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On the Capacity of Intensity-Modulation
Direct-Detection Gaussian Optical Wireless
Communication Channels: A Tutorial

Anas Chaaban

Abstract—Optical wireless communication (OWC) using
intensity-modulation and direct-detection (IM/DD) has a channel
model which possesses unique features, due to the constraints
imposed on the channel input. The aim of this tutorial is to
overview results on the capacity of IM/DD channels with input-
independent Gaussian noise as a model of OWC channels. It
provides the reader with an entry point to the topic, and high-
lights some major contributions in this area. It begins with a
discussion on channel models and how this IM/DD Gaussian
channel model comes about, in addition to an explanation of input
constraints. Then, it discusses the capacity of the single-input
single-output channel, its computation, and capacity bounds
and asymptotic capacity results. Then, it extends the discus-
sion to the multiple-input multiple-output setup, and reviews
capacity bounds for this channel model. Finally, it discusses multi-
user channels modelled as a broadcast channel (downlink) or a
multiple-access channel (uplink), with their associated capacity
bounds.

Index Terms—Optical wireless, intensity modulation, channel
models, Gaussian channel, input-independent, capacity, capacity
bounds, multi-user channels.

I. INTRODUCTION

S OUR daily lives become ever more dependent on data-

connectivity, the load on wireless networks continues to
grow. Future networks are expected to have a great increase in
machine-to-machine communications and smartphone traffic,
and it is expected that wireless and mobile traffic will con-
stitute 71% of the total IP traffic by 2022 [1]. Consequently,
wireless networks’ capabilities have to continuously improve
in order to cope with the mounting pressure. To realize this
goal, there is continuous need for more bandwidth, which has
triggered the research on millimetre waves [2] and terrahertz
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communications [3] recently, and has also revived the interest
in optical wireless communications (OWC).

OWC has a vast unlicensed bandwidth spanning around
3PHz. It can be used to create point-to-point links using lasers
in what is known as free-space optics (FSO), and to create
point-to-multipoint links using LEDs. FSO links can be used
for front-haul and back-haul links between base-stations or for
front-haul links in cloud radio-access networks for instance.
The advantage compared to optical-fibre links is that FSO is
less demanding in terms of deployment and infrastructure.
LEDs can be used to realize visible-light communications
(VLC) [4] for LiFi (Light-Fidelity) access-points [5], [6],
which is useful for indoor (house and office lights) and
outdoor (street lights), combining illumination and commu-
nication for increased energy efficiency. This is in addition
to other applications such as non-line-of-sight links using
ultraviolet light for civilian and military applications requir-
ing enhanced security [7]-[10], underwater communications
for subsea monitoring applications [11], [12], car-to-car [13],
and on-chip communications [14]. All these application ben-
efit from the wide bandwidth and license-free nature of the
optical spectrum, and have been the topic of investigation
over the last decade. See [15]-[20] for excellent surveys on
the topic.

While OWC can be realized using coherent communi-
cation techniques where one can modulate and detect the
amplitude and phase of the optical carrier (heterodyne detec-
tion) [21], a more favoured operation mode is incoherent OWC
using intensity-modulation and direct-detection (IM/DD) due
to its simplicity and low-cost [22]. In IM/DD, the light
intensity is modulated as an information bearing signal, and
information is recovered at the receiver side by detecting
the intensity of received light. As a consequence of this
operation, the modulating signal (current) is real-valued and
positive. This is a fundamental distinguishing factor from
radio-frequency (RF) coherent communications, where the
modulated signal is complex-valued. Moreover, in IM/DD,
the modulated signal may be peak-constrained and/or aver-
age constrained due to operational, safety, and illumina-
tion considerations [23]. Several models exist for IM/DD
OWC including the Poisson channel [24], the square-root
Gaussian channel [25], [26], the Gaussian channel with input-
dependent noise [27]-[30], and the Gaussian channel with
input-independent noise [31, Ch. 7].
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Due to this fundamental difference, the performance of
IM/DD OWC is evaluated using different techniques than
coherent RF communications. We focus on performance in
terms of capacity in this tutorial, i.e., the highest rate of
information transmission under which the error rate can be
made vanishingly small by increasing the code length [32].
Capacity analysis of the aforementioned channel models for
IM/DD OWC can be found in [24], [27], [31], [33]-[39]. In
this tutorial, we focus on the Gaussian channel with input-
independent noise and with a real-valued, nonnegative, peak-
and average-constrained input. This channel is suitable for
modelling IM/DD OWC with strong ambient light and/or ther-
mal noise [22]. For brevity, we call this channel an IM/DD
Gaussian channel, where we use ‘IM/DD’ to emphasize the
input constraints (real-valued, nonnegative, peak- and average-
constrained) and to discern this channel from the popular
Gaussian channel used for modelling coherent RF commu-
nications, and we use ‘Gaussian’ to emphasize the noise
characteristics of the channel.

The IM/DD Gaussian channel has been the focus of many
studies lately due to its applicability in the areas of VLC and
FSO. In particular, an IM/DD Gaussian channel can be used
to model static OWC channels, and is a building block in
modelling time-varying OWC channels (due to turbulence and
pointing errors, €.g.,) [40], [41]. For instance, an FSO channel
can be modelled as a Gaussian channel during each coherence
interval. This Gaussian channel model has been used to study
many aspects of OWC including the performance of single-hop
and multi-hop FSO systems was studied in [42]-[47] and the
performance of various modulation schemes for VLC systems
was studied in [48]-[56].

While the capacity of the IM/DD Gaussian channel is still
unknown in closed-form, existing results show properties of
the capacity achieving distribution (discreteness) [39] in addi-
tion to capacity bounds and asymptotics [34], [36], [57], [58].
In [34], capacity lower bounds were derived using Exponential
and truncated Exponential input distributions, and capacity
upper bounds were derived using the dual-capacity expres-
sion studied in [59]. In [35], [36], capacity lower bounds
were derived using Geometric and truncated Geometric input
distributions, and capacity upper bounds were derived using
sphere-packing and the Steiner-Minkowski formula for poly-
topes [60]-[62]. In [58], capacity lower bounds were derived
using truncated Gaussian input distributions, and capacity
upper bounds were derived using a new sphere-packing
approach. Further bounds were given in [37], [38].

The advantage of these bounds is that they enable a better
understanding of the performance limits of IM/DD systems
beyond schemes which are commonly used in the literature.
Such schemes include on-off keying (OOK) and binary pulse-
position modulation (PPM) [42], [43], [45], [46], [63]-[66],
pulse-amplitude modulation (PAM) and higher-order con-
stellations [67]-[69], various types of unipolar orthogonal
frequency-division multiplexing (OFDM) schemes [70]-[82],
and PAM discrete multi-tone (PAM-DMT) [83]. The
performance of these schemes has been extensively studied
in the literature from difference perspective. For instance,
performance in terms of error and outage probability has been

studied in [40], [42], [43], [46], [63], [84]-[88]. Space-time
block code (STBC) [89], [90] designs for IM/DD Gaussian
channels was studied in [91]-[94], and in [95] which shows
that space-only coding is quasi-optimal within the class of DC-
offset STBC. While all are practical schemes, they generally
fall short of achieving the channel capacity due to limita-
tions in their construction (see [96] for an example on OFDM
schemes).

This tutorial serves to shed light on existing bounds on
the capacity of IM/DD Gaussian channels modelling OWC
through the following steps:

o Describing various IM/DD channel models in detail;

o Defining capacity and describing how it is evaluated

numerically;

o Reviewing capacity bounds and asymptotics for the
single-input single-output (SISO) IM/DD Gaussian
channel;

o Reviewing capacity bounds and asymptotics for the
multiple-input multiple-output (MIMO) IM/DD Gaussian
channel; and

» Reviewing capacity bounds for the IM/DD Gaussian
broadcast channel and the multiple-access channel.

The tutorial starts with the single user channel for which
the channel model is first discussed, and then channel capac-
ity bounds are reviewed for a single-input single-output
(SISO) system. Then, it covers multiple-input multiple-output
(MIMO) system. A MIMO IM/DD OWC system can be real-
ized by using an array of LEDs and detectors [97]-[99], or
using multiple LED colors (e.g., color-shift keying or wave-
division multiplexing) [48], [86], [100], [101]. Transmission
schemes for MIMO IM/DD OWC systems have been studied
in [40], [64], [87], [102]-[104]. In general, MIMO schemes
have benefits in terms of error and outage probability com-
pared to their SISO counterpart [84], [85], [97], [98], [102],
[105]-[110]. We call the channel that models a MIMO IM/DD
OWC system a MIMO IM/DD Gaussian channel. The capac-
ity of this channel does not coincide with that of the standard
MIMO Gaussian channel used to model multi-antenna coher-
ent RF communications whose capacity is well-known [111].
Thus, the capacity of the MIMO IM/DD Gaussian chan-
nel deserves special attention. The capacity of the related
MIMO Poisson channel was studied in [112], [113]. The
capacity of the MIMO IM/DD Gaussian channel with no
crosstalk, i.e., parallel IM/DD Gaussian channels, was studied
in [114]-[116], relying on capacity bounds for the SISO chan-
nel in addition to intensity allocation algorithms. The capacity
of the MIMO IM/DD Gaussian channel with crosstalk was
studied in [117]-[124]. Some capacity bounds and asymptotic
capacity results for MIMO IM/DD Gaussian channels in these
papers are reviewed in this tutorial.

Then, the tutorial discusses multi-user IM/DD Gaussian
channels, in particular, broadcast channels (BC) and multiple-
access channels (MAC). The BC and MAC model scenarios
when an OWC access point communicates with multiple users
and vice versa, respectively. Such scenarios have been studied
from error rate and achievable data rate perspectives under var-
ious transmission schemes in [18], [125]-[137]. While several
works study the performance of orthogonal codes in multi-user
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TABLE 1 TABLE II
A SUMMARY OF PAPER NOTATION SoMmE IM/DD CHANNEL MODELS AND WORKS THAT STUDY THEIR
CAPACITIES
R, R4, C Real, nonnegative real, and complex sets
N:{N+ Integer and nonnegative integer sets Channel model | Capacity-related works
P{} Probability of an event Discrete-time Poisson channel [141], [142], [155158]
X ~Px Random variable X follows the distribution Fx Continuous-time Poisson channel [24], (331, (112, [113]
iid. Independent and identically distributed [155], [159], [160]
%e(m(g% G Bem;u:l?b(r:mbmllgln with paran:leter o 3 Input-dependent Gaussian noise channel [27], [161]-[165]
a, aussian distribution with mean o and variance Tnouts nd : ise channel 7 i
N, B) Circularly symmeiric complex Gaussian nput-independent Gaussian noise channe [341-[37], [58], [166]
distribution with mean o and variance 3
Q) Standard Gaussian tail function
log(x) Natural logarithm of x

F{-} Fourier transform

H(X), HX[Y) Discrete entropy and conditional entropy (resp.)
h(X), h(X|Y) Differential entropy and conditional entropy (resp.)
I(X,Y) Mutual information between X and Y
D(Px|[Py) Relative entropy between Px and Py
I le £p-norm of a vector
Ex[] Expectation with respect to X

IM/DD OWC [53], [128], [129], such codes are generally
suboptimal in terms of capacity. To assess the performance
of such codes and other schemes compared to capacity, one
needs to derive or bound the capacity of multi-user IM/DD
Gaussian channels. The study of BC and MAC dates back to
the 70’s with the seminal works in [138]-[140]. Works on the
IM/DD BC and MAC in the literature aim to derive capacity
bounds and asymptotic capacity expressions which are spe-
cific to the IM/DD channel. The capacity of the Poisson BC
and MAC have been studied in [141]-[144]. The capacity of
the SISO IM/DD Gaussian BC and MAC has been studied
in [145]-[147]. This tutorial overviews results on the capacity
of the IM/DD Gaussian BC and MAC.

Note that in addition to the BC and MAC, the capacity
of other multi-terminal IM/DD channels has been studied in
the literature. This includes the IM/DD wiretap channel which
has been studied in [148]-[153], and the IM/DD interference
channel which has been studied in [154], for instance.

The rest of the tutorial is organized as follows. Section II
discusses the IM/DD channel models. Then Section III dis-
cusses constraints of IM/DD channel inputs. Sections IV, V,
and VI discuss the capacity of the IM/DD SISO Gaussian
channel, its evaluation, and capacity bounds, respectively.
Section VII discusses parallel and MIMO IM/DD Gaussian
channels, and Section VIII discusses the IM/DD Gaussian BC
and MAC, in addition to a brief overview of some works on
other multi-terminal IM/DD channels such as the interference
channel and the wiretap channel. Finally, Section IX summa-
rizes the paper. To assist the reader, a summary of the paper
notation is given in Table L

II. CHANNEL MODEL AND MAIN ASSUMPTIONS

The most common channel used to model IM/DD OWC in
the literature is the input-independent Gaussian noise channel.
This channel is described by an input X > 0 which is subject
to peak and average constraints X < A and E[X] < &, and
an output

Y=¢gX+2Z, (1)

Detector

Fig. 1. An illustration of Example 1. In a static and lossless system, the
number of photons received at the detector depends on the propagation geom-
etry. For a uniform beam profile with a conic propagation, this number will
depend on the cone apex angle and distance.

where ¢ > 0 is a channel gain, and Z ~ N(0,02). In
this model, several system parameters (such as transmitter
and receiver responsiveness, geometric loss, background noise
power, etc.) are ‘lumped into’ the channel gain g and the noise
variance o as we shall see.

How do we arrive at this channel model in an optical chan-
nel described by ‘discrete’ photon transmission? To answer
this question, in the following subsections, we describe the
basic physical aspects of a simple transmitter-receiver system
with some idealized assumptions. Then, step-by-step, we
develop the Gaussian channel model given above which will
be the main focus of this tutorial. Along the way, we will arrive
at various channel models that have been studied throughout
the history of IM/DD OWC. A summary of various IM/DD
channel models that have been studied in the literature along
with some works that study their capacities is given in Table II
for reference.

A. An Ideal Optical Channel

1) Geometric Loss: Consider a transmitter-receiver system
consisting of a light source and a detector as shown in Fig. 1.
The light source (laser, LED) transmits a number ng of pho-
tons with wavelength \.! At the receiver side, a detector
captures some of the transmitted photons. In a static and loss-
less propagation medium, the number of photons received at
the detector will depend on the geometrical parameters of the
system, such as propagation distance, beam profile (Gaussian,
uniform, etc.), beam divergence, transmitter-receiver angle,
detector area, and optical filters and concentrators.” As far
as the OWC channel model is concerned, all these parameters
can be abstracted into a geometric loss coefficient which we
will denote by gz < 1. The received number of photons will
be approximately equal to

2

Iwe will focus on a specific wavelength. The analysis can be readily
generalized to multiple wavelengths.

20ther propagation effects that are not essential for the current analysis
will be introduced later in Section III-C.

Nr = ggnt.
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This is an approximation because ny my not be an integer, and
actually represents an expectation of the number of received
photons which is a random variable in general.

The geometric loss depends on the system. In an indoors
system using VLC or IR, it is common to use the Lambertian
model to calculate gg [22]. In an FSO system, gy is calculated
by taking into account the propagation distance, beam diver-
gence, beam profile, in addition to transmitter and receiver
optics [23]. The following example calculates gy for a simple
system.

Example 1 (Geometric Loss): Let the transmitter send
photons uniformly in directions that form a cone with apex
angle 26. At a distance dp meters, the photon density will be
W_c’:}-&m photons/m? since the cone’s solid angle is ¢ =

2m(1—cos(#)) Steradians and the surface area of the spherical
cap suspended by this cone is qbdg m?. Thus, a detector with

2 will receive approximately ny = Tl—a@%g

area aq m
T (T—cosO) &

2) Information Transmission: To convey information to the
receiver, the transmitter discretizes the time axis to intervals
of duration At, and varies the number of photons it sends in
each time interval [(i — 1)At,1A¢t), i = 1,2,... We denote
the number of photons sent in interval i by n¢(z). The received
signal in the same interval becomes?

photons if n is large enough, and gz =

nr(i) = ggng (7). 3)

This ideal model is our entry point to a statistical channel
model, the Poisson channel, which will then lead us to the
Gaussian model of OWC channels. But before transitioning to
these models, we discuss few aspects about the ideal system
in (3).

In the ideal system described by (3), information can be
conveyed from the transmitter to the receiver at an extremely
high rate in bits per second (bps). The following OOK example
illustrates this point.

Example 2 (Ideal OOK): Consider a binary source that gen-
erates i.i.d. bits B ~Bern(1/2) denoted b;, : = 1,2,... The
transmitter sends nt(i) = n € Ny photons if b; = 1 and
ny(i) = 0 otherwise (OOK), subject to an optical power
constraint ]jmf_,oo%Z;-r:l pe(i) < Ptmax Where pg(i) =
eig@ and e is the photon energy. Since B ~Bern(1/2),
we must have % < Pt,max. Let the geometric loss be
gg ~ 0.01,% and let Py max = 1 mW and A = 850 nm
(infrared). The receiver declares b; = 0 if n(¢) = 0, and
b; = 1 otherwise. In the ideal model (3), if b; = 1, nr(z) will
be nonzero with high probability if n >> 100. Letting n = 2000

Pt,max

and 11—3_— 0006 > the bit rate of the system will be close to
ll_r = ﬁgﬂ%’; A 4.3 Tbps since ey = 2.34 x 1072 Joules.

3Recall that we assume a static system only with geometric loss. We shall
deviate from this assumption later.

4This corresponds to setting ag = 1 cmz, # = 1°, and dp = 10 m in
Example 1.

51nterpnetmg gg as the probability of a photon’s landing on the detector, the
probablllty that no photon lands on the detector when b; = 1is (1—gg)" =
1.8 x10~2. This leads to a very small detection error probability of mistaking
a 1 for a 0, which can be corrected using channel coding at (almost) no cost.

The example above involves several idealistic assumptions

which can be combined under two main categories:

1) Infinite amplitude resolution: In time interval i, the
source can send precisely n(:) photons and n;(i) is
equal to ggng(2).

2) Infinite temporal resolution: The source can switch from
sending n¢(z) to ng(z+ 1), and the detector can discern
nr(i) and n Dgz + 1) no matter how small At is (note
that At = ~ 233fs in Example 2).

Both points do not hold in practice. We will start by dis-

cussing the amplitude resolution followed by the temporal
resolution.

B. The Poisson Channel: A Noisy Optical Channel

In practice, we can not adjust the number of photons n4(7)
transmitted by a laser or an LED with infinite resolution.
Instead, what we can adjust is the photon transmission rate,
i.e., the expected number of photons per second by modulating
the optical power of the source. At a transmit optical power of

p(2) Watts, the source sends p“g) photons/second. Thus, the
expected number of photons that we will send in At seconds
will be

a(2) = pt( )At photons.

‘We connect this fact with Example 2 in the following example.

