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Abstract: This study has been motivated by cancer research, in which heterogene-

ity analysis plays an important role and can be roughly classified as unsupervised

or supervised. In supervised heterogeneity analysis, the finite mixture of regres-

sion (FMR) technique is used extensively, under which the covariates affect the

response differently in subgroups. High-dimensional molecular and, very recently,

histopathological imaging features have been analyzed separately and shown to

be effective for heterogeneity analysis. For simpler analysis, they have been

shown to contain overlapping, but also independent information. In this article,

our goal is to conduct the first and more effective FMR-based cancer hetero-

geneity analysis by integrating high-dimensional molecular and histopathological

imaging features. A penalization approach is developed to regularize estimation,

select relevant variables, and, equally importantly, promote the identification of
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independent information. Consistency properties are rigorously established. An

effective computational algorithm is developed. A simulation and an analysis of

The Cancer Genome Atlas (TCGA) lung cancer data demonstrate the practical

effectiveness of the proposed approach. Overall, this study provides a practical

and useful new way of conducting supervised cancer heterogeneity analysis.

Key words and phrases: Cancer heterogeneity; Data integration; FMR; Molecular

and imaging features.

1. Introduction

Heterogeneity is a hallmark of cancer, and thus has gainered extensive

research (Turajlic et al., 2019). Heterogeneity analysis can be roughly

classified as unsupervised or supervised. In unsupervised analysis, out-

comes/phenotypes are not involved, and clustering and other techniques

are adopted (Wiwie et al., 2015). Unsupervised analysis can be useful,

for example, for identifying new disease subtypes, but it is often diffi-

cult to associate clinical implications with findings. In contrast, super-

vised analysis directly addresses the heterogeneity associated with a clinical

outcome/phenotype, and often has more important practical implications

(Bair, 2013). In such analysis, it is postulated that covariates affect the

response differently in subject subgroups (Stadler et al., 2010; Hui et al.,

2015). This may manifest as different covariates being associated with the
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response and/or the same covariates having different magnitudes of effects.

Note that, here, subject subgroups are unknown a priori and need to be esti-

mated. This is different to the analysis that considers interactions between

known subject groups and biomarkers, which is sometimes also referred

to as “heterogeneity analysis” and is often conducted to study treatment

effects (Coppock et al., 2018).

In “classic” heterogeneity analysis, clinical/demographic/environmental

variables have been considered. In the past two decades, molecular data

have played an increasingly important role in cancer research, and, in par-

ticular, in supervised heterogeneity analysis (Ahmad and Fröhlich, 2017).

Another type of data, recently suggested as informative for modeling cancer

outcomes/phenotypes, comes from histopathological images. Such images

are generated in a biopsy, which is ordered for most suspected cases, and are

used extensively for definitive diagnosis and staging. They contain informa-

tion on a tumor’s “micro” properties and surrounding microenvironment.

They differ significantly from radiological images, which are generated by

CT, PET, and other techniques, and provide information on a tumor’s

“macro” properties, such as location, size, and density. Recent studies,

such as Luo et al. (2017), have analyzed high-dimensional histopathological

imaging features for modeling biomarkers, survival, and other outcomes.
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Furthermore, a handful of studies, such as Kothari et al. (2013) and Altho-

biti et al. (2018), conduct imaging-based heterogeneity analysis. However,

they often analyze low-dimensional imaging features and adopt relatively

simple techniques.

A tumor’s properties and microenvironment, as reflected in histopatho-

logical images, are affected but not fully regulated by molecular changes.

As such, molecular and imaging data contain overlapping and independent

information. This is supported by recent studies that have explicitly ana-

lyzed the relationship between the two types of data. For example, Yu et

al. (2017) use a random forest to correlate molecular data with histopatho-

logical imaging data, finding that these two types of data have overlap-

ping information, with some significant associations detected. Zhong et al.

(2019) adopt a hypothesis testing approach, showing that the two types

of data have independent information, when modeling cancer prognosis.

Under the homogeneity assumption, studies such as Sun et al. (2018) and

Mobadersany et al. (2018) show that integrating the two types of data leads

to biologically sensible models with improved estimation/prediction perfor-

mance. Complementing and advancing the existing literature, in this study,

we take the natural next step and conduct cancer heterogeneity analysis by

integrating high-dimensional molecular and imaging data.
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In supervised heterogeneity analysis, the finite mixture of regression

(FMR) technique has been adopted extensively because of its lucid inter-

pretations and satisfactory statistical and numerical properties (McLach-

lan and Peel, 2000). Here, the conditional distribution of the response y

given the covariates X is a mixture with multiple components, and the

relationship between y and X varies across such components. For ex-

ample, under the “classic” mixture of two normal distributions, y|X ∼

µN(Xα1, σ
2) + (1 − µ)N(Xα2, σ

2) with different coefficient vectors α1

and α2. Examples of FMR-based studies with low-dimensional covari-

ates include Chen et al. (2001) and Atienza et al. (2007), and those with

high-dimensional covariates include Khalili and Chen (2007) and Hui et

al. (2015). Note that these and other similar studies in the literature are

limited to a single type of covariate.

When there are two or more types of covariates from different sources

and with different properties, the simplest solution is to stack them to-

gether, after which variable selection or dimension reduction techniques

can be applied. Examples include the Lasso-based approach in Boulesteix

et al. (2017) and the elastic net and sparse principal component analysis

in Jiang et al. (2016). However, such a strategy fails to account for over-

lapping information, which can manifest statistically as correlation. Ap-

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0002



proaches such as collaborative regression (Gross and Tibshirani, 2015) and

canonical variate regression (Luo et al., 2016) can accommodate overlap-

ping information via canonical correlation analysis. As another example,

the assisted robust marker identification (ARMI) approach developed in

Chai et al. (2017) borrows overlapping information from one type of covari-

ate to assist more accurate identification on the other type(s) of covariates.

However, these approaches model the response using each type of covariate

separately, and cannot effectively accommodate independent information

contained in multiple types of covariates. In addition, they have not been

applied to heterogeneity analysis. There are approaches that decompose

data and use only non-overlapping information in modeling based on pe-

nalization (Zhu et al., 2016) and Bayesian (Wang et al., 2013) techniques.

However, the decomposed data do not have clear interpretations, and these

studies are also limited to the homogeneity case.

This study has been motivated by the critical importance of supervised

cancer heterogeneity analysis, the increase in the number of studies that

collect both molecular and histopathological imaging data, the overlapping

and independent information contained in such data, and a lack of studies

that integrate them for heterogeneity analysis. Our study complements and

advances the existing literature in multiple ways. In particular, we extend
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those works limited to a single type of covariate by effectively integrat-

ing molecular and histopathological imaging data. We also extend studies

limited to low-dimensional covariates (and thus limited information) by

accommodating high-dimensional and noisy covariates using a penalization

technique. Furthermore, we advance the collaborative regression and ARMI

by building models using both types of data (thus, using more information).

In addition, without data decomposition, the resulting models can be bi-

ologically more interpretable. We also rigorously show that the proposed

approach has satisfactory theoretical and numerical properties. Overall,

this study provides a new and practically useful way of modeling cancer

heterogeneity. Note that supervised heterogeneity analysis is not limited to

cancer, and data integration is not limited to molecular and imaging data.

As such, the proposed approach can enjoy broad applicability far beyond

that proposed here.

2. Methods

2.1 Integrated heterogeneity analysis

Assume n independent subjects. For the ith subject, denote yi as the

response of interest, and Xi· = (xi1, · · · , xip) and Zi· = (zi1, · · · , ziq) as the

p- and q-dimensional molecular and imaging measurements, respectively.
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2.1 Integrated heterogeneity analysis

The conditional density of yi given Xi· and Zi· is

f(yi;Xi·,Zi·,θ) =
K∑
k=1

µkg (yi;h(Xi·αk +Zi·βk), σk) . (2.1)

Here,K is the number of mixture components (subgroups), µ = (µ1, · · · , µK)
′

is the vector of mixing proportions satisfying µk > 0 and
∑K

k=1 µk = 1,

g(·) is the known density function, h(·) is the known link function, σ =

(σ1, · · · , σK)
′ is an unknown parameter vector usually related to the vari-

ance, αk = (αk1, · · · , αkp)
′ and βk = (βk1, · · · , βkq)

′ are the coefficient vec-

tors for the molecular and imaging measurements, respectively, and θ =

(µ′,σ′,α′,β′)′ = (µ′,σ′,α′
1, · · · ,α′

K ,β
′
1, · · · ,β′

K)
′ ≜ (θj)(2K+Kp+Kq)×1.

We propose the following penalized objective function:

QL0(θ) =
n∑

i=1

log

{
K∑
k=1

µkg (yi;h(Xi·αk +Zi·βk), σk)

}
− n

K∑
k=1

p∑
j=1

ρ(|αkj|; γ, λ1)

− n
K∑
k=1

q∑
l=1

ρ(|βkl|; γ, λ1)− nλ2

K∑
k=1

p∑
j=1

q∑
l=1

cjl1(αkj ̸= 0)1(βkl ̸= 0), (2.2)

where ρ(|ν|; γ, λ1) = λ1

∫ |ν|
0

(
1− x

λ1γ

)
+
dx is the Minimax Concave Penalty

(MCP) with regularization parameter γ, (a)+ = max{a, 0}, 1(·) is the indi-

cator function, and λ1 and λ2 are the tuning parameters. Here, γ controls

the unbiasedness and concavity of the estimator, with a larger value lead-

ing to a smoother estimation, but a larger bias and less accurate variable

selection (Zhang et al., 2010). In addition, cjl describes the amount of
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2.1 Integrated heterogeneity analysis

overlapping information between the jth component of X and the lth com-

ponent of Z, with a larger value indicating a higher level of overlapping. In

the literature, there are multiple ways of quantifying overlapping informa-

tion. Given that overlapping information can manifest as correlation, we

propose cjl = |cPcorr
jl |1(|cPcorr

jl | ≥ cPcorr), where cPcorr
jl is the Pearson’s corre-

lation between the jth molecular and lth imaging variables, and cPcorr is the

cutoff. Correlation perhaps provides the simplest and most straightforward

quantification of overlapping information, and has been used extensively.

