 (proposed), 2.81 (FMR-MCP), 8.78 (Kmeans-MCP), 10.52 (CoRe),
11.55 (DC-SVD), 19.00 (MCP-MI), 40.61 (MCP-M), and 13.78 (MCP-I).
The proposed approach also outperforms FMR-MCP and Kmeans-MCP in
the heterogeneity analysis. For example, under the scenario with P3 and
¥, in Table 2, the Accuracy values are 0.85 (proposed), 0.68 (FMR-MCP),
and 0.52 (Kmeans-MCP).

Overall, the proposed approach exhibits better performance with a
moderate within correlation AR(0.5). Compared to settings P1 and P2,
which have a higher level of heterogeneity, under P3, the performance of
the proposed approach and FMR-MCP decays. The two homogeneity-based
alternatives CoRe and DC-SVD, which accommodate overlapping informa-
tion, have improved performance. However, the proposed approach remains

superior. The superiority of the proposed approach over FMR-MCP and
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Kmeans-MCP provides direct support for the Ly-based penalty for accom-
modating overlapping information. The improvement over CoRe and DC-
SVD suggests the necessity of accounting for heterogeneity. The proposed
approach performs much better than MCP-MI, MCP-M, and MCP-I, re-
establishing the value of data integration.

We conduct additional simulations under setting AR(0.5) for within-
block correlation, and settings 1, and 19, for the overlapping pattern. First,
we consider two additional settings (P4 and P5 in Table 5 of Appendix B)
of important variables. Specifically, P4 has different important variables for
the two subgroups, which may closely mimic the real data example (Tables
3 and 4). P5 is a more homogeneous case, where more than half of the
important variables have the same effects for the two subgroups, and the
remaining effects have different magnitudes, but the same directions. Sec-
ond, a more imbalanced heterogeneity design with p; = 0.1 and ps = 0.9
is considered. Summary results are presented in Tables S13-S21 of the
Supplementary Materials, where for the highly imbalanced heterogeneity
scenarios, we also provide the sensitivity and specificity results of the het-
erogeneity analysis and consider the two subgroups separately. Patterns
similar to those described above are observed. Specifically, under the most

homogeneous setting P5 (Table S14 of the Supplementary Materials), the
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proposed approach behaves slightly worse than DC-SVD, as expected, but
still better than the other alternatives. Under the highly imbalanced setting
with p; = 0.1 and ps = 0.9, the proposed approach still performs well in
identifying the two subgroups, with high accuracy. In addition, it has satis-
factory identification and estimation performance for the second subgroup,
but worse performance for the first subgroup, which has a very limited sam-
ple size, compared to the homogeneity-based alternatives. Because the two
subgroups share the same important variables under settings P1, P3, and
P5, it is not surprising that the homogeneity-based alternatives behave well
by considering the two subgroups together.

A closer look at the number of mixture components In the above simula-

tions, we assume that K = 2 is known, as in published studies such as
Khalili and Chen (2007), Hui et al. (2015), and Liu et al. (2020). We pro-
pose adopting the BIC when the value of K needs to be estimated. Here, we
additionally take the scenarios with settings AR(0.5) and 19, as an exam-
ple, and examine the performance of the BIC for selecting K. Specifically,
with candidate K = 1,2,3,4,5, we simulate 500 replicates, compute the
frequency that a particular value is selected, and report the results in Ta-
ble S22 (Supplementary Materials). In general, the BIC has satisfactory

performance. The setting P3 has a higher degree of homogeneity com-
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pared to P1 and P2, making it more difficult to identify the true value of
K = 2. We report the summary identification and estimation results of
the proposed approach with BIC-selected K in Table S23 (Supplementary
Materials), where the true and estimated subgroups are matched by min-
imizing the RSSE when K is overestimated (Khalili and Lin, 2013). The
observed patterns are similar to those in Table 1 and Table S3 (Supplemen-
tary Materials), suggesting that estimating K does not significantly affect
the performance of the proposed approach.

Computer time We examine the computer time under the above simulation

settings and n = 300, p = 1000, and ¢ = 500. With fixed tuning parameters
and one initialization, the average computer time of the proposed analysis
is 17.09 seconds, using a laptop with standard configurations, compared to
16.58, 1.05, 0.18, 5.69, 0.81, 0.73, and 0.71 seconds for FMR-MCP, Kmeans-
MCP, CoRe, DC-SVD, MCP-MI, MCP-M, and MCP-I, respectively. With
more complex analysis, the proposed approach has a higher computational

cost, but is still affordable.