Example 3: In Example 2, instead of sending 2000 photons
in a time interval when b; = 1, we send at a power py(i) =
2%'% = 2 mW. Clearly, the average power constraint is
satisfied since B ~Bern(1/2).

Similarly, the average number of photons that reach the
detector in At seconds is not nr(i) = ggnt(z). Instead, pho-
tons will reach the detector at a rate of 7ir(i) = ggfit(i)
photons in At seconds, or a power of pr(i) = ggpt(i) Watts.
Consequently, if we choose to transmit at a rate of 7(z) pho-
tons per At seconds, the number of detected photons will
fluctuate around the mean 7ir(i) = gg7it (). But how exactly
is this fluctuation described?

Let us focus on a specific interval i = 1 and drop the
time index for readability, and let us divide the correspond-
ing interval [0 At) into m intervals J; = [(j — 1) ﬁf ,
j=1,. . If m is large enough, the detector w111 recewe
no more than one photon per interval J;. Since 7 is the aver-
age number of photons received in [O,At), the probability
of receiving a photon in J; is € = ’—;’?’% Assuming that photon
detection is independent through j = 1,.. ., m, the probability
of receiving n; photons in [0, At] is given by

Py, (nr) = (E)&u — )™, @)

which is the probability of receiving a photon in n, intervals
J;, and no photon in the remaining m — n; intervals. Letting
m — oo, we obtain

Al o= T
Py, (nr) — e S as m — 00. (5

ﬂr!

Therefore, the number of received photons in [0, At) is
Poisson distributed with mean iy = gg 7.
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/V e [1‘): Receiver | y(1)
I I

Fig. 2.  The optical channel can be described as a channel with input
nt (%) and output nr(i) which represent the number of emitted photons and
received photons, respectively. The electrical channel can be described as a
channel with input z(i) representing the modulating current, and output y(i)
representing the received current after processing and sampling.

(1)

Light source
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Fig. 3. The conditional distribution of Ny given Nt in (7) when py = 0

and pr = 2 mW, corresponding b = 0 and by = 1 in Example 2, and
Tipg = 20 photons per symbol duration which is equivalent to a background
noise power of 20 uW according to the parameters of Example 2.

But this is not the only effect that takes place in a practi-
cal system. In addition to this, some unwanted photons from
background radiation (ambient light, e.g.,) will be received by
the detector. This optical noise increases the average number
of received photons to

fir = ggnt + ﬁbg:

where i is the average number of background radiation pho-
tons received in At seconds. Thus, the number of received
photons is distributed as

Aie + Ting) ™ e (T +Tg)
ggMy + My € £

P () — {927 + o) ©)

This describes the optical channel as shown in Fig. 2. Now
we are ready to define the Poisson channel.

Definition 1 (Poisson Channel): The optical channel corre-
sponding to an IM/DD OWC system can be modelled as a
Poisson channel with input N > 0_ and output Ny where the
distribution of N; conditioned on N is given by
(g7 + yg) e~ e

, NG
Ny

Fig. 3 shows the distribution of N for a given value of 7.
It can be seen that the Poisson distribution in (5) can already
compromise the infinite amplitude resolution we have seen in
Example 2 even for weak background noise.

The capacity of the discrete-time Poisson channel has been
studied in [141], [142], [155]-[158] and considering secrecy
constraints in [167], and that of the continuous-time Poisson
channel (At — 0) has been studied in [24], [33], [112],

nr!

PNI‘INt (ﬂr|ﬁt) =

[113], [155], [159], [160] and considering a secrecy constraint
in [168]. The capacity of multi-user Poisson channels has been
studied in [141]-[144].

Note that apart from the continuous time case, ie., the
unconstrained bandwidth scenario (A¢ — 0), where capac-
ity results are sharp, in the most practical case of constrained
bandwidth, capacity results are generally not exact and only
bounds and/or asymptotic results have been established. To
provide additional insight into the capacity of the constrained
bandwidth case, it is helpful to simplify the Poisson model to
models which are relatively easier to study. One such simplifi-
cation is the Gaussian model, which has been used frequently
in the literature as an approximation under some practical
assumptions. With this in mind, we are now ready to transit
to defining Gaussian channel models.

C. The Input-Dependent Gaussian Noise Channel

We will split the discussion here into three parts. First,
we will describe the input-dependent Gaussian noise chan-
nel model in the optical domain. Then, we will describe
a continuous-time input-dependent Gaussian noise channel
model in the electrical domain (in terms of electric currents).
Finally, we will describe its discrete-time counterpart.

1) Optical Domain: Observing Fig. 3, we see that the
number of received photons Ny follows a distribution which
is ‘nearly’ Gaussian (clipped at zero). The reason is that a
Poisson distribution with mean p approaches a Gaussian distri-
bution with mean and variance p as p increases. The mean of
Nr for a given mean number of transmitted photons N, = 7 is

fir = ggfy + ﬁbg (8)
o pbgAt
= g+ e ©

where ppg is the power of the background radiation. Thus, the
mean is large if one or more of 7, At, and py is relatively
large. The following example shows that it is not a stretch to
assume a large 7.

Example 4: Suppose that At = 23 ps and A = 850 nm,
and that we want to send b; = 0 in Example 2. Thus, 7 = 0.
The solar radiation at A = 850 nm is in the order of hundreds
of W/m? [169] which for the lem? detector we assumed in
this example induces a received noise power of tens of mW.
This produces 7y in the order of 10° for b; = 0, and an even
larger 7y for b; = 1.

This example demonstrates that background radiation can
be large enough, and a Gaussian approximation is acceptable.
Given that the solar background radiation power received by
the detector is tens of mW at 850 nm, the approximation will
be acceptable even for smaller values of At (femtoseconds),
and more so when At is larger which is likely the case in
practice given the current technology.

The previous discussion suggests that a Poisson model is
important when the number of received photons per symbol
duration is low (inter-satellite and ground-satellite communi-
cation, scattering non-line-of-sight UV communication), and
a Gaussian model is sufficient for most other cases. For most
terrestrial systems, the Gaussian approximation is acceptable.
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Let us describe the number of received photons based on
this model. Since N; is Poisson distributed with mean 7, then
for large 7ir, we can use the approximation Ny ~ N(7ir, 7ir).
Thus N; can be written as

Ny = ﬁr"‘\/ﬁ_rzu (10)
where Z ~ N(0,1). Substituting 72y from (8) leads to
Ny = ggTig + Ting + /gt + Tbg Z- (11)

Note that the receiver can subtract 7, because this is a con-
stant, and that \/mz can be written as the sum of
two independent Gaussian random variables with zero mean
and variances gg7iy and fipg. This leads to the following signal
at the receiver

Ny = Jeg it + \ ggﬁtzl + \ ﬁng%
where both Z; and Z, are N(0,1). The term Z, can be inter-
preted as noise induced by the fluctuation of the number of
photons that reach the receiver from the transmitter due to the
randomness of photon arrivals. The term 75 can be interpreted
as shot-noise induced by photons from background radiation.
This allows us to write the following definition.

Definition 2 (Optical Input-Dependent Gaussian Channel):
The optical channel corresponding to IM/DD OWC can
be modelled, in the high received-photon-rate regime, as a
channel with input N; > 0 and output M given by

Ny = gVt + \/ ggNtZI ++/ ﬁng%

where Z,, Z, are independent N(0, 1).

2) Electrical Domain — Continuous-Time: So far, we have
been discussing optical aspects of the transmitter-receiver
system. The distribution in (7) and the relation in (12) describe
a discrete-time optical-input optical-output channel.

But in IM/DD systems, the modulating signal is an electric
signal, used as an input to an LED, e.g., or as an input to
an electro-optical modulator [170]. Also, receiver processing
is done in the electrical domain after converting the received
optical signal to an electric signal. Thus, it is important to
represent the system in the electrical domain.

Modulation of 7r(i) is achieved by modulating the emit-
ted optical power p¢(z). This in turn is achieved by using an
electrical signal, so that the relation between the electrical sig-
nal and the optical power is linear. For instance, the optical
power—current characteristics of a solid-state light source has
a linear range (see Fig. 4) which is used for modulation in
practice. An electro-optical modulation is modulated similarly
in a linear range [172]. Thus, we will write the emitted optical
power as pi(i) = 7Meoz(2) Where 7eo is the electrical-optical
conversion efficiency (in Watts per Ampere) which is the slope
in Fig. 4.

Photodetectors have a power-current characteristics similar
to Fig. 4 [173]. Thus, the current generated by the detector
follows a linear relation with the received optical power with
slope mpe (in Amperes per Watt).

Based on this description of electrical-optical conversion,
we describe the following IM/DD OWC system. Let the mod-
ulating current be ¢;(f) > 0 where t € R,. Consider an

(12)

(13)

25 —t—t————+—+—
o 2.0== -
B
g 60°C
g 151 -+
B
=
S L L
fﬂ 80°C
—

0.5=4= -

° B 2 % Coment(mA) ©° % % o
Fig. 4. Typical L-I characteristics of a laser diode [171]. The linear rela-

tion between current and light power is measured by the electrical-optical
conversion efficiency in mW/mA.

instance of g;(t) given by ¢ (#y) = gt(¢)d(¢ — tg) where 6(¢)
is the Dirac delta function. This can be written as

. 1
a(to) = lim —=aq(t)rac(t - to), (14)
where 7(¢) is a rectangular function with r-(¢f) = 1 for

t € [0,7) and O elsewhere. Let us focus on an interval
[to, to+ At), i.e., where g (to) = q(t)ra¢(t — to) is nonzero.
During this interval, the transmitted optical power is approxi-
mately pi(tp) = Meot(fp), Where the approximation becomes
accurate as At — 0. The average number of emitted photons
is nt(tg) = @—:neogt(to). According to (12), the detector will
receive a number of photons in this interval given by

nr(to) = ggie(to) + 1/ ggMe(to) 21,60 + 1/ Tbg 22,80, (15)

where 2; 4, and 2 4, are realizations of independent N(0, 1)
noises, i.i.d. through time fy. The received power in the same
interval will be pr(fp) = Sy nr(fo), and the current generated
by the detector will be

) e
i (to) = R="loemr(1o)- (16)
Therefore, we have
. . ey . -
(o) = ggeoioein(10) + | sgecre S 10) 21,1
ey -
+ /e Ry PoE 2200 a”

Letting At — 0, and denoting lima;—q gr(%) by ¢r(to),
we obtain

¢(t0) = ggeonoes(to) + \/ggneongeew(to)é(t — t0)Z1,49

+ /1eer Phgd(t — o)ty (18)

This follows by replacing ll_n by MA:_—M which does not

change the expression, and since lima g M&;—ml =4(t—tp)
(in s™1). Note that \/3(t — t9)% ¢, j = 1, 2, is a sample of

a white Gaussian noise process z;(¢) with zero mean and unit
power spectral density. Thus, we can write

ar(to) = ggTeomoe t(to) + 1/ gMeonzeer at(to) 21 (to)
+ |/ méeerpbg22(to).-

(19)
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We still need to account for thermal noise generated by
the receiver electronics. This can be combined with the back-
ground noise. Assuming that thermal noise is white Gaussian

with power spectral densi (in A%s), we can replace
N2e€\Pbg above with | /n3.e\ppg + sgh to obtain
@ (to) = ggae(fo) + v @ gt(t0)21(t0) + v/ a222(10), (20)

where we divided by neqg7joe, and where a; = %%“ (in As)
and @ = e_:}gb_g + 2 (in AZs). This leads to the follow-
ing continuous-time t,i';ll:‘ijfit-de]:iendent Gaussian noise channel
model.

Definition 3 (Continuous-Time Electrical Input-Dependent
Gaussian Channel): An IM/DD OWC system can be mod-
elled, in the high received optical power regime, as a
continuous-time input-dependent Gaussian noise electrical
channel with input current ¢ (¢) > 0 and output current ¢ (t)
described as in (20).

Now we are ready to describe the discrete-time input-
dependent Gaussian noise channel model.

3) Electrical Domain — Discrete-Time: Here, the channel
described in (3) is used for digital transmission of x symbols
T1,...,Ix for some k € N, where z;, € X is the kth transmit
symbol chosen from an alphabet X C Ry. The transmitter
modulates the current ¢ (Z) as

K

a(t) =Y mpy(t — kts) + gac,
k=1

where «(+) is a pulse-shaping function which has finite energy,
ts is the symbol duration (inverse of symbol rate), and gy, is
a constant DC-offset applied, if necessary, to make the signal
positive.® If we use optical intensity pulses, which are positive
pulses,” then a DC-offset will not be necessary, i.e., gq. = 0.

The received signal ¢(t) is given by

2D

K
@ (t) = gg > my(t — Kts) + ggdac
k=1

K
+ o@D my(t — kts) + argacz (2) + v azza(t).
k=1
(22)
The receiver subtracts gggqc, filters ¢r(t) using a filter with
impulse response (t), and then samples at its. Let

¢(t) =5(t) ®~(2),
where ® denotes convolution. The filtered signal g (¢) can
thus be written as

(23)

@(t) =gg Y mC(t — kts) + 21(t) + %2(2),

(24)
k=1
where the filtered noises z(¢) and Z3(¢) are given by
K
2() =5 ® [ @ Y ey (t — ks) + @1gaczr(t) (25)
k=1

6Such as when optical OFDM schemes are used [78].
TFor more detail on optical intensity pulses, the reader is referred to [174].

2(t) =3(t) ® V arz(t). (26)
To avoid inter-symbol interference, we require that
L) g 1 =0,
<(its) { 0, otherwise, 27

which is the first Nyquist criterion [175]. Under this condition,
the sampled filtered signal g (ifs) can be written as

Gr(its) = gggexi + 21 (2s) + Zp(vks). (28)

It remains to characterize noise. Since 2(¢) is obtained
by filtering the white Gaussian noise process Z(t) with zero
mean and unit power spectral density using a filter /ax7(t),
then Z(¢) is a zero mean Gaussian noise process with power
spectral density |F{\/@2%(t)}|*> where F{-} is the Fourier
transform. This implies that Zzp(its) is i.i.d. (with respect to
i) Gaussian with zero mean and variance

o0
H=u [ P
—co

On the other hand, we have

(29)

%1 (its) =
k=1

[’?(3) ® \J a1y mpy(t — kis) + ﬁl@dc?l(t)]
t—its

f ’?(T)\J a1 Y opy((i — k)ts — 7) + @1 qacZ (its — T)dr
- k=1

[(’?(t)\J a1 Y mpy((i— k)ts — t) + @ ‘-Idc) ® fl(f)j| .
k=1 t=its

(30)

Thus, similar to Z2o(ifs), we have that 2(i) is a
sample of filtered white Gaussian noise with filter

F(t)\/ar Y p—1 7y ((i — k)ts — ) + G19dc, and  hence
# (its) is i.i.d. Gaussian with zero mean and variance

57 = /_o; F(t) (&1 > ay((i— k)ts — 1)+ &lgdC)dt

k=1

—a Y a [ (G- b de
k=1 %

e 2
i [ (0t 31)
—00

=@ /oo F2(t)y(—t)dt

~ "
v

2
7%

K
+ Z T &1/

k=1,k+#i —0

(o o]

72 ()7((i — k)ts — t)dt

2
ej.tl,“.:'lc

o0
+%%/ﬁ%ﬁ- (32)
—0o0

"

g
2
&12

‘We assume that

53, < 08, Yk # i. (33)

Authonzed licensed use limited to: Univ of Calif Santa Cruz. Downloaded on March 23,2022 at 18:15:37 UTC from |IEEE Xplore. Restrictions apply.



462 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 24, NO. 1, FIRST QUARTER 2022

This assumption holds when the energy of %(¢) and ~(—t)
is ‘concentrated’ within an interval around f = 0 of width #.
This takes place for instance if we use time-disjoint pulses,
which is common in practice due to the simplicity of imple-
mentation [35], [67]. As a result, if we write Z(ifs) as
VTizo(its) + %12(its) with variances o2 and &2,, respectively
(corresponding to the first and last terms in (32)), we obtain

@r(its) = gggezi + /zi20(its) + Z12(its) + Z2(its) (34)
= g1; + \/Tiz; + z, (35)

where ¢ = ggg¢. 2,; is an iid. Gaussian noise with zero
mean and variance crg and z; is an i.i.d. Gaussian noise with
zero mean and variance o2 = &2, + &2, which combines con-
tributions from Zjo(its) and Z(ifs). Now, we can write the
following definition.

Definition 4 (Discrete-Time Electrical Input-Dependent
Gaussian Channel): Under conditions (27) and (33), the
discrete-time electrical channel corresponding to an IM/DD
OWC system can be modelled as a channel with input X and
output Y = gX + VX Z + Z, where Zy ~ N(0,02) and
Z ~N(0,02).

In general, condition (33) is satisfied for any time-disjoint
pulse-shaping scheme. The following example illustrates this
statement.

Example 5: Suppose that we choose (i) = F(—t) =
rt,(t). In this case, g4 = 0, {(0) = g¢ = 15, ((its) = 0 for all
i #0, 0% = dpts, 53 4 = 0 forall k # i and o = a1 ts. This
satisfies the Nyquist criterion (27) and condition (33) and the
channel can be described as in Definition 4.

The capacity of this channel has been studied
in [27], [147], [150], [161]-[165]. In general, for chan-
nels with input-dependent noise and with peak-constrained
inputs, [176] showed that the capacity-achieving distribution
is discrete with a finite alphabet. However, when only
an average intensity constraint is considered, the capacity
achieving distribution turns out to have a countably infinite
support set [177].

D. The Input-Independent Gaussian Noise Channel

Finally, we arrive at what is perhaps the most common
model in the recent OWC literature, which is the discrete-time
Gaussian channel model where noise is input-independent.
This can be obtained by imposing an additional constraint on
the discrete-time input-dependent Gaussian channel model in
Definition 4. In particular, we require that

G < 0%, Yk # i, and of < o7, (36)

instead of (33). In other words, we require that all input-
dependent noise components in (28) are negligible with respect
to the background-plus-thermal noise z; in (35). One way this
can take place is if a@; < ap. The following example illustrates
this possibility.

Example 6: Consider the parameters used in Example 2, in
addition to eo = 0.5 A/W, 1o = 0.5 W/A, ppg = 50 mW,

and sip = 1020 A2, In this scenario, we have a1 = ggﬁ =

4.6 x 10721, while @y = e—/:T;’Ea + 7%= ~ 2 x 10719 which
is 2 orders of magnitude larg%r thameoaf.e

Generally, the background-plus-thermal noise is stronger
than the input dependent noise in most terrestrial OWC appli-
cations. This forms the basis of the above approximation,
leading the following model.

Definition 5 (Input-Independent Gaussian Channel): Under
conditions (27) and (36), the discrete-time electrical channel
corresponding to an IM/DD OWC system can be modelled
as a channel with input X and output ¥ = gX + Z, where
Z ~ N(0,02?).

