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ABSTRACT

Provenance-based causal analysis of audit logs has proven to be
an invaluable method of investigating system intrusions. However,
it also suffers from dependency explosion, whereby long-running
processes accumulate many dependencies that are hard to unravel.
Execution unit partitioning addresses this by segmenting dependen-
cies into units of work, such as isolating the events that processed
a single HTTP request. Unfortunately, we discover that current
designs have a semantic gap problem due to how system calls and
application log messages are used to infer complex internal pro-
gram states. We demonstrate how attackers can modify existing
code exploits to control event partitioning, breaking links in the at-
tack and framing innocent users. We also show how our techniques
circumvent existing program and log integrity defenses.

We then propose a new design for execution unit partitioning
that leverages additional runtime data to yield verified partitions
that resist manipulation. Our design overcomes the technical chal-
lenges of minimizing additional overhead while accurately con-
necting low level code instructions to high level audit events, in
part with the use of commodity hardware processor tracing. We
implement a prototype of our design for Linux, MARSARA, and
extensively evaluate it on 14 real-world programs, targeted with ex-
pertly crafted exploits. MARSARA'’s verified partitions successfully
capture all the attack provenances while only reintroducing 2.82%
of false dependencies, in the worst case, with an average overhead
of 8.7%. Using a new metric called Partitioning Attack Surface, we
show that MARSARA eliminates 47,642 more repartitioning gadgets
per program than integrity defenses like CFI, demonstrating our
prototype’s effectiveness and the novelty of the attacks it prevents.
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1 INTRODUCTION

The complexity of interactions within modern computers makes it
difficult to detect, prevent, and reverse unwanted system changes,
such as in the case of an intrusion. A promising method of under-
standing suspicious events is causal analysis, in which system audit
logs are transformed into a data provenance graph that encodes
causal dependencies and historical relationships between subjects
(processes) and objects (files, sockets, etc.) [5, 29, 33, 38, 42, 47, 52].
The resulting provenance graph can then be used by human ana-
lysts or monitoring tools for intrusion detection [3, 14, 68], forensic
investigation [4, 34, 42, 52, 56, 57, 60, 85], and more [2, 19-21, 34, 95].

However, due to the noisey and complex nature of system in-
teractions, provenance graphs are not always sufficient for inves-
tigating suspicious activity. Specifically, long-running processes
can accumulate causal dependencies over time that become increas-
ingly difficult to unravel; referred to as the dependency explosion
problem [79] (a.k.a. false provenance). For example, consider a web
server handling many requests in parallel. Due to the interwoven
system calls invoked by multiple threads, data provenance will
falsely conclude that all the files read during a request are causally
related to all the currently connected remote IP addresses, which
is excessive. However, multi-threading is not the only source of
false provenance. Even in a single-threaded web server, a request
response will link back to all previously handled requests, even
though no actual data flow between the most recent request and
prior responses occurred.

To address dependency explosion, the research community has
proposed execution unit partitioning (EUP) [36, 48-50, 56—58]. In
EUP, audit log events are grouped at the sub-process level, subdi-
viding a monolithic long-running process into autonomous units of
work that are easier to trace in the graph. Signatures for identifying
where to place partitions are typically generated during an offline
profiling phase and may be encoded in several ways, such as a state
machine of regular expressions to be matched against the audit
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log [49]. Continuing the web server example, a unit would be the
code that processes a single request-reponse pair and the signature
is the sequence of system calls and/or application level logs that
the code emits. For example, the code might be expected to open a
socket and record an access log entry with the source IP address,
time, and requested URL at the start of its handling routine. Once a
system call closes the socket, this marks the end of that unit. In this
way, the data provenance system can distinguish between requests,
correctly identifying which objects were accessed or modified on
their behalf. In short, EUP is what makes data provenance viable
for auditing real-world production systems.

However, all existing EUP solutions [36, 48—-50, 56—58] make
a dangerous implicit assumption, which we are the first to point
out. Namely, they assume that if the audit log events match the
expected signatures, the underlying application must be performing
the expected execution. Ensuring this in real-world settings requires
complete user program integrity, otherwise a low level bug (e.g.,
overflow, use-after-free) giving rise to emergent execution [9, 18,
75] or out-of-bounds writes [40] can produce erroneous signature
matches. This in turn can add and remove partitions, reintroducing
false dependencies and severing legitimate ones. Potentially, this
would make it possible for the attacker to hide their steps from
investigators while also framing innocent parties.

Would real-world adversaries be motivated to perform such an
attack on EUP-enabled systems? Unsurprisingly, attackers already
tamper with audit logs to cover their tracks [31, 43, 65, 72, 80].
Tampering is so prevalent that 72% of incident responders have en-
countered it during real investigations [15, 23], to which numerous
log integrity defenses have been proposed [7, 24, 32, 37, 41, 44, 45,
55, 62, 66, 67,71, 73, 74, 91, 92]. However, to our knowledge, all past
solutions focus solely on an offline threat model, with tampering
occurring after events are written to the log and are resting on a
storage device. This is a distinctly different threat to what we just
described, where changes to the user application’s online execution
yields frustratingly incorrect analysis results.

In this work, we are the first to present two avenues for on-
line tampering designed to frustrate provenance analysis without
violating traditional notions of log integrity. At a high level, the
first technique, spoofing, attempts to inject fake log events into
the runtime by either maliciously invoking event-emitting code or
by tampering with write buffers via an arbitrary write primitive
(e.g., format string vulnerability). The second technique, delaying,
introduces memory corruptions with deferred repercussions, allow-
ing the current unit to finish normally, whereas a subsequent unit
(with no discernible causal relationship to the prior) resumes the
attack. To demonstrate practicality, we show how to create working
examples starting from real-world CVE vulnerabilities.

In response to this new threat, the obvious solution would seem
to be the deployment of known control flow integrity (CFI) tech-
niques. However, we surprisingly discover that CFI can only prevent
a subset of EUP-targeted attacks, specifically those built on control
hijacking. Even then, depending on how subtle the hijack is (e.g.,
overwriting a code pointer to an arbitrary address versus another
valid function), the overhead of enforcing sufficiently fine-grained
CFI can be upwards of 47% [39]. Conversely, when data-only ex-
ploits are leveraged, prevention exceeds CFI's scope [40].
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Seeking a different solution, we propose a new defense to validate
the placement of partitions. Specifically, given knowledge about
the kinds of events certain parts of the code should yield (data flow),
and their expected orderings (control flow), our solution compares
runtime execution traces to audit logs to ensure consistency. If the
attacker tries to change the ordering with control flow bending, or
inject fake event data from another part of the program, our defense
will detect the discrepancy, disregarding the resulting events during
partitioning to preserve the integrity of the provenance graph.

However, designing a solution around this idea raises several
technical challenges. First, our system has to accurately determine
which event sequence to expect for a given execution. Fortunately,
rather than having to consider all possible executions, our system
can focus on just the ones used offline to generate EUP signatures.
Any program paths outside this scope were not intended by the
EUP algorithm to yield partitions in the first place. To accomplish
this, we propose a binary analysis that combines concrete execution
traces with symbolic analysis.

Next, our solution has to collect the necessary additional runtime
information to perform validation while minimizing additional over-
head compared to prior (insecure) work. To this end, we propose
a design that is compatible with the hardware processor tracing
(PT) available in commodity processors!, which a kernel driver can
securely control. We then overcome the challenge of connecting
low level instruction sequences collected with PT to high level audit
log events to accurately perform validation.