4. Data analysis

TCGA is a hallmark genomics program organized by the National Cancer

Institute (NCI) and National Human Genome Research Institute (NHGRI),
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and has significantly advanced cancer research in multiple aspects. It
has published high-quality outcome/phenotype, clinical, molecular, and
histopathological imaging data. There have been both unsupervised (Li et
al., 2018) and supervised (Ahmad and Frohlich, 2017) heterogeneity studies
conducted using TCGA data.

In our analysis, we combine data on lung adenocarcinoma (LUAD)
and lung squamous cell (LUSC), two major subtypes of non-small-cell lung
cancer (NSCLC), to increase the sample size. We acknowledge their dif-
ferences. However, as the proposed analysis is designed to accommodate
heterogeneity, this does not pose a problem. The response variable is the
reference value for the pre-bronchodilator forced expiratory volume in one
second in percent (FEV1), which is an important biomarker for lung ca-
pacity and tightly associated with prognosis and other outcomes. For the
molecular variables, we analyze mRNA gene expressions downloaded from
cBioPortal. For the imaging variables, we adopt a recently developed data
extraction and processing pipeline (Zhong et al., 2019). Briefly, we first
download the diagnostic slides using the GDC Data Transfer Tool from
the TCGA website, and then extract high-dimensional imaging variables
using CellProfiler. These imaging features represent objective attributes of

histopathological images, including the area and perimeter of the nucleus
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and cytoplasm, mean and standard deviation of these measures, and other
general image attributes. After subject matching, a total of 370 subjects
with 20,440 gene expression measurements and 221 imaging features are
available. Brief information is provided in Figure S2 (Supplementary Ma-
terials). Our preliminary exploration suggests that if the dimensions of the
two types of data differ significantly, performance may be inferior. In addi-
tion, the number of lung capacity-related genes is not expected to be large.
As such, we conduct a marginal screening, and the top 500 genes with the
smallest p-values computed from a marginal linear regression are selected
for downstream analysis.

In Figure S3 (Supplementary Materials), we show the histogram and
estimated density of FEV1. We observe two modes, which may reasonably
suggest heterogeneity with two subgroups. FEV1 has also been examined
in the literature (Liu et al., 2020), which suggests continuous and close-to-
normal distributions. As such, we model it using a mixture of two normal
distributions. Note that such exploratory analysis based on a histogram
has previously been conducted in the literature (Khalili and Chen, 2007).
To be cautious, we have also conducted analyses with 3, 4, and 5 mixture
components. However, the results are not as sensible, with the extra compo-

nents having very small numbers of important variables and/or small mix-
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Table 3: Data analysis using the proposed approach: identified genes and

estimates.

Gene Gene a1 as Gene a;  ag Gene a1 Qg
EIF4A3 ECHDC2 -0.19 RFC5 0.03 NFU1 -0.16
DHX36 N4BP1 0.12 POLR3C 0.37 FAM160A2 -0.26
KIAA0141 FAM210A -0.04 PSMD12 -0.08 PCDHB4 0.17
WDR43 SST 0.15 RPL23AP53 0.35 CDg81 0.16
CNPPD1 ZNF596 0.12 PSME4 0.01 MAKI16 -0.34
METTL5 RNF115 -0.16 NCBP1 0.20 GCSH 0.08
DCUNI1D1 -0.10 FBXO028 -0.49 LRRC31 0.13 GCFC2 -0.07
DBR1 GPN1 0.06 RHBDF1 0.08 L2HGDH -0.11
BID2 ADSL 0.07 TCTEX1D2 -0.09 DTX2 0.38
DNAJB4 IGIP -0.22 RAD51 0.32 RGL2 0.27
RPSAP58 MEGF6 0.06 BIN3 -0.07 OR6C6 -0.15
CNKSR1 1L22RA2 0.10 RSL24D1 -0.02 KIAA1109 -0.20
CCT5 TCF25 -0.15 DYNCI1I2 -0.25 TMEM50B 0.10
IRX2 METTL21C 0.18 EPT1 0.29 TRAPPCI10 -0.10
CTNNAL1 CENPO 0.24 SCNN1D 0.03 CSNK2A1 0.01
TRMT61B C10RF112 -0.03 DEFB4A 0.16 PDLIM2 -0.02
MRPL3 CCDC92 0.03 ZIC1 -0.04 ZC3H6 0.01
ASTN1 UGT1A7 -0.09 MAP3K6 -0.14 0.12 KIAA1715 -0.06
CDI1E EML3 -0.05 ZNF487 0.23 RPA3 -0.12
TOMMS5 HMGXB4 -0.07 PRDM9 -0.17 KCNK18  -0.28
FAMS86JP RNF168 0.10 CDC73 0.11 CAMTA2 0.05
LDLRAD2 RNPEPL1 -0.08 PAK1 -0.01 YPEL3 -0.19
TARS POLR2D -0.04 GPATCH3 0.08 SNX5 -0.10
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Table 4: Data analysis using the proposed approach: identified imaging
features and estimates.