For brevity, we call this channel model an IM/DD Gaussian
channel henceforth. Its capacity has been studied in [34]-[37],
[58], [166] among others.

Remark 1: The approximation given in Def. 5 looses its
accuracy if the mean of the received number of photons is
small, or if the power of input-dependent noise due to fluctua-
tions of the number of photons that reach the receiver from the
transmitter is large relative to background noise and thermal
noise. While the former is uncommon in terrestrial applica-
tions, the latter may take place in some scenarios, and hence
care must be taken when using this approximation.

Now that we have arrived at the final channel model, we
are ready to introduce the input constraints.

III. OPTICAL TRANSMISSION CONSTRAINTS

We talked about the amplitude resolution of the system
and how this is impaired by noise. Despite noise, the channel
capacity can still be infinite if we do not have constraints on
the transmit signal. However, this can not happen in practice
due to practical constraints. So what type of constraints apply
in IM/DD OWC?

A. Infensity Constraints

We focus on the constraints of the IM/DD Gaussian channel
model in Def. 5 since this is the main focus of this tutorial. For
the above discussion, we have the following relation between
the electric current and the optical power

K

t
z:%WU—k%%+%c=pd)-
k=1 Tleo

(37

The optical power signal pi(¢) has to satisfy two types of
constraints due to practical considerations and safety stan-
dards: Average and/or peak constraints. We start by deriving
the average constraint.

1) Average Intensity Constraint: Eye safety limitations are
generally expressed in terms of exposure duration at a spe-
cific optical power [178, Table 6.1]. Illumination constraints
which are relevant in VLC are expressed in terms of Lumens
per square meter (Lux) (see [179], e.g.,) which translates to a
constraint on the optical power per unit area. Both constraints
can be satisfied if we constrain the energy emitted over a given
transmission duration, i.e.,

f pe(8)dt < 7Pt max, (38)
0
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for some average power Pt max, and 7 > 0. Combining this
with (37) leads to

T 7 Pt,max
f > apy(t — kts)dt +Tgee < ———. (39
0 k=1
We shall assume that 7 = kit in the following arguments
by choosing x accordingly. Note that « can still be large since
the symbol duration #s can be made very small in nowadays’
technologies. Then we have

1 max
f Zm(t — k)t < tsf“?eo ~lgge  (40)

Note that
T K oo K
/ szfy(t—kts)dtg/ D my(t— kts)dt  (41)
0 r—1 TO0 k1

K
=) ey, (42)
k=1
where ey = [0 ~(t)dt, and where the inequality is fairly
tight for large 7 and for functions -(¢) whose energy is con-
centrated around ¢ = 0 (which is common in pulse-shaping).
Consequently, the average constraint becomes

Zﬂ: t (R — gqc )
—1 &

2) Peak Intensity Constraint: A peak constraint also arises
due to safety constraints [180] which induce a constraint of
the type

=3 (43)

pt(t) < ptmax, Vi. (44)

Practical operation also induces peak constraints. Namely,
the assumed linear optical power—current relationship (Fig. 4)
holds true in an interval of driving currents [gmin, gmax] Where
gmin is the threshold current beyond which light emission
starts,8 and gmax is the maximum current beyond which the
optical power nearly saturates (or the device burns). This gpax
sets a peak constraints on ¢;(¢) and hence also p¢(¢) for all 1.

To satisfy pt(t) < pt,max for all ¢, the symbols z;, have to
be bounded. The maximum emitted optical power is given by

maxc py £) = 1leo max Z mpy(t — kts) + Meogae  (45)
k=1
K
= TeoTmax m?xz Y(t — kts) + Meodde, (46)
k=1
where 1, is the largest value z; can take. Denoting

maxg Ez=1 v(t — kts) by 73, max» and since pg(t) < pt,max
implies max¢ pt(t) < pt,max, We obtain

Pt,max
. 4
Timax < —lee <% @7)
¥, max

8The threshold current Gmin can be ignored from a communications per-
spective because this is a constant bias that has to be applied to operate the
device.

This leads to the peak constraint

P
t, max —de a
7, < e _° A 4 vk
TE, max

(48)

As a result, we have the following definition.

Definition 6 (Average and Peak Constraints): The input
(z1, 23, ..., zx) of the IM/DD channels in Definitions 4 and 5,
where zj, is the transmit symbol at time k, is constrained by
an average and/or a peak constraint given by

1 &
_ZIICSS':
F =

Ik SAD Vke{ll"‘!n}:‘

(49)

(30)

where € and A are as defined in (43) and (48), respectively.
Remark 2: We shall see in Section IV that constraint (49)
is equivalent to

E[X]<¢& (51)

from a capacity perspective, where X is a random variable
representing the input.

At this point, the model of the static discrete-time Gaussian
channel is complete. Static here means that the channel
gain g is constant. We will discuss time-variations of g
in Section III-C. Next, we will discuss the transmission
bandwidth.

B. Transmission Bandwidth

In the above derivations of the discrete-time channel models,
we have referred to a symbol duration #;. The capacity of
these discrete-time channels in terms of bits/symbol is finite
as long as the constraints € and A and the noise variances o?
and Jg are finite. Thus, they have finite ‘amplitude resolution’.
However, we can still approach infinite capacity in bits/second
by decreasing t; to an arbitrarily small value. This infinite
‘temporal resolution’ is impossible in practice because devices
set a limitation on fs.

Photonic devices have a limited bandwidth. Ideally, a pho-
tonic device can be seen as a filter with an optical/electrical
input and an electrical/optical output. This filter has a band-
width, know as its modulation bandwidth, which typically
depends on the device and can be as large as tens or hundreds
of MHz, and can even be above 1GHz for laser diodes [181].
Transmitter and receiver circuits also have limited bandwidth.
The overall bandwidth of the channel is defined by the inter-
play of the transfer functions of its components. This channel
bandwidth sets a minimum £ that can be supported by the
transmitter-receiver system.

For the purpose of this tutorial, since we deal with discrete-
time systems, we will measure the bandwidth in terms of {5 as
b= % In other words, a system with bandwidth b can send
at most % symbols per second (Baud rate).

Example 7: Suppose that the light emitter and light detector
have a response which can be assumed as an ideal low-pass
filter with cut-off frequency + (or larger), and the receiver uses
an ideal low-pass filter with impulse response () = sinc( 23)
In this case, the minimum-bandwidth optical intensity Nyqulst
pulse (satisfies (27)) is y(t) = sinc*({) where sinc(z) =
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An exemplary IM/DD OWC system (Example 7) with sinc2 pulse shaping, an LED, photodetector (PD), and receiver filter with ideal low-pass

response (Yo(t) is the optical channel response). In this system, we can send b = o symbols per second.

%2—’“?1 [174] (Fig. 5). This system can send é symbols per
second, and hence its bandwidth is b = é

Remark 3: Note that this model accommodates all unipo-
lar transmission schemes that send b symbols per sec-
ond, including unipolar PAM sending b symbols per sec-
ond [34]-[36], [58], unipolar OFDM schemes with a sampling
rate of b samples per second [70]-[72], [74], [76], and PPM
with an ‘on’ pulse duration of !—l) seconds [64], [84], [128],
[182]-[184].

C. Constraints Due to Channel Variations

We have assumed at the beginning of our analysis that the
system is static. We have then described the optical channel
response by a constant gz (Definition 3). These assumptions
do not hold in general. The channel is generally time varying,
and its variation can be represented using several statistical
models. We will not delve deep into this topic, since this has
been discussed thoroughly in [16], but we will focus on its
impact on the channel model and on coding.

Firstly, the optical channel response is in general a func-
tion of time ~,(¢) which includes reflections due to multipath
propagation [185]. However, reflections are normally weak,
and the channels delay spread (nanoseconds) is significantly
smaller than the symbol duration (microseconds). Thus, the
response 7o (t) can be assumed equal to 6(t), and F{vo(¢)}
is flat in the regime of operation [22]. This allows abstracting
the channel response as a constant gg.”

Secondly, the number of received photons will be affected
by physical propagation phenomena such as scattering, absorp-
tion, and refraction. These effects are generally combined
under an atmospheric turbulence coefficient g,, which varies
with time. In addition to this, the received number of pho-
tons will also depend on the alignment of the transmitter and
receiver, or the lack thereof. This effect is captured by a point-
ing error term gp. Thus, instead of the channel gain gy, we
would have an effective channel gain of ¢ = gggagp.

The variables g, and gp are random. Several distribu-
tions have been used to model their statistics. For instance,
the atmospheric turbulence coefficient g, can follow a log-
normal distribution under weak turbulence [16], a Gamma-
Gamma distribution under moderate-to-strong turbulence[45],

9Note that if reflections are significant, then, assuming perfect equalization,
the overall channel from z; to output after equalization can still be modelled
as a constant gg.

VA

x — 9 {>4'$—*Y

Tx Rx

Fig. 6. An IM/DD Gaussian channel.

an exponential distribution or K-distribution under strong tur-
bulence [87], or a Mdlaga distribution in general [186], [187].
The pointing error follows a Rayleigh distribution [188], [189]
or more generally a Hoyt distribution [190], [191].

Although the effective channel gain varies with time, this
time variation is much slower than the symbol rate. For
instance, while the symbol duration can be in the range of
microseconds, the coherence time of the channel can be in the
range of milliseconds [16]. Thus, it is reasonable to assume
that the channel remains constant throughout a transmission
block [63]. Consequently, to encode over this constant channel,
the codewords have to be shorter than the coherence time of
the channel. However, this is not a crucial constraint since the
coherence time is orders of magnitude larger than the symbol
duration.

Another constraint that arises due to channel variations is
related to channel state information (CSI). CSI can be obtained
at the receiver using a channel estimation mechanism to esti-
mate g. The CSI at the transmitter (CSIT) can be available
or unavailable. CSIT can be acquired using a feedback chan-
nel from the receiver to the transmitter [16], [192]. Since the
channel varies slowly, the CSIT acquisition overhead can be
neglected in performance evaluation. In the absence of a feed-
back channel, the system is said to have no CSIT, in which
case the performance is studied in terms of outage probability
or the compound channel capacity.

In what follows, we assume the channel g to be static and
known globally. Next, we discuss the capacity of the single-
user point-to-point (P2P) IM/DD Gaussian channel.

IV. CAPACITY OF THE SINGLE USER IM/DD GAUSSIAN
CHANNEL

We focus on the IM/DD Gaussian channel described in
Def. 5, whose input-output relation is given by (see Fig. 6)

Y = gX; + Z;, (52)
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where at time i, Y; is the output, Z; ~ N(0, 1) is i.i.d. noise,
g = 0 is the channel coefficient which is fixed and known at
both nodes, and Xj is the input. We choose the noise variance
o2 = 1 without loss of generality since this can be absorbed
into g by normalization. For an input signal (zy, ..., z) where
n is the number of transmissions, the following constraint must
be satisfied

0<z; <A Vie{l,...,n} (53)
1 n
—2 z; < &. (54)
n 4

i=1

Before we discuss the capacity of this channel, we present
some preliminaries

A. Information-Theoretic Preliminaries

This section relies heavily on some information-theoretic
quantities which are introduced here. For a more comprehen-
sive overview, the reader is referred to [32].

Consider a discrete random variable X € X with distri-
bution Py (z). The entropy H(X) of this random variable is
defined as

H(X)= - Px(z)log(Px(z)). (55)

reX

This quantity measures the uncertainty in X, and is maximum
if X is uniform over X.

Example 8: Given X ~ Bern(1/2) and Y ~ Bern(1/10), then
H(X) = log(2) = 0.6931 nats (1 bit) whereas H(Y) = 0.3251
nats (0.469 bits). Thus, X is more uncertain that Y.

Given another discrete random variable ¥ € Y, so
that (X, Y) is distributed according to Py y(z,y) =
Px (z)Py|x (y|z). the uncertainty of ¥ given X is measured
by the conditional entropy

H(Y|X) == 3" Px y(z,y)log(Pyx (yl)), (56)

reX yey

and the uncertainty of the pair (X, Y) is given by the joint
entropy

HX,Y)==> Y Pxy(z,y)log(Px,y(z,y)). (57
reX yeyY

Also, the amount of information that ¥ contains about X can
be measured by the mutual information defined as

I(X;Y)=H(Y)— H(Y|X)=H(X)— HX|Y). (58

This is the amount of reduction of uncertainty in ¥ when X is
observed, or vice versa, the amount of reduction of uncertainty
in X when Y is observed.

Example 9: Given X ~ Bern(1/2), Y7 = X + Z mod 2
where Z ~ Bern(1/10), then ¥Y; ~ Bern(1/2) and Y7 given
X is Bern(1/10), thus I(X;Y;) = H(Y;) — H(1h|X) =
log(2) — 0.3251 = 0.368 nats. Thus, ¥; ‘reveals’ 0.368 nats
of uncertainty about X. If on the other hand Y5 = X, then
I(X;Ys) = log(2) since H(Y2|X) = 0,0 ie., Y5 ‘reveals’
all uncertainty about X. If Y3 is independent of X, then

10We use the convention 0log(0) = 0.

I(X;Y3) = 0 because H(Y3|X) = H(Y3), i.e., Y3 does
not tell us anything about X.

Analogous quantities for continuous random variables X
and Y are defined as the differential entropy, differential
joint entropy, differential conditional entropy, and mutual
information, given respectively as

h(X) = — /x Px () log(Px (x))dz, (59)

RYIX) == [ Pxy (o 9)log(Pyx i) dzdy,
(60)

RE¥) == [ Pry(@u)log(Px v (z,)dzdy,
(61)

I(X;Y) = h(Y) — h(Y|X) = h(X) — h(X|Y),  (62)

assuming the integrals exist.
The entropy and mutual information satisfy the following
properties that will be needed in the sequel.
e PI: h(Y|X) = (Y — f(X)|X) for any deterministic
mapping f(-) [32, Th. 8.6.3];
¢ P2: Conditioning does not increase entropy: h(X7|X3) <
h(X;) with equality if and only if X; and X, are
independent [32, p. 253];
e P3: Chain rule: h(X) = Y, h(X;|Xy,..
[32, Th. 8.6.2];
e P4: Concavity of mutual information in the input dis-
tribution: /(X; Y) is concave in Px for a given Py |y
[32, Th. 2.7.4].
Next, we describe how communication is realized over the
IM/DD Gaussian channel.

HXi1)

B. The Communication Problem

After modelling an IM/DD OWC system (in the infra-red,
visible-light, or ultra-violet ranges) as an IM/DD Gaussian
channel, we describe communication over this channel.
Communication over the IM/DD Gaussian channel can be
generally described as follows. The transmitter wants to send
a message of m bits to the receiver. The set of all possible
messages has size 2. Without loss of generality, the mes-
sages can be labelled by integers from 1 to 2™, and the set
of all messages can be denoted W = {1,...,2™}. Thus, the
message can be represented by a random variable W € ‘W.
The transmitter desires to ‘load” W with the largest number
of information bits. This is achieved when W is uniformly
distributed on ‘W, since a uniformly distributed random vari-
able has the largest ‘information content’ measured by its
entropy. For a uniform random variable W distributed on 'W,
the information content is H(W) = m. Thus, we can assume
that the transmitter picks a message w uniformly at random
from 'W.

To send a message w, the transmitter assigns a codeword
x(w) from a codebook of 2™ codewords, where x(w) =
(z1(w),...,zn(w)) and n is the code length (Table III).
For all w € ‘W, the codewords satisfy z;(w) € [0,.A] and
%ZLI zi(w) < &, which satisfies the intensity constraints.
Then, to send a message w, the transmitter sends x(w) through
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TABLE III
CODEBOOK CONSISTING OF 2™ CODEWORDS, EACH OF LENGTH n
SYMBOLS. TO SEND MESSAGE w, THE TRANSMITTER SENDS THE
SYMBOLS OF THE CODEWORD x(w) OVER n TRANSMISSIONS

Message || codeword
1 z1(1) x2(1) zn (1)
2 x1(2) z2(2) 25 (2)
7 [ m@) [ @@ Zn(27)

the channel in n transmissions (i.e., uses x(w) to modulate the
light source).!!

In this construction, the transmitter sends m bits in n trans-
missions, for a rate of 2 bits per transmission. To send at rate
r bits per transmission, we require that W has 2™ elements,
and hence 2™ must be an integer. We will assume that this is
true henceforth, by proper choice of n and r.

The receiver records the received signal y; over n trans-
missions to obtain y. Then it uses a decoder to decide that
message w has been sent. This process incurs an error proba-
bility p, , = P{w # @}, which is required to be sufficiently
small.

This description of message set W = {1,...,2™ }, encoder
and decoder defines a channel code, which we denote as a
(2™, n) code. We say that a rate r is achievable if there exists
a sequence of (2™, n) codes so that p,,, — 0 as n — ooc.
Indeed, we seek to maximize the achievable rate r. The max-
imum r is the channel capacity denoted cq4(A, ), to indicate
its dependence on g, A and € explicitly.

One can ask several question at this point: First, if the input
is constrained by %E?:] z; < &, then why does [34]-[36],
[58] and many other works study the channel with a constraint
E[X] < &7 Second, what is the value of cg(A,€&)? Third,
can we express cq(A, £) in a simple form? We discuss these
questions next.

C. Channel Capacity as Mutual Information Maximization

In his 1948 seminal paper [194], Shannon derived the capac-
ity of a memoryless channel. The theory asserts that as long
as r is smaller than the channel capacity, no matter how noisy
the channel is, one can send information at a rate of r bits per
transmission ‘error ﬁfee’.]2 The key is to insert enough redun-
dancy in the codewords so as to be able to correct errors at the
receiver. Specifically, Shannon showed that there exists codes
which allows ‘error-free’ transmission as long as the rate r
is smaller than capacity, and some such codes have been dis-
covered over the past decades such as LDPC codes and Polar
codes [195], [196]. This capacity is given in the following
lemma.

Lemma 1 (Capacity of a Memoryless Channel [194]): For
a memoryless channel with input X € X, output ¥ € Y,

Np a VLC system where a desired lighting level is required, modulating
the light source using x has to occur at a frequency higher than the eye’s
‘flicker fusion threshold” (10s of Hz). This is ensured in practice since the
modulation frequency is much larger (in MHz [193]).

2More specifically, an error rate that vanishes as the code length grows.

and channel law ]Py| x, the channel capacity is given by
maxpyepy [(X;Y).

Here, Py is the set of all Px defined on X. Thus, the
capacity is the maximum (with respect to Px ) of the amount
of information that Y tells us about X. This capacity is achiev-
able by a random i.i.d. code, where code symbols are chosen
independently at random according to Py, i.e., the error
probability vanishes as n — oo.