To evaluate our design, we implement a prototype for Linux,
MARSARA?, and extensively evaluate it on 14 real-world programs
using expertly crafted exploits. MARSARA accurately partitions
all the attack provenances while only reintroducing 2.82% of false
dependencies, in the worst case, with an average performance over-
head of 8.7% over traditional auditing frameworks. We also create
a new metric for measuring the vulnerability of user programs
to EUP attacks, Partitioning Attack Surface (PAS), and show that
MARSARA removes 47,642 more gadgets than CFI on our real-world
programs, on average per program. To promote further exploration
of solutions to the new online log integrity problem, we have open
sourced our code and data.3

2 BACKGROUND & MOTIVATION

Consider an Nginx web server with several worker processes, host-
ing a music website that the attacker aims to steal from. He starts
by triggering CVE-2013-2028 using a maliciously crafted HTTP
request, originating from the IP address x.x.x.x in Figure 1. This
causes a buffer overflow within one of the worker processes, allow-
ing him to inject shellcode and corrupt a code pointer. However,
instead of corrupting any code pointer arbitrarily to point at the
shellcode, he cleverly overwrites a particular event handler* that
he knows the worker will not use to complete his request. Conse-
quently, his HTTP request completes with no anomalous system
calls or application messages. We call this novel setup a delay attack,
which we elaborate on in Section 3.

1 Available in Intel®, AMD®, and ARM® processors.

2Monitor Application Runtimes, Stop Arbitrary Repartitioning Attacks.
Shttps://github.com/carter-yagemann/MARSARA
“ngx_http_process_request_line
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— ®
(a) Whole-System Provenance Analysis

Figure 1: Motivating example. The attacker sends a request
@ that produces a seemingly normal response 2. However,
it has actually employed a delay to trigger the payload 5
during a benign request @ to exfiltrate a sensitive file ©®),
which is further obfuscated using spoofed log messages.

Later, a request from a benign IP, y.y .y .y, is received, causing
the worker to access the corrupted code pointer and execute the
shellcode. It starts by reading sensitive local files into a buffer.
However, instead of immediately transmitting the data back to
the attacker’s server, it first writes several forged log entries into
Nginx’s access and debug logs to make it look like the current
request has ended. This is another novel attack technique, which
we coin spoofing and also elaborate on in Section 3. With the spoofed
messages inserted, the shellcode transmits the buffer of sensitive
data back to the attacker and then the worker resumes normal
operation.

2.1 Existing Defenses & Limitations

Intrusion Detection & Prevention. Several aspects of the mo-
tivating attack make it difficult to detect or prevent at the onset.
First, the initial exploit does not emit any anomalous system calls
or application-layer events, rendering host-based defenses reliant
on them ineffective. Obfuscation makes it impractical to detect the
payloads on the network, and the shellcode may no longer be in
memory by the time a symptom of the attack is observed. The
corrupted code pointer requires fine-grained CFI to detect because
its legitimate value is calculated dynamically during runtime and
the necessary instrumentation can yield upwards of 47% execution
overhead [39].

Whole-System Provenance Analysis. Whole-system prove-
nance tools [5, 29, 33, 38, 42, 47, 52] record system call level events
to establish causal dependencies between objects and subjects, re-
sulting in a provenance graph. Figure 1 (a) shows the provenance
graph for our motivating attack scenario without EUP. While the
attacker’s IP address is contained in the provenance graph, we also
see the false dependency problem described in Section 1, where
every open socket is associated with the exfiltrated data, making
it inconclusive which connection instigated the attack and which
request delivered the exploit and payload. At the same time, every
file Nginx touched since its startup (e.g., configurations, temporary
files) is also linked to the attack, making it inconclusive what was
exfiltrated. In short, human analysts and automated systems do not
have a clear picture for answering their forensic questions.

3339

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Unit-based Provenance Analysis. EUP 36, 49, 51, 56, 58, 59] at-
tempts to solve this dependency explosion problem by partitioning
the execution of a long-running process into autonomous execution
units in order to provide more precise causal dependency graphs.
While EUP is very useful when the adversary is oblivious to how it
works, the delay and the spoofing attacks in our motivating example
exploit it to further obfuscate what occurred.

Figure 1(b) shows the result. The delay attack successfully par-
titions away the request from the attacker (x.x.x.x), causing
y.y.y.y to appear as the origin point of the attack. Addition-
ally, the spoofing employed by the shellcode causes the reading of
sensitive files to be partitioned separately from its transmission,
obfuscating what was actually exfiltrated.

It may be tempting to argue that if the corrupted worker could
be identified, then all these problems would be solved, however
this is not the case. Since Nginx reuses workers across requests,
simply following its PID will wrongly associate unrelated events
from prior and future requests, reintroducing false dependencies.

2.2 Insights & Lessons Learned

From the above discussion of the motivating example, we observe
that data provenance systems that only analyze traditional audit
log events will never be able to verify that the recorded, seemingly
normal, patterns were emitted by normal program execution, and
not by delay or spoofing attacks. Conversely, systems like CFI that
rely purely on low level control flow will never be able to answer
forensic questions that consider the data contents of reads and
writes. Furthermore, we demonstrate in Subsection 3.3 that data-
only attacks can also leverage delays and spoofing, which is outside
CFI’s scope to handle.

Instead, our solution is to leverage execution tracing and knowl-
edge gathered during the offline profiling for EUP to recognize the
manipulative events introduced by the attacker. In this example,
knowing that the worker processing requests executed a program
path (due to the delay attack) that was never seen during profiling
indicates that it should not be isolated into its own partition. Sub-
sequently, recognizing that several log messages originated from a
previously unknown code location (the shellcode), indicates that
they should not be considered during partitioning, preventing the
attack from separating the sensitive file reads from network sends.

In Section 3, we elaborate on how these novel delay and spoofing
techniques can empower existing exploits to hinder provenance
analysis. In Section 4, we formalize the threat model based on our
attack techniques and then our proposed defense is presented in
Section 5.

3 EXECUTION REPARTITIONING ATTACKS

We propose a novel set of techniques for augmenting existing ex-
ploits to hinder defenses and forensic tools reliant on data prove-
nance. Our techniques enable exploits to achieve their original goal
while simultaneously obfuscating the true sequence of attack events
from defenders, making it harder to determine where the attack orig-
inated from and what was done to the victim system. The techniques
can be divided into two categories, spoofing and delays, which ma-
nipulate the audit events emitted from the target application prior
to them being recorded by the auditing framework. Consequently,
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Figure 2: High level example of augmenting an exploit with
spoofing to thwart data provenance. By adding a close socket
system call, the call to execute Bash is partitioned into a dif-
ferent unit, isolating it from the attacker’s exploit.
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these techniques cannot be detected with traditional log integrity
defenses [7, 24, 32, 37, 41, 44, 45, 55, 62, 66, 67, 71, 73, 74, 91, 92],
which only detect changes after the logs are committed to storage.

3.1 Spoofing Attacks

Spoofing entails generating artificial system calls and application
log messages in order to forge the necessary audit log events to
satisfy an EUP signature. Typically, the attacker’s exploit begins in
the middle of an execution unit, with events linking the unit back to
an ingress point. Figure 2 shows this for a web server example, with
an open socket system call linking the current unit to the attacker’s
IP address.

Suppose the payload for the exploit is designed to start a reverse
shell connected to a remote machine controlled by the attacker,
thereby granting them access into the system. If the payload were
triggered immediately, data provenance would trivially associate
the resulting execute and open socket system calls to the current
execution unit. Consequently, a system or human analyst wanting
to investigate any of these events can recover the entire sequence
using data provenance. For example, if the Netcat process is ex-
amined, a backward provenance query will reveal the attacker’s
IP address and the request used to compromise the web server.
Similarly, a forward query will reveal the remote server used to
issue commands and any data it exfiltrated.