The cutoff cPcorr is introduced to remove (a large number of) spurious cor-

relations. With the maximizer of (2.2), the nonzero components of αk and

βk correspond to the important molecular and imaging variables that are

associated with the response for the kth subgroup.

The discontinuity of the L0 penalty makes optimization challenging. To

improve computational feasibility, we further propose

Q(θ) =
n∑

i=1

log

{
K∑
k=1

µkg (yi;h(Xi·αk +Zi·βk), σk)

}
− n

K∑
k=1

p∑
j=1

ρ(|αkj|; γ, λ1)

−n
K∑
k=1

q∑
l=1

ρ(|βkl|; γ, λ1)− nλ2

K∑
k=1

p∑
j=1

q∑
l=1

cjl

(
1− e−

α2
kj
τ

)(
1− e−

β2kl
τ

)
, (2.3)

where τ is a small positive constant that controls the goodness and smooth-

ness of the approximation.

Rationale In contrast to existing FMR models, the proposed model includes
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2.1 Integrated heterogeneity analysis

two distinct types of high-dimensional variables. Furthermore, in contrast

to, for example, the collaborative regression and ARMI, both molecular

and imaging data are included in a single model to take advantage of their

independent information. Penalization is adopted for regularization and

sparsity. We adopt the MCP because of its satisfactory statistical prop-

erties, such as unbiasedness, and better numerical performance than some

other penalties, such as Lasso. In (2.2), the key advancement is the last

term, which promotes the identification of molecular and imaging variables

with smaller correlations (weaker overlapping information). In particular,

the indicator functions 1(αkj ̸= 0) and 1(βkl ̸= 0) pick up the selected

molecular and imaging variables, and the penalty is defined as the sum

of the absolute values of their pair-wise correlations. This way, the pro-

posed approach directly encourages the selection of molecular and imaging

variables with weak correlations, and effectively accommodates their over-

lapping information. Note that directly including two types of covariates

in a single model without properly accommodating their high correlations

may lead to unreliable and inaccurate estimation and identification. For

two molecular (imaging) variables with similar contributions to the model,

the proposed correlation-based penalty selects the one less correlated with

important imaging (molecular) variables. As a result, the identified model

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0002



2.2 Statistical properties

contains less redundant information, leading to more reliable and accu-

rate estimation and identification. In addition, these important molecular

and imaging variables have more independent contributions, and may pro-

vide richer information for understanding the response. The smooth ap-

proximation of the indicator function simplifies the computation, and the

exponential-based approximation can be replaced by other smooth approx-

imations.

2.2 Statistical properties

Assume K is known. Determining its value under FMR is nontrivial,

but has been discussed in the literature (Khalili and Lin, 2013). Let

θ0 =
(
(µ0)

′
, (σ0)

′
, (α0

1)
′
, · · · , (α0

K)
′
, (β0

1)
′
, · · · , (β0

K)
′)′

be the vector of

true parameter values. Let Ak = {j : α0
kj ̸= 0}, Bk = {l : β0

kl ̸= 0},

C = {k : θ0k ̸= 0}, and Cc = {k : θ0k = 0}, where θ0k is the kth element of

θ0. Note that µ0
k and σ0

k are nonzero. Denote |A| as the cardinality of set

A. Let ak = |Ak|, bk = |Bk|, and s = 2K +
∑K

k=1 ak +
∑K

k=1 bk. Assume

that the nonsparsity size s ≪ n. For a vector ν and index set S, denote νS

as the components of ν indexed by S. For a matrix M and two index sets

S1 and S2, denote M·S1 and MS1· as the columns and rows, respectively, of

M indexed by S1, and denote MS1,S2 as the submatrix of M indexed by
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2.2 Statistical properties

S1 and S2.

Denote θ∗
C =

(
(µ∗)′ , (σ∗)′ ,

(
α∗

1,A1

)′
, · · · ,

(
α∗

K,AK

)′
,
(
β∗
1,B1

)′
, · · · ,

(
β∗
K,BK

)′)′

as the maximizer of

Q̃n(θC) =
n∑

i=1

log

{
K∑
k=1

µkg (yi;h(Xi,Ak
αk,Ak

+Zi,Bk
βk,Bk

), σk)

}

− nλ2

K∑
k=1

∑
j∈Ak

∑
l∈Bk

cjl

(
1− e−

α2
kj
τ

)(
1− e−

β2kl
τ

)
.

Let f(yi;Xi·,Zi·,θC) =
∑K

k=1 µkg(yi;h(Xi,Ak
αk,Ak

+ Zi,Bk
βk,Bk

), σk), c0 =

max{|corr(Xj, Zl)|, j ∈ Ak, l ∈ Bk, k = 1, · · · , K}, with corr(Xj, Zl) being

the correlation between Xj and Zl, and b0 = min
{{∣∣α0

kj

∣∣ , j ∈ Ak

}
, {|β0

kl| ,

l ∈ Bk} , k = 1, · · · , K}. We first establish the estimation consistency of θ∗
C

when the true sparsity structure is known. Assume the following conditions:

(C1) The density function f(yi;Xi·,Zi·,θ) has a common support, is identi-

fiable in θ up to the permutation of the component labels, and satisfies

E
[
∂ log f(yi;Xi·,Zi·,θ)

∂θj

]∣∣∣
θ=θ0

= 0, E
[
∂ log f(yi;Xi·,Zi·,θ)

∂θj

∂ log f(yi;Xi·,Zi·,θ)
∂θl

]
=

E
[
−∂2 log f(yi;Xi·,Zi·,θ)

∂θj∂θl

]
.

(C2) The Fisher information matrix for θC,

I(θC) = E

{[
∂ log f(yi;Xi·,Zi·,θC)

∂θC

] [
∂ log f(yi;Xi·,Zi·,θC)

∂θC

]′}
,

is finite and positive definite at θC = θ0
C.
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2.2 Statistical properties

(C3) There exists an open set N0 that contains the true parameter θ0, such

that for almost all Vi = (yi,Xi·,Zi·), the density f(yi;Xi·,Zi·,θ) ad-

mits all third derivatives for all θ ∈ N0. There exist two functions

M1(Vi) andM2(Vi), for all θ ∈ N0, such that
∣∣∣ ∂2

∂θj∂θl
log f(yi;Xi·,Zi·,θ)

∣∣∣ ≤
M1(Vi),

∣∣∣ ∂3

∂θj∂θl∂θm
log f(yi;Xi·,Zi·,θ)

∣∣∣ ≤ M2(Vi), where E[M1(Vi)] <

∞ and E[M2(Vi)] < ∞.

(C4) For any constant ϵ > 0, there exists a finite positive constant κ1, such

that for j ∈ Ak, l ∈ Bk, k = 1, · · · , K, P
(
|cPcorr

jl − corr(Xj, Zl)| ≥ ϵ
)
≤

2 exp
(
−nϵ2

2κ1

)
. Moreover, b20 ≥ ϱτ with ϱ > 2 and

√
nλ2b0e

− b20
2τ /τ =

o(1), if c0 ≥ cPcorr.

Conditions (C1)–(C3) are commonly assumed in the literature (Khalili

and Lin, 2013; Hui et al., 2015). As suggested by Khalili and Chen (2007),

the identifiability of FMR models generally depends on the component den-

sity g(·), maximum order K, and design matrix. We refer to the aforemen-

tioned publications for detailed discussions and sufficient conditions on iden-

tifiability. Condition (C4) restricts the rate of λ2 when the maximum value

of the absolute correlations between the important molecular and imaging

variables under the true model is larger than the cutoff cPcorr. Condition

(C4) also provides a constraint on the error between the estimated sample

correlations and the true population correlations.
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2.2 Statistical properties

Theorem 1: Under Conditions (C1)–(C4), there exists a strict local max-

imizer θ∗
C of Q̃n(θC) such that ||θ∗

C − θ0
C|| = Op(

√
s/n).

The proof is provided in Appendix A. Theorem 1 shows that θ∗
C has

the usual Op(
√

s/n) convergence rate. Define θ̂ with θ̂C = θ∗
C and θ̂Cc = 0.

Next, we show that θ̂ is a strict local maximizer of Q(θ) in (2.3). Assume

the following additional conditions:

(C5) b0λ
−1
1 → ∞, λ1

s/
√
n
→ ∞, and λ1

na/2−1/2
√
logn

→ ∞, a ∈ (0, 1
2
).

(C6) log(p) = O(na), log(q) = O(na).

Condition (C5) puts constraints on the rate of λ1, and similar conditions

have been commonly assumed in high-dimensional studies (Fan and Lv,

2011). In particular, the first subcondition establishes the rate at which

the nonzero coefficients can be distinguished from zero, and the other two

restrict the rate of λ1 with respect to the sample size. Condition (C6) allows

the dimensionality p and q to grow exponentially fast.