Example 10 (BSC Capacity): To provide a simple (and
rather crude) interpretation of Lemma 1, let us consider a
binary-symmetric channel with input X € {0,1}, and out-
put ¥ = X + Z mod 2 where Z ~ Bern(e). Here € can be
interpreted as the probability that the channel flips a bit. Let
us consider coding over n transmission. A transmitted code-
word X (w) = (X1,...,Xn) will be corrupted by n instances
of noise Z = (Zy,...,2Zy). Since n is large, Z will likely
have around ne ones and n(1 — €) zeros. Such Z is said to
be ‘typical’ [197], and the number of typical Z is around
e"H(Z) 13 Thus, X(w) will be received as one of around
enH(Z) possible corrupted versions of itself. On the other
hand, the received signal ¥ = (Y7,..., ¥n) can take any
of 2" = ™192(2) possible values. To make sure the decoder
does not confuse corrupted versions of X(w) with corrupted
versions of another codeword X (w’), we should send less than

log(2
ee: ;ﬂ, )) = n102(2)=H(2)) codewords. Thus, the rate must be

less than  log(e™1°8(2)=H(2))) = log(2) — H(Z) bits per
transmission, which is exactly I(X; Y) when X ~ Bern(1/2).
This can be achieved by using a random i.i.d. binary code, or
a rather more structured LDPC or Polar code [196], [198].

Lemma 1 presents the channel capacity in a ‘single-letter’
form where the time index is obsolete. However, in the chan-
nel under consideration, the time index is not obsolete since
the constraint + 37, z; < € is a time average. In this
case, instead of finding the best Px, we have to find the best
Px where X = (Xi,...,Xy). This seems to prevent using
Lemma 1 directly to express the capacity of the channel under
consideration. Nevertheless, we can still apply this lemma in
a ‘multi-letter’ form as follows.

Consider the n-symbol extended channel ¥ = gX + Z
where X = (X1,...,Xp), Yi = ¢Xi + Z;, and Z; is
iid. N(0,1). The input alphabet of this channel is the set
x?l = {X e [0,A]"|||X|1 < n&}, its output alphabet
is R™, and its channel law Py x = [[iL; Py, x, (vilz:) =

(y;—az;)?

— -

T e 2 . This is a memoryless channel whose
= 2T

capacity is

[n] _ .
cg"(A,€) = max I(X;Y) (63)

by Lemma 1. Here, Px is the distribution of X, and Py is
the collection of all Px defined on X[™. Since the resulting
vector channel is defined as n-uses of the scalar channel, its
capacity is also equal to an] (A, &) = ncy(A, €).14 Thus, we

13This is when H(Z) is in nats. If we use bits, then the number of typical
Z is around 2nH (Z),
14This can be shown using standard steps as in [32, Ch. 7].
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have

ncg(A, €) P%X I(X;Y). (64)
The maximization with respect to Px is required to determine
the distribution of codeword symbols from the alphabet xlnl,

To simplify this expression into a single letter form, we note
the following. While the constraint || X ||; < n€ permits Px
to be non i.i.d. in general (such as X; = n€ and X; = 0
¥j # 1), property P4 forces the optimal Py to be ii.d., as
shown next in Theorem 1, which allows us to replace the
constraint || X |[; < n€ with E[X;] < € for all i.

Theorem 1 The capacity of a channel with input X =
(X1,...,Xn) satisfying X; € [0, A] forall i and | X ||; < né,
and output Y; = ¢X;+Z;, i = 1,...,n, where g is a constant
and Z; is i.i.d. N(0,1) is given by

¢g(A,€) = max I(X;gX +2),

xEFx

(65)

when n is large enough, where Py is the collection of all Py
defined on [0,.A] with E[X] < €.
Proof: Starting from (64), we have

I(X;Y) = h(Y)—h(Y|X) (66)
Z h(Y) - h(Z|X) (67)
Zh(Y)-h(2) (68)

mn
P
2N h(Yi V..., Yic1) = h(Zil 24, .., Zis)
i=1

2 S (Y - h(z) ©9)

i=1
=Y I(X;; Yy), (70)
i=1

for any distribution Px with marginals Px,. This leads to

n

1
¢ < max —ZI(X;—;gXi + Z;).

(71)
PxePx n i

Let the support of Py, be X; and its mean E[X;] = &;. Then,
using property P4, we have

1 Pa

—> I(X;9Xi+2) < I(X;9X +2),  (72)
i=1

where Z ~ N(0,1), and X is a random variable defined on

X = U, X; with distribution P (z) = + Y7, Py, ().

Therefore, we obtain

< X:gX .
cg(A,€) < max 1(X;9X +2) (73)

Note that X C [0, .A] since X; C [0,.A]. Moreover, we have

_ 1 <&
EX[X]:/DEI;ZPX!.(IMI (74)
i=1
1 n
:;gészi(z)dz (75)

1 n
= =) & <E, (76)

n

i=1

where the last step follows since | X ||; < n€ implies that
E[|| X [l1] < n€ and hence + 37 | &; < €. Let P be the
set of all Py satisfying X € [0,.A] and Ex[X] < €. Then,
Px € Px = Px € Px. Hence,

cg(A, &) < max I(X;9X + 7). (77)

Px€Px

This upper bound is achievable as n — oo using i.i.d. X ~
[Tin1 Px (). The resulting codebook satisfies the constraints
for large n, since for each codeword (zp,...,zn) we have
z; € [0, A] for all i, and limp 00 = -1 | 7; = E[X] < € by
the law of large numbers. This concludes the proof. |

This demonstrates that the constraint %ZLI ; < € is
equivalent to E[X] < & from a capacity perspective, and
cg(A, &) = maxp, cpy I(X; 9X + 7).

Now some remarks about the constraints are due. One can
show that the channel capacity under the constraint E[X] = &
is equal to that under the constraint E[X] = A — & by
symmetry of the Gaussian noise distribution [34], [58]. By
property P4, one can also show that capacity increases as E[X]
increases from O to -“;"- [58]. Hence, the optimal input distri-
bution satisfies E[X] = € if &€ < % and satisfies E[X] = %
otherwise [34], [58]. In the latter case, we can show using
P4 that an input distribution symmetric with respect to -“;"- is
optimal.

Due to this, it suffices to study the capacity when € < -"g-,
with the understanding that a channel with a peak constraint
only has the same capacity as a channel with an average and
a peak constraint with & = -“;"-

To evaluate capacity, it remains to compute

cg(A,€) = max I(X;gX +2), (78)
PxePy

where P’y is the set of distributions Px on [0, A] satisfying

E[X] = & < £. Methods for evaluating this capacity are

discussed next.

V. NUMERICAL EVALUATION OF THE CAPACITY OF A
SINGLE USER IM/DD GAUSSIAN CHANNEL

While the objective of the maximization in (78) is the same
as that in the standard AWGN channel [32, Ch. 9], the con-
straint set ‘P’X is different. This alone makes this problem
elusive contrary to the standard AWGN channel for which
the optimal input is known to be Gaussian.

However, numerical methods can be used to solve this
problem, due to the following result from [39].

Theorem 2 (Discreteness of Optimal Distribution [39]):
The capacity-achieving input distribution Px for the IM/DD
Gaussian channel with a peak constraint is a discrete distribu-
tion with a finite number of probability mass points.

Thus, one can restrict attention to distributions of the form

k

P& (z) =Y aid(z — ;)

i=1

(79
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for some k, z; € [0,A], and a; > 0 such that ), a; = 1,
satisfying the constraints on X. Thus, to find capacity, we have
to solve

max [I(X;9X + 7))y, L

k,zi,a;
k
subject to k > 2; Zaz- =1; Za?;:cz— <&
=1 i=1
€ [0,A] Vi=1,...,k, (80)
where
I(X; ¢X + 2) / l( Fa e o)’
;g =—
iz 1\f27r
k (- 1
log( )dy]
27r
i=1
—3 log(21re). (81)

This gives the capacity in nats/transmission. To convert to
bits/transmission, we divide by log(2), or we replace log(-)
with loga(-).

The problem of finding the optimal Py involves the fol-
lowing three problems: (i) Finding the optimal £k, (ii) finding
the optimal z;, and (iii) finding the optimal a;. The overall
problem is nonlinear, but can be solved numerically. With cur-
rently existing numerical solvers, it is common to solve for a;
and z; jointly for a given k [39]. We shall describe this later,
but first, let us study a method for finding the optimal a; for
a given z; and k that dates back to 1972.

A. The Blahut-Arimoto Algorithm: Optimal a; Given k and
i

If k and z; are given, then the maximization with respect
to a; can be solved numerically due to property P4, i.e., the
concavity of I(X; gX + Z) in Px. A famous elegant algo-
rithm that solves this maximization is the Blahut-Arimoto
algorithm [199], [200]. It is based on a rewriting of the mutual
information as follows

x,v(z,y)

1067) = Y [ [Bx,y (o) tog (s )

reX

P T
= Z/PX(I)PHX(MI)IOg(%)d%

reX
and recasting the maximization problem as

Px |y (z|y)
Px (@) )dy

(82)

max max Z /RIPX (I)PY|X(?J|I) log(

Pxiy Px ex

Solving this double-maximization leads to the capacity achiev-
ing distribution as shown in [32, Ch. 10]. This problem is
convex in Px given Px |y, and also in Px |y given Py, and
hence can be solved by alternating maximization with respect
to Px and P X|Y-

To solve this maximization numerically, we discretize the
interval [y, y,] where y < 0 and 3, > g.A are chosen so that

P{y < y} and P{y > yu} are arbitrarily small for any Py
(typically y < —30 and y, > gA + 30, recall that o = 1).
We define Y = {y +jd|j = 0,1,...,£} for 0 < 6§ <« 1
and £ = [£-H7, This way, we can discretize Y and describe
Py |x as a matrix (p;;), i € {1,...,k}and 5 € {1,...,¢},
where

pji=P{Y €[+ (G —1)4, 4 +j6)|z; was sent}. (83)

This can be calculated numerically from the channel law
Py|x. Similarly, define
gij =P{z; wassent|Y €[y +(—1)4n+50)} (84

Now we can recast the optimjzation as

“&‘f‘;,’“%?‘*"z Z aipy,i log(qm)

* i=1j=1

(85)

Fixing a; and consequently also p; ;, we need to solve

max Zz%pﬂlog( )

i=1j7=1
k

s.t. ZquZI, Vje{l,,f}

i=1

(86)

The problem is convex, its Lagrangian is £(gij,¥)
— i  wipjilog(%L) + X, ¢i(X; 4 — 1), and the
optimal solution satisfies 6_553:1_@ = 0. Combined with
Sk | gi;=1, this yields |
aiPj,i
i aipj it
Note that this solution preserves the mean of X, i.e.,
if Y ,z;a; = p for some p, then we also have
20 Ti )5 Pjgiy = p Where p; =375 aipj ;.
On the other hand, fixing g; ; and p; ;, we need to solve

Gii
i 3 (1)
i ag

5 :
s.t. Z a; =1, Z:}:@az— =E.
i=1 i=1

The sum in the objective function is with respect to i, j for
which ¢;; > 0 and p;; > 0. This problem is also con-
vex, its Lagrangian is £(a;,¥,v) = =Y, ; aipj i log(%) +

gij = (87)

(88)

(Y, ai — 1) +v (D ; zya; — £), and the optimal solution sat-
isfies oL a"_"b’v = 0. Combined with the two constraints, this
yields

—um p;
e 1l 4y
Yo e V5 Il g p;r il

where the product is with respect to j for which p; ; > 0 and
gi,j > 0, and v is the solution of

E‘i Iie_um‘. H_j' gféi

Zi’ B—U.'u"i! HJ ngJ‘ .

a; =

(89)

8:

(90)
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Algorithm 1 Blahut-Arimoto Algorithm for the IM/DD
Gaussian channel
1: Inputs: A; &; g; (z1,.

c Tk) 65 Y Yus

2 a4 Ve {1, k) £ B r 0

3: repeat

* pji < P{Y €[y + (j — 1),y +j6)|z; was sent}

-1

S iy aipgi(Tu apjv)

6: v + Solution of (90) )
— i Dy, — o p',i’ —

7: a; (B va I, qs',jj )(Ei’ e I, qz"i;.‘ )

8 T )P log(ﬁ)

9: until r converges
: Outputs: r; g;

—
=]

TABLE IV
EVOLUTION OF (a;) FOR THE CHANNEL IN EXAMPLE 11 UNTIL
CONVERGENCE. THE SOLUTION OF maxg; {(X; Y') FOR THIS EXAMPLE
USING EXHAUSTIVE (GRID) SEARCH IS 0.61 NATS PER TRANSMISSION
WHICH MATCHES THE RESULT OF ALGORITHM 1

Tteration || (a1, az,a3) | r (natsftransmission)
1 (0.59]2, 0.2647, D.1441) 0.5679
2 (0.6150, 0.2250, 0.1600) 0.6053
3 (0.6264, 0.2060,0.1676) 0.6087
4 (0.6323,0.1962,0.1715) 0.6096
7 (0.6380,0.1866, 0.1753) 0.6100

Based on this, the optimal a; for given k and z; can be
computed using the Blahut-Arimoto algorithm as described
in the Algorithm 1. By discretizing the interval [y, ] into
infinitesimally small intervals (§ < 1) and choosing — and
yu — gA large enough,15 the rate r in Algorithm 1 converges
to maxg, I[(X; Y) where X € {zy,..., 11}

Example 11: Consider an IM/DD Gaussian channel with
g=1,A=5and £ =1.25.Letk =3, (z1, 12, 23) = (0,2, 5),
y = —10, 4, = gA + 10, and § = 1073, With these
parameters, the solution of maxg, I(X; Y') using Algorithm 1
is 0.61 nats (0.88 bits) per transmission achieved when
(a1, ag,a3) = (0.638,0.1866,0.1753). Table IV shows the
evolution of (a;) for this channel until convergence.

Now that we have a method for finding (a;) for a given k
and (z;), we move to the maximization with respect to (z;).

B. Optimal a; and z; Given k

To find the optimal (z;) for a given k, we rely on a state-
ment that dates back to 1971 [201]. The statement provides
a necessary and sufficient condition for a distribution Py to
be optimal for a Gaussian channel with a peak constrained
input without and with a power constraint. The statement
has been generalized later on to different types of channels
such as Poisson [156], quadrature Gaussian [202], Rayleigh-
fading [203], and conditionally Gaussian channels [39]. The
statement for the channel under consideration is given in [39],
and is repeated next.

1350 that the interval [y, yu] contains a large enough margin around [0, g.A]
to accommodate a large subset of the support of Y.

0.2 T T
——Px from Example 12

—— P% (optimal)

0.1 |
a0 - N
5 2
=~

_0]_ -
~0.2 | | | |
0 1 2 3 4 5
x
Fig. 7. Plot of J(z,Px) defined in Theorem 3 as a function of x for

Examples 12 and 13.

Theorem 3 (Optimality Condition [39]): Let Px be the
capacity achieving distribution of the IM/DD Gaussian channel
with support X = {1, ..., } for some k, and define

I(Bx) = I(X; V) xopy o
Qe Px) = = [ Pyix(ulz) loe(Py (1)dy ©2)
o= 3 (1) + Joglome) - Q0.E)) )
J(z,Px) = (Px) — Q(z, Px) + 3 log(2ne) + (z — &)
%4

Then the following statements hold:

1) 0 € X and Px(0) > 0;

2) ¢ > 0; and

3) J(z,Px) >0 for all z € [0,.A] with equality if z € X.

This statement provides a necessary and sufficient condition
for the optimality of an input distribution and can be used to
check if an input distribution for a given k is optimal. We
apply this to the channel in Example 11.

Example 12: For the IM/DD Gaussian channel in
Example 11, we have Py = Z‘E':l a;é(r — )
where (z1,79,73) = (0,2,5) and (ay,a9,a3) =
(0.638,0.1866,0.1753), and |(Px) = 0.61 nats per
transmission. Since 1 = 0 and a; > 0, then the first
condition in Theorem 3 is satisfied. To check the second and
third conditions, we evaluate ¢ and J(z,Px) numerically.
We obtain ¢y = 0.2528 which satisfies the second condition.
However, J(z,Px) does not satisfy the third condition as
shown in Fig. 7. Thus, this input distribution is not optimal.

To find out whether a distribution with kK mass points is
optimal, one can fix z; = 0, vary zo,..., 1, find ay,..., a;
using Algorithm 1, and repeat until either the conditions in
Theorem 3 are satisfied in which case we have the optimal dis-
tribution, or all (discretized) values of =3, ..., 73 are exhausted
in which case k is too small to achieve capacity. Alternatively,
one can rely on the concavity of I(X; ¥) in Py, and maximize
jointly with respect to (z1,...,z¢) and (a1,...,a) using
numerical solvers for a given k. Checking whether the obtained
distribution satisfies the conditions in Theorem 3 reveals if this
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Algorithm 2 Combined Search for Optimal zi,...,; and
ai, ..., ag for the IM/DD Gaussian Channel
1: Inputs: A, &; g; k
2: }‘( = @
3: Px < Solution of maxp, . i mass points [ (X; ¥') using
numerical solvers
4: Compute ¢ and J(z,Px ) using (93) and (94)
5. if Px(0) > 0, ¢ > 0; J(z,Px) > 0 ¥z € [0,.A] with
equality if Py (z) > 0 then
: Y =Px
7: end if
8: Output: P%

Algorithm 3 Search for the Optimal Py for an IM/DD
Gaussian Channel
1: Inputs: A, &; g;
Tmax < 0; Py =0; k<1
while P5 = 0 do
k—k+1
P% < Output of Algorithm 2 given k
end while
Output: P5

AN i

distribution is optimal or not (in which case we conclude that
k is too small) [39], [203]. This is summarized in Algorithm 2.

To test this algorithm, we use the parameters in example 11.

Example 13: For the channel in Example 11, Algorithm 2
yields P5 = Y7_, a;0(z — ;) where (z1,73,73) =
(0,2.7058,5) and (aj,an,az) = (0.6643,0.1869,0.1489),
and the rate is r = 0.626 nats (0.9031 bits) per transmission.
Moreover, Px (0) > 0, ¢ = 0.2501 > 0, and J(z,P%) > 0
for all x with equality when = = a; as shown in Fig. 7,
which satisfies the conditions in Theorem 3. Hence, ]P;( is
optimal and the capacity of this channel is ¢1(5, 1.25) = 0.626
nats/transmission.

If Algorithm 2 outputs P = 0, ie., the conditions in
Theorem 3 are not satisfied for any Py with k mass points.
This indicates that the optimal input distribution has more than
k points. It remains to find the optimal .

C. Optimal k

To find the optimal k, we also use the necessary conditions
in Theorem 3. In particular, for a given channel, we start by
setting £ = 2 and using Algorithm 2 to find the optimal Py.
If the output is P% = (), then we increment k. This is repeated
until an optimal Py is found as summarized in Algorithm 3.

Using Algorithm 3, we can find the optimal input distribu-
tion for the single-user IM/DD Gaussian channel. Fig. 8 shows
the channel capacity obtained using Algorithm 3 for a channel
with € = %— as a function of A when g = 1.