What would happen if the payload closed the initial socket before
invoking the execute system call? As it turns out, most existing
EUP algorithms for data provenance will mark this as the end of the
current execution unit and partition all subsequent audit log events
into a new unit, as reflected in Figure 2.5 With the call to execute
Bash now in a new unit, the previously described data provenance
query will not include the attacker’s IP address, nor contain the
request carrying the exploit and payload. In summary, with just
one added system call, the attacker has thwarted the ability for data
provenance to recover the full attack sequence.

While spoofing is conceptually straightforward, signatures can
require many events, all of which have to be spoofed in the correct
order to successfully match a signature. Continuing the previous
example, for a real server like Nginx, simply closing a socket is not
sufficient. There are also dozens of debug messages that have to
be spoofed to create a valid signature. In Section 6, we evaluate an

5The only exception we know of is BEEP [50] because it instruments programs with
an explicit “end-of-unit” event, however this can also be spoofed to perform the attack.

3340

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Web Server

2.2.2.2 @
execute
ﬁ H Netcat ‘

open socket

<

close

Bash

open socket

Figure 3: High level example of augmenting an exploit with
delaying to thwart data provenance. By corrupting a code
pointer, rather than directly executing the payload, a differ-
ent unit can be exploited into triggering the next stage.

exploit that uses CVE-2009-4769 to target httpd’s tolog method
to conduct a successful attack.

Format string bugs warrant special mention, as they are par-
ticularly powerful for spoofing. For example, CVE-2012-0809 in
sudo can be exploited to yield any string starting with the prefix
“sudo: ”, making it very flexible for matching signatures. Interpreters
that allow scripts to specify format strings (PHP: CVE-2015-8617,
CVE-2016-4071) are also ripe for abuse in this manner.

3.2 Delay Attacks

Rather than forging fake events to create a partition, the attacker
can alternatively augment their exploit to intentionally delay the
manifestation of certain actions to later execution units, covertly
spanning partitions in a way that will not be reflected in the data
provenance. Figure 3 visualizes this at a high level, reusing the web
server as an example. Rather than directly executing the payload,
which would causally link the attacker’s IP address and request
to the resulting reverse shell, the exploit instead corrupts a code
pointer to point to the payload and then exits normally. When a
subsequent (benign) request causes the corrupted pointer to be
dereferenced, it will inadvertently trigger the next stage of the
attack with no audit log events linking it back to the attacker’s
request. This not only decouples the attacker from the payload, but
also frames a benign IP address as being the ingress point.
However, delays do not always require a memory safety vio-
lation. For example, event handling loops in many programs can
encounter situations where a task must be deferred and rescheduled
for handling at a later time (e.g., because a necessary resource is
not yet available). Offline analysis can miss these alternate code
paths during profiling, creating unintended delay attack primitives.

3.3 Crafting Real-World Exploits

Based on our techniques of spoofing and delaying, we present 3
working exploits against real-world programs to encompass the
techniques an adversary can use to exploit repartitioning attacks.
Our exploits are based on known CVEs, extended using our attack
techniques to invoke erroneous data provenance results.

CVE-2013-2028. This CVE stems from a bug in Nginx’s handling
of chunked HTTP requests and can be exploited to cause an out-of-
bounds write. We use this to target Nginx with the delay technique.
Specifically, we exploit the original stack overflow to change two
local variables that are then used by the buggy function to perform
a write, creating an arbitrary write primitive. We exploit this in turn
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to corrupt one of the program’s global code pointers, implementing
the delay primitive. To simplify the payload, we make the program’s
heap executable prior to the attack so that the malicious HTTP
request can carry its own shellcode. In a real-world setting, the
attacker could instead trigger the CVE multiple times to write a
ROP chain into memory that corrupts the global pointer.

CVE-2004-0541. This CVE stems from a bug in one of Squid’s
remote authentication modules, which can be remotely triggered to
cause a buffer overflow. Our attack augments exploits for this CVE
with the spoofing technique. Specifically, we trigger the overflow
in its NTLM authentication child process to inject and trigger a
ROP chain, which in turn messages the logging daemon via an IPC
channel to print arbitrary log strings. We use this spoof primitive
to forge the necessary messages to complete a valid EUP signature,
ending the current unit and starting a new one, and then trigger
the payload, which is now causally disconnected from the attacker.

CVE-2009-4769. This CVE stems from multiple format string
bugs in httpd, which can be triggered remotely by a HTTP re-
quest to perform arbitrary reads and writes. Specifically, the buggy
logging procedure is intended to record details pertaining to the
incoming HTTP request (timestamp, IP address, requested file, re-
sponse code). However, by exploiting it with the spoof technique,
an attacker can control the write to inject multiple seemingly le-
gitimate entries into the log, thereby partitioning the attack across
several bogus execution units with no causal dependencies. The
exploit can then trigger a payload using arbitrary writes or leak
data back to the attacker without creating a link to the malicious
request.

4 THREAT MODEL & ASSUMPTIONS

Defender. The defender’s goal is to investigate an intrusion with
the aid of a full-system data provenance framework. In order to
handle complex real-world long-running programs, it relies on EUP,
as is the norm [36, 48-50, 56—58]. Conversely, simple short-lived
programs that do not incur dependency explosion can have all their
events grouped into a single partition and do not require further
consideration for this work. In accordance with prior work [36, 48—
50, 56-58], partitioning signatures do not span multiple programs,
so each can be analyzed independently. We assume kernel integrity
and correct ordering of audit data, which are standard prerequisites
in all full-system auditing [36, 48-50, 56—58]. We only consider
EUP attacks and note that our proposed solution is compatible with
existing approaches to offline tamper-evident logging [7, 24, 32, 37,
41, 44, 45, 55, 62, 66, 67, 71, 73, 74, 91, 92].

CFI has some capacity to coincidentally reduce the EUP attack
surface by limiting the range of unexpected control behaviors a
program can exhibit. To account for this, we define a metric for
quantifying attack surface reduction in Subsection 4.1 and perform
a comparison between CFI and our solution in the evaluation. Our
findings show that our design offers more protection than CFI,
against EUP attacks, across all 14 evaluated real-world programs,
eliminating 47,642 additional delay and spoof gadgets per program.

Attacker. The attacker’s primary goal is to take control of a target
program in order to gain a foothold into the victim’s system. For
brevity, we will consider a production server environment where
the attack surface is an internet accessible service, such as a HTTP
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server. Since the attacker expects the defenders to be using an
auditing framework that allows for data provenance, he is motivated
to augment the attack with the techniques described in Section 3
to make it as difficult as possible to uncover his activities.

The minimum prerequisite for the attacker to succeed is one
vulnerability in the target program that enables control flow hijack-
ing or arbitrary write, along with knowledge of the EUP algorithm
being used and a copy of the target program so he can know the
partitioning signatures in advance. However, to demonstrate the
strength of our proposed defense, we will consider a significantly
more powerful adversary who has a complete local copy of the
victim system and access to an arbitrary read vulnerability in the
target program, granting him complete knowledge of the remote
program’s state and the ability to refine his attack to work on the
first try, guaranteed. By demonstrating that our defense is able to
correctly recover the complete attack provenance of this powerful
adversary, we also demonstrate the ability to handle weaker, more
realistically constrained attackers.

4.1 Quantifying EUP Attack Surface

In order to quantify the surface for EUP attacks and facilitate objec-
tive comparisons between defenses, we propose a new metric called
Partitioning Attack Surface (PAS). The intuition behind PAS is to
quantify how many audit-event-producing sites (e.g., system calls,
application log writing procedures) are reachable from any point
in the program based on the policy being enforced by integrity
defenses. The more sites that are reachable from the current point
in the execution, the more events an attacker can choose from to
match a signature.