Theorem 2: Under Conditions (C1)–(C6), with probability tending to one,

θ̂ is a strict local maximizer of Q(θ).

The proof is provided in Appendix A. Theorem 2 establishes the se-

lection and estimation consistency under high-dimensional settings. This

result shows that the proposed approach has consistency comparable to
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2.3 Computation

that of simpler models, although its objective and form are much more

complicated.

2.3 Computation

We develop an expectation-maximization (EM) algorithm. First, for sub-

ject i(= 1, · · · , n), we introduce an unobserved indicator vector ∆i =

(∆i1, · · · ,∆iK), where ∆ik = 1 if subject i belongs to subgroup k, and

∆ik = 0 otherwise. The complete-data objective function is

Qc(θ) =
n∑

i=1

K∑
k=1

∆ik log {µkg (yi;h(Xi·αk +Zi·βk), σk)} − n
K∑
k=1

p∑
j=1

ρ(|αkj|; γ, λ1)

− n
K∑
k=1

q∑
l=1

ρ(|βkl|; γ, λ1)− nλ2

K∑
k=1

p∑
j=1

q∑
l=1

cjl

(
1− e−

α2
kj
τ

)(
1− e−

β2kl
τ

)
.

With fixed tuning parameters, the proposed algorithm proceeds as follows:

Initialization: Set t = 0. Initialize µ
(0)
k = 1

K
, for k = 1, · · · , K, and

randomly partition subjects into K subgroups with equal sizes. For each k,

initialize α
(0)
k and β

(0)
k using the MCP and σ

(0)
k as the MLE.

E-step: Update t = t+ 1. For k = 1, · · · , K, and i = 1, · · · , n, compute:

δ
(t)
ik = Eθ(t−1) [∆ik] =

µ
(t)
k g

(
yi;h

(
Xi·α

(t−1)
k +Zi·β

(t−1)
k

)
, σ

(t−1)
k

)
f(yi;Xi·,Zi·,θ(t−1))

.

M-step: Optimize Eθ(t−1) [Qc(θ)] with respect to θ. For k = 1, · · · , K,

carry out the following steps sequentially:
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2.3 Computation

(a) Compute µ
(t)
k = 1

n

∑n
i=1 δ

(t)
ik .

(b) OptimizeQE(σk,αk,βk) =
1
n

∑n
i=1 δ

(t)
ik log [g (yi;h (Xi·αk +Zi·βk) , σk)]−∑p

j=1 ρ(|αkj|; γ, λ1)−
∑q

l=1 ρ(|βkl|; γ, λ1)−λ2

∑p
j=1

∑q
l=1 cjl

(
1− e−

α2
kj
τ

)(
1− e−

β2kl
τ

)
with respect to σk, αk, and βk. This varies with h(·) and g(·). Below, we

take the Gaussian distribution g(yi;h(Xi·αk+Zi·βk), σk) =
1√
2π
σk exp[−(σkyi−

Xi·αk −Zi·βk)
2/2] as an example, and develop a coordinate descent (CD)

algorithm. Algorithms for other distributions can be developed accordingly.

(b.1) With αk and βk fixed at α
(t−1)
k and β

(t−1)
k , optimize QE with

respect to σk. Let r
(t−1)
ik = Xi·α

(t−1)
k + Zi·β

(t−1)
k , ã

(t)
k =

∑n
i=1 δ

(t)
ik y

2
i , and

b̃
(t)
k =

∑n
i=1 δ

(t)
ik r

(t−1)
ik yi. Then, σ

(t)
k =

b̃
(t)
k +

√(
b̃
(t)
k

)2
+4nã

(t)
k µ

(t)
k

2ã
(t)
k

.

(b.2) With σk and βk fixed at σ
(t)
k and β

(t−1)
k , optimize QE with respect

to αk. For j = 1, · · · , p, carry out the following steps sequentially. Compute

η
(t)
kj = 1

n

∑n
i=1 δ

(t)
ik x

2
ij, res

(t)
−kj = 1

n

∑n
i=1 δ

(t)
ik

(
σ
(t)
k yi − r

(t−1)
ik

)
xij + η

(t)
kj α

(t−1)
kj ,

and u
(t)
kj = 2

τ
e
−
(
α
(t−1)
kj

)2
/τ ∑q

l=1 cjl

(
1− e

−
(
β
(t−1)
kl

)2
/τ

)
. Update

α
(t)
kj =



res
(t)
−kj

η
(t)
kj +λ2u

(t)
kj

,
∣∣∣res(t)−kj

∣∣∣ > λ1γ
(
η
(t)
kj + λ2u

(t)
kj

)
res

(t)
−kj−sgn

(
res

(t)
−kj

)
λ1

η
(t)
kj +λ2u

(t)
kj −1/γ

, λ1 <
∣∣∣res(t)−kj

∣∣∣ ≤ λ1γ
(
η
(t)
kj + λ2u

(t)
kj

)
0, else

,

and r
(t−1)
ik = r

(t−1)
ik + xijα

(t)
kj − xijα

(t−1)
kj .

(b.3) With σk and αk fixed at σ
(t)
k and α

(t)
k , optimize QE with respect to

βk. For l = 1, · · · , q, carry out the following steps sequentially. Compute
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2.3 Computation

η
(t)
kl = 1

n

∑n
i=1 δ

(t)
ik z

2
il, res

(t)
−kl = 1

n

∑n
i=1 δ

(t)
ik

(
σ
(t)
k yi −r

(t−1)
ik

)
zil + η

(t)
kl β

(t−1)
kl ,

and u
(t)
kl = 2

τ
e
−
(
β
(t−1)
kl

)2
/τ ∑p

j=1 cjl

(
1− e

−
(
α
(t)
kj

)2
/τ

)
. Update

β
(t)
kl =



res
(t)
−kl

η
(t)
kl +λ2u

(t)
kl

,
∣∣∣res(t)−kl

∣∣∣ > λ1γ
(
η
(t)
kl + λ2u

(t)
kl

)
res

(t)
−kl−sgn

(
res

(t)
−kl

)
λ1

η
(t)
kl +λ2u

(t)
kl −1/γ

, λ1 <
∣∣∣res(t)−kl

∣∣∣ ≤ λ1γ
(
η
(t)
kl + λ2u

(t)
kl

)
0, else

,

and r
(t−1)
ik = r

(t−1)
ik + zilβ

(t)
kl − zilβ

(t−1)
kl .

We iterate the E and M steps until convergence, which is concluded in

our numerical study if ||θ(t+1) − θ(t)||∞ < 10−4. In the literature, the con-

vergence properties of the EM and CD algorithms are well established, and

convergence is achieved in all of our numerical examples with a moderate

number of iterations. To improve the performance, as in published studies,

multiple random initializations of the subjects’ subgroup memberships are

considered, and the final estimator is chosen as the one with the smallest

BIC.

The proposed approach involves a few parameters. We set τ in the L0

penalty approximation as 0.01, and note that its value is not critical, as

long as it is sufficiently small. We set the cutoff cPcorr = 0.15, which leads

to satisfactory numerical results. For the regularization parameter γ in the

MCP, following the literature (Zhang et al., 2010), we examine a few values,

including 1.8, 3, 6, and 10, and find that γ = 6 has satisfactory performance
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(see Table S1 of the Supplementary Materials). The two tuning parameters

λ1 and λ2 are selected using the BIC and a grid search, which is common

practice.

To facilitate the data analysis and broad utilization, we provide R code

and an example using The Cancer Genome Atlas (TCGA) lung cancer data.

The code and example are available at https://github.com/shuanggema/fmrGI.

3. Simulation

Consider the following settings: (a) n = 300, p = 1000, q = 500, and K = 2.

(b) Xi· is generated from a multivariate normal distribution with marginal

means zero and covariance matrix Σ. Here, Σ has diagonal elements equal

to one and a block-diagonal structure, with two blocks corresponding to

the important and unimportant variables, of which the sizes are p0 and

p−p0, respectively. Detailed values of p0 are provided in Table 5 (Appendix

B). Within each block, variables have an autoregressive (AR) correlation

structure, where the jth and kth variables have correlation coefficient ρ|j−k|,

with ρ = 0.3, 0.5, and 0.7. (c) To describe the overlapping information

between molecular and imaging variables, a set of 200 imaging variables C

is generated using a linear regression model ZiC = XiCϑ+N(0, 0.012). Four

settings of ϑ are considered, where ϑ1 and ϑ2 have 20 blocks with equal
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sizes, and ϑ3 and ϑ4 have 10 blocks with equal sizes. In each block, ϑ1 and

ϑ3 have all elements equal to one, and ϑ2 and ϑ4 have an AR structure

with ρ = 0.7. The rest of the imaging features are generated similarly to

Xi· and independent of the molecular variables. (d) Three settings (P1, P2,

and P3 in Table 5 of Appendix B) of important variables are considered. In

particular, we consider two subgroups with the same and different sets of

important variables, with different settings. (e) We consider the continuous

response computed from the FMR model, with σk = 0.5 and µ1 = µ2 = 0.5

(balanced) and µ1 = 0.4, µ2 = 0.6 (imbalanced). There are 72 scenarios,

comprehensively covering a wide spectrum with different levels of within-

and between-type correlations, as well as heterogeneity.