While Fig. 8 shows the behavior of capacity as a function
of the peak intensity, it does not provide an explicit relation
between the two. Thus, the following question arises: Can
we express capacity in a simple form? The following section
discusses this issue.

1 T T T T
1 1 o
| | |
1 1 o
= 08} ] I o i s
g I I I
g k* =2 D E*=3 ! 9 k*=4 lE* =5
E 0.6 - l o l .
| o | |
£ | | |
& o4f o l l 1
5 | | |
5 o | |
< 02 I I I i
¢ o I I I
| | |
0 | | | | | | |
0 2 4 6 8 10
A
Fig. 8. Capacity versus A for an IM/DD Gaussian channel with € = A /4,
and g = 1, indicating the optimal number of mass points k*.

VI. CAPACITY BOUNDS AND ASYMPTOTICS

The capacity of the single-user IM/DD Gaussian channel
can be obtained by solving problem (80) using Algorithm 3.
While this does not have the elegance of log(1 4+ SNR) (the
capacity of a Gaussian memoryless channel with a power con-
straint, see Remark 4 below), this is still useful for evaluating
the capacity of a static channel. Furthermore, the optimality of
discrete inputs with a finite number of mass points as asserted
by Theorem 2 is appealing from an engineering point of view.

Remark 4: For a Gaussian memoryless channel with input
X € C and output ¥ = gX + Z where g € C, E[|X|?] < p,
and Z ~ CN(0, 02), the capacity equals log(1+ SNR) where
SNR is the signal-to-noise ratio SNR = J%;E. This is achieved
by choosing X ~ CN(0, p).

The simplicity of log(1 4+ SNR) enabled a large body of
literature on wireless communications focusing on capacity
and power allocation for parallel channels, MIMO channels,
and multi-user channels, in addition to ergodic and outage
capacities of time-varying channels [111], [204]. However,
the capacity of the IM/DD Gaussian channel obtained using
Algorithm 3 is not amenable to similar analysis. This makes it
important to derive capacity bounds and approximations that
enable further analysis of IM/DD Gaussian channels based
on information-theoretic fundamentals. Moreover, capacity
bounds are important in cases where the capacity is not numer-
ically computable, such as for the channel with an average
intensity constraint only, whose capacity achieving distribution
has an infinite number of mass points.

This section presents such results.

A. Capacity Lower Bounds — Achievable Rates

Two methods have been used in the literature to derive
capacity lower bounds. One method focuses on continuous
input distributions, and the other focuses on discrete input
distributions. The common factor between the two is that they
both rely on the entropy-power inequality (EPI) stated next.

Lemma 2 (EPI [32, Th. 17.7.3]): If X and Y are n-

diQmensional indezpendent ragldom vectors with densities, then
eah(X+Y) 5 (Zh(X) | Zh(Y),
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To derive a capacity lower bound using this lemma, we write
I(X;9X +Z) = h(gX +Z) - h(¢X + Z|X) (95)
B h(eX +2) - h(2) (96)
2 > log (€29%) 4 2M(2)) — h(2) (O7)

2h(X)
%log(L + 1),

2me
where in the last step we used h(Z) = %log(?ms) and

h(gX) = h(X) + log(g) [32, eq. (8.71)]. Let Py be a selected
input distribution, then it holds that

98)

cg(A, &) = max I(X;gX + Z) (99)
PxePx
> I(X;9X + 2)|x (100)
2 2h(X)|xp
> llog(qul). (101)
2 2me

Thus, the problem of deriving a capacity lower bound boils
down to choosing a ‘good’ Py, i.e., one which maximizes
h(X). Next, we apply this to a channel with average and a
peak constraints, followed by one with an average constraint
only.

1) Average and Peak Constraints: We distinguish between
bounds using continuous input distributions and ones using
discrete input distributions.

a) Continuous input distributions: The solution of
maxp, h(X) where Py is a continuous distribution satisfying
X €[0,A] and E[X] < & was given in [34]. The results rely
on finding the max-entropic distribution using [32, Th. 12.1.1]
which states the following.

Lemma 3 ([32, Th. 12.1.1]): The solution of

max h(X) (102)
Py
st. X eS8, /PX(I)dI =1 (103)
)
Elr(X)] = ms, ¥i=1,...,n  (104)

for some measurable functions ; : 8§ — R, is given by
P (z) = e+ i1 i7i(Z) | where a, ..., a, are chosen to
satlsfy the constraints.

Using Lemma 3 with § = [0, A], n = 1, r(z) = z, and
my = € leads to the following solution [34]

+ _pts

Py (z) = {u‘l'll e A, if

T if

< (105)

o> oo
[ [ =

ep'

for z € [0,A], where p* > 0 satisfies - T =&
These distributions are the ‘truncated-exponential’ dlSlI‘lbuthI‘l

(Fig. 9(a)) and uniform distribution, respectively. The resulting
maximum entropy is

*= £ —u*
%log A2 ﬁ(l_ﬁ.p
%log(.AZ), i

This leads to the following statement.

h(X) =

471
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(a) Truncated-exponential. (b) Truncated-geometric.

Fig. 9. Truncated-exponential distribution (105) and truncated-geometric
distribution (112) for A =4 and € = 1.

Theorem 4 [34]: The capacity of the IM/DD Gaussian
channel with a peak constraint A and an average constraint
& < 4 satisfies cg(A, €) > ri™ (A, €) where

iV (A, €)
242 9L f1_.—u*\2) .
[ hos(1e e s (=20)) w <
242 .
%log(l—i—%%) if jg[:%
(106)

In addition to this result, it is interesting to calculate the
achievable rate using a ‘truncated-Gaussian’ distribution, espe-
cially since a Gaussian distribution achieves the capacity of the
standard AWGN channel (Remark 4). This has been derived
in [58]. Let the Gaussian distribution function with mean i
and variance v be denoted ]PE,V(::) = QW L_%L We
construct a truncated Gaussian distribution as

PG (z) =P, (z), z€0,A] (107)

where

-1
n=(FL, () -FL0) (108)
and ]Eﬁ,,(:r) is the cumulative distribution function corre-
sponding to Pﬁ,u(z). The mean of ]PE,V(::) is

G
P,u.,v (0) -

fi=p+v?n( PE,(A)), (109)

and its variance is
v2(1-ABG, (A) - A(BE, (0) ~ BG, (). (110)

By choosing 2 € R and v > 0 so that & < &, we can derive
a feasible truncated-Gaussian input distribution. This leads to
the following statement.!®

7=

16we only give a simplified version of the achievable rate of the Truncated-
Gaussian distribution here. The achievable rate of this distribution is larger
than that in Theorem 5. The reader is referred to [58] for details.
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Theorem 5 [58]: The capacity of the IM/DD Gaussian
channel with a peak constraint A and an average constraint
&< % satisfies cg(A, &) > rg™*(A, €) where

5™ (4,€) = max 5 log(1+ 9%?) ~ log(n)
2 2
- % (- WP ) + B ),

(111)

where 1 € R and v > 0 are chosen such that g < &.
In [58], specific choices of p and v are given that make
g approach capacity within a gap <0.164 nats as A and
E increase (high SNR). It is also shown numerically that the
gap nearly vanishes at asymptotically high SNR if we optimize
;ma with respect to p and v. Note that the simple choice of
v=Fk and p sllghtly lower than € so that i = € leads to the
achievable rate 7 log(1+ ¢%&?) which is a simple expression

but is suboptlmal

b) Discrete input distributions: We know from [39] (see
Theorem 2) that the optimal input distribution is discrete.
Thus, it is relevant to derive a lower bound using a simple
discrete input distribution. To this end, [35] maximizes H(X)

while imposing the constraint that Py has the form

Pl (z) = Zk: a?;c‘i(ﬂ: - z%)

i=0

(112)

a discrete  distribution with support X =
{0 T T= .,A}. The optimization problem becomes
maxgq, H(X )| __plkl subject to E[X] < &. This can be solved

using Lagranglan (i(uallty [205] to obtain the following.

Theorem 6 [35]: The solution of the optimization
max,, H(X) subject to X € [0,A], X ~ P[Xk] given in (112),
and E[X] < & is

) £ £ 1
we| T TA<E gy
=5} if 7=73
where {; is the unique positive root of Z?:o(l — %)ti. The

resulting achievable rate for the IM/DD Gaussian channel is
'réh(ﬂ, €) = maxy, I(X; V) with X distributed according to
the optimal solutions above.

These distributions are respectively a ‘truncated-geometric’
distribution (Fig. 9(b)) and a discrete uniform distribution, and
have been shown to be capacity-approaching in [35]. However,

o Capacity
— Lower bound f';,'““’ (Thm. 4)
- - - Lower bound rg™* (Thm. 5)
(Thm. 6)

—_
o

—— Lower bound r;h

Rate (nats/transmission)
Lt
T

Fig. 10.  Achievable rates of Theorems 4-6 versus A for a channel with
E=A/4,and g = 1.

contrary to the lower bounds in Theorems 4 and 5, the achiev-
able rate in this case is evaluated numerically, which leads
to a numerical capacity lower bound instead of an analytical
expression.

Exampfe 14: Consider an IM/DD Gaussian channel with
A =5 & = 125 and ¢ = 1. The lower bounds in
Theorems 4-6 yleld rl““” (5,1. 25) = 0.3493, r{™(5,1.25) =
0.1242, and 7 fhs, 1 25) = 0.6134 in nats/transmission.
Recall from Example 13 that the capacity of this channel is
c1(5,1.25) = 0.626 nats/transmission which is very close to

fh(5,1.25) but far from ™" (5,1.25) and r{™2(5,1.25).

This example suggests that ,_,.gh (A, €) is a good lower bound.
While rémw(ﬂ,ﬁ) and rg™*(A, €) are away from capacity
in this example, they both become closer to capacity as A
increases with € held proportional to A as we shall see later.
Fig. 10 shows these bounds graphically.

2) Average Constraint Only: Using the EPI to lower bound
the channel capacity in this case requires finding an input dis-
tribution on [0, c0) satisfying E[X] < & which maximizes
h(X) or H(X). We start with continuous distributions.

a) Continuous input distributions: The max-entropic
continous distribution which maximizes h(X) in this case is
the exponential distribution Py (z) = %e_% forz > 0
[32, Example 12.2.5]. This leads to the following lower bound
given in [34].

Theorem 7 [34]: The capacity of the IM/DD Gaussian
channel with only an average constraint € satisfies

Imw,a 3'9'1282
cg(00,€) = rg™ % (€) = - log 1+T . (116)

B (v, A, €) = (1— Qv + g€) —

2

\/_

e G A ()

B% e_’u(l—'—gﬂ) 1

QW + g(A — &) log| g4 1

Varu(1—2Q()) | ~ 2

(114)

2

gA +2v (115)

b (v, A) = (1 ~ 2@(

A))l (\/_au(l —2Q0 ))) SRR
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The truncated-Gaussian lower bound given in Theorem 5
can be specialized for this case by setting A = oo leading to
the following statement.

Corollary 1: For A = oo, the truncated-Gaussian distribu-
tion capacity lower bound in Theorem 5 becomes

1
cma,a - 2.2y
Tg (€) = max o log(l +g°v ) log(n)

e
2922 + I)JL"'P,U.,U(O):
where 7 = (1 — F5,(0))~%, and where € R and v > 0
are chosen such p + v%l[‘ﬁv((}) < E&. This is an achievable
rate for an IM/DD Gaussian channel with only an average
constraint.
Next, we consider discrete input distributions.

b) Discrete input distributions: We want to find the dis-
crete input distribution which satisfies the constraints and
maximizes H(X). To simplify the search, we restrict our
attention to distributions of the form

> aid(z — ib)

i=0

(117)

P(z) = (118)

for some £ > 0. The max-entropic I@’g‘? was derived in [36],
as stated next.

Theorem 8 [36]: The solution of the optimization
maxg, H(X) subject to X > 0, X ~ ]P[] gwen in (118),
and E[X] < € is the geometric dlstnbutlon a; = ?—(?—)‘
The resultlng achievable rate in an IM/DD Gaussmn channel
is :rg %(&) = maxy I(X; Y) with X distributed according to
the geometric distribution above.

Generally, the achievable rate of this distribution is higher
than ro™® and rS™®2, but lacks an analytical expression.
We shall see that analytical lower bounds are very useful for
deriving asymptotic capacity results in Section VI-C. Next, we
discuss capacity upper bounds.

B. Capacity Upper Bounds

Capacity upper bounds for the IM/DD Gaussian channel
have been derived using one of three methods: Duality, sphere
packing, or constraint relaxation. Duality bounds are derived
using a dual expression of the channel capacity that has been
given in [59], [206] as follows.

Lemma 4 [34]: For a channel with input X € X and out-
put Y € Y described by the transition probability Py x, the
capacity is upper bounded by supp, Ex[D(Py x|Py)] for
any distribution Py-.

The sphere packing approach has been used earlier for
the standard AWGN channel in [207] and will be detailed
in Section VI-B2. Constraint relaxations refers to replacing
the constraints of the capacity maximization problem by ones
which simplify the maximization problem as we shall see in
Section VI-B1. Upper bounds on the capacity of the IM/DD
Gaussian channel which use these methods are discussed next.

1) Average and Peak Constraints: In this case, we have
bounds based on the duality approach and bounds using
constraint relaxation.

a) Duality upper bound: To apply Lemma 4 for the
IM/DD Gaussian channel in this case, we restrict Py to satisfy
X = [0,A] and E[X] < &, and we fix Py |x to be the IM/DD
channel law, i.e., Gaussian. The main difficulties in deriving an
upper bound based on Lemma 4 are finding a good Py, calcu-
lating the expectation E x, and maximizing with respect to Py .
The last two challenges can be simplified by upper bounding
D(Pyx [Py ) using bounds that simplify the expectation E x.
Determining a good Py requires some intuition. Let us focus
on high SNR first, and let us study an equivalent normalized
channel where ¥ = X + Z where Z ~ N(0,6%) and 6 = %
At high SNR, one expects the output distribution Py, to be
‘similar to’ the input distribution Py since the noise variance
is negligible at high SNR relative to A. Thus, the maximum
h(Y') should be close to the maximum A(X), which is achieved
by the distribution in (105). The maximum k(Y determines
the channel capacity since I(X; ¥) = h(Y)—h(Z). Thus, one
expects that choosing Py as given in (105) is a good choice.
To generalize this insight to any SNR, we choose Py to be
‘similar to’ Py between 0 and A, and to have a Gaussian
roll-off outside this interval. To quantify this statement, we
can use a parameter 6 > 0, and choose Py (g) to be similar
to Py (z) for y € [— 4, A+ J] and to have a Gaussian roll-off
for § < —6 and § > A + 4. With appropriate normalization,
this leads to the following distribution [34]

=2

lea";:f

Py(9) = l_reg_(l :f((u);) x, -s<

y<—6
y<A+4

_@-A)?

1 22, y>A+4

podis

Plugging this distribution in Lemma 4, it remains to maximize
the expectation with respect to Px on [0,.A] with E[X] < &.
This has been bounded in [34], leading to the following.

Theorem 9 [34]: The capacity of the IM/DD Gaussian
channel with a peak constraint A and an average constraint
& < 4 satisfies cg(A, €) < T (A, €) where

—lmw _ mmb‘}ﬂ,ﬂ}ﬂb (V ;u"l')q':g)': & < _Jg'_:
g (‘A’E)_{mm }DbmW(V _A) EZ%

and bé,mw and %mw are given in (114) and (115), shown at
the bottom of previous page given at the bottom of the page.

Note that in [208], McKellips derived a capacity upper
bound for the additive Gaussian noise channel with peak con-
straints | X| < V/P. In [209], it was shown that McKellips’
bound can be obtained as a special case of the Duality bound
in Lemma 4 with the distribution shown in Fig. 11. This
bound can be easily modified to obtain a bound for the IM/DD
Gaussian channel with a constraint 0 < X < A, and also holds
under a redundant average constraint £ = %, as stated next.

Theorem 10 [208]: The capacity of the IM/DD Gaussian
channel with a peak constraint A satisfies cg(A, %) <
Tg (A) £ log(1+

The upper boun s 1 Theorems 9 and 10 are both asymp-
tomatically tight at high SNR for the respective cases where
they hold, as we shall see later. An upper bound which is
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Fig. 11. Distribution Py
Theorem 10 [209]. Here, A = 2.

for deriving the McKellips bound in

tight at low SNR can be derived using the constraint relaxation
methods and also the Duality method, as discussed next.

b) Constraint-Relaxation upper bound: In this approach,
the input constraints are relaxed into a variance constraint.
Namely, for a random variable X € [0, A] with E[X] <
& < %, the maximum variance is E(A — &) achieved by
the binary distribution Py (z) = (1 — &)d(z) + §6(z —
A) [58]. Therefore, we can upper bound the maximization
maxp, I(X;Y) where Py is defined on [0,.A] with E[X] <
€ by enlarging the feasible set to the set of all Px on R with
E[(X—E[X])?] < &(A—¢&). The solution of this maximization
is known to be achieved by the Gaussian distribution leading
to the following statement.

Theorem 11 [34], [58]: The capacity of the IM/DD
Gaussian channel with a peak constraint A and an average
constraint £ € [0, 4] satisfies

cg(A, &) <TIA, E) = %log(l +g28(A - s)). (119)

Note that this upper bound was derived in [34] using the
duality approach. Next, we turn our attention to cases with
either an average or a peak constraint, where sphere packing
bounds have been derived.

2) Average or Peak Constraints: Capacity upper bounds
for the IM/DD Gaussian channel with either an average or
a peak constraint have been derived in [34], [36], [58]. To
complement the approaches presented above, we focus on
the sphere-packing bounding approach which was studied
in [36], [58].

a) Sphere packing under an average constraint: Again,
we consider the equivalent channel Y = X + Z where
Z ~ N(0,562) and 6 = %. For a channel with an aver-
age constraint only, the capacity achieving distribution sat-
isfies the average constraint with equality [58]. A codeword
(z1,72,...,Tn) generated using Py satisfying E[X] = &
almost certainly satisfies Y 1 ; z; = n€ for large n by the
law of large numbers. Moreover, ; > 0. This confines the
codewords to a regular (n — 1)-simplex defined by the set
8¢l = {z e R}, i = n€.} with side-length n&v/2
(Fig. 12(a) shows an example with n = 3 taken from [58]).

On the other hand, noise (31, ..., 2y) is i.i.d. N(0,52). For
large n, this noise tuple will be confined almost certainly to
points near the surface of an n-dimensional ball of radius
n, = Vno? by the sphere hardening effect [207], [210]. Thus,
the noise-perturbed codeword (y1, . .., y, ), where y; = z;+%;,
lies almost surely near the surface of a ball with radius
about (xp,...,zn) as shown in Fig. 12(b). This is called
“decoding sphere” in [32]. An upper bound for the IM/DD
channel capacity can be obtained by computing or upper
bounding the maximum number of disjoint n-dimensional
balls that can be packed centered in STE"_], in the limit as
n — oo. Equivalently, we can bound the number of n — 1
dimensional balls with radius n, that can be packed cen-
tered in 82_1 (Fig. 12((:)).17 The following example shows
a ‘back-of-the-envelope’ calculation which explains this idea.