To measure PAS in real-world programs efficiently, given a graph
model representing the enforced policy, we define audit-event-
producing sites as nodes that invoke either a system call or write
library function (e.g., print £). Thus, for each node n in policy N
and node e in the set of audit-event-producing nodes E, PAS is
defined as:

ZnEN,eEE r(n, e, {E - e})
INI

where r is a function that returns 1 if e is reachable from n without
going through any other node in E (i.e., {E — e}) and returns 0
otherwise. This check is relevant because going through another
node in E produces a side-effect that the attacker does not desire.
Ultimately, higher PAS values reflect a weaker defense that grants
greater flexibility to the attacker.

(1)

5 DESIGN & IMPLEMENTATION

The high level idea of MARSARA is to use control flow data and
knowledge of event-producing code locations (i.e., what messages
or system call parameters they can produce) to validate unit signa-
ture matches. Figure 4 shows our proposed design, which similar to
prior work in EUP [36, 49, 58] consists of an offline profiling phase,
an online auditing phase, and a post-forensic analysis.

During offline profiling, MARSARA records and analyzes PT
traces of the target program, using a binary symbolic analysis,
to identify important control and data flows along with possible
starting points for execution units (Subsection 5.2).
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Figure 4: MARSARA architecture overview. An offline pro-
filing phase yields a model of expected program behavior,
which is used alongside execution traces and audit logs col-
lected during online auditing to perform verified partition-
ing in post-forensic analysis.

During online auditing, MARSARA records the program’s
execution and stores it alongside the traditional audit log of system
calls and application log messages (Subsection 5.3).

Lastly, during post-forensic analysis, MARSARA compares
the recorded trace against the resulting audit log events to validate
each occurring event (Subsection 5.4) and then uses these verified
events to determine where to place partitions, yielding verified
execution units (Subsection 5.5).

At first glance, this approach may seem too restrictive and false
positive prone (i.e., rejecting of valid events) to be usable in real-
world systems, however it works because:

(1) The cost of a false positive is low, merely reintroducing an
unnecessary dependency back into the data provenance.

(2) Since all EUP work is based on offline profiling [36, 49, 58],
no such system can guarantee that signatures are complete
in the first place, and yet have demonstrated value in making
data provenance usable for real-world systems [34].

Ultimately, MARSARA is effective if it preserves attack provenances
while having a false dependency reduction and performance com-
parable to previous (insecure) systems.

In this work, we focus on demonstrating the ability for MARSARA
to ensure integrity using verified events and execution unit sig-
nature matches, as opposed to proving that our EUP algorithm
is the most accurate. Readers interested in the latter topic should
refer to OmegaLog [36], which implements and evaluates a similar
partitioning strategy (without integrity verification).

5.1 Intel Processor Trace

Before diving into the phases of MARSARA, it is important to under-
stand how PT works, since we intentionally design our solution to
be compatible with it for better performance. PT enables MARSARA
to securely audit the basic blocks executed by user space programs
and can be controlled with a kernel driver, which we implement
as part of MARSARA. For brevity, we will focus on how Intel’s
implementation of PT works, which is the architecture supported
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by our prototype, however our design can be generalized to other
PT implementations as well.

When a program for which MARSARA has a model is loaded
for execution, it configures Intel PT to trace the execution. The
MARSARA kernel maintains per-thread trace buffers, redirecting
PT’s data output appropriately during context switches. Anytime a
branching or indirect control transfer instruction occurs, PT records
an event packet with the outcome. For branches, the packet is a
single taken-not-taken (TNT) bit, whereas for indirect transfers (in-
direct call, indirect jump, and return), the target instruction pointer
(TIP) is recorded. The Intel PT hardware automatically applies com-
pression to the written packets to conserve space.

At the start of execution, the MARSARA kernel driver takes a
snapshot of the program’s executable pages and then any additional
pages loaded into memory afterwards (e.g., mmap) are also captured
and recorded. This also includes dynamically generated code, such
as just-in-time (JIT) compilation. The resulting sideband data con-
sisting of the initial snapshot, subsequently mapped executable
memory, and context switch events, are interwoven with the PT
data in the thread buffers to yield a linear stream of data.

Each stream contains all the necessary data to recover the pro-
gram’s execution, down to individual instructions, with the help
of a disassembler. However, as we will explain in Subsection 5.2,
not every instruction needs to be recorded for auditing, so to con-
serve space we distill the instruction sequences using kernel worker
threads into relevant events and metadata centered around basic
blocks. Since the PT data is not needed until the post-forensic
investigation phase, the workers process data asynchronously to
minimize overhead.

Intel PT is only configurable in the root CPU privilege level
using model specific registers (MSRs) and writes directly to physi-
cal memory. This allows the kernel to prevent all user space pro-
grams from reading or tampering with the trace. It also bypasses
CPU caches, eliminating potential side channels and effects on the
program’s performance. When the trace buffer is almost full, a
non-maskable interrupt (NMI) is raised, allowing the contents to
be flushed without any data loss. As a result, systems leveraging
Intel PT have demonstrated low performance overheads (under
7% [27, 39, 90]) and are capable of offering strong security integrity
guarantees [27, 90].

5.2 Offline Profiling

In the offline phase, we propose to overcome the challenge of ac-
curately determining a program’s control and data flows by using
a combination of concrete traces and symbolic analysis. Specifi-
cally, MARSARA reads a target binary and generates a model of
the program consisting of the possible paths between application
log events, systems calls, and function/loop heads. Formally, given
a binary b, MARSARA generates a graph G =< V, E > where V is
a subset of b’s basic blocks, and E = V X V is a set of edges such
that (u,v) € E if there exists a path from u to v in b’s control flow.
System call and application log event nodes then get annotated
with regular expressions defining their possible data values, calcu-
lated using binary single-path symbolic execution over the profiled
traces. We use angr [76] for our Linux prototype.
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Algorithm 1: Model generation in MARSARA

1 Func BuiLbpMobpEL

Inputs :Binary b
Outputs:Model G
2 F « GETLOGGINGPROCEDURES(D)
3 V «— U GEeTCALLSITES(D, f)
feF

4 V « V Ub.libc_calls U b.function_heads U
b.loop_heads U b.function_returns

5 foreach v € V do

6 v.rva < CALCULATERVA(b, v)

7 if v is log call site then

8 ‘ v.logstring « GETLOGFORMATSTRING(b, v)
9 else if o is loop head then

‘ v.is_infinite_loop < HasNOExITEDGES(b, v)

E—{(ueV,oeV) |Ipathu - vinb}

Algorithm 1 shows the steps to produce a model in more detail.
First, MARSARA identifies the set 7 of logging procedures that
produce application level messages. Then, using a first pass on the
binary’s CFG, derived from profiled execution traces, MARSARA
captures the basic blocks that end in a call to any function in F.
Next, MARSARA collects all basic blocks that correspond to heads
of functions/loops and blocks that lead to system calls. In practice,
we find that applications rarely make direct system calls, relying
instead on standard libraries (e.g., 1ibc) that expose equivalent
user APIs. To account for this, MARSARA also collects all calls
to functions in 1ibc and analyzes them to determine the possible
system calls they can emit.

