2021 IEEE International Symposium on Information Theory (ISIT) | 978-1-5386-8209-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/1SIT45174.2021.9517742

The Rate-Equivocation Region of the Degraded
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Abstract—This paper addresses the degraded discrete-time
Poisson wiretap channel (DT-PWC) in an optical wireless com-
munication system based on intensity modulation and direct
detection (IM-DD). Subject to nonnegativity, average-intensity,
and bandwidth constraints, we find that the secrecy capacity and
the entire boundary of the rate-equivocation region are attained
by discrete distributions with a countably infinite number of
mass points, but with finitely many mass points in any bounded
interval. Additionally, we shed light on the asymptotic behavior
of the secrecy capacity in the regimes where the average intensity
constraint either tends to zero (low-intensity) or tends to infinity
(high-intensity). In the low-intensity regime, we observe that:
when the channel gains of the legitimate receiver and the
eavesdropper are identical, the secrecy capacity scales linearly
in the average-intensity £; whereas when the channel gains are
different, the secrecy capacity scales, to within a constant, like
(e — ag)€loglog +, where ap and op are the legitimate
receiver’s and the eavesdropper’s channel gains, respectively. In
the high-intensity regime, we establish that the secrecy capacity
does not scale with the average intensity constraint.

I. INTRODUCTION

Intensity modulation and direct detection (IM-DD) is the
simplest and the most commonly used technique for optical
wireless communications. In this scheme, the channel input
modulates the intensity of the emitted light. Thus, the input
signal is proportional to the light intensity and is nonnegative.
The receiver is usually equipped with a photodetector that ab-
sorbs an integer number of photons and generates a real-valued
output corrupted by noise. Depending on the distribution of the
corrupting noise, there exist several models for the underlying
optical wireless communication channels. Free space optical
(FSO) channels [1], [2], optical channels with input-dependent
Gaussian noise [2], [3], and Poisson optical channels [2],
[4]-[6] are the most widely used models for optical wireless
communications. Due to the photon counting process at the
receiver, the Poisson model is apparently the most accurate
one. The studies conducting research on Poisson optical chan-
nels are mainly categorized into two mainstreams. The first
category considers the continuous-time Poisson model where
the input signals can admit arbitrarily waveforms and there
are no bandwidth constraints on the transmission. The second
category concerns the discrete-time Poisson channel and deals
with the cases where stringent transmission bandwidths are
assumed.
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The capacity of the continuous-time Poisson channel is
known in closed-form [4], [7]. For the peak-intensity con-
strained or peak- and average-intensity constrained inputs the
capacity of the continuous-time Poisson channel is achieved
by a binary distribution with mass points located at the origin
and the peak-intensity constraint [7]. However, the channel
capacity of the average-intensity constrained input is infinite
and the capacity-achieving input is unknown [7]. For the
discrete-time Poisson channel, Shamai [5] studied the single-
user channel capacity and showed that the capacity-achieving
distribution under nonnegativity, peak- and average-intensity
constraints is discrete with a finite number of mass points. In
[6], [8], authors provided an asymptotic analysis of the channel
capacity in the regimes where the peak- and/or average-
intensity constraints tend to zero (low-intensity regime) or to
infinity (high-intensity regime) and derived upper and lower
bounds which in some cases coincide. Considering an average-
intensity constraint only, Martinez provided lower and upper
bounds on the channel capacity that are tight in the high-
intensity regime [9], [10]. Recently, Cheraghchi and Ribeiro
studied the structure of capacity-achieving input distribution
of the discrete-time Poisson channel with nonnegativity and
average-intensity constraints [11] and also derived improved
capacity upper bounds [11], [12].