Group  Imaging Feature Name Abbreviation [ 5o
Geometry AreaShape_Center_X ASCX -0.022
Geometry AreaShape_EulerNumber ASEN -0.003
Geometry AreaShape_Zernike_5_3 ASZ53 -0.212
Geometry AreaShape_Zernike_5_5 ASZ55  -0.012
Geometry AreaShape_Zernike_7_1 AS7Z71  -0.202
Geometry AreaShape_Zernike_7_3 ASZ73 0.209
Geometry AreaShape_Zernike_8_0 ASZ780  -0.001
Holistic  Count_Identifyeosinprimarycytoplasm CIPC 0.113
Texture Granularity_10_ImageAfterMath G10M 0.220
Texture Granularity_11_ImageAfterMath.1 G11M1  -0.200
Texture Granularity_12_ImageAfterMath.1 G12M1  -0.168
Texture Granularity_13_ImageAfterMath G13M 0.005
Texture Granularity_13_ImageAfterMath.1 G13M1  0.111
Texture Granularity_9_ImageAfterMath GIM 0.005
Texture Granularity_9_ImageAfterMath.1 GIM1 0.041
Geometry Location_Center_Y.1 LCY1 -0.066
Texture Texture_Correlation_ImageA fterMath_3_00 TCM300 0.243
Texture Texture_Correlation ImageAfterMath_3_01 TCM301 -0.329
Texture Texture_Correlation_ImageAfterMath_3_02 TCM302 0.066
Texture Texture_DifferenceEntropy_maskosingray_3_02 TDM302 0.280
Texture Texture_DifferenceVariance_maskosingray_3_02 TDVM302 -0.182
Texture Texture Entropy_ImageAfterMath_3_03 TEM303 -0.015
Holistic  Threshold_Weighted Variance_Identifyeosinprimarycytoplasm  TWPC -0.132
Holistic ~ Threshold_Weighted Variance_identifyhemaprimarynuclei TWPN 0.002
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ture probabilities. With two mixture components, the proposed approach
identifies 92 genes and 24 imaging variables, and the detailed information
is provided in Tables 3 and 4. Almost all of the important variables con-
tribute to the response in only one subgroup, except for genes METTL5 and
MAP3KG6, which have effects in both subgroups, but with different signs.
More information on the identified gene expressions and imaging features is
provided graphically in Figure S4 (Supplementary Materials). For the two
subgroups separately, there are only 49 and 43, respectively, gene-imaging
variable pairs with absolute correlations larger than 0.1, which again shows
the proposed approach’s effectiveness in identifying non-overlapping infor-
mation.

A literature search suggests that many of the identified genes show
strong evidence of being associated with lung capacity and cancer. More
details are provided in the Supplementary Materials. We also examine the
24 identified imaging features more closely. These features measure tis-
sue area shape, texture, nuclear, and cytoplasm parameters. In particular,
13 are texture related. Similar findings have been made in previous stud-
ies (Luo et al., 2017). However, our literature review suggests that the
biological implications of high-dimensional imaging features are not well

understood. As such, interpretation is not pursued further.
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Analysis is also conducted using the alternatives. Summary compari-
son results are presented in Table S24 (Supplementary Materials), includ-
ing the numbers of genes and imaging variables identified by the differ-
ent approaches, and their overlaps and RV coefficients. The RV coeffi-
cient measures the similarity between two data matrices, with a larger
value indicating higher similarity. The various approaches identify dif-
ferent sets of features with moderate overlapping, as suggested by the
RV coefficients. To provide additional support to the analysis, we eval-
uate the prediction performance and selection stability of the proposed ap-
proach and the alternatives. Specifically, we conduct 100 random splits
to generate training and testing data. Estimation is conducted using the
training data, prediction is made on the testing data, and the median
values of the PMSE and Pearson’s correlation (COR, between the esti-
mated and observed values of FEV1) are computed. The proposed ap-
proach has (PMSE,COR)=(0.32,0.49), compared to (0.34,0.48) for FMR-
MCP, (0.55,0.13) for Kmeans-MCP, (0.33,0.15) for CoRe, (0.32,0.19) for
DC-SVD, (1.02,0.15) for MCP-MI, (0.46,0.12) for MCP-M, and (0.34,0.15)
for MCP-I. When using the observed occurrence index (OOI), which is the
probability of being identified in multiple splits, to evaluate stability, the