We consider the following alternatives. [FMR-MCP] analyzes the stacked

data (X,Z) under the FMR model (2.1) with the MCP for regularized es-

timation and selection. This is the most direct competitor, and does not

account for overlapping information. [Kmeans-MCP] first applies Kmeans

to the residuals computed from an MCP-penalized linear regression model,

with (X,Z) to identify subgroups, and then applies the MCP to each sub-

group separately. This approach accommodates heterogeneity using the

clustering technique, and there is no accounting for overlapping informa-

tion. [CoRe] conducts collaborative regression (Gross and Tibshirani, 2015)
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that accommodates overlapping information and encourages X and Z to

generate similar estimated effects. [DC-SVD] conducts a decomposition of

X and Z using a singular value decomposition (SVD) to extract overlap-

ping and independent information, and then conducts modeling (Zhu et

al., 2016). Both CoRe and DC-SVD are limited to the homogeneity case.

[MCP-MI], [MCP-M], and [MCP-I] analyze (X,Z), X, and Z, respectively,

using an MCP-penalized linear regression. We acknowledge that there are

other potential alternatives. However, the above are likely the most rele-

vant.

To get more intuition, we first simulate one dataset under AR(0.5),

µ1 = µ2 = 0.5, P3, and ϑ2. Beyond the proposed approach, we also con-

sider its most direct competitor, FMR-MCP. The identification results are

presented in Figure S1 (Supplementary Materials). For this specific dataset,

both approaches correctly identify the important variables, with FMR-MCP

having more false positives. The molecular-imaging variable pairs identified

using the proposed approach have weaker correlations (fewer connections),

suggesting its effectiveness in promoting non-overlapping information.

To evaluate the identification performance, we adopt the true and false

positive rates computed for the molecular (M:TPR and M:FPR) and imag-

ing variables (I:TPR and I:FPR) separately. The estimation performance is
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evaluated using the root sum of squared errors (RSSE), defined as ||α̂−α0||

and ||β̂−β0|| for molecular and imaging variables, respectively, where (α̂, β̂)

and (α0,β0) are the estimated and true values of (α,β), respectively. Note

that, with the decomposition strategy, DC-SVD cannot generate the esti-

mated values of α̂ and β̂. For the proposed approach, FMR-MCP, and

Kmeans-MCP, we also use classification accuracy (Accuracy) to evaluate

the performance of the heterogeneity analysis. Moreover, an independent

set with 100 subjects is generated, and the prediction median squared error

(PMSE) is computed.

For each scenario, 500 replicates are simulated, and the medians and

median absolute deviations (MADs) of the evaluation measures are summa-

rized. The results for the scenarios with AR(0.5), µ1 = µ2 = 0.5, and ϑ1 and

ϑ2 are summarized in Tables 1 and 2. The rest of the results are provided in

the Supplementary Materials. Across all simulation scenarios, the proposed

approach has favorable performance. For example, in Table 1, under the

scenario with correlation AR(0.5), balanced heterogeneity design, P1, and

ϑ1, the proposed approach identifies the majority of true positives and only

a few false positives with (M:TPR, M:FPR, I:TPR, I:FPR)=(1.00, 0.02,

1.00, 0.03), compared to (0.70, 0.02, 0.70, 0.04) for FMR-MCP, (0.15, 0.05,

0.05, 0.03) for Kmeans-MCP, (0.30,0.02, 0.10, 0.02) for CoRe, (0.40, 0.02,
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Table 1: Simulation results under the scenarios with AR(0.5), µ1 = µ2 =
0.5, and overlapping pattern ϑ1 with 20 blocks. In each cell, median (MAD)
based on 500 replicates.
Method Accuracy M:TPR M:FPR M:RSSE I:TPR I:FPR I:RSSE PMSE

P1
proposed 0.95(0.0) 1.00(0.0) 0.02(0.0) 0.63(0.2) 1.00(0.0) 0.03(0.0) 0.48(0.2) 1.82(1.2)
FMR-MCP 0.89(0.1) 0.70(0.4) 0.02(0.0) 2.03(2.6) 0.70(0.4) 0.04(0.0) 1.80(2.3) 7.84(10.7)
Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.05(0.0) 9.14(0.5) 0.05(0.1) 0.03(0.0) 5.48(0.7) 10.38(3.0)
CoRe -- 0.30(0.1) 0.02(0.0) 3.80(0.0) 0.10(0.1) 0.02(0.0) 3.00(0.0) 10.75(2.2)
DC-SVD -- 0.40(0.1) 0.02(0.0) -- 0.20(0.1) 0.01(0.0) -- 12.06(3.7)
MCP-MI -- 0.10(0.1) 0.05(0.0) 6.54(0.5) 0.10(0.1) 0.03(0.0) 4.10(0.5) 19.94(5.8)
MCP-M -- 0.30(0.1) 0.14(0.0) 12.68(1.0) -- -- -- 42.00(9.8)
MCP-I -- -- -- -- 0.00(0.0) 0.00(0.0) 3.00(0.0) 10.50(2.4)

P2
proposed 0.94(0.0) 1.00(0.0) 0.02(0.0) 0.67(0.3) 1.00(0.0) 0.03(0.0) 0.49(0.2) 1.57(1.1)
FMR-MCP 0.91(0.1) 0.80(0.3) 0.02(0.0) 1.65(1.9) 0.85(0.2) 0.04(0.0) 1.36(1.6) 4.55(5.7)
Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.04(0.0) 8.48(0.6) 0.10(0.1) 0.03(0.0) 5.15(0.7) 8.99(2.4)
CoRe -- 0.28(0.1) 0.02(0.0) 3.64(0.1) 0.15(0.1) 0.02(0.0) 3.00(0.0) 10.67(2.3)
DC-SVD -- 0.35(0.1) 0.02(0.0) -- 0.15(0.1) 0.02(0.0) -- 11.40(3.2)
MCP-MI -- 0.15(0.1) 0.05(0.0) 6.34(0.3) 0.10(0.1) 0.03(0.0) 4.00(0.4) 18.15(3.9)
MCP-M -- 0.25(0.1) 0.12(0.0) 11.97(0.8) -- -- -- 40.61(9.8)
MCP-I -- -- -- -- 0.05(0.1) 0.00(0.0) 2.86(0.1) 10.67(2.3)

P3
proposed 0.88(0.1) 0.75(0.2) 0.02(0.0) 1.92(1.0) 0.70(0.3) 0.04(0.0) 1.59(0.9) 4.83(3.6)
FMR-MCP 0.69(0.2) 0.40(0.2) 0.04(0.0) 4.15(3.5) 0.25(0.2) 0.05(0.0) 2.96(1.6) 12.34(10.6)
Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.04(0.0) 8.52(0.6) 0.10(0.1) 0.03(0.0) 5.11(0.5) 8.84(2.6)
CoRe -- 0.50(0.1) 0.01(0.0) 3.73(0.0) 0.20(0.1) 0.02(0.0) 3.00(0.0) 7.97(2.2)
DC-SVD -- 0.50(0.1) 0.02(0.0) -- 0.30(0.1) 0.01(0.0) -- 9.25(3.0)
MCP-MI -- 0.20(0.1) 0.04(0.0) 6.29(0.5) 0.10(0.1) 0.02(0.0) 4.01(0.4) 16.32(3.2)
MCP-M -- 0.30(0.1) 0.13(0.0) 11.57(0.9) -- -- -- 33.72(8.2)
MCP-I -- -- -- -- 0.10(0.1) 0.00(0.0) 3.00(0.1) 7.83(2.2)
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Table 2: Simulation results under the scenarios with AR(0.5), µ1 = µ2 =
0.5, and overlapping pattern ϑ2 with 20 blocks. In each cell, median (MAD)
based on 500 replicates.
Method Accuracy M:TPR M:FPR M:RSSE I:TPR I:FPR I:RSSE PMSE

P1
proposed 0.95(0.0) 1.00(0.0) 0.01(0.0) 0.66(0.3) 1.00(0.0) 0.04(0.0) 0.50(0.3) 1.80(1.5)
FMR-MCP 0.93(0.1) 0.90(0.1) 0.02(0.0) 1.06(1.1) 0.90(0.1) 0.04(0.0) 1.03(1.1) 3.14(3.5)
Kmeans-MCP 0.52(0.0) 0.10(0.1) 0.05(0.0) 9.29(0.6) 0.05(0.1) 0.03(0.0) 5.43(0.6) 10.41(2.8)
CoRe -- 0.30(0.1) 0.02(0.0) 3.80(0.0) 0.10(0.1) 0.02(0.0) 3.00(0.0) 10.75(2.4)
DC-SVD -- 0.40(0.1) 0.02(0.0) -- 0.20(0.1) 0.02(0.0) -- 12.68(4.7)
MCP-MI -- 0.10(0.0) 0.04(0.0) 6.43(0.5) 0.10(0.0) 0.03(0.0) 4.13(0.5) 20.48(6.2)
MCP-M -- 0.30(0.1) 0.14(0.0) 12.68(1.0) -- -- -- 42.00(9.8)
MCP-I -- -- -- -- 0.40(0.3) 0.36(0.1) 17.83(6.1) 58.34(60.6)