Example 15: Consider a channel with an average constraint
€ over n_transmissions. Codewords are_confined in a sim-
plex 82! whose volume is given by niﬂ“_gl — [212]. On
the other hand, noise is confined in an n-dimensional ball of
radius v/'né, whose intersection with the si{nplex isan (n—1)-
dimensional ball of volume %{)I where I'(-) is the
Gamma function. These balls will be centered in the simplex
and, for € > g, will not enlarge the simplex by much (realtive
to the volume of the simplex). Thus, we can approximate the

number of balls that can be packed in the simplex by Ehe ratio

n—1 a2yt
of volumes, i.e., Ppaps ~ yn(né) ((ﬂ(n D6) 7 )7l =

(n—1)! T(1+33) -
n(eg? n_ﬂl
ﬂ—% for n large, where we used Stirling’s approx-
ﬁ(m&zET
imation [213]. With this number of balls, we can send at a

202
rate of X log(npans) ~ %]og(ﬂé’w—g) nats/transmission, for

n large since o = 1

We shall see that the rate calculated in this example is in
fact the high-SNR capacity of this channel (€ — oo). For a
more careful calculation of a bound on the number of spheres
that can be packed in the simplex, two approaches can be
used. One can bound the ‘Minkowski sum’ of the simplex
and the ball using the Steiner-Minkowski theorem for poly-
topes [60, Proposition 12.3.6], [61]. This approach has been
used in [36]. The second approach bounds the volume of por-
tions of spheres inside the simplex and the volume of portions
outside the simplex in a recursive manner and has been used
in [58]. The second approach leads to a tighter bound given
next.

Theorem 12 [58]: The capacity of the IM/DD Gaussian
channel with only an average constraint & satisfies cg(o00, £) <
Tq *(E) where

—Ccma,a _ Vegé _ oN1-p, 2
Tg (8)—leﬁjr:1]ﬁlog(ﬁ log((l 1) P”)-

This bound is tight at high SNR. Under a peak constraint,
the problem becomes one of sphere-packing in a cube as
discussed next.

11gee [210, Ch. 5] and [211, Appendix B] for a justification of this sphere-
packing bounding approach.
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(a) A 2-simplex 87 defined by 3>, X
3€&. Codewords lie on this simplex.

Fig. 12. A graphical illustration of sphere packing in a simplex (from [58]).

b) Sphere packing under a peak constraint: For a chan-
nel with a peak constraint only, a codeword (z1, 2, ..., Zn)
satisfying z; € [0,.A] lives in an n-dimensional cube with side-
length A. In this case, a capacity upper bound can be derived
by computing the maximum number of disjoint decoding
spheres that can be packed centered in this cube, in the limit
as n — oo. Again, let us start with a ‘back-of-the-envelope’
calculation.

Example 16: Consider a channel with a peak constraint A
over n transmissions. Codewords are confined in a cube whose
volume is A", whiflne noise is confined in an n-dimensional ball

2
of volume % Noise balls will not enlarge the cube by

much when A iszlarge. Thus, we can approximate the num-
ber of balls that can be packed in ‘tlhe cube by the ra}nio of
mnd2)7T 1 __ mm(A2)Z
Tigy) |~ Iy for
n large, using Stirling’s apfrgximation [213]. Thus, the rate
is %log(ﬂba]]s) a2 %log(%%) nats/transmission for n large
since & = +.

Again, the result of this example is exactly the high SNR
capacity (A — oo) under a peak constraint only, and also
under a peak constraint and an average constraint £ = aA
with a > % For a more careful analysis, we can bound the
number of balls using either the Steiner-Minkowski theorem
for polytopes [60, Proposition 12.3.6], [61] or the recursive
approach in [58]. Both bounds have been derived in [58] and
are summarized next.

volumes, i.e., mhays ~ A"(

Theorem 13 [58]: The capacity of the IM/DD
Gaussian  channel with- only a  peak  con-
straint A  satisfies  cg(A, 00) < Tg e (A) =

) 1 2
min{sup,e(o,1) bg " (4:A),suPueio1) bg " (1, A)}
where

A 3(1—p)
pemal(y A) = pl (—9 )—1 (“1— T)
g 7 (uA) = plog Toe) " los(H (1—p)
cma,2 _ gA _ £ Nl—pou—1
b2 (p, A) nlog(—\/%—e) log(w(l p)H2 )

Here, the bound b;ma’l is obtained using the Steiner-

Minkowski theorem, and b;ma’Q is obtained using the recur-
sive approach of [58]. None of these two bounds is tighter

(b) Noise-perturbed codewords
spheres centered on the 2-simplex 8%.
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noise spheres

382

(c) A projection of the spheres in Fig. 12b
01;1[0 the plane containing the 2-simplex
SE.

form

than the other over the whole range of SNR, but they are both
asymptotically tight at high SNR.

Note that both bounds 73" ** and 7¢™* (Theorems 12
and 13) are also upper bounds on the capacity of a chan-
nel with both average and peak constraints, since omitting a
constraint can only increase capacity.

Example 17: Consider an IM/DD Gaussian channel with
g=1 A =5, and € = 1.25. For this channel, the upper
bounds in Theorems 913 evaluate to ?llm‘” (5,1.25) = 0.8394,
70(5,1.25) = 0.8691, 7, *(1.25) = 0.7806, T$Ma(5) =
0.9734, in nats/transmission. Recall from Example 13 that
the capacity of this channel is ¢;(5,1.25) 0.626
nats/transmission, which shows that 7] *(1.25) is the tight-
est in this example.

We shall see later that the bounds ?me (A, &) and ?g (A, &)
are in fact is tight at high and low SNR, i.e., A — oo and
A — 0, respectively, with € proportional to A. Moreover, the
bounds 75" (A, &) and TgMA(A, €) improve at high SNR.

At this point, we are ready to compare the bounds and
develop asymptotic capacity results.

C. Asymptotic Capacity Results

We start by plotting the bounds presented so far. Fig. 13
shows the bounds for a channel with & = %—. It shows that
the lower bound (LLB) r;.m‘” (Theorem 4) and the upper bound
(UB) F]gmw (Theorem 9) converge at high SNR (large A).
It also shows that the lower bound rgl (Theorem 6) and
the upper bound ?g (Theorem 11) converge at low SNR.
Fig. 14 shows a similar plot for a channel with & = %,
where similar observations hold. The figures also show that
the truncated-Geometric and discrete uniform distributions
approaches capacity over the whole SNR range (LB rgf,h),
and that the truncated-Gaussian distribution is close to optimal
at high SNR (LB r$™2, Theorem 5). Moreover, the sphere-
packing bounds 7" " and Tg ' (Theorem 12 & 13) are fairly
tight at high SNR, and close to the duality bound F]gm‘” over
the whole SNR range.

Remark 5: Fig. 14 shows that a combinations of bounds ?g
and ?g‘ provides a fairly tight capacity approximation since

their minimum nearly meets 'réh over the whole range of A.
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Capacity bounds for an IM/DD Gaussian channel with ¢ = 1 and
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Flg ]4 Capacity bounds for an IM/DD Gaussian channel with ¢ = 1 and
E —

Thus, one can use mjn{?g,F;.“} as a capacity approximation
for a peak constrained channel or one with & = %

Using these bounds, we can characterize the asymptotic
capacity of the channel. The asymptotic capacity results are
given next.

1) High-SNR Asymptotic Capacity: The asymptotic capac-
ity of the IM/DD Gaussian channel at high SNR was charac-
terized in [34], when X is subject to both average and peak
constraints, and also when X is subject to an average con-
straint only. Note that the high SNR regime is of interest
because it is the regime of operation of many OWC systems
(see [49], e.g.,). The following theorem presents asymptotic
capacity results for the IM/DD Gaussian channel at high SNR.

Theorem 14 [34]: The capacity of the IM/DD Gaussian
channel with a peak constraint A and an average constraint
& = aA satisfies

. 1. (g2A%\) _
Algloo(cg(ﬂ, aA) — 5 log( o )) =0, (120)

for a = %, and

g2ﬂ262m‘"(1 _ e—,u.)2)) o

llm (cg(ﬂ aA) — = log( 52
Tep

(121)

fora < %, where p is the unique solution of o = %_,‘— lf;Ep.

This theorem proves that the truncated-exponential and the
uniform input distributions are optimal at high SNR. Recall
that a channel with a peak constraint only has the same capac-
ity as one with both a peak and an average constraint with
a = -% Hence, the statement of Theorem 14 applies for this
case as well. Note also that the statement for oo = % also
applies for a > % (since the average constraint can be replaced
with % in this case, see Section IV-C), and coincides with the
calculation in Example 16.

A simplified asymptotic capacity expression was given
in [58] by observing that upper bounds 7y"**(€) and
Tg *(A) (Theorems 12 and 13) are fairly tight at high SNR,
with a gap to capacity < 0.1 nats/transmission. Thus, the
high-SNR asymptotlc capacny can be well approximated as

min{3 log (4 , 1 log( 5’18 )}, where these two expressions
are the high- SNR asymptotes of 7y (£) and T Ty M (A),
respectively.

If the channel is subject to an average constraint only, then
its high-SNR capacity is given as follows.

Theorem 15 [34]: The capacity of the IM/DD Gaussian
channel with only an average constraint € satisfies

) 1 e.g.,2 &2 -
S]Lrgo(cg(oo, £)— 3 log(T)) =0. (122)

Thus, the high-SNR capacity in this case is log("3 = ’282),
which coincides with the high-SNR asymptote of 7y (€)
(Theorem 12) and r;™?(€) (Theorem 7), and also with the
calculation in Example 15. An exponential input distribution
is optimal at high SNR in this case.

2) Low-SNR Asymptotic Capacity: At low SNR, the
upper bound ?g(ﬂ, £) obtained using constraint relaxation
in Theorem 11 is tight if X is subject to both average and
peak constraints. It matches the achievable rate rgh(.ﬁl, €)
(Theorem 6) in this regime. This is proved by using a result by
Prelov and van der Meulen [214] dating back to 1993, which
provides an asymptotic expression for the mutual information
under weak input signals. The result states that, under some
technical conditions which are all satisfied by the IM/DD
Gaussian channel, I(X; ¥) in a peak constrained channel
Y = X + Z can be written as

+o(4%)

where o2 is the noise variance, the term o(A?) satisfies
lim4_.o 41—1 = 0, and Var(X) is the variance of X. The sig-

nificant term in this expression, i.e., M’;ﬁ& is achieved at low
SNR (A — 0) using coded OOK, which is a special case of the
truncated-geometric and discrete uniform input distributions
with 2 mass points.

Using (123) to e ﬂgress the low-SNR asymptotic behavior of
the lower bound 74" (A, €) in Theorem 6 when Px has two
mass points only leads to the following result.

Theorem 16 [34]: The capacity of the IM/DD Gaussian
channel with a peak constraint A and an average costraint

I(X;Y)=

Var(X)
) (123)

2
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] Zl
X, — 91,1 —)&—» Y1
92,1 ]
Tx 412 i Rx
Xo — 92,2 4)?—) Y3
|z
Fig. 15. A MIMO IM/DD Gaussian channel with crosstalk. In a parallel

channel, g1 2 = g2,1 = 0 (no crosstalk).

& = aA satisfies
cg(A, aA)

L250a'(1— a!)n_‘l;

=1, (124)

where o’ = min{a, -2}

Thus, the low-SNR asymptotic capacity is o'(1 — « )T
This shows that coded OOK is optimal in this regime.
Unfortunately, such an expression for a channel with an aver-
age constraint only does not exit to-date. Bounds on the
low-SNR asymptotic capacity for this case were given in [34].

The results discussed in this section have been used to study
multi-aperture IM/DD OWC systems (MIMO) and multi-
user IM/DD OWC systems. Results on the capacity of these
systems are reviewed in the following two sections.

VII. MULTI-APERTURE SYSTEMS

For a MIMO system with nt transmit apertures (LEDs or
LED groups) and n; receive apertures (photodetectors or pho-
todetector groups), the transmit signal X becomes a vector X
of dimension n¢,'® and the received signal becomes (Fig. 15)

Y =GX + Z, (125)

where G is an nr x nt channel matrix whose component g; j
represents the channel gain from transmit aperture j to receive
aperture 7,'° and Z is n,-dimensional noise with i.i.d. N(0,1)
components. The transmit signal is subject to the constraints

it
and Y E[X;] <é&.
i=1

X [0, A™ (126)

This channel model appears in various OWC applica-
tions including indoors VLC, color-multiplexing, or multi-user
OWC systems employing TDMA [40], [48], [64], [86], [87],
[98], [99], [102], [103], [215]. The capacity of this channel
can be written as

g0, €) = max I(X,Y), (127)

where Px is the set of all distributions of X that satisfy (126).
This maximization is achieved by a discrete input distribution (in
the form of a sum of multi-dimensional Dirac delta functions),

18yith some notational abuse, we reuse X (which we used in Section IV-C
to denote n scalar transmissions (X7, ..., Xn)) here to denote a single vector
transmission X = (Xy,..., Xn, ). We also reuse ng and ny (which we used
in Section II to denote a number of photons) here to denote the number of
transmit and receive apertures, respectively.

19The matrix G is assumed to be known at the transmitter through estima-
tion and feedback, e.g., which can be achieved in OWC without major impact
on performance since the coherence time of OWC is typically much larger
than the symbol duration [16], [63].

and can be solved using the algorithm in [39]. For analytical
results, this problem has been studied in [114]-[124], [216].
Next, we review some main results and discuss them.

A. Parallel IM/DD Gaussian Channels

In this case, nt = ny and there is no cross-talk between
transmit aperture i and receive aperture j # 1, i.e., the channel

matrix G is a diagonal matrix, with diagonal g = (g1,..., gn;)
(with g; = g; ;). The received signal becomes
Yi=gXi+ Z; (128)

and hence, the channel decomposes into a set of single-
aperture (SISO) IM/DD Gaussian channels. This model arises
in MIMO channels with little or no cross-talk, such as some
RGB-multiplexing systems, and in MIMO channels with a
channel inversion receiver.?’

The capacity of this model was studied in [114] under an
average constraint only, and in [121] under both average and
peak constraints. Generally, the capacity of this channel can be
written as the sum of the capacities of the individual channels.
The optimal input distribution is a product distribution, i.e.,

Pk =11, P%,- Thus, the parallel IM/DD Gaussian channel
capacity can be expressed as
nt
N A ) = Y e (A, 80), (129)
i=1

where cg, (A, €;) = maxp, I(X;, Y;) and &; = E[X;]. One
can bound this capacity using the bounds in Section VI. Since
these bounds are functions of the average constraint, one has
to maximize them with respect to the allocation &; where
&; = E[X;] is the average constraint allocated to the i-th chan-
nel with Z’:’“:l &; < E&. For example, for a channel with an
average constraint only, this leads to the following statement.

Theorem 17 [114]: The capacity of parallel IM/DD
Gaussian channels with only an average constraint £ satisfies

para.]]el > maxz fa(g ), f€ {lmw,cma,fh}, (130)

para]]el <m ax Z FCcma, a

%

(131)

where 'rg;a(ﬁi) and 7, **(€;) are given in Section VI-A2.

In practice, it is relevant to obtain a close-to-optimal inten-
sity allocation €;. To achieve this, [114] relies on the lower

g2
bound ré?lw A8;) = glog(l + eg“ —5—*) as a surrogate. The
maximization problem becomes

o g2£2
- i1
max > log 1+t (132)
- z=1
Ty,
st. Y & <E. (133)
i=1

2DHere, we assume that the MIMO channel matrix is invertible, which
requires proper spacing between the transmitters and receivers. Generally, a
smaller spacing is required in FSO due to the narrow beamwidth, whereas a
larger spacing is required in VLC.
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This problem is nonconvex and its solution differs from the
standard water-filling solution [111], [217]. By describing its
solution using the KKT conditions [205], one can describe the
optimal solution of this problem. Based on this, [114] devised
a simple algorithm which can approach this optimal solution.
The obtained solution _can then be used in the lower bounds
WA CMAA gng 12 Note that this can not be used for
the upper bound 7, ***, which only remains an upper bound
if we find the optimal solution of maxg, Y 1¢ | Tg, (&)
This can be found numerically for benchmarkmg purposes.
Following this approach, the following high-SNR asymptotic
capacity can be derived.

Theorem 18 [114]: The capacity of parallel IM/DD
Gaussian channels with only an average constraint £ satisfies

"t BQESQ
Z2log 2 =0. (134)

i=1

hm (cg(oo &) —

This statement indicates that the optimal solution at high
SNR is to allocate £ equally over the channels, as expected,
while this is not necessarily true for any SNR. The optimal
input distribution for each channel at high SNR is the expo-
nential distribution.

Under both average and peak constraints, [114] also pro-
vides capacity bounds in terms of r;,?‘w, ro®, and TgA,
in addition to the following asymptotic capacity characteri-
zations.

Theorem 19 [114]: The capacity of parallel IM/DD
Gaussian channels with a peak constraint A and an average

constraint £ = a.A satisfies
Tt 2 412
. 1 gi A _
A]_u:'g’o (cg(ﬂ, aA) E Elog( - )) =0, (135)

i=1

if > %, and

Al]Il’l (cg (A,aA) —

i 202
1 eg; &

2 - <0.
2]0g(2ﬂ 2)) <0.1ng, (136)

i=1

if o < 3

This is shown using a continuous uniform input distribution
which is optimal at high SNR if o > -'5‘~, and a truncated-
Gaussian distribution which is close-to-optimal at high SNR if
a < -ﬂéﬁ Note that the last asymptotic expression can be refined
using bounds ré,?‘w and ?LTW in Sections VI-Ala and VI-Bla,
respectively.

The low-SNR asymptotic capacity was studied in [116]
under both average and peak constraints. An optimal inten-
sity allocation €; was derived, and was described as inverfed
water-filling. The following statement was proved in [116].

Theorem 20 [116]: The capacity of parallel IM/DD
Gaussian channels with a peak constraint A and an average
constraint £ satisfies

g
cprrellel > N rfhg ey, (137)
i=1

(‘Au 8?})1

Mg
parallel —0
cg < n;lgax E Tg;

b=l

(138)
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(b) Channel with a peak constraint A and an average constraint
€ =aA witha =1

Fig. 16. Capacity bounds for an parallel IM/DD Gaussian channel with
g =(1,07,0.3,0.1).

and
pa.rallel(‘A 8)
lim 3 =1, (139)
£—0 Ez—l 59; 8*(./1 8*)
where rg and :rg are defined in Theorems 6 and 11,

&¥ = max{0, & 7

min{&, %2},

Note that the lower bound ?gi will be the largest if only 2
mass points are used are low SNR, in which case the transmis-
sion scheme can be described as coded OOK. The asymptotic
capacity statement of Theorem 20 applies both when A is held
fixed, and when A vanishes proportional to &, i.e., € = aA. In
the former case, as € — 0, only the strongest channel (largest
g;) will be activated, and will be allocated the full £. The
optimal scheme in this case is coded OOK over the strongest
channel. For the latter case, interestingly, multiple channels
may remain active as € — 0, and coded OOK over multiple
channels (not only the strongest channel) is optimal.