To accurately map these basic blocks to events received from
PT and audit logs, MARSARA needs to collect further metadata
about them. MARSARA first tags each node v € V with its corre-
sponding type: log, system call, function head, loop head, standard
library call. Then, MARSARA calculates the node’s relative virtual
address (v.rva), which corresponds to v’s offset from the binary’s
base virtual address. RVAs allow MARSARA to recognize addresses
reported by PT, which are absolute addresses affected by address
space layout randomization (ASLR). For each node v that is a call
site to a logging procedure, MARSARA uses symbolic execution to
produce constraints that are then recorded as the log message’s for-
mat specifier (v.1ogstring). This is essentially a regular expression
of all messages this code location is expected to produce. Finally, to
be able to identify execution units (Subsection 5.5) during the later
post-forensic analysis phase, MARSARA marks all function and
infinite loop heads. We consider such nodes to be possible candi-
dates for starting new execution units since they often correspond
to event-handling routines. While this is a heuristic, it has been
well studied and considered reliable, appearing in many prior EUP
systems [36, 49, 58].

5.3 Online Auditing

At runtime, MARSARA leverages PT to capture low level execution
events alongside traditional audit logs of system calls and applica-
tion level log messages. PT provides a hardware-enforced record of
the program’s control flow, application log messages reflect data
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flow, and system calls capture OS events. We pick these sources
because they are generated by different layers of the environment
(hardware, application, kernel) and are correlated. This provides
MARSARA a rich perspective from which to verify consistency.

Hardware Processor Trace. Pure software solutions for record-
ing runtime execution suffer from high performance overhead and
weak security guarantees. PT is a hardware mechanism designed
to address this by efficiently and securely capturing instructions as
they are executed in the CPU. Intel’s implementation has been in-
cluded in their processors since 2015, making it a prevalent feature
in most computing environments. Although we use Intel’s imple-
mentation (Subsection 5.1) in MARSARA, our design generalizes to
other PT hardware as well.

Application Layer Events. At runtime, audited programs are
loaded with an instrumented standard library that augments the
write call, as is typical of prior EUP designs [36]. In addition to
writing to the original destination, the new call also forwards mes-
sages to the framework used to record system calls. Most stan-
dard auditing frameworks (e.g., auditd) provide an API with this
functionality. To simplify the segmentation of messages during
post-forensic analysis, the instrumented write also appends the
process/thread IDs and current timestamp to the sent messages.
Although the event logging frameworks used by user space
programs are diverse and heterogeneous, the vast majority rely on
standard runtime libraries (e.g., 1 ibc) to efficiently write logs while
preserving portability across systems. MARSARA takes advantage
of this to capture log messages that indicate various states in the
execution units. A more detailed discussion of supporting hetero-
geneous logging frameworks is presented in prior work [36] and
we discuss our prototype’s compatibility with other programming
languages with alternative standard libraries in Section 7.

System Calls. Recording for system calls and their parameters are
provided by the auditing frameworks MARSARA integrates with,
which also include an API for MARSARA to forward application
log messages into. For our prototype, we use Linux Audit.

5.4 Signature Match Validation

During the post-forensic analysis phase, MARSARA performs two
tasks, starting with cross-validation of events received from PT with
those from the audit logs, based on the model generated offline
in Subsection 5.2. This yields validated audit events that will then
be used to produce wverified execution unit partitions, which we
describe in Subsection 5.5.

Algorithm 2 formalizes our cross-validation matching. It takes
three inputs: the generated model G, a PT trace 7, and an audit
log A of system calls and application log messages. For each event
e received from the PT trace, MARSARA first determines if it is
a system call event or a code block event. If it is a system call,
MARSARA extracts e’s call number and checks that it matches the
number on the next event received from the audit log. If the two
numbers do not match, then the event is invalid and discarded.

Next, if the system call originates from a code block that is
either in 1ibc or the application’s binary, MARSARA obtains the
corresponding node in G that matches the event node’s RVA. It then
validates if the path observed so far matches at least one known
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Algorithm 2: MARSARA'’s trace validation algorithm.

1 Func VALIDATETRACES
Inputs :Model G, PT Trace 7, Audit Trace A, binary b
Outputs: Validated Events Path $, Warnings ‘W

2 W — {0}, P « {D}

/* @ is the last matched node */
3 w=>0
4 foreach evente € 7 do
5 if e is system call then
6 a < GETNEXTEVENT(A)
7 if e.syscall_num = a.syscall_num then
8 ‘ Pe—PU{(e,a)}
9 else

‘ W — WU {(e,a,critical)}
if e.object € {libc, b} then
u < GETNODEBYRvA(e.rva)
@ < VALIDATEEANODE(e, 1, a)

else
u «— GETNODEBYRvA(e.rva)

@ « VALIDATEEANODE(e, u, @)

Func VALIDATEEANODE
Inputs :PT event e, nodes w, u, Audit event a
Outputs:Last matched node

18 match « e is application log event A
MATCcHLOGSTRING(a.logmessage, u.logstring)

if match Vv (e is code block) then

if (w,u) € E then

Pe—PU{(e,au)}

return u

19
20
21
22
23 else
24 if ¢£(u) € {function head} v £(w) € {function return}
then
W — WU {(e,a,u, low)}
Pe—PU{(e,au)}

return u

25
26
27
else
W — WU {(e,a,u,critical)}
return ¢

28
29

30

31 else

W — WU {(e,a,ucritical)}
return ¢

32

33

signature. Non-system call PT events (i.e, loop heads, function
heads, and returns) are treated in a similar manner.

To check for path validity, MARSARA keeps track of the last
matched node in the current observed trace. If the newly matched
node u is an application log node, MARSARA extracts the node’s
format specifier (u.logstring) from the model, and confirms that
it matches the concrete message recorded in the audit log. If a
discrepancy is found, the match is invalidated.

When the log matching succeeds, or alternatively, if u is simply
a code block, MARSARA checks if there exists an edge (w,u) € E
between the last matched and current node. If it exists, MARSARA
considers the path to be valid and updates that last matched node
to be u. If a discrepancy is found, it is invalidated.
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Warning Types. When MARSARA detects invalid events, it
records warnings of two severity levels: low and critical. Currently,
warnings are intended only to provide verbosity so we can em-
pirically evaluate MARSARA'’s accuracy. They do not need to be
considered by investigators and we leave the possibility of using
them to aid in investigations to future work.

The severity is based on what kind of discrepancy is detected in
the model. In benign experiments where no attack is occurring, if a
direct code branch causes a warning, it is ranked low because this
is due to a missed path during offline profiling and can be resolved
using more data. Recall that all prior work also relies on offline
profiling and therefore cannot guarantee completeness.

Conversely, if the inconsistency (in benign experiments) arises
from indirect transfers (indirect jump, indirect call, return), it is
ranked critical since this is a limitation in the symbolic analysis used
during offline profiling. This represents a limitation that cannot be
resolved with more data, which is why we differentiate it from low
warnings. Fortunately, as we demonstrate in our evaluation, these
are rare, meaning that our design is effective overall.

5.5 Execution Partitioning

MARSARA'’s partitioning logic relies on the observation that de-
velopers of long-running processes create log messages for the
important events in each execution unit’s lifecycle. For example,
for a web server that handles user requests, it is customary for
developers to log the user’s request at the start of each unit. Such
log messages often reside at the start of an event-handling function
(typically a function pointer) or an infinite loop, which is why our
binary analysis in Subsection 5.2 labeled them explicitly.

However, determining which log messages signal the start of
a new execution unit without semantic analysis of the message’s
content is a challenging task. To overcome this, we combine infor-
mation about loops and functions from the offline profiling phase
with runtime information about log messages to uncover the heads
of execution units.