proposed approach has a mean OOI value for the identified genes and imag-
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ing features of 0.265, compared to 0.254, 0.181, 0.152, 0.132, 0.104, 0.098,
and 0.200 for the alternatives. The improved prediction and stability per-

formance supports the proposed analysis to a certain extent.

5. Discussion

Heterogeneity analysis is a “classic”, yet still highly important topic in can-
cer research. In this article, we have advanced cancer heterogeneity analysis
by integrating molecular and histopathological imaging features. We have
adopted penalization for regularized estimation and selection, and, equally
importantly, the promotion of non-overlapping information. The proposed
analysis and approach are biologically well motivated and intuitive. Theo-
retical investigation, simulation, and data analysis have demonstrated sat-
isfactory performance. Overall, this study can enrich the family of cancer
analytics and suggest a new data integration direction for development.
Furthermore, the proposed analysis can be applied to a wide variety of
data types, models, and molecular and other measurements.

The proposed approach can be extended further to accommodate more
than two types of covariates. This will require revising the last penalty term
to include all pairs (of covariate types), and the extension of the other steps

will be mostly straightforward. In computation, we have adopted multiple
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random initializations, and chosen the final estimator as the one with the
smallest BIC. Other initialization techniques can also be adopted. In par-
ticular, our brief exploration has suggested that the Kmeans initializations
lead to similar results. This is a “classic” problem, and we have chosen
not to reiterate the literature. The adopted FMR technique can reveal
important differences across subgroups in modeling a response. However,
as has been noted in the literature, such differences may or may not be
associated with disease subtypes or other clinical characteristics. In our
data analysis, although FEV1 is an important biomarker for prognosis and
other outcomes, it is still unclear what other clinical significance the iden-
tified heterogeneity and models have. Being beyond our scope, this aspect
is not pursued further. It will also be of interest to explore other and more
complex measures of overlapping information. For methodological develop-
ment, we have focused on molecular and imaging variables. It will be of
interest to expand the scope of the analysis to include clinical /demographic

and other variables.

Supplementary Materials

The Supplementary Materials include additional simulation and data anal-

ysis results referenced in Sections 2, 3, and 4.
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Proof of Theorem 1
Let 6” =V 5/n and w = (g}(xlat/le:u/l‘Al‘Xp"' ’u,K\Alel’vll\Bl\xl"” ’UIK\BK\XI)/' To

prove Theorem 1, it suffices to show that under Conditions (C1)-(C4), Qn(8c) < Qn(62) on
the boundary of set {c : ||8c — 62]| < Cd,}, where C is a sufficiently large positive constant.
It is equivalent to show that Q. (02 + d,w) — Q. (82) is strictly negative everywhere on the
boundary {w : ||w|| = C}.

Let Ln(0c) = Y7, li(0c) with 1;(6c) = log f(yi; Xi., Zi.,0c). Then

Dun(w) = Qn(6C +6nw) — Qn(62)

L (62 + §,w) — Ln(62)

K ((‘(]i'+5n“kl)2 (ﬁo +5nvm)2
nAZZZZcﬂ<1eJT 176*“%

k=1jcAy leBy

+n>\2§: Z ch'z (1_6(&,%) ) <1—e(ﬁ%l) )

k=1j€Ay LEBy,

L, (02 + 6nw) — L, (60) + IV.
We have

_ / 3Ln(9c) 1 2 7 82Ln(9C)
- & ( 06¢ eg> g ( 920,

w]-wlwm

90> Z ae aalae
C

=I1+1I+111,
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where O¢ lies on the line segment connecting 82 + 6, w and 2. With Condition (C1), we have

1 0Ln(6c) _ Z 9l;(0¢)
\/ﬁ 69() eg o 69() 98
9l;(0¢) GZ(OC)} <
= E — N(0,%
( z C96c 00 [ 08¢ ||q0 ©,5)
Cc c
Thus 2£z(%) 0= Op(yn) = Op(y/ns). Then,
1| < Op(ndy)|fwl|.
For 11,
o0 1 o [ 18°La(6c) 0
II = 2n6nw 1(6c)w + 2minfw <n 5200 " +1(6c) | w

Following Lemma 8 in Fan and Peng (2004), with Conditions (C1) and (C2), we have

10%La(6c)

0
n 820C + I(GC)

= 0p(1/5).