Fig. 16 shows achievable rates and upper bounds for an
exemplary parallel channel showing the asymptotic capacity.
In Fig. 16(a), only one channel is active when 10log;(€E)

-Eg} and g is chosen so that ) 7| €
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is 7.5 and lower, two channels are active when 10log;(€)
is between 10 and 12.5, three channels are active when
10logg(€) is between 15 and 20, and all channels are
active when 10log;o(€) is larger than 22.5. In Fig. 16(b),
all channels are always active.

B. MIMO IM/DD Gaussian Channels

When there is cross-talk between the transmit and receiver
apertures, the problem of finding the capacity becomes more
complicated. Indeed, in this case one has to find the optimal
Px which is not a product distribution any more. The ele-
ment of transmitter cooperation (by multiplexing) and receiver
combining comes into play. The capacity in this case has been
bounded and the asymptotic capacity derived in the literature.
We split the discussion into three parts, where we discuss the
SIMO, MISO, and MIMO channels.

1) SIMO IM/DD Gaussian Channels: The SIMO channel
has nt = 1 and n; > 1, and hence G is a column vector.
The capacity of the SIMO channel can be easily expressed in
terms of the capacity of the SISO channel.

Let U be an orthogonal matrix defined as U = [-"g";, G1]

where G is an ny x (ng — 1) matrix orthogonal to G with
orthogonal columns of unit norm. This matrix is invertible,
and hence the channel

T

T
—_z.Gcl"z

Ty =
G|l

IGll2 X + 3=
has the same capacity as the original SIMO channel since this
transformatlon from ¥ to UT Y is information-lossless. Since
the noise G Z is uncorrelated with ”—T;Z and independent
of X, it can be ignored. Thus, the capacity of the SIMO IM/DD
Gaussian channel is equal to the cg}pamty of the channel with

input X and output |Gll2X + n—"—Z Note that ||G||2 is a

scalar, and that ]]E[EZ is N(0,1). This channel is a SISO
IM/DD Gaussian channel, with channel gain ||G||5. Thus, we
can state the following.

Theorem 21: The capacity of the SIMO IM/DD Gaussian
channel satisfies

(A, &) = ¢ (A, &) (140)

This capacity can be characterized and bounded using the
statements in Sections IV-VL

The multiplication of ¥ by U is known as maximum-ratio
combining (MRC). Thus, MRC is the optimal receiver com-
bining in a SIMO IM/DD Gaussian channel. The choice of
the input distribution then determines the achievable rate.

2) MISO IM/DD Gaussian Channels: In this case, ny > 1
and n; = 1, and hence G is a row vector, which we denote
for convenience (gq,...,9n,) (not to be confused with the
diagonal channel in Section VII-A). We assume without loss
of generality that g1 > g2 > --- > gp,, i.e., the first channel
is the strongest channel, followed by the second channel, and
SO on.

Achievable rates for the MISO channel have been derived
in [119], [121], [123]. In [123], the problem of finding the

capacity of the MISO channel was approached from the per-
spective of finding the optimal distribution GX, which is a
scalar in this case. The capacity of the MISO channel can be
expressed as

""SD(A &)= maxI(GX Y), (141)
where the maximization is with respect to feasible distributions
of GX given G and the constraints on X. This enables express-
ing the capacity in terms of the capacity of an SISO IM/DD
Gaussian channel. In [119], the problem was approached
from a pre-/post-coding perspective, i.e., construction of X
as VX where X has independent components, and decoding
from UY where V and U are pre- and post-coding matrices,
respectively. The work in [121] focuses on low SNR.

a) Average constraint only: Under an average constraint
only, it was shown that it is optimal to transmit through the
strongest channel g, i.e., activate the first transmit aperture
only. The intuition is that since the capacity of the SISO chan-
nel increases with the average of the input (under an average
constraint only), then one needs to maximize the average of
GX. This is achieved when X; > 0 with E[X;] = &, and
Xo = X3 = -+ = Xy, = 0. Thus the optimal pre-coder in
this case is (1,0,0,...,0) T ie., best aperture selection, since
the transmit signal can be written as X = (1,0,0,..., O)TX
where X ~ Py and satisfies the average constraint. This leads
to the following statement.

Theorem 22 [123]: The capacity of MISO IM/DD Gaussian
channels with only an average constraint € satisfies

(00, &) = cgy (00, E). (142)

Generally, one can use statements in Section VI to bound
this capacity expression or derive the asymptotic capacity at
high SNR. This is stated next, and is easy to prove using
Theorem 22 and Theorem 15.

Theorem 23 [119]: The capacity of the MISO IM/DD
Gaussian channel with only an average constraint £ satisfies

. 202
(cg“s‘)(oo,m - %log(eg;ﬂ )) =0. (143)

b) Peak and average constraints: Under both peak and

. - - ng A

average constraints with an average constraint & > —%—,
GX is subject to a peak constraint ||G||1.A and an average
constraint E[GX] = Y 7* | ;& < & where & = E[X;].
Recall from Section IV-C that for a peak and average con-
strained channel, capacity is maximum if the average is equal
to half the peak constraint. This is feasible in this case,

since one can choose &; = % leading to and average

Y, g€ = ||G||1£ > JJEM, where the last inequality
follows due to the assumption £ > 22 Hence, in this case,
the channel ¥ = GX + Z has the same capacity as SISO
IM/DD Gaussian channel with channel gain 1, a peak con-
straint ||G|[1.A, and an average constraint ”L}gﬁ. This in turn
has the same capacity as a SISO IM/DD Gaussian channel
with channel gain ||G||1, a peak constraint A, and an average
constraint % The same applies if the channel is only subject
to a peak constraint, leading to the following statement.

lim
E—oo
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TABLE V

THE MAXIMALLY-CORRELATED 7i4-DIMENSIONAL DISTRIBUTION CIF X € {0,A}™ WiTH Px, (A) = a; AND @1 > a2 > -

WHEN OPTIMIZED WITH RESPECT TO a; WITH Z
OF THE MISO AND MIMO

-e 2 ang.

= ., THIS DISTRIBUTION ACHIEVES THE LOW-SNR CAPACITY

DD GAUSSIAN CHANNEL

zT (0,0,0,...,0,0) | (4,0,0,...,0,0)

(A,A4,0,. ..

,0,0) AAA A0 | (AAA. A A)

Px(x) 1—a; a] —as

az — as

Ang—1 — Ony Oy

Theorem 24 [123]: The capacity of MISO IM/DD Gaussian
channels with a peak and an average constraint £ > ﬂfgi (or
& = oo) satisfies

: A
g (A €) = gy, (“‘“ 5)‘

Note that this statement implies that it is optimal to use a
repetition code in this case. By sending X = (1,1,...,1)TX,
where X € [0,A] and E[X] = £ over this MISO channel,
we obtain an effective SISO IM/DD Gaussian channel with
channel gain ||G||1, peak constraint A, and average constraint
%, which has the capacity in Theorem 24.

One can develop capacity bounds and asymptotic capacity
expressions for this case using statements in Section VI.

For &€ < ﬂg—, the situation is more difficult. In this
case, [123] derives some properties of the capacity achiev-
ing input distributions which aid in the analysis. Namely,
the optimal distribution activates aperture i only if apertures
1,...,1 — 1 (which have stronger channels) are transmitting
at peak intensity. Formally, this means that X; > 0 = X; =
AVj < 4. This can be understood as a two-layer modulation,
where the first layer modulates the number of active apertures
i €{0,...,nt}, and the second layer modulates the intensity
of i-th aperture according to some probability distribution. A
similar behavior has been identified in [121] for the MIMO
channel at low SNR as described later.

Using the properties derived in [123], capacity lower bounds
for the MISO IM/DD Gaussian channel with £ < ﬂ‘fi can be
derived using the EPI. Recall that this requires finding the
solution of maxg,, h(GX) over the set of feasible distribu-
tions subject to the input constraints. This problem was solved
in [123] which led to a capacity lower bound which is tight at
high SNR. Capacity upper bounds were also derived in [123]
using the peak-only constrained channel, constraint relaxation
(maximum variance) and using the dual capacity expression in
Lemma 4. These bounds have rather sophisticated expressions,
and are not repeated here. Instead, we focus on asymptotic
capacity expressions. We start with high SNR.

Theorem 25 [123]: The capacity of the MISO IM/DD
Gaussian channel with a peak constraint A and an average

constraint £ = a.A satisfies
G
(” " )) =0 (145)
2me
if o > o4, and

miso _ 1 ”GH%‘A2 _ _
(CG (A, aA) 2log o v | =0 (146)

(144)

lim ( miso (A qA) —
A—oo

lim
A—oo

if o < oy, Where oy = % + ﬁ S gi(i—1),

sup
we(max{ﬂ,%—f—a—ath},min{% al)

X (1 — log(_l _ﬁfji(w))
i)), (147)
1

—p(w)
_pwer@
1 — e HW)
p(w) is the unique positive solution of ﬁ — % =w, p=
gia

(pla apnt.) Pi = Z“-E gkﬂ.k,

solution of—ﬁt—&—a—w—l—l
k=19

Thus, the asymptotic high-SNR capacity is 5 log(—%l%]e—)
if a > oy which is also the high-SNR capacity when there
is no average constramt The asymptotic high SNR capacity
is 2l og( ”GZJEE )+ v when a < ayy.

At low SNR, the asymptotic capacity was
in [121], [123] as follows.

Theorem 26 [121], [123]: The capacity of the MISO
IM/DD Gaussian channel with a peak constraint A and an

average constraint £ = oA satisfies

cMiSO(A, o)

=

and a is the unique positive

given

Jf]lu—{lo % =1, (148)
where
My Ty
¥ = max ZZgigjmin{ai,aj}(l—ma.x{a.,-,aj}).

a: Yt a<a {4 7

Here, the expression v.A2 is in fact the maximum vari-
ance of GX when X € [0,A]™ and Y ™ E[X;] < €.
It is achieved when X follows a maximally-correlated ng-
dimensional binary distribution as shown in [121]. In this case,
X is distributed on {0, A}™ with Py, (A) = a; for some q;
that satisfies Z:“:l a; = % in order to satisfy the average
constraint, with maximum correlation. Maximum correlation
is achieved using the structure in Table V. The proof of this
statement is based on the mutual-information expression for
weak signals given in [214].

3) MIMO IM/DD Gaussian Channels: In the MIMO chan-
nel, we have that both ny > 1 and n; > 1. The channel gain
matrix in this case is ny x ny denoted G = (g1,-..,9y,)
where g; is a column vector representing the channel gains
from transmit aperture { to all receive apertures.

Recall that capacity in this case is given by

CBImO(A €)= n%axI(X, Y). (149)
X

Authonzed licensed use limited to: Univ of Calif Santa Cruz. Downloaded on March 23,2022 at 18:15:37 UTC from |IEEE Xplore. Restrictions apply.



CHAABAN ef al.: ON CAPACITY OF INTENSITY-MODULATION DIRECT-DETECTION GAUSSIAN OWC CHANNELS 481

This problem was studied in [117]-[122], where capacity
bounds and asymptotic capacity characterizations were given.

The work in [119] focused on pre-coding and post-coding
to convert the MIMO channel into a set of parallel chan-
nels. For the scenario with ny > nt, three schemes were
compared: Channel inversion post-coding; DC-biased singular-
value decomposition pre-/post-coding; and QR-decomposition
post-coding. These schemes allow converting the MIMO chan-
nel into a set of parallel channel where the intensity allocation
in [114] is applied. It is shown that the QR-decomposition
scheme outperforms the rest, so we describe it here.

Assume that G has full column rank, and ny > nt. In a
QR-decomposition scheme, the transmitter sends X consist-
ing of independently coded symbols Xi,..., Xy, each of
which is from an independent stream. The receiver computes
the QR-decomposition of G, i.e., a decomposition G = QU
(we use U instead of R for convenience), where @ is an
nr X ny orthogonal matrix, and U is an ny x ny upper tri-
angular matrix. The receiver multiplies ¥ with  to obtain
the signal Y = UX + Z, where Z is i.i.d. N(0, 1). Then the
receiver starts decoding from f’m which has an interference
free observation of Xp, due to the upper triangular structure
of U, i.e., Yn, = uny ny Xny + Zn,. Then, the receiver decodes
the stream sent over Xy, (by considering n observations of
f’m, where n is the code-length), subtracts its contribution
from f’m_l and proceeds by decoding X, _; interference
free. The receiver can effectively do this if the rate of X,
is smaller than I(Xy,; Yy,), ie., information is encoded in
Xn, at any achievable rate described earlier. The receiver pro-
ceeds this way until all streams are decoded. The resulting
achievable rate is in the form

Mt
H?"Z; (&), (€ {lma,cma,fh},  (150)
i=

where &; satisfies ) 1%, &; < &, and rﬁ;i(ﬁg) is as defined
in Theorems 7-8. The intensity allocation &; is done using
the algorithm in [114]. In addition to achievable rates, [119]
also derives capacity upper bounds and asymptotic capacity
results at high SNR. Asymptotic capacity results at low SNR
are given in [121]. The case n; < ny is also discussed.

The work in [122] focused on a novel approach, wherein
the capacity is rewritten as

cimo(p &)= max I(GX,Y),
X

151
Pex€Pe (151)

where P x is the set of all distributions P x over the zeno-
tope R(G) = {31%, aig;|(ar,...,an) € [0,A]™} which
satisfy the power constraints on X. This zenotope is the
image of the hypercube [0, A]™ after multiplying by G. Using
this formulation, [122] derived a minimum energy signalling
scheme, capacity bounds, and asymptotic capacity results.

We discuss some of the results of [114], [121], [122] in
what follows.

a) Average constraint only: Capacity bounds for the
average constrained MIMO channel were derived in [119]
when ny > nt. Using the derived bounds, it is shown that
the QR-scheme achieves the high-SNR asymptotic capacity

for a MIMO IM/DD Gaussian channel with only an average
constraint when ny > nt, given as follows.

Theorem 27 [119]: The capacity of a MIMO IM/DD
Gaussian channel with n, > mny, with only an average
constraint €, satisfies

_ 2
lim (cﬁ“mo(oo, &) — 1log c€ cTe ) =0. (152)
E—o0 2 2?1'?13

If ny < mt, then [119] shows that the capacity pre-log is nr,
i.e., capacity scales as nrlog(€) at high SNR (€ — o0).

b) Peak and average constraints: The work
in [119], [122] studies the MIMO channel with both
average and peak constraints. Achievable rates, capacity
upper bounds, and asymptotic high-SNR capacity expres-
sions/approximations were given using different approaches.
We only state asymptotic capacities next.

In [122], the asymptotic high-SNR capacity was charac-
terized for a MIMO channel with both peak and average
constraints, under ny > nr. The asymptotic capacity expres-
sion is a function of the volume of the zenotope R(G) and
related parameters, and is not reviewed here due to its compli-
cated nature. The reader is referred to [122] for further details.
For ny > nt, we review some asymptotic high SNR results
from [119] which have simpler expressions.

Theorem 28 [119]: The capacity of a MIMO IM/DD
Gaussian channel with ny > ng, with a peak constraint A
and average constraint £ = a.A satisfies

: 1 A?
: mimo _ = Yt T —
All_]floo(cG (A, aA) 2log QﬁeG GD 0 (153)
if o > 3, and
. 2,22 a2

li mimo(‘A Cwq) _ 1 1 emm{an":l ’ J:T}PTG
Aznoo G ’ 2 %8 2T -

< 0.1ng. (154)

if a < 4"2'“

The asymptotic high-SNR results in Theorems 27 and 28
are achievable using the QR-decomposition scheme in com-
bination with exponential or truncated-Gaussian distributions
on each Xj.

Achievable rates and upper bounds for the case ny < nt are
also given in [119]. While the high-SNR capacity is charac-
terized/approximated in [119] for the case ny > nt, only the
high-SNR capacity per-log is given for ny < nt. Namely, it is
shown that capacity scales as nr log(A) in this case.

In the low-SNR regime, the capacity of a MIMO IM/DD
Gaussian channel was characterized in [121], [122] as follows.

Theorem 29 [121], [122]: The capacity of a MIMO IM/DD
Gaussian channel with a peak constraint A and average
constraint & = aA satisfies

cBImO (A, auA) B

Jim iz 1, (155)
where

Ty Ty T
= m:zlf“lfixa.-gazz 9 g;min{as, a;} (1 — max{a;, ; }),

i=1j=1
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and g; is the i-th column of G.

This statement was proved using the result in [214] for
the channel capacity with weak inputs, and using the result
in [218] for the relation between mutual information and
MMSE. Similar to the MISC% case discussed in Theorem 26,
the asymptotic capacity % in Theorem 29 is achievable
using a maximally-correlated nt-dimensional binary input
distribution as shown in Table V.

VIII. MuLTI-USER IM/DD GAUSSIAN CHANNELS

The statements in Sections IV-VI on the capacity of the
IM/DD Gaussian channel were used to develop results for
a multi-user OWC system modelled as an IM/DD Gaussian
broadcast channel (BC) or an IM/DD Gaussian multiple-access
channel (MAC). In a k-user setting, the goal is to characterize
the capacity region defined as the set of achievable rate tuples
(r1,...,7), where r; is the achievable rate of user i. Here,
we review some recent results on this front, while restricting
our attention to the 2-user case for simplicity.

A. IM/DD Gaussian BC

In a 2-user BC, we have a single transmitter and two
receivers. The transmit signal is X which satisfies X € [0, A]
and E[X] < &. The received signal of useri is ¥; = ¢; X + Z;
where Z; ~ N(0, 1). We assume without loss of generality that
g1 = g2

We define the capacity region as follows. Let the set of mes-
sage of user i be denoted W; = {1, ...,2™ }. The transmitter
wants to send a pair of messages (wy, ws), which is uniformly
distributed on 'W; x Ws. It uses an encoder to encode the
message pair into a codeword x(wy, ws) of length n satisfy-
ing the peak and average constraints, and sends it. Receiver i
uses a decoder to decode ;. This incurs a probability of error
Pe,n = P{(wy, wp) # (4, in)}. The rate of user i is r; = 2
(bits/transmission), and we call a rate pair (1, r2) achievable
if there exists a sequence of codes (message sets, encoder,
decoders) that satisfy pe, — 0 as n — oo. The capacity
region is the closure of the set of all achievable rate pairs
(r1, m2), and we denote it (:’bc g2 (A, €). We express the capac-
ity henceforth in natsftransmlssmn which can be converted to
bits/transmission by dividing by log(2).