P2
proposed 0.94(0.0) 1.00(0.0) 0.01(0.0) 0.62(0.2) 1.00(0.0) 0.04(0.0) 0.49(0.2) 1.76(1.3)
FMR-MCP 0.92(0.1) 0.85(0.2) 0.02(0.0) 1.36(1.6) 0.80(0.3) 0.04(0.0) 1.26(1.4) 2.80(3.4)
Kmeans-MCP 0.52(0.0) 0.10(0.1) 0.04(0.0) 8.53(0.5) 0.10(0.1) 0.03(0.0) 5.33(0.6) 8.78(2.8)
CoRe -- 0.30(0.1) 0.02(0.0) 3.65(0.1) 0.15(0.1) 0.02(0.0) 3.00(0.0) 10.52(2.5)
DC-SVD -- 0.35(0.1) 0.02(0.0) -- 0.20(0.1) 0.02(0.0) -- 11.55(3.3)
MCP-MI -- 0.15(0.1) 0.04(0.0) 6.43(0.5) 0.10(0.1) 0.03(0.0) 4.16(0.4) 19.00(5.5)
MCP-M -- 0.25(0.1) 0.12(0.0) 11.97(0.8) -- -- -- 40.61(9.8)
MCP-I -- -- -- -- 0.10(0.1) 0.01(0.0) 3.05(0.4) 13.78(9.1)

P3
proposed 0.85(0.1) 0.70(0.3) 0.02(0.0) 2.18(1.4) 0.65(0.4) 0.05(0.0) 1.65(1.0) 5.70(4.5)
FMR-MCP 0.68(0.2) 0.40(0.3) 0.04(0.0) 4.85(3.5) 0.25(0.3) 0.06(0.0) 3.05(1.6) 11.56(10.8)
Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.04(0.0) 8.57(0.6) 0.10(0.1) 0.03(0.0) 4.99(0.6) 8.49(2.3)
CoRe -- 0.50(0.1) 0.02(0.0) 3.73(0.0) 0.20(0.1) 0.02(0.0) 3.00(0.0) 7.95(2.3)
DC-SVD -- 0.50(0.1) 0.02(0.0) -- 0.30(0.1) 0.01(0.0) -- 9.23(3.2)
MCP-MI -- 0.20(0.1) 0.04(0.0) 6.13(0.4) 0.10(0.1) 0.03(0.0) 4.05(0.5) 17.15(4.3)
MCP-M -- 0.30(0.1) 0.13(0.0) 11.57(0.9) -- -- -- 33.72(8.2)
MCP-I -- -- -- -- 0.40(0.3) 0.35(0.1) 16.63(5.6) 49.28(54.1)
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0.20, 0.01) for DC-SVD, (0.10, 0.05, 0.10, 0.03) for MCP-MI, (0.30, 0.14,

–, –) for MCP-M, and (–, –, 0.00, 0.00) for MCP-I. It also performs better

in terms of estimation with, for example, (M:RSSE, I:RSSE)=(0.67, 0.49)

under the scenario with P2 and ϑ1 in Table 1, compared to (1.65, 1.36),

(8.48, 5.15), (3.64, 3.00), (–,–), (6.34, 4.00), (11.97,–), and (–, 2.86) for the

alternatives. More satisfactory prediction accuracy is observed. Take the

scenario with P2 and ϑ2 in Table 2 as an example. The PMSE values are

1.76 (proposed), 2.81 (FMR-MCP), 8.78 (Kmeans-MCP), 10.52 (CoRe),

11.55 (DC-SVD), 19.00 (MCP-MI), 40.61 (MCP-M), and 13.78 (MCP-I).

The proposed approach also outperforms FMR-MCP and Kmeans-MCP in

the heterogeneity analysis. For example, under the scenario with P3 and

ϑ2 in Table 2, the Accuracy values are 0.85 (proposed), 0.68 (FMR-MCP),

and 0.52 (Kmeans-MCP).

Overall, the proposed approach exhibits better performance with a

moderate within correlation AR(0.5). Compared to settings P1 and P2,

which have a higher level of heterogeneity, under P3, the performance of

the proposed approach and FMR-MCP decays. The two homogeneity-based

alternatives CoRe and DC-SVD, which accommodate overlapping informa-

tion, have improved performance. However, the proposed approach remains

superior. The superiority of the proposed approach over FMR-MCP and
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Kmeans-MCP provides direct support for the L0-based penalty for accom-

modating overlapping information. The improvement over CoRe and DC-

SVD suggests the necessity of accounting for heterogeneity. The proposed

approach performs much better than MCP-MI, MCP-M, and MCP-I, re-

establishing the value of data integration.

We conduct additional simulations under setting AR(0.5) for within-

block correlation, and settings ϑ1 and ϑ2 for the overlapping pattern. First,

we consider two additional settings (P4 and P5 in Table 5 of Appendix B)

of important variables. Specifically, P4 has different important variables for

the two subgroups, which may closely mimic the real data example (Tables

3 and 4). P5 is a more homogeneous case, where more than half of the

important variables have the same effects for the two subgroups, and the

remaining effects have different magnitudes, but the same directions. Sec-

ond, a more imbalanced heterogeneity design with µ1 = 0.1 and µ2 = 0.9

is considered. Summary results are presented in Tables S13–S21 of the

Supplementary Materials, where for the highly imbalanced heterogeneity

scenarios, we also provide the sensitivity and specificity results of the het-

erogeneity analysis and consider the two subgroups separately. Patterns

similar to those described above are observed. Specifically, under the most

homogeneous setting P5 (Table S14 of the Supplementary Materials), the
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proposed approach behaves slightly worse than DC-SVD, as expected, but

still better than the other alternatives. Under the highly imbalanced setting

with µ1 = 0.1 and µ2 = 0.9, the proposed approach still performs well in

identifying the two subgroups, with high accuracy. In addition, it has satis-

factory identification and estimation performance for the second subgroup,

but worse performance for the first subgroup, which has a very limited sam-

ple size, compared to the homogeneity-based alternatives. Because the two

subgroups share the same important variables under settings P1, P3, and

P5, it is not surprising that the homogeneity-based alternatives behave well

by considering the two subgroups together.

A closer look at the number of mixture components In the above simula-

tions, we assume that K = 2 is known, as in published studies such as

Khalili and Chen (2007), Hui et al. (2015), and Liu et al. (2020). We pro-

pose adopting the BIC when the value of K needs to be estimated. Here, we

additionally take the scenarios with settings AR(0.5) and ϑ1 as an exam-

ple, and examine the performance of the BIC for selecting K. Specifically,

with candidate K = 1, 2, 3, 4, 5, we simulate 500 replicates, compute the

frequency that a particular value is selected, and report the results in Ta-

ble S22 (Supplementary Materials). In general, the BIC has satisfactory

performance. The setting P3 has a higher degree of homogeneity com-
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pared to P1 and P2, making it more difficult to identify the true value of

K = 2. We report the summary identification and estimation results of

the proposed approach with BIC-selected K in Table S23 (Supplementary

Materials), where the true and estimated subgroups are matched by min-

imizing the RSSE when K is overestimated (Khalili and Lin, 2013). The

observed patterns are similar to those in Table 1 and Table S3 (Supplemen-

tary Materials), suggesting that estimating K does not significantly affect

the performance of the proposed approach.

Computer time We examine the computer time under the above simulation

settings and n = 300, p = 1000, and q = 500. With fixed tuning parameters

and one initialization, the average computer time of the proposed analysis

is 17.09 seconds, using a laptop with standard configurations, compared to

16.58, 1.05, 0.18, 5.69, 0.81, 0.73, and 0.71 seconds for FMR-MCP, Kmeans-

MCP, CoRe, DC-SVD, MCP-MI, MCP-M, and MCP-I, respectively. With

more complex analysis, the proposed approach has a higher computational

cost, but is still affordable.

4. Data analysis

TCGA is a hallmark genomics program organized by the National Cancer

Institute (NCI) and National Human Genome Research Institute (NHGRI),
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and has significantly advanced cancer research in multiple aspects. It

has published high-quality outcome/phenotype, clinical, molecular, and

histopathological imaging data. There have been both unsupervised (Li et

al., 2018) and supervised (Ahmad and Fröhlich, 2017) heterogeneity studies

conducted using TCGA data.

In our analysis, we combine data on lung adenocarcinoma (LUAD)

and lung squamous cell (LUSC), two major subtypes of non-small-cell lung

cancer (NSCLC), to increase the sample size. We acknowledge their dif-

ferences. However, as the proposed analysis is designed to accommodate

heterogeneity, this does not pose a problem. The response variable is the

reference value for the pre-bronchodilator forced expiratory volume in one

second in percent (FEV1), which is an important biomarker for lung ca-

pacity and tightly associated with prognosis and other outcomes. For the

molecular variables, we analyze mRNA gene expressions downloaded from

cBioPortal. For the imaging variables, we adopt a recently developed data

extraction and processing pipeline (Zhong et al., 2019). Briefly, we first

download the diagnostic slides using the GDC Data Transfer Tool from

the TCGA website, and then extract high-dimensional imaging variables

using CellProfiler. These imaging features represent objective attributes of

histopathological images, including the area and perimeter of the nucleus
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and cytoplasm, mean and standard deviation of these measures, and other

general image attributes. After subject matching, a total of 370 subjects

with 20,440 gene expression measurements and 221 imaging features are

available. Brief information is provided in Figure S2 (Supplementary Ma-

terials). Our preliminary exploration suggests that if the dimensions of the

two types of data differ significantly, performance may be inferior. In addi-

tion, the number of lung capacity-related genes is not expected to be large.

As such, we conduct a marginal screening, and the top 500 genes with the

smallest p-values computed from a marginal linear regression are selected

for downstream analysis.

In Figure S3 (Supplementary Materials), we show the histogram and

estimated density of FEV1. We observe two modes, which may reasonably

suggest heterogeneity with two subgroups. FEV1 has also been examined

in the literature (Liu et al., 2020), which suggests continuous and close-to-

normal distributions. As such, we model it using a mixture of two normal

distributions. Note that such exploratory analysis based on a histogram

has previously been conducted in the literature (Khalili and Chen, 2007).