0
BC

Therefore,

1
Sndul[wll* x 0p(1).

II= —lnéiw’l(eg)w >

2

For II1, by Condition (C3) and the Cauchy-Schwartz inequality, we have

=
3

3 0L, (0¢c) 53 0 log f(yi; Xi., Zi.,0¢)
| = = - Wy, | = 7n s Xio, Zi, -
1| 6| 2 o 00,0000, ‘gc o 2 Z 90,00,00,, S

j,l,me j,l,mecC i=1 Oc

1/2
SRS
6 Z[ > MW)] [[w][* = Op(5*60) x 18" x ||w][*.

IN

=1 [j,l,meC
Since s < n, we have

I1T = op(nd.)||w||?.
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Moreover,

X (o +onur;)? (o0,)?
[IV] = n)s Z Z Z {le [(e T —e 7 >

k=1j€Ay l€By

C(Butonen)”(8)° _(eRy o) (B tenvn)® (oR) 4 (800)”
+ e T —e T —le T —e T .

Let co = max{|corr(X;,Z)|,j € Ak,l € B,k =1,--- , K} with corr(Xj;, Z;) being the correla-

tion between X; and Z;. If co < c¢7°°™", with Condition (C4), we have

P P P P
P max |lecor7‘| < Feorr > 11— P max |leco'r'r' >c corr
JEA,LEBy, JEA,EBy,
k=1, K k=1, K

K
1-— Z Z Z P (|cor7"(Xj7 Z) + cﬁcow —corr(X;,Z)| > CPCOM)

>
k=1jE€Ay, lEB,
K
> 1- Z Z Z p (|cﬁcwr — corr(X;, Zy)| > P — co)
k=1 €Ay, l€By,
Pcorr 2
> 1-2s%exp (—u) 1.
2/{1

gl

Thus, if co < ¢7°°™", with probability approaching 1, maxje.a, ies,, |ch™"| < ™. That is,
=1, K

Pcorr

IV = 0. Next, consider the scenario with cop > ¢ . With a first order Taylor’s expansion,

(o Honug)® (o8’ 9 (an)?
e T —e T =——e T Oauibnuij, (5.4)
T
and
(ﬂ21+5n'”kl)2 (521)2 2 (Bkl)2 .
e T —e T =——¢ 7 PBudnvu. (5.5)
.
Denote ngjl = (042]-,521), and i = (urj,vi). Then we have
_(D‘%j+5"“kj)2+(321+6"”kl)2 _(“2;‘)2‘*(321)2 A _("2jz+5ﬂ/‘/’kjl)l("2;1+5n¢kjl) _("gjl)/("gjl)
e T — e T =e T —e T

(CDNCD)
= *%e*%&m (k31) ks, (>0
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~ ~ / ~ AN
where ¢ = ((,1)/ () (G1ay) (G ) (,31,51) o (3K,BK) ) lies on the line seg-
ment connecting 82+, w and 82. Denote by = min{{|a2j| ,J € Ak} , {|[3,21| ,le Bk} k=1, ,K}.
First consider (5.4). With 6, = v/s/n, we have ax; > %. Then with Condition (C4), we have

& b . —z . .
% > 52 > 1. Since e~ "z is monotonically decreasing when z > 1,

B N 7 B O %) (19 o I M
e T —e T = —e 7 |ak[0nluk| = e T = 0nukl
T T |ak3|
2
_b% bo _%
< BBV ) = YO .
T

b2
Similar conclusions can be drawn for (5.5) and (5.6). With \/’ﬁ)\gboei%/T = 0(1) in Condition

(C4), we have

+5num) (=)’
vl < %ZZZ —e 7
k=1jEAy IEB,
N 7(521‘*'5"%1)2 7(521)2 R 7(O‘%j+5”“kj)2+(ﬁgl+5nvkl)2 (O‘gj)2+(52l)2}
e T — € T e " — e T
fb 8
< e 6 Vslwl|
2y _ "
= 2y Y2022 ] = oy (a2 o]l

It is observed that IT dominates I, 111, and IV, and is negative, since I(6¢) is positive definite

at Oc = 2. This completes the proof.
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Proof of Theorem 2

Let 0 have Oc = 6, a strict local maximizer of Q,(6¢), and O¢cc = 0. First, consider [TWTS
Following Theorem 1 in Fan and Lv (2011), with Condition (C5) and Theorem 1, it suffices to

check condition (8) in Fan and Lv (2011). Let

2

o2,
where po(a, 8) = X250 X5y Xl et <1 - e*J> (1 B 677).