This BC is a stochastically-degraded BC [197] since X —
Y; = Y5 forms a Markov chain. Note that the degradedness
of the current BC holds since the channel to user 1 is better
than that to user 2 (g; > go). Generally, the single-aperture
Gaussian BC is always degraded since we either have g1 > ga,
ie., X = Y1 — Y5 form a Markov chain, or g2 < g1, i.e.,
X — Y2 — Y7 form a Markov chain. The capacity of a
degraded discrete-memoryless BC is known to be given by the
convex-hull of the closure of the set of rate pairs (R, R2) €
R? satisfying [138]

Ry < I(U; Ya),
Ry < I(X; 11|U), (156)

for some distribution P (u)Px|y(z|u)Py; vy x (v1,32(7)
over the set U x X x Yy x Yo, where the cardinality of

the auxiliary random variable U is bounded by |U|] <
mm{|x|a |Hl|a |H2|}

This statement can be generalized to the IM/DD Gaussian
BC with continuous alphabets using the discretization proce-
dure explained in [197, Sec. 3.4]. In this case, we replace X by
R4, Y; by R, and we define Py (X) as a probability density
function that satisfies X € [0,.A] and E[X] < €. Describing
this capacity region in a simpler form is generally a difficult
problem, since one needs to specify a good choice of (U, X).
However, capacity bounds were derived in [145], [219]. These
bounds are presented next.

Using a method devised by Bergmans in [220], the follow-
ing capacity outer bound can be derived.

Theorem 30 [145]: The capacity region of the 2-user
IM/DD Gaussian BC satisfies

—=be,f ~

p€l0,1]

where IRgl gz(ﬂ €, p) is the set of rate pairs (7, ™) satisfying
( o (PAPE) _ 1)) (157)
%

T (PA, PE),

0<n <= log(l—l—

0<r <Th (A €E)— (158)

with £ € {lmw, 0}.

A capacity inner bound was also derived in [145], by
using superposition coding and truncated-Gaussian distribu-
tions. Namely, the transmitter sends X = X; + Xy where X;
follows a truncated-Gaussian distribution. The peak constraint
is split between X; and X5 as A; = pA and Ay = (1 — p)A,
respectively. Then, we choose X; to be distributed accord-
ing to the truncated-Gaussian distribution Pﬁ,u;(f) as defined
in (107) with peak A;. The resulting mean ji; 4, and variance
133, A, are as defined in (109) and (110), respectively (where we
indicate the dependence on A; explicitly for clarity). Receiver
2 (the weaker receiver) decodes X5, while receiver 1 (the
stronger receiver) decodes both X3 and Xj.

Define ¢ = (p1,v1,p2,v2), and Q as the set of g so that
fi1a; + fi2.a, < €. Then, we can write the inner bound as
follows.

Theorem 31 [145]: The capacity region of the 2-user
IM/DD Gaussian BC satisfies G'g’f pA€) 2 becm(A €)
where

R (A, €) 2ol | | R0 g (A0 0) ],

pel0,1] g€9Q

where co(-) denotes the convex hull, and R
the set of rate pairs (71, r2) satisfying

be (A E,p, q) is

+ 9121/12) — ¢(Ax, p1,v1),

2 2
)

52
93V, +1

1 2
0<nmn <=log 1
K 1,41

V2
0<p <= log 2
Z Az

) - d)("'q'Qa H2, VQ):

where Ay = pA, Az = (1—p)A, ¢(Aj, pi, vi) = log(mia,)+
$((Ai—pa)PS , (A:)+piPG . (0)), and 7; 4, is as defined
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in (108) with g, v, and A replaced with p;, v, and A;,
respectively.

Usmg these theorems, [145] shows that outer bound
IRBlc gr;w (A, E) is nearly tight at high SNR, where it nearly
meets the inner bound IRBIC go (A, €). This asymptotic capac-
ity region at high SNR can be approximated as given in the
following theorem.

Theorem 32 [145]: The capacity region of the 2-user
IM/DD Gaussian BC with a peak constraint A and an average

constraint E aA with o < 1 5 is within a gap 6 of the region
Upe{? 1 IRgl,gz (A, &, p) asymptotlcally at high SNR, where
gl,gz(ﬂ &, p) is the set of rate pairs (71, ) satisfying

0<n < %log(l +cp g2ﬂ2) (159)
1 0(1—9)292412)

0<m <=1 14+ —= 160

_T‘z_gog(-kcpz,ggﬂg_'_l : (160)

where ¢ = min{yt, 42}, and § = log(2L%) < 0.68
nats/transmission.

Note that this relation shows El“ﬁt rgcewer 2 decodes while
c
treating X7 as noise, and W can be thought of as a

signal-to-interference-and- n01se ratlo (SINR) Flg 17(a) shows

the outer and inner bounds Ro"™ and IRglc gr;w along with

a1, §2
the asymptotic region ngl ’32, for a channel with g; = 1, and
g2 = 0.5 at high SNR. This fi re demonstrates Theorem 32.
Note that the convex-hull of ngl 2 pr0v1des a better approxi-

mation which nearly meets the outer bound .‘R . However,

g 92
the expression of :Rgl,!b is easier to work with.

For the low SNR regime, [145] shows that the outer bound

§'1 » (ﬂ €) is tight, where it meets the achievable rate of
TDMA combined with coded OOK. Namely, the low-SNR
asymptotic capacity is given as follows.

Theorem 33 [145]: The capacity region of the 2-user
IM/DD Gaussian BC with a peak constraint A and an average
constraint &€ = aeA with a < % is given by the set of (71, m2)
satisfying r; > 0 and

'r12 N 73 < a(l—a).)fl2.
9 9 2

This result is shown in Fig. 17(b). Note that [145] also
extends the IM/DD Gaussian channel capacity lower bound
in [35] given in Theorem 6 to the IM/DD Gaussian BC. The
resulting inner bound is expressed as in (156) with U = X5 €
[0,A1] and X = X7+ U with X; € [0, As], where A +.Ag =
A, and X; and X5 follow optimized discrete distributions with
uniform spacing as in Theorem 6.

(161)

B. IM/DD Gaussian MAC

Next, we consider an IM/DD Gaussian multiple access
channel (MAC). In a 2-user MAC, we have two transmit-
ters and one receiver. The transmit signals X;, i € {1,2},
satisfy X; € [0,A;] and E[X;] < &;. The received sig-
nal is ¥ = g1 X1 + g2Xo + Z where Z ~ N(0,1). The
capacity region is the set of achievable rate tuples (Rq, Rs),

5 T T
—— Outer bound Ry. oo™ (4, )
T - == Inner bound RES . (A, £)
4 RS PRI High SNR Approx. RESE. (4, €)

r2 (nats/transmission)
L]
T

|
00 1
r1 (nats/transmission)
(a) 10log,o(A) = 30, & = 1/3.
Outer bound Ro™'0 (4, €)
- = = Inner bound TDMA/OOK
T 0.01f |
2
8
g
]
5 0.005 - .
E
0 | | | |
0 0.01 0.02 0.03 0.04 0.05
r1 (nats/transmission)
(b) 10log,4(A) = -2, a =1/3.
Fig. 17. Capacity bounds for an IM/DD Gaussian BC with gy = 1 and
go = 0.5.

defined similar to the BC. We denote the capacity region by
Cotg, (A, E) where A = (A1, Az) and € = (&4, &2).

The capacity region of a discrete-memoryless MAC is
known to be given by the closure of the convex-hull of the set

of (R1,R2) € Ri satisfying [197]

Ry < I(Xy; Y|Xs) (162a)
Ry < I(Xa; Y|Xu) (162b)
Ry + Ry < I(X1, X2; Y), (1620)

for some input distributions Py, (z;) on X;. This region
is achievable by jointly decoding the two messages at the
receiver, or using successive decoding combined with time-
sharing. This statement can be also generalized to the IM/DD
Gaussian MAC with continuous alphabets. Again, the question
is how to choose Py, (r;), and how to represent this region in
a simpler form. One way to realize this is to derive capacity
region outer and inner bounds, that allow us to draw further
insights into asymptotic capacity and approximations.

The following outer bounds was derived in [146] based on
the IM/DD Gaussian channel capacity upper bounds.

Theorem 34 [146]: The capacity region €70 (A, E) of

the 2-user IM/DD Gaussian MAC satisfies (:’g}afb (A, €) C
To2b(A,€), where £ € {lmw,0}, and To o' (A, €) is
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defined as the set of rate pairs (r, m2) satisfying
0<r <75 (Ai,&), i€{1,2}
0 < +rp <Ti(q1A1 + A2 0161 + RE2).

Here, the bound on R; + Rz is obtained by treating ¢; X7 +
g2 X5 as a transmit signal with a peak constraint ¢g;.4 + g2 A2
and average constraint gy € + g2€9, and then using the single
user bounds in Section VI. Asymptotic capacity expressions
from Section VI-C can be used to approximate the outer bound
Tgf;‘;g (A, €), in closed-form at high and low SNR. A closed-
form outer bound for the average-constrained case was given
in [221] using an upper bounds for the single-user channel
from [57, eq. (20)].

Capacity inner bounds were derived in [146] under both
average and peak constraints, and in [221] under either an
average or a peak constraint only. An inner bound was
derived in [146] using a truncated-Gaussian (107), where
Xi ~ E«s,m(z) with peak A;, mean fi; 4, as defined in (109)
(again indicating explicit dependence on A; for clarity) sat-
isfying ji; 4, < &; and with variance &EA‘_ defined in (110).
Define g = (p1,v1, 2, v2) as the paraméters of the truncated-
Gaussian distribution of users 1 and 2, and Q as the set of ¢
so that ji; 4,. Then, the following theorem presents a capac-
ity region inner bound achievable under a truncated-Gaussian
input distribution.

Theorem 35 [146]: The capacity region of the 2-user
IM/DD Gaussian MAC satisfies

’ 2 ’ =co ; G, q) |,
emac (4, & Rmac (4, &) & RImAc (A g

91,92 91,92 91,92
qeQ
where fﬁg}?&(ﬂ,{i,q) is the set of rate pairs (r1,72)
satisfying
1 Vf Vf .
0 < < Elog ? +_2 _ﬁb("q'f:a;u"i::y?;): S {112}1
i

a

2.2 22 22
[ ZEw VI [ ZEw
i¥2 , ¥iY3 Y3

0571+T?5_1°g(~2~2+ 2-2 T =2 2)
V1V2 JV2 VlU

— ¢(A1, p1,v1) — ¢(A2, p2,v2),

with ¢;(-) is as defined in Theorem 31.

In addition to this achievable lower bound, [146] provides
an achievable inner bound based on uniformly-spaced discrete
input distributions (112), and [221] provide an inner bound
achievable using a combination of discrete and continuous
distributions. For the purpose of this tutorial, we present two
asymptotic capacity statements next. At high SNR, the bounds
in Theorems 34 and 35 lead to the following statement at
high SNR.

Theorem 36 [146]: The capacity region of the 2-user
IM/DD Gaussian MAC with &;/A; = a; < % is within a
gap 6 < Zlog(3£) of the region fR;“fS;h(A, €) asymptoti-
cally at high SNR (A1,.As — o), where RS0 (4, €) is
the set of rate pairs (71, ) satisfying

1
0<n <slog(l+egda?) ic{12)  (163)

1
0<rn+mn< B 103(1 + c12(g1 A1 + §2ﬂ2)2), (164)

5 T T
= lmw
. - Outer bound Ry, gy (A, &)
—— - Inner bound RE2< (A, E)
41 > -===== High SNR Approx. RSP (4, €)

ro (nats/transmission)
b
T

0 I I -
0 1 2 3 4 5 6
r1 (nats/transmission)
(a) 10log,(A) = 30.
— Outer bound R;y en (A, €)
o Inner bound OOK/SCD
g 001 .
2
g
g
&
5 0.005 |- .
@
G‘- | | | |
0 0.01 0.02 0.03 0.04 0.05

r1 (nats/transmission)
(b) 10log,o(A) = —2.
Fig. 18. Capacity bounds for an IM/DD Gaussian MAC channel with g; = 1,
92=|].5,ﬂ.1 =.)q.2=ﬂ., £1 =82 =le.ﬂ.,a.l'ld0:= ]/3.

2
ey
2w

2
ea’ . 1
o} and cj2 = min{5—,

where ¢; = min{51, } with

o — JLE1taEs

12 = 9/ A+ gAz-

On the other hand, at low SNR, the outer bound
Tg:?;;o(ﬂ, E) is tight, where it matches the rate region
achieved using coded OOK at both users (each user sends
X; = A; with probability £;/A; and X; = 0 with probability
1—-¢&;/A;), and using successive-cancellation decoding (SCD)
at the receiver. This leads to the following theorem.

Theorem 37 [146]: The capacity region of the 2-user
IM/DD Gaussian MAC with &;/A; = a; < % coincides
asymptotically at low SNR with the set of (r1, m2) satisfying

a;(l—ag)g?ﬂz
r; >0and r; < ———=1- 4,

Figures 18(a) and 18(b) show the capacity bounds for an
exemplary channel with g =1, go = 0.5, under Ay = Ay =
A, €1 = €9 = aA, and a = 1/3. The bounds in Fig. 18(a)
are within <0.68 nats which confirms Theorem 35, and the
bounds in Fig. 18(b) coincide which confirms the optimality
of OOK/SCD at low SNR.

For moderate SNR, an inner bound based on discrete input
distributions was given in [146]. Moreover, it was shown
in [147], [222] that the IM/DD Gaussian MAC capacity-
achieving distribution is discrete with a finite number of mass

points.
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C. Other Multi-Terminal Channels

Other multi-terminal IM/DD Gaussian channels were also
studied in the literature. This includes the IM/DD Gaussian
wiretap channel and the IM/DD Gaussian interference channel
(IC). Next, we provide a brief overview of some works in this
area.

1) The IM/DD Gaussian Wiretap Channel: Due to
the broadcast nature of OWC transmission (especially
using LEDs), OWC remains susceptible to eavesdropping.
This motivated several works that studied security in
OWC [223]-[228]. The reader is referred to the following
surveys for a more extensive overview of security aspects of
OWC [152], [229], [230].

From an information theoretic perspective, there are several
models that incorporate secure communications as an addi-
tional constraint to the classical reliability constraint, e.g.,
secure key agreement and the wiretap channel. A wiretap chan-
nel consists of a transmitter, a receiver, and an eavesdropper
which aims to intercept the communication and extract some
of the transmitted information. Studying its capacity dates
back to the 1970s [231]. Recently, several works studied the
capacity of the IM/DD Gaussian wiretap channel as a model
of OWC with an eavesdropper, and proposed transmission
schemes and analysed their achievable rates.

In an IM/DD Gaussian wiretap channel, the receiver and
eavesdropper receive

Y=9gX+7, and Ye=geX + Z, (165)

respectively, where X is the transmitted codeword symbol, g
and ge are channel gains, and Z and Z. are Gaussian noises at
the legitimate and the eavesdropper’ receivers, respectively.
The transmitter wants to encode information into X while
ensuring reliability, i.e., pen — 0 as n — oo, and secrecy
which requires the normalized mutual information between the
message W and Ye = (Ye1,..., Yen), ie., %I(W; Ye) to
approach 0 as n — oo. The secrecy capacity is defined as the
largest rate r under which these objectives can be achieved.

The IM/DD Gaussian wiretap channel, being a scalar broad-
cast channel, is stochastically degraded [150]. Hence, its
secrecy capacity can be written as [231]

n%axI(X; Y)-I(X; Ye), (166)
X

where the maximization is with respect to all feasible input dis-
tributions. While this maximization is difficult to solve, [150]
proved that the optical input distribution is discrete. Moreover,
to aid in the analysis of the secrecy capacity, capacity bounds
for the IM/DD Gaussian wiretap channel were presented
in [152]. In general, imposing a security constraint reduces
the capacity of the channel relative to the channel without
a security constraint. However, as noted in [150], there are
cases where the security constraint does not impact capac-
ity. Transmission schemes and their achievable rates were also
studied in [148], [149], [151], [153], [232].

2) The IM/DD Gaussian Interference Channel: In addition
to the wirtetap channel, the capacity of the IM/DD Gaussian
interference channel (IC) was also stydied in the literature.
The IC consists of two transmitter-receiver pairs sharing the

same transmission medium. The transmitters send X7 and Xo,
and the receivers receive

Y; = 95X + oy X+ Z, g,k € {1,2}, j # k. (167)

where g;; and g; are channel gains, and Zj is Gaussian noise.

Studying such a network is important for scenarios with
multiple VLC cells [233]. However, the capacity of the IC
remains an open problem to-date in general. Nonetheless,
capacity inner and outer bounds can be derived to aid in study-
ing the IC. To this end, the capacity of the IM/DD Gaussian
IC was studied in [154], which derived capacity bounds and
studied the Han-Kobayashi transmission scheme applied in the
IM/DD context [234]. Transmission schemes were also studied
in [235]. Note that there is still significant room for improving
capacity bounds for this channel, such as by using methods
from [221] which studies the IM/DD MAC, noting that MAC
schemes are useful in an IC (see [236] for instance).

In addition to the aforementioned models, several other
networks which combine RF and VLC links have been anal-
ysed in the literature [237]. The reader is referred to [230] for
a survey on related works.

IX. SUMMARY

We have discussed the capacity of IM/DD OWC systems
modelled as Gaussian channels with real-valued, nonnegative,
peak- and average-constrained inputs. We started with a dis-
cussion on the channel model, which motivates the Gaussian
channel assumption. Then, we discussed the capacity of the
single user IM/DD Gaussian channel in detail, by presenting
the capacity and its numerical computation, capacity bounds,
and asymptotic capacity expressions. Building on these results,
we discussed the capacity of multi-aperture systems (SIMO,
MISO, and MIMO) and also multi-user systems (broadcast
and multiple access). It is important to note that this tutorial
is by no means exhaustive. There has been a large amount
of work on OWC in the past years, many of which are not
covered here. However, we tried to cover some of the main
advances that have been achieved in the information-theoretic
direction of studying OWC systems.

This tutorial can be used for two purposes. First, it can be
used as a reference that explains to the reader the main meth-
ods that are used in the literature for studying the capacity of
the single-user IM/DD Gaussian channel. It also explains how
the capacity of IM/DD Gaussian channel is different from the
standard AWGN channel that is used to model RF systems.
Second, it can be used as a guide for using these results
to obtain capacity results for multi-terminal IM/DD Gaussian
channels by building on the results for single-user channels.

The tutorial also shows that there is still room for additional
contributions related to the capacity of IM/DD Gaussian chan-
nels. The capacity of the single-user channel is still unknown
in closed-form and sometimes not even computable, and
advances in this direction are important from an information-
theoretic perspective. Moreover, existing results on multi-
aperture and multi-user IM/DD Gaussian channels can be
improved by considering tighter bounding techniques, and
deriving simpler expressions that are amenable for further
analysis of larger systems.
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