To be cautious, we have also conducted analyses with 3, 4, and 5 mixture

components. However, the results are not as sensible, with the extra compo-

nents having very small numbers of important variables and/or small mix-
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Table 3: Data analysis using the proposed approach: identified genes and
estimates.
Gene α1 α2 Gene α1 α2 Gene α1 α2 Gene α1 α2

EIF4A3 -0.58 ECHDC2 -0.19 RFC5 0.03 NFU1 -0.16
DHX36 0.21 N4BP1 0.12 POLR3C 0.37 FAM160A2 -0.26
KIAA0141 0.25 FAM210A -0.04 PSMD12 -0.08 PCDHB4 0.17
WDR43 -0.07 SST 0.15 RPL23AP53 0.35 CD81 0.16
CNPPD1 0.49 ZNF596 0.12 PSME4 0.01 MAK16 -0.34
METTL5 -0.22 0.09 RNF115 -0.16 NCBP1 0.20 GCSH 0.08
DCUN1D1 -0.10 FBXO28 -0.49 LRRC31 0.13 GCFC2 -0.07
DBR1 -0.20 GPN1 0.06 RHBDF1 0.08 L2HGDH -0.11
B9D2 0.09 ADSL 0.07 TCTEX1D2 -0.09 DTX2 0.38
DNAJB4 -0.28 IGIP -0.22 RAD51 0.32 RGL2 0.27
RPSAP58 -0.10 MEGF6 0.06 BIN3 -0.07 OR6C6 -0.15
CNKSR1 0.11 IL22RA2 0.10 RSL24D1 -0.02 KIAA1109 -0.20
CCT5 -0.04 TCF25 -0.15 DYNC1I2 -0.25 TMEM50B 0.10
IRX2 0.42 METTL21C 0.18 EPT1 0.29 TRAPPC10 -0.10
CTNNAL1 -0.14 CENPO 0.24 SCNN1D 0.03 CSNK2A1 0.01
TRMT61B 0.10 C1ORF112 -0.03 DEFB4A 0.16 PDLIM2 -0.02
MRPL3 0.35 CCDC92 0.03 ZIC1 -0.04 ZC3H6 0.01
ASTN1 -0.05 UGT1A7 -0.09 MAP3K6 -0.14 0.12 KIAA1715 -0.06
CD1E -0.16 EML3 -0.05 ZNF487 0.23 RPA3 -0.12
TOMM5 -0.10 HMGXB4 -0.07 PRDM9 -0.17 KCNK18 -0.28
FAM86JP -0.17 RNF168 0.10 CDC73 0.11 CAMTA2 0.05
LDLRAD2 -0.03 RNPEPL1 -0.08 PAK1 -0.01 YPEL3 -0.19
IARS 0.04 POLR2D -0.04 GPATCH3 0.08 SNX5 -0.10
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Table 4: Data analysis using the proposed approach: identified imaging
features and estimates.
Group Imaging Feature Name Abbreviation β1 β2

Geometry AreaShape Center X ASCX -0.022
Geometry AreaShape EulerNumber ASEN -0.003
Geometry AreaShape Zernike 5 3 ASZ53 -0.212
Geometry AreaShape Zernike 5 5 ASZ55 -0.012
Geometry AreaShape Zernike 7 1 ASZ71 -0.202
Geometry AreaShape Zernike 7 3 ASZ73 0.209
Geometry AreaShape Zernike 8 0 ASZ80 -0.001
Holistic Count Identifyeosinprimarycytoplasm CIPC 0.113
Texture Granularity 10 ImageAfterMath G10M 0.220
Texture Granularity 11 ImageAfterMath.1 G11M1 -0.200
Texture Granularity 12 ImageAfterMath.1 G12M1 -0.168
Texture Granularity 13 ImageAfterMath G13M 0.005
Texture Granularity 13 ImageAfterMath.1 G13M1 0.111
Texture Granularity 9 ImageAfterMath G9M 0.005
Texture Granularity 9 ImageAfterMath.1 G9M1 0.041
Geometry Location Center Y.1 LCY1 -0.066
Texture Texture Correlation ImageAfterMath 3 00 TCM300 0.243
Texture Texture Correlation ImageAfterMath 3 01 TCM301 -0.329
Texture Texture Correlation ImageAfterMath 3 02 TCM302 0.066
Texture Texture DifferenceEntropy maskosingray 3 02 TDM302 0.280
Texture Texture DifferenceVariance maskosingray 3 02 TDVM302 -0.182
Texture Texture Entropy ImageAfterMath 3 03 TEM303 -0.015
Holistic Threshold WeightedVariance Identifyeosinprimarycytoplasm TWPC -0.132
Holistic Threshold WeightedVariance identifyhemaprimarynuclei TWPN 0.002
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ture probabilities. With two mixture components, the proposed approach

identifies 92 genes and 24 imaging variables, and the detailed information

is provided in Tables 3 and 4. Almost all of the important variables con-

tribute to the response in only one subgroup, except for genes METTL5 and

MAP3K6, which have effects in both subgroups, but with different signs.

More information on the identified gene expressions and imaging features is

provided graphically in Figure S4 (Supplementary Materials). For the two

subgroups separately, there are only 49 and 43, respectively, gene-imaging

variable pairs with absolute correlations larger than 0.1, which again shows

the proposed approach’s effectiveness in identifying non-overlapping infor-

mation.

A literature search suggests that many of the identified genes show

strong evidence of being associated with lung capacity and cancer. More

details are provided in the Supplementary Materials. We also examine the

24 identified imaging features more closely. These features measure tis-

sue area shape, texture, nuclear, and cytoplasm parameters. In particular,

13 are texture related. Similar findings have been made in previous stud-

ies (Luo et al., 2017). However, our literature review suggests that the

biological implications of high-dimensional imaging features are not well

understood. As such, interpretation is not pursued further.
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Analysis is also conducted using the alternatives. Summary compari-

son results are presented in Table S24 (Supplementary Materials), includ-

ing the numbers of genes and imaging variables identified by the differ-

ent approaches, and their overlaps and RV coefficients. The RV coeffi-

cient measures the similarity between two data matrices, with a larger

value indicating higher similarity. The various approaches identify dif-

ferent sets of features with moderate overlapping, as suggested by the

RV coefficients. To provide additional support to the analysis, we eval-

uate the prediction performance and selection stability of the proposed ap-

proach and the alternatives. Specifically, we conduct 100 random splits

to generate training and testing data. Estimation is conducted using the

training data, prediction is made on the testing data, and the median

values of the PMSE and Pearson’s correlation (COR, between the esti-

mated and observed values of FEV1) are computed. The proposed ap-

proach has (PMSE,COR)=(0.32,0.49), compared to (0.34,0.48) for FMR-

MCP, (0.55,0.13) for Kmeans-MCP, (0.33,0.15) for CoRe, (0.32,0.19) for

DC-SVD, (1.02,0.15) for MCP-MI, (0.46,0.12) for MCP-M, and (0.34,0.15)

for MCP-I. When using the observed occurrence index (OOI), which is the

probability of being identified in multiple splits, to evaluate stability, the

proposed approach has a mean OOI value for the identified genes and imag-
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ing features of 0.265, compared to 0.254, 0.181, 0.152, 0.132, 0.104, 0.098,

and 0.200 for the alternatives. The improved prediction and stability per-

formance supports the proposed analysis to a certain extent.

5. Discussion

Heterogeneity analysis is a “classic”, yet still highly important topic in can-

cer research. In this article, we have advanced cancer heterogeneity analysis

by integrating molecular and histopathological imaging features. We have

adopted penalization for regularized estimation and selection, and, equally

importantly, the promotion of non-overlapping information. The proposed

analysis and approach are biologically well motivated and intuitive. Theo-

retical investigation, simulation, and data analysis have demonstrated sat-

isfactory performance. Overall, this study can enrich the family of cancer

analytics and suggest a new data integration direction for development.

Furthermore, the proposed analysis can be applied to a wide variety of

data types, models, and molecular and other measurements.

The proposed approach can be extended further to accommodate more

than two types of covariates. This will require revising the last penalty term

to include all pairs (of covariate types), and the extension of the other steps

will be mostly straightforward. In computation, we have adopted multiple
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random initializations, and chosen the final estimator as the one with the

smallest BIC. Other initialization techniques can also be adopted. In par-

ticular, our brief exploration has suggested that the Kmeans initializations

lead to similar results. This is a “classic” problem, and we have chosen

not to reiterate the literature. The adopted FMR technique can reveal

important differences across subgroups in modeling a response. However,

as has been noted in the literature, such differences may or may not be

associated with disease subtypes or other clinical characteristics. In our

data analysis, although FEV1 is an important biomarker for prognosis and

other outcomes, it is still unclear what other clinical significance the iden-

tified heterogeneity and models have. Being beyond our scope, this aspect

is not pursued further. It will also be of interest to explore other and more

complex measures of overlapping information. For methodological develop-

ment, we have focused on molecular and imaging variables. It will be of

interest to expand the scope of the analysis to include clinical/demographic

and other variables.

Supplementary Materials

The Supplementary Materials include additional simulation and data anal-

ysis results referenced in Sections 2, 3, and 4.
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Appendix A

Proof of Theorem 1

Let δn =
√

s/n and w =
(
g′K×1, t

′
K×1,u

′
1|A1|×1

, · · · ,u′
K|AK |×1

,v′
1|B1|×1

, · · · ,v′
K|BK |×1

)′
. To

prove Theorem 1, it suffices to show that under Conditions (C1)-(C4), Q̃n(θC) < Q̃n(θ
0
C) on

the boundary of set {θC : ||θC − θ0C || ≤ Cδn}, where C is a sufficiently large positive constant.