53 ot
For j € Aj, 2e2lef) _ L 2eh (1 *6_%> e T ag;. As GQp,ac =0, 78”;(0"3”,; =0

day; =1r a;

for j € Aj. Therefore, \an w = 0. Then, we have

(o7 c
K AZ

0

A\ . OL.(0)
[h1llee = (nA1) 8| ey |l
For j € A°, we have
OL.(0)|  OL.(6) S o\ 02L,.(0) oY L@ | /s o
aak]‘ 6 - Bakj 90 \y (06 9@) aak]‘agc 0 i (ec 0c) 6akja2ec i <0C ec) 7(57)

where 6 lies on the line segment connecting 6° and 6.

For the first term of (5.7), consider the event

0L, (0)

Bakj

< cnﬁ},

01 = < max
JEAS
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with ¢, = n®(log(n))*?,a € (0, 1). With Condition (C3) and Bernstein’s inequality, we have

_ 9L ()
P) = 1 P{]rrel%\)é BTMBO >§nx/ﬁ}
1 0L.(0) }
> 1- P{ > Cn
jeZAi Vi e g
2
> 1-_9(p— _bn
> 1-2(p ak)exp< 2@)
C2
> 1-—2pexp (——") — 1,
2&2

as log(p) = O(n®) in Condition (C6). Thus, with probability approaching 1,

OL.(0)
max | —(/———
801kj

JEAS

= 0(n"**%/logn).

60

For the second term of (5.7), by Condition (C3) and Cauchy-Schwartz inequality,

- " 0%L,(0) 0% log f(yi; Xi., Z:., 0)
0 _ 00 n (X] 19 Loy _
jeks ( ¢ C) Dou; 08¢ | o jexy & ZEZC Due,; 00, (6 = 07)
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For the third term of (5.7), by Condition (C3) and Cauchy-Schwartz inequality,

3 " 330, (0) .
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1
N 9% log f(yi; X, Zi, 0)| \2\ 114 >
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Then, Condition (C5) gives ||h1||co < 0p(1). Next, consider ﬁkysz. Similar to above, let
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For | € B, %Z’B) = ;7:1 %Cj[ (1 —ef> e Bu. As Brps; =0, %’Z"B)b = 0 for

I € Bj,. Therefore, A\an W = 0. Then, we have
Bi e

OL.(6)
0Bk

lhalloe = (nA1) ™" max
leBg

6

For | € B¢, we have
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0Bk
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()
0Br100c

A e ()
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+ (6c o) 0511026,

(o)
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o 60

where 0 lies on the line segment connecting 6° and 6. For the first term of (5.8), consider the

event

OL.(0)
9B

Qo = < max <(avngp,
leBE 60

with ¢, = n®(log(n))*/2. Similar to the analysis of Q1, we have
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For the second term of (5.8), by Condition (C3) and Cauchy-Schwartz inequality,

n

A g0) 9°Ln(6) 9*log f(yi; Xi, Zi,0) 5 0
. (0c - 08) 5550, o Ry 2 J; 05100 (0, = 65)
1
i 8210gf(y1,Xl,Zl,9) 2\ 2 N 0
< —
B {2%%(1':1 (]ze;( 9Br100; 16c =6l
n 1A
< 3 (5O () * ||bc - 68| = Op(svm).
i=1

For the third term of (5.8), by Condition (C3) and Cauchy-Schwartz inequality,

5 " 9%L,(0) .
?61%%( (06 - 03) m 5 (96 — 02)
1
" 8310gf(y“Xz,Z1,0) 2\ 2 ~ 0 2
< ?el%%{ p (j,%;c ( 0110000, é) Oc — OCH
< (P00 6 — 68| = op(svi.

Thus, ||hz2||sc < 0p(1). This completes the proof.
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Appendix B

Table 5: Simulation settings:

regression coefficients of important variables.

Setting po

Regression coefficient
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