As discussed in Section 5.2, MARSARA assigns each code block
v with a label ¢ (v) indicating whether v is an infinite loop or the
head of a function. Such blocks become candidates for starting new
execution units. MARSARA keeps a running count of the number
of times a log messages has been encountered in a priority queue.
The intuition behind this approach lies in the observation that appli-
cation developers, in an effort to reduce the performance overhead
of logging, restrict the log messages to important events, the most
important of which is the servicing of a new input. Therefore, the
log message at the top of the priority queue (i.e., the one with the
largest count) likely corresponds to the head of an execution unit.
Every time that message is encountered, MARSARA performs a
backward search in the current trace and identifies the closest code
block that is either an infinite loop head, or the head of a function
with no incoming edges in the model. MARSARA then creates a
new execution unit starting from that block and adds all subsequent
events to the new unit.

6 EVALUATION

We evaluate MARSARA with an emphasis on answering the fol-
lowing research questions:
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Table 1: Performance, accuracy, and storage overhead of MARSARA. Time captures the seconds to analyze and validate events.
Baseline storage corresponds to running the Linux Audit framework and application log tracking without MARSARA. The
low warnings are categorized by the model edge type for additional granularity.

Model . Warnings Storage (MB

Program Total Time Low £ Critical FPR ge (M)
Blocks Edges Events (sec) Baseline MARSARA

Forward Backward
Other
Edges Edges

cupsd 4,768 32,521 15,592 0.109 1 20 0 0 0.13% 0.218 0.067
HAProxy 28,837 188,422 69,009 0.241 131 264 11 5 0.59%% 0.141 0.244
httpd 7,087 25,465 419,532 1.237 187 226 0 6 0.09% 0.433 1.613
lighttpd 5,680 24,862 508,707 0.967 179 134 5 3 0.06% 0.277 2.436
memcached 38,427 200,041 4,282 0.082 82 32 7 0 2.82% 0.300 0.219
nginx 15,675 99,924 175,239 0.511 265 326 2 0 0.33% 0.310 0.722
postfix 146,296 476,904 2,968 0.043 28 2 5 2 1.24% 0.898 0.010
Proftpd 10,918 70,767 3,050,246 15.214 305 229 4 0 0.01% 0.630 11.181
Redis 28,881 161,294 2,681,711  21.357 334 416 3 0 0.02% 0.483 15.007
squid 32,516 109,804 116,100 0.436 170 118 2 0 0.24% 0.652 0.583
thttpd 32,725 203,385 12,589,818 22.361 48 17 6 4  0.00% 0.206 33.681
Transmission 7,045 27,765 173,705 0.397 236 154 80 1 027% 0.282 0.031
wget 6,979 49,028 17,624 0.048 74 63 1 0 0.78% 0.095 0.088
yafc 3,621 18,981 31,170 0.318 60 39 5 2 033% 0.114 0.105

(1) What is MARSARA’s accuracy when validating the integrity
of partitions? We measure its accuracy in terms of the num-
ber of warnings generated over benign inputs in 14 real-
world programs and show that only 2.82% of false dependen-
cies are reintroduced at worst.

(2) How much does MARSARA reduce the vulnerability of pro-
grams to EUP attacks compared to CFI alone? We measure
PAS for the same real-world programs while being pro-
tected by MARSARA, shadow stack, and function-level CFIL.
MARSARA removes 47,642 more gadgets per program.

(3) Can MARSARA prevent execution repartitioning attacks
based on the techniques from Section 3? We attack sev-
eral programs using expertly crafted exploits and find that
MARSARA successfully preserves the full attack provenance.

(4) What is the cost of MARSARA'’s forensic analysis? We mea-
sure the overhead for the real-world programs and the SPEC
CPU 2006 benchmark compared to a standard auditing frame-
work and find it to be 8.7%, on average.

Experimental Setup. We evaluate MARSARA using 14 popular
real-world applications. These programs have frequently been used
to evaluate prior work [36, 49, 50, 58, 59], justifying their inclusion.
We use the default configurations and generate workloads with
standard benchmark tools, such as Apache Benchmark [26]. We
also evaluate against the SPEC CPU 2006 benchmark, with full
workloads, for direct comparison with prior work.

For practical binary CFI defenses, we consider shadow stack
and function-level policies, which are realistic to enforce without
source code. Shadow stack prevents control flow hijacking from
arising via corrupted return pointers whereas function-level CFI
additionally enforces that indirect calls and jumps must target the
start of a valid function. More accurate policies have been proposed,
but have not seen real-world deployment due to requiring source
code, being incompatible with mechanisms like stack unwinding,
and/or having overheads upwards of 47% [39].

We conduct our tests on a server-class machine with an Intel
Core(TM) i7-6700K CPU @ 4.00GHz and 16GB of memory, run-
ning Debian 10. Audit logs are collected using Linux Audit with
rules covering the most commonly used system calls, such as read,
write, and execve (23 in total).

Definition of Errors. For the purposes of this evaluation, a false
positive is defined as a legitimate audit event that is accidentally
detected during MARSARA’s integrity check, yielding a warning,
and a false negative is a spoofed or delayed event that is not. In terms
of the resulting provenance graph, a false positive may introduce a
false dependency edge whereas a false negative may remove a true
dependency edge.

Calculations. Overhead is calculated as (P — B)/B where B is the
baseline performance value and P is the value with the evaluated
system enabled. False positive rate (FPR) for Table 1 is calculated as
the sum of all warnings divided by total events. We do not report
the time to produce models since this is only done once per program
during the offline phase.

6.1 Partition Validation Accuracy

Table 1 shows the performance and accuracy of MARSARA’s anal-
ysis for validating the execution partitions. As expected from Al-
gorithm 2, the time to validate is linear to the number of events
recorded. In the largest observed case (12 million events, thttpd),
MARSARA analyzes and validates the trace in less than 30 sec-
onds. This is reasonable since verification is only required once per
trace and is not performed until an investigation occurs (i.e., the
post-forensic analysis phase).

We also report the number of events yielding false positive
warnings (FPs) during verification. For 8 of the 14 applications,

®Notice that if a false positive happens to be a true dependency, the graph is unaffected,
and if a false negative fails to forge a signature match, the graph is also unaffected.
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Table 2: PAS for several real-world programs and defenses.

Program ICTs  None SS  Func. MARSARA
cupsd 4,017 19.42 8.62 8.59 8.33
HAProxy 13,155 2.49 2.18 2.18 2.11
httpd 1,779 40.00 12.14 12.02 9.41
lighttpd 2,858 0.18 0.13 0.13 0.13
memcached 797 2.82 1.10 1.02 0.89
nginx 3,997 0.80 0.37 0.37 0.28
postfix 848 16.00 10.28 9.75 9.42
Proftpd 34,830 2.18 0.82 0.81 0.72
Redis 28,047 7.09 5.37 5.34 5.06
squid 18,412 353.00 196.03 181.11 123.94
thttpd 1,198 1.02 0.14 0.14 0.11
Transmission 17,507 2.89 1.83 1.82 1.75
wget 16,594 6.71 0.85 0.71 0.64
yafc 8,590 0.85 0.64 0.63 0.62
Average: 10,902 32.53 17.18 16.04 11.67

MARSARA reports no critical FPs, meaning that the symbolic anal-
ysis used during the offline profiling phase works well on the eval-
uated programs. For the remaining programs, the FPs are <6, high-
lighting only a few troublesome model edges.