It is equivalent to show that Q̃n(θ
0
C + δnw) − Q̃n(θ

0
C) is strictly negative everywhere on the

boundary {w : ||w|| = C}.

Let Ln(θC) =
∑n

i=1 li(θC) with li(θC) = log f(yi;Xi·,Zi·,θC). Then

Dn(w) = Q̃n(θ
0
C + δnw)− Q̃n(θ

0
C)

= Ln(θ
0
C + δnw)− Ln(θ

0
C)

− nλ2

K∑
k=1

∑
j∈Ak

∑
l∈Bk

cjl

(
1− e−

(α0
kj+δnukl)

2

τ

)(
1− e−

(β0
kl+δnvkl)

2

τ

)

+ nλ2

K∑
k=1

∑
j∈Ak

∑
l∈Bk

cjl

(
1− e−

(α0
kj)

2

τ

)(
1− e−

(β0
kl)

2

τ

)

= Ln(θ
0
C + δnw)− Ln(θ

0
C) + IV.

We have

Ln(θ
0
C + δnw)− Ln(θ

0
C)

= δnw
′

(
∂Ln(θC)

∂θC

∣∣∣∣
θ0
C

)
+

1

2
δ2nw

′

(
∂2Ln(θC)

∂2θC

∣∣∣∣
θ0
C

)
w +

δ3n
6

∑
j,l,m∈C

∂3Ln(θC)

∂θj∂θl∂θm

∣∣∣∣
θ̃C

wjwlwm

= I + II + III,
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where θ̃C lies on the line segment connecting θ0C + δnw and θ0C . With Condition (C1), we have

1√
n

∂Ln(θC)

∂θC

∣∣∣∣
θ0
C

=
√
n

(
1

n

n∑
i=1

∂li(θC)

∂θC

∣∣∣∣
θ0
C

)

=
√
n

(
1

n

n∑
i=1

∂li(θC)

∂θC

∣∣∣∣
θ0
C

− E

[
∂l(θC)

∂θC

]∣∣∣∣
θ0
C

)
→ N(0, Σ̃).

Thus ∂Ln(θC)
∂θC

∣∣∣
θ0
C

= OP (
√
n) = Op(

√
ns). Then,

|I| ≤ OP (nδ
2
n)||w||.

For II,

II = −1

2
nδ2nw

′I(θ0C)w +
1

2
nδ2nw

′

(
1

n

∂2Ln(θC)

∂2θC

∣∣∣∣
θ0
C

+ I(θ0C)

)
w.

Following Lemma 8 in Fan and Peng (2004), with Conditions (C1) and (C2), we have

∥∥∥∥∥ 1

n

∂2Ln(θC)

∂2θC

∣∣∣∣
θ0
C

+ I(θ0C)

∥∥∥∥∥ = op(1/s).

Therefore,

II = −1

2
nδ2nw

′I(θ0C)w +
1

2
nδ2n||w||2 × op(1).

For III, by Condition (C3) and the Cauchy-Schwartz inequality, we have

|III| =
δ3n
6

∣∣∣∣∣∣
∑

j,l,m∈C

∂3Ln(θC)

∂θj∂θl∂θm

∣∣∣∣
θ̃C

wjwlwm

∣∣∣∣∣∣ = δ3n
6

∣∣∣∣∣∣
∑

j,l,m∈C

n∑
i=1

∂3 log f(yi;Xi·,Zi·,θC)

∂θj∂θl∂θm

∣∣∣∣
θ̃C

wjwlwm

∣∣∣∣∣∣
≤ δ3n

6

n∑
i=1

 ∑
j,l,m∈C

M2
2 (Vi)

1/2

||w||3 = Op(s
3/2δn)× nδ2 × ||w||2.

Since s ≪ n, we have

III = op(nδ
2
n)||w||2.
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Moreover,

|IV | = nλ2

∣∣∣∣∣∣
K∑

k=1

∑
j∈Ak

∑
l∈Bk

{
cjl

[(
e−

(α0
kj+δnukj)

2

τ − e−
(α0

kj)
2

τ

)

+

(
e−

(β0
kl+δnvkl)

2

τ − e−
(β0

kl)
2

τ
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−
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e−

(α0
kj+δnukj)

2
+(β0

kl+δnvkl)
2

τ − e−
(α0

kj)
2
+(β0

kl)
2

τ

)]}∣∣∣∣∣ .
Let c0 = max{|corr(Xj , Zl)|, j ∈ Ak, l ∈ Bk, k = 1, · · · ,K} with corr(Xj , Zl) being the correla-

tion between Xj and Zl. If c0 < cPcorr, with Condition (C4), we have

P

 max
j∈Ak,l∈Bk,
k=1,··· ,K

|cPcorr
jl | < cPcorr

 ≥ 1− P

 max
j∈Ak,l∈Bk,
k=1,··· ,K

|cPcorr
jl | ≥ cPcorr


≥ 1−

K∑
k=1

∑
j∈Ak

∑
l∈Bk

P
(
|corr(Xj , Zl) + cPcorr

jl − corr(Xj , Zl)| ≥ cPcorr
)

≥ 1−
K∑

k=1

∑
j∈Ak

∑
l∈Bk

P
(
|cPcorr

jl − corr(Xj , Zl)| ≥ cPcorr − c0
)

≥ 1− 2s2 exp

(
−n(cPcorr − c0)

2

2κ1

)
→ 1.

Thus, if c0 < cPcorr, with probability approaching 1, maxj∈Ak,l∈Bk,
k=1,··· ,K

|cPcorr
jl | < cPcorr. That is,

IV = 0. Next, consider the scenario with c0 ≥ cPcorr. With a first order Taylor’s expansion,

e−
(α0

kj+δnukj)
2

τ − e−
(α0

kj)
2

τ = − 2

τ
e−

(α̃kj)
2

τ α̃kjδnukj , (5.4)

and

e−
(β0

kl+δnvkl)
2

τ − e−
(β0

kl)
2

τ = − 2

τ
e−

(β̃kl)
2

τ β̃klδnvkl. (5.5)

Denote η0
kjl =

(
α0
kj , β

0
kl

)′
and ψkjl = (ukj , vkl)

′. Then we have

e−
(α0

kj+δnukj)
2
+(β0

kl+δnvkl)
2

τ − e−
(α0

kj)
2
+(β0

kl)
2

τ ≜ e−
(η0kjl+δnψkjl)
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= − 2

τ
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τ δn (η̃kjl)

′ψkjl, (5.6)
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where θ̃C =
(
(µ̃)′ , (σ̃)′ , (α̃1,A1)

′ , · · · , (α̃K,AK )′ ,
(
β̃1,B1

)′
, · · · ,

(
β̃K,BK

)′)′
lies on the line seg-

ment connecting θ0C+δnw and θ0C . Denote b0 = min
{{∣∣α0

kj

∣∣ , j ∈ Ak

}
,
{∣∣β0

kl

∣∣ , l ∈ Bk

}
, k = 1, · · · ,K

}
.

First consider (5.4). With δn =
√

s/n, we have α̃kj > b0√
2
. Then with Condition (C4), we have

α̃2
kj

τ
>

b20
2τ

> 1. Since e−xx is monotonically decreasing when x > 1,

∣∣∣∣∣e− (α0
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(α̃kj)
2

τ
2

|α̃kj |
δn|ukj |

≤ b20
τ
e−

b20
2τ

√
2

b0
δn|ukj | =

√
2b0
τ

e−
b20
2τ δn|ukj |.

Similar conclusions can be drawn for (5.5) and (5.6). With
√
nλ2b0e

−
b20
2τ /τ = o(1) in Condition

(C4), we have

|IV | ≤ nλ2

K∑
k=1

∑
j∈Ak

∑
l∈Bk

{∣∣∣∣∣e− (α0
kj+δnukj)

2

τ − e−
(α0

kj)
2

τ

∣∣∣∣∣
+

∣∣∣∣∣e− (β0
kl+δnvkl)

2

τ − e−
(β0

kl)
2

τ

∣∣∣∣∣+
∣∣∣∣∣e− (α0

kj+δnukj)
2
+(β0

kl+δnvkl)
2

τ − e−
(α0

kj)
2
+(β0

kl)
2

τ

∣∣∣∣∣
}

≤ 2nλ2

√
2b0
τ

e−
b20
2τ δn

√
s||w||

= 2
√
nλ2

√
2b0
τ

e−
b20
2τ nδ2n||w|| = op(nδ

2
n)||w||.

It is observed that II dominates I, III, and IV , and is negative, since I(θC) is positive definite

at θC = θ0C . This completes the proof.
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Proof of Theorem 2

Let θ̂ have θ̂C = θ∗C , a strict local maximizer of Q̃n(θC), and θ̂Cc = 0. First, consider α̂k,Ac
k
.

Following Theorem 1 in Fan and Lv (2011), with Condition (C5) and Theorem 1, it suffices to

check condition (8) in Fan and Lv (2011). Let

h1 = (nλ1)
−1

[
∂Ln(θ)

∂αk,Ac
k

∣∣∣∣∣
θ̂

− λ2n
∂ρ2(α,β)

∂αk,Ac
k

∣∣∣∣∣
θ̂

]
,

where ρ2(α,β) =
∑K

k=1

∑p
j=1

∑q
l=1 cjl

(
1− e−

α2
kj
τ

)(
1− e−

β2
kl
τ

)
.

For j ∈ Ac
k,

∂ρ2(α,β)
∂akj

=
∑q

l=1
2
τ
cjl

(
1− e−

β2
kl
τ

)
e−

α2
kj
τ αkj . As α̂k,Ac

k
= 0, ∂ρ2(α,β)

∂akj
|θ̂ = 0

for j ∈ Ac
k. Therefore, λ2n

∂ρ2(α,β)
∂αk,Ac

k

∣∣∣∣
θ̂

= 0. Then, we have

∥h1∥∞ = (nλ1)
−1 max

j∈Ac
k

∣∣∣∣ ∂Ln(θ)

∂αkj

∣∣∣∣
θ̂

∣∣∣∣ .
For j ∈ Ac, we have

∂Ln(θ)

∂αkj

∣∣∣∣
θ̂

=
∂Ln(θ)

∂αkj

∣∣∣∣
θ0

+
(
θ̂C − θ0C

)′ ∂2Ln(θ)

∂αkj∂θC

∣∣∣∣
θ0

+
(
θ̂C − θ0C

)′ ∂3Ln(θ)

∂αkj∂2θC

∣∣∣∣
θ̃

(
θ̂C − θ0C

)
,(5.7)

where θ̃ lies on the line segment connecting θ0 and θ̂.

For the first term of (5.7), consider the event

Ω1 =

{
max
j∈Ac

k

∣∣∣∣ ∂Ln(θ)

∂αkj

∣∣∣∣
θ0

∣∣∣∣ ≤ ζn
√
n

}
,
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with ζn = na(log(n))1/2, a ∈ (0, 1
2
). With Condition (C3) and Bernstein’s inequality, we have

P (Ω1) = 1− P

{
max
j∈Ac

k

∣∣∣∣ ∂Ln(θ)

∂αkj

∣∣∣∣
θ0

∣∣∣∣ > ζn
√
n

}

≥ 1−
∑
j∈Ac

k

P

{∣∣∣∣ 1√
n

∂Ln(θ)

∂αkj

∣∣∣∣
θ0

∣∣∣∣ > ζn

}

≥ 1− 2(p− ak) exp

(
− ζ2n
2κ2

)

≥ 1− 2p exp

(
− ζ2n
2κ2

)
→ 1,

as log(p) = O(na) in Condition (C6). Thus, with probability approaching 1,

max
j∈Ac

k

∣∣∣∣ ∂Ln(θ)

∂αkj

∣∣∣∣
θ0

∣∣∣∣ = O(na/2+1/2
√

log n).

For the second term of (5.7), by Condition (C3) and Cauchy-Schwartz inequality,

max
j∈Ac

k

∣∣∣∣(θ̂C − θ0C
)′ ∂2Ln(θ)

∂αkj∂θC

∣∣∣∣
θ0

∣∣∣∣ ≤ max
j∈Ac

k

n∑
i=1

∣∣∣∣∣∑
l∈C

∂2 log f(yi;Xi·,Zi·,θ)

∂αkj∂θl
(θ̂l − θ0l )

∣∣∣∣∣
≤ max

j∈Ac
k

n∑
i=1

(∑
l∈C

(
∂2 log f(yi;Xi·,Zi·,θ)

∂αkj∂θl

)2
) 1

2

∥θ̂C − θ0C∥

≤
n∑

i=1

(
s (M1(Vi))

2) 1
2

∥∥∥θ̂C − θ0C
∥∥∥ = Op(s

√
n).

For the third term of (5.7), by Condition (C3) and Cauchy-Schwartz inequality,

max
j∈Ac

k

∣∣∣∣(θ̂C − θ0C
)′ ∂3Ln(θ)

∂αkj∂2θC

∣∣∣∣
θ̃

(
θ̂C − θ0C

)∣∣∣∣
≤ max

j∈Ac
k

n∑
i=1

 ∑
l,m∈C

(
∂3 log f(yi;Xi·,Zi·,θ)

∂αkj∂θl∂θm

∣∣∣∣
θ̃

)2
 1

2 ∥∥∥θ̂C − θ0C
∥∥∥2

≤
n∑

i=1

(
s2 (M2(Vi))

2) 1
2

∥∥∥θ̂C − θ0C
∥∥∥2 = op(s

√
n).

Then, Condition (C5) gives ||h1||∞ ≤ op(1). Next, consider β̂k,Bc
k
. Similar to above, let

h2 = (nλ1)
−1

[
∂Ln(θ)

∂βk,Bc
k

∣∣∣∣∣
θ̂

− λ2n
∂ρ2(α,β)

∂βk,Bc
k

∣∣∣∣∣
θ̂

]
.
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For l ∈ Bc
k,

∂ρ2(α,β)
∂βkl

=
∑p

j=1
2
τ
cjl

(
1− e−

α2
kj
τ

)
e−

β2
kl
τ βkl. As β̂k,Bc

k
= 0, ∂ρ2(α,β)

∂βkl
|θ̂ = 0 for

l ∈ Bc
k. Therefore, λ2n

∂ρ2(α,β)
∂βk,Bc

k

∣∣∣∣
θ̂

= 0. Then, we have

∥h2∥∞ = (nλ1)
−1 max

l∈Bc
k

∣∣∣∣ ∂Ln(θ)

∂βkl

∣∣∣∣
θ̂

∣∣∣∣ .
For l ∈ Bc, we have

∂Ln(θ)

∂βkl

∣∣∣∣
θ̂

=
∂Ln(θ)

∂βkl

∣∣∣∣
θ0

+
(
θ̂C − θ0C

)′ ∂2Ln(θ)

∂βkl∂θC

∣∣∣∣
θ0

+
(
θ̂C − θ0C

)′ ∂3Ln(θ)

∂βkl∂2θC

∣∣∣∣
θ̃

(
θ̂C − θ0C

)
, (5.8)

where θ̃ lies on the line segment connecting θ0 and θ̂. For the first term of (5.8), consider the

event

Ω2 =

{
max
l∈Bc

k

∣∣∣∣ ∂Ln(θ)

∂βkl

∣∣∣∣
θ0

∣∣∣∣ ≤ ζn
√
n

}
,

with ζn = na(log(n))1/2. Similar to the analysis of Ω1, we have

P (Ω2) = 1− P

{
max
l∈Bc

k

∣∣∣∣ ∂Ln(θ)

∂βkl

∣∣∣∣
θ0

∣∣∣∣ > ζn
√
n

}

≥ 1−
∑
l∈Bc

k

P

{∣∣∣∣ 1√
n

∂Ln(θ)

∂βkl

∣∣∣∣
θ0

∣∣∣∣ > ζn

}

≥ 1− 2(q − bk) exp

(
− ζ2n
2κ2

)

≥ 1− 2q exp

(
− ζ2n
2κ2

)
→ 1,

as log(q) = O(na) in Condition (C6). Thus, with probability approaching 1,

max
l∈Bc

k

∣∣∣∣ ∂Ln(θ)

∂βkl

∣∣∣∣
θ0

∣∣∣∣ = O(na/2+1/2
√

log n).
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For the second term of (5.8), by Condition (C3) and Cauchy-Schwartz inequality,

max
l∈Bc

k

∣∣∣∣(θ̂C − θ0C
)′ ∂2Ln(θ)

∂βkl∂θC

∣∣∣∣
θ0

∣∣∣∣ ≤ max
l∈Bc

k

n∑
i=1

∣∣∣∣∣∑
j∈C

∂2 log f(yi;Xi·,Zi·,θ)

∂βkl∂θj
(θ̂j − θ0j )

∣∣∣∣∣
≤ max

l∈Bc
k

n∑
i=1

(∑
j∈C

(
∂2 log f(yi;Xi·,Zi·,θ)

∂βkl∂θj

)2
) 1

2

∥θ̂C − θ0C∥

≤
n∑

i=1

(
s (M1(Vi))

2) 1
2

∥∥∥θ̂C − θ0C
∥∥∥ = Op(s

√
n).

For the third term of (5.8), by Condition (C3) and Cauchy-Schwartz inequality,

max
l∈Bc

k

∣∣∣∣(θ̂C − θ0C
)′ ∂3Ln(θ)

∂βkl∂2θC

∣∣∣∣
θ̃

(
θ̂C − θ0C

)∣∣∣∣
≤ max

l∈Bc
k

n∑
i=1

( ∑
j,m∈C

(
∂3 log f(yi;Xi·,Zi·,θ)

∂βkl∂θj∂θm

∣∣∣∣
θ̃

)2
) 1

2 ∥∥∥θ̂C − θ0C
∥∥∥2

≤
n∑

i=1

(
s2 (M2(Vi))

2) 1
2

∥∥∥θ̂C − θ0C
∥∥∥2 = op(s

√
n).

Thus, ||h2||∞ ≤ op(1). This completes the proof.
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Appendix B

Table 5: Simulation settings: regression coefficients of important variables.
Setting p0 Regression coefficient

P1 10

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0 0 0 0 0 0 0 0 0 0

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0 0 0 0 0 0 0 0 0 0

P2 13

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 0 0 0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0 0 0 0 0 0 0

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 0 0 0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0 0 0 0 0 0 0

P3 10

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 -0.5 -0.5 -0.5 -0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 0 0 0 0 0 0 0 0 0 0

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 -0.5 -0.5 -0.5 -0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 0 0 0 0 0 0 0 0 0 0

P4 20

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 0 0 0 0 0 0 0 0 0 0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 0 0 0 0 0 0 0 0 0 0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

P5 10

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0
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