FPs occur mainly for two reasons: due to limitations in binary
symbolic analysis and inaccuracies in reporting system calls. In
some cases, MARSARA detects system calls that do not map back
to nodes in the model. For example, in Transmission, unexpected
openat system calls are recorded. Investigation reveals that the
function tr_variantToFile makes a call to the 1ibc method
mkstemp. However, when examining the model, we did not find
a node for this method, indicating that symbolic execution was
not able to analyze it. We further investigated the source code for
mkstemp in glibc and observed that it is replaced by the compiler
with a function called __gen_t empname7. These kinds of optimiza-
tions are not currently handled by the verification algorithm, but
will be addressed in future versions.

We also report the number of events yielding low severity warn-
ings, which arise in direct branches not covered by the profiling
traces we collected during the offline phase. For additional clarity,
we categorize these into forward graph edges (calls, jumps), back-
ward edges (return), and other (unexpected audit log events). The
evaluated programs yield between 10 and 600 low warnings, which
we explain the impact of next.

Since this experiment does not contain any exploits, all gener-
ated warnings are false positives, i.e., legitimate events wrongly
detected by MARSARA's integrity check. This is presented in the
table as FPR, calculated as the number of warning-producing events
(low and critical) divided by the total number of events. In all cases,
FPR is 2.82% or lower. Recall that if a false positive pertains to a
false dependency, it will be preserved in the resulting provenance
graph as an edge rather than being removed during partitioning. A
false positive detection of a true dependency is of no consequence,
since it would not have been removed anyway. Consequently, FPR
is also the maximum number of false dependencies that can be
reintroduced into the graph. For example, if the ideal partitioned
provenance graph for a given query contains 1,000 dependencies

7Observed in glibc/misc/mkstemp. c at line 33.
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(edges), the resulting graph with a FPR of 2.82% could contain up to
1,028 edges (28 false dependencies), presenting little difference to
analysts or downstream systems. In short, MARSARA almost com-
pletely preserves the false dependency reduction of prior (insecure)
EUP techniques with the added benefit of integrity.

6.2 Partitioning Attack Surface Reduction

Table 2 presents MARSARA’s PAS for the real-world programs
compared to the unprotected binaries and several practical binary
CFI policies, along with the number of indirect control transfers
(ICTs) in each program. Recall from Subsection 4.1 that smaller
values equate to greater protection against EUP attacks.

Across all measured programs, MARSARA’s PAS is better than
any of the CFI defenses. Since most programs contain over 1,000
ICTs, even small reductions in PAS are significant. For example,
MARSARA reduces Proftpd’s PAS by 0.09 versus function-level
CFL which over 34,830 ICTs equates to eliminating 3,134 events
that an attacker could otherwise leverage to spoof EUP signatures.
In the simpler programs, the benefits are more modest. For exam-
ple, 1ighttpd gains little added protection from MARSARA, or
function-level CFI for that matter, due to not having any indirect
calls or jumps. The biggest benefit is observed in Squid, where its
modular design presents the opportunity for MARSARA to reduce
PAS by 57.17 over function-level CFI, eliminating over 1,052,614
event gadgets. On average, 47,642 additional gadgets are removed
compared to function-level CFL In short, MARSARA successfully
eliminates thousands (and sometimes millions) of options for an
attacker attempting to spoof an EUP signature, even in programs
already protected by binary CFL

6.3 Attack Investigation

To evaluate MARSARA’s integrity, we use the expertly crafted
exploits described in Subsection 3.3 to attack real-world programs.
Specifically, we first run EUP without PT or MARSARA’s partition
verification (essentially placing partitions as prior systems would,
creating a baseline for comparison) to confirm that the exploits
produce valid (malicious) signatures for partitioning. As expected,
all 3 attacks successfully manipulated prior EUP algorithms into
fragmenting the attacker’s exploit and resulting symptoms across
disjoint partitions. In short, without MARSARA, provenance queries
made by investigators will be answered with seemingly legitimate
(but actually misleading and incomplete) results.

We then rerun the attacks, now with MARSARA. In the 2 control
hijacking cases (CVE-2013-2028, CVE-2004-0541), we observe criti-
cal warnings at the point where the exploits redirect control of the
execution. For CVE-2009-4769, the critical warning arises because
the model reveals, based on the call site to the logging method,
that the resulting message in the audit log contradicts the expected
format. Consequently, MARSARA does not fragment the attacker’s
network requests from the rest of the symptoms, yielding com-
plete provenance attack graphs that contain all the relevant events.
For example, for CVE-2013-2028, which pertains to our motivating
example originally visualized in Figure 1, MARSARA’s partition
includes both the events pertaining to x.x.x.xand y.y.y.y. In
short, this experiment yields no false negatives.
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Figure 5: Performance overhead for the real-world pro-
grams. The average is 8.7%.

6.4 Runtime & Space Overhead

Real-World Programs. We report the storage requirements for
MARSARA’s analysis in the last two columns of Table 1. Our base-
line represents the amount of compressed data needed to store
the events generated by the Linux Audit framework. We compare
that to the amount of extra storage (also in compressed form) that
MARSARA requires for PT.

For 9 of the 14 applications we evaluated, MARSARA’s storage re-
quirement is in the same order as the baseline (e.g., 1.6 MB for 500K
events in the case of httpd). However, for each Linux Audit trace,
the corresponding PT trace can be discarded after MARSARA’s
validation is completed. This renders the PT storage overhead as
only a temporary cost.

For 3 applications (thttpd, Proftpd, and Redis), a large num-
ber of PT events are generated, requiring significantly more tem-
porary storage. Investigating further, we discover that MARSARA
reports on events pertaining to several loop blocks engaged in
“busy-waiting” behavior for initializing large arrays. For example,
thttpd creates an array for storing all the possible file descriptors
(1024 in our evaluation environment) and then initializes each ele-
ment to —1. Consequently, every time this code block is executed,
PT records a path consisting of 1024 blocks, significantly increasing
the number of events generated. We discuss possible solutions to
PT’s storage requirements in Section 7.

Figure 5 shows MARSARA’s runtime overhead compared to
the baseline of Linux Audit framework with no PT event tracking.
MARSARA'’s average runtime overhead is 8.7%, which is consis-
tent with prior PT systems [27, 39, 90]. The overhead observed
varies depending on the profiled application’s behavior. For ex-
ample, applications that are mostly I0-bound, such as caching
servers (memcached, squid), file, mail, printing servers (proftpd,
postfix, and cupsd), and key-value stores (redis) exhibit low
runtime overhead, ranging from 1% for proftpd to 9% for Redis.
Conversely, applications that are more CPU-intensive, such as web
servers and load balancers, incur a larger overhead (up to 17% for
thttpd) since PT yields more events. We will consider alterna-
tive methods to reduce PT’s runtime overhead for CPU-intensive
applications in future work.

SPEC CPU 2006. To provide an additional standard benchmark
for comparison, we also report the performance overhead of mon-
itoring the SPEC CPU 2006 benchmark programs over all pro-
vided workloads, visualized in Figure 6. Across the SPEC programs,
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MARSARA yields an average performance overhead of 7.21%, which
is consistent with the results from monitoring the 14 real-world
programs that are typically used in provenance system evaluations.
However, we also note that some of the SPEC programs produce
noticeably higher overhead due to the amount of PT data they pro-
duce. This is to be expected since the benchmark is designed to
stress CPUs, making the workloads CPU-bound, whereas the other
programs we evaluate are mostly I/O-bound. We believe the non-
SPEC workloads are more representative of the programs an EUP
attack would target, so we conclude that the SPEC performance
results are tolerable.

7 DISCUSSION

Improving Model Accuracy. The current MARSARA proto-
type relies on binary single-path symbolic execution to gener-
ate the model during offline profiling. This results in an under-
approximated set of paths. Although we consider improving the
state of binary analysis to be outside our scope, several possible
solutions exist to improve its accuracy.

For example, because MARSARA already records the full PT
trace and system call audit for protected programs, it is possible to
use the collected data to guide an offline replay. Specifically, when
MARSARA encounters an inconsistency due to a missing edge in
the model, an existing record and replay (R&R) system [25, 42, 64]
can re-execute the program offline with additional instrumentation
(e.g., Valgrind [82]) to detect the presence of memory corruptions
and then refine the model appropriately. Although memory-safe
R&R is expensive, the cost would be paid in an offline analysis and
each newly encountered path would only need to be tested once.
In time, the model would converge to the ground truth graph with
a priority towards refining execution paths actually observed in
real-world executions.

We also note that symbolic execution does not scale to all pro-
grams, particularly complicated ones like web browsers. However,
by evaluating a prototype that uses application message and system
call auditing, designed as an extension of the most recent work, we
demonstrate that our approach of using PT and binary symbolic
analysis to verify signatures can benefit the security of all EUP-
dependent systems, not just our prototype. We also demonstrate
that even in its current form, MARSARA protects logs derived from
important web services.

Improving Storage Overhead. While most of the tested binaries
produce audit logs comparable in size to the baseline system consid-
ered in Section 6, we encounter some cases where sizes are an order
of magnitude larger. We discover the cause of this phenomenon
to be non-blocking event loops (i.e., “busy waiting”), which yield
many control flow events of little significance (i.e., checking a flag
and then returning to the loop head). This can be addressed as the
PT trace is decoded by summarizing loops or using compression tai-
lored to our problem context. Note that decreasing the PT trace size
will also benefit performance, since less data has to be processed.

In a similar vein, while our PT-enabled kernel is capable of
tracing programs with dynamically generated code (e.g., JIT in
browsers), doing so is likely to yield higher performance overhead
as each generated code page has to be captured in the sideband
data. We leave these optimizations to future work.
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Figure 6: Performance overhead for the SPEC CPU 2006 benchmark. The average is 7.21% and the geometric mean is 3.81%.

Compatibility with Other Languages. MARSARA’s reliance
on an instrumented l1ibc means it will not be able to capture
application messages for all possible Linux programs. However,
fixating on this detail overlooks two points that are more significant.
First, our prototype’s EUP signatures contain messages and system
calls. Even when the former is unavailable due to compatibility,
the latter can still be used to identify units of execution, albeit at
a coarser granularity. EUP is still valuable in such cases [49, 56].
Second, the purpose for including application messages in our
design is to demonstrate the flexibility of our modeling to serve a
wide range of analyses that require EUP, not just those reliant on
one data source (e.g., system calls).

Compatibility with “At Rest” Integrity. In this work, we focus
on protecting log integrity against a novel form of online tampering
based on EUP attacks. This is outside the scope of prior work, which
focuses on tampering performed to data at rest on storage. Our
proposed defense complements the protection offered by these past
solutions and MARSARA can be extended to incorporate them into
a holistic system. For example, solutions based on cryptography
can be readily applied to the data produced by MARSARA, thereby
adding storage integrity. Similarly, MARSARA can control where
data is stored, allowing it to leverage trusted storage solutions like
WORM drives or central logging servers.

8 RELATED WORK

8.1 Attack Reconstruction

We are the first work to analyze binary events during system-
level provenance collection and solve the challenges associated
with protecting the integrity of EUP signature matches. A lot of
work has been done to leverage provenance for forensic analy-
sis [4, 34, 42, 49, 50, 52, 56-60, 85], network debugging, auditing and
troubleshooting [2, 19-21, 95], alert triage [34, 35], and intrusion
detection and access control [3, 14, 68]. MARSARA complements all
these systems by offering more secure EUP. Finally, our work also
complements the existing EUP systems such as BEEP [50], MPI [58],
and MCI [49], which improve post-mortem analysis by solving the
problem of dependency explosion.

A large amount of research effort has focused on the genera-
tion and use of system call logs in forensic analysis, investigation,
and recovery [5, 29, 46, 47, 70, 84]. However, none of the existing
work focuses on defending post-mortem analysis against execution
repartitioning attacks. Provenance visualization techniques [11, 12]
are also proposed to facilitate causality analysis. MARSARA can
leverage these techniques to provide provenance graph summaries
to admins, accelerating threat investigations.
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Several systems [44, 66] have been proposed to detect the tam-
pering of audit logs. Both Custos and SGX-Log use protocols that
leverage Intel SGX and cryptographic data structures to protect
audit log integrity. Several formats have also been proposed in
the literature for storing data in a tamper-evident fashion, such as
history trees [24, 71] and hash treaps [71]. These tamper-evident
systems only detect if certain entries in the audit log are modified
after being committed, which is orthogonal to the online threat we
model in this work.

8.2 Log Deduplication and Compression

Our work is orthogonal to provenance graph compression and dedu-
plication techniques [17, 22, 86], since they compress the prove-
nance graph instead of defending against EUP attacks. Many ap-
proaches [3, 6, 8, 22, 28, 33, 56, 57, 59, 78, 86, 87] are proposed to
reduce the size of audit log for long-term storage and to speed
up after-the-fact forensic analysis. MARSARA can leverage those
techniques to reduce its storage overhead.

LogGC [51] provides offline techniques to garbage collect redun-
dant events that have no forensic value. Similarly, Winnower [33]
and Process-centric Causality Approximation [89] both reduce log
size by over-approximating causal relations. These techniques can
be applied alongside our work to decrease storage overhead. We
can also use these approaches to speed up our analysis.

8.3 Control Flow Bending

Control flow bending is the most prevalent way attackers exploit
memory corruption vulnerabilities. From the attack perspective, we
have seen a rise in sophistication from code injection, to code reuse
(e.g., ret2libc [61]), to what is now the predominate exploitation
technique: return-oriented programming (ROP) [9, 10, 13, 18, 75, 77].
For defenses, we have seen proposals based on randomization, in-
cluding ASLR [69], which have been successfully deployed in com-
mon OSes. Unfortunately, there is still an ongoing battle between
circumvention [30] and better defenses [53, 54].

Another defense is control flow integrity (CFI) [1], which aims to
ensure that the program adheres to a predetermined model, thereby
reducing the attacker’s ability to exploit paths unintended by the
developer. Unfortunately, CFI has only seen limited adoption due
to conflicts between performance and security. Coarse-grained so-
lutions [93, 94] are fast and compatible with existing programs, but
can be bypassed with careful bending [16]. Fine-grained approaches
reduce the attack surface [63, 81, 83], but can still be bypassed, re-
quire source code, or rely on special hardware for performance [39].
In short, there is no ideal CFI solution to date [88].
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In this work, control flow bending is one means by which attack-
ers can conduct EUP attacks, but they can also utilize format string
vulnerabilities and other orthogonal classes of bugs. We are the
first to propose that online exploitation can explicitly target EUP
to hinder forensic investigation. Prior work on bending may evade
CFI, but leave the provenance chain intact, posing no hindrance
on the attack investigation. Even when CFI is already deployed,
MARSARA demonstrates an empirical benefit in terms of PAS.

9 CONCLUSION

This work presents the first formal exploration of online anti-
forensic attacks against data provenance leveraging software ex-
ploits. We demonstrate that attackers can break the causal links in
data provenance graphs used for forensic investigation, and even
frame benign subjects, without triggering existing tamper-evident
logging defenses. We propose MARSARA to verify EUP signature
matches and demonstrate that it resists expertly crafted exploits
while reintroducing no more than 2.82% of false dependencies,
across 14 real-world programs, with a performance overhead of
8.7%. Compared to CFI, MARSARA removes 47,642 more gadgets
per program.
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