In this work, we consider a degraded discrete-time PWC
(DT-PWC) which consists of a transmitter, a legitimate user,
and an eavesdropper. As we will show next, the current setup is
fundamentally different from its continuous-time counterpart
studied in [13]. For the DT-PWC with nonnegativity and
average-intensity constraints, we show that every point on
the boundary of the rate-equivocation region is attained by
a unique distribution satisfying the following structural prop-
erties: P1: the support set of the optimal solution contains
finitely many mass points in any bounded interval;, P2:
the support set of the optimal solution is an unbounded
set. This result generalizes the one in [11] which deals with
the capacity (without a secrecy constraint) and captures it as a
single point of the rate-equivocation region. Finally, we study
the asymptotic behavior of the secrecy capacity in the low- and
high-intensity regimes and characterize the secrecy capacity in
these regimes. In the low-intensity regime, we find the closed-
form expression of the secrecy capacity for the case when the
channel gains of the legitimate receiver and the eavesdropper
are identical. Whereas, when the channel gains are different,
we characterize the capacity within a constant gap. In the high-
intensity regime, we establish that the secrecy capacity does
not scale with the average-intensity constraint.
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II. THE DEGRADED DISCRETE-TIME POISSON WIRETAP
CHANNEL

In the considered wiretap channel, confidential data are
transmitted by sending pulse amplitude modulated (PAM)
intensity signals which are constant in discrete time slots of
duration A seconds [5]. This model is referred to as the DT—
PWC where a bandwidth constraint is imposed on the input
signals by constraining the signals to be rectangular PAM of
duration A seconds. We note that in the limiting case where
the pulse duration A converges to zero, i.e., A — 0, the
DT-PWC becomes the CT-PWC. In this limiting case, the
transmitted pulses are no longer required to be rectangular
PAM signals and can admit any arbitrary waveforms. Notice
that the results pertaining to the degraded CT-PWC have been
reported by Laourine and Wagner in [13]. Therefore, in this
work, our mere focus is on addressing the problem of secure
communications over the DT-PWC, i.e., the case where A
does not approach zero.

A. Channel Model

In the DT-PWC, the receiver is modeled as a photon
counter which generates an integer representing the number of
received photons. Specifically, in each time slot of A seconds
an input intensity X is corrupted by the constant channel
gains ap and ap and the combined impact of background
radiation as well as the photodetectors’ dark currents A\p and
Ag at the legitimate user’s and the eavesdropper’s receivers,
respectively. The channel outputs at the legitimate receiver and
the eavesdropper are denoted by Y and Z, respectively, and
are random variables related to the number of received photon
in A seconds. These channel outputs conditioned on the input
signal obey the Poisson distributions with mean («p X +Ag)A
and (agX + Ag)A, respectively, i.e., [5, equation 16]

(apztrp)a @Bz +Ap)A]Y

pyix(ylz) = e ) »yeN, (D
A 4
pzix(zlz) = e~ (a@pz+ip)A M7 zeN, ()

where N is the set of all nonnegative integers. It is worth
mentioning that in this work, we assume that the dark currents
of the legitimate receiver and the eavesdropper are positive
constants, i.e., A\g > 0 and A\g > 0.

In the DT-PWC, the channel input X is a nonnegative
random variable representing the intensity of the optical signal.
Since intensity is constrained due to a safety restriction by an
average-intensity constraint, the input must satisfy X > 0 and
E[X] < & [2]. In this work, we are interested in the degraded
DT-PWC. Therefore, we are interested in the case where the
following conditions hold

aB > ag, 3)
Ap e )
ap ap

which implies that the random variables X, Y, and Z form
the Markov chain X — Y — Z and consequently, the
DT-PWC becomes stochastically degraded [13]-[15]. In the

sequel, without loss of generality, we consider that at least
one of the inequalities (3) or (4) is strict, since otherwise, the
secrecy capacity (defined later) would be equal to zero.

B. The Rate-Equivocation Characterization of the DT-PWC

An (n, 2") code for the DT-PWC consists of the random
variable W (message set) uniformly distributed over W =
{1,2,---,2"%} an encoder at the transmitter f,, : W — R}
satisfying the positivity- and average-intensity constraints, and
a decoder at the legitimate user g, : N — WW. Equivocation
of a code is measured by the normalized conditional entropy
L H(W|Z™). The probability of error for such a code is
defined as P}' = Pr[g,(Y™) # W]. A rate-equivocation pair
(R, R.) is said to be achievable if there exists an (n, 2"%) code
satisfying lim,,_,o P = 0 and R, < lim,,_,o, 1 H(W|Z™).
The rate-equivocation region consists of all achievable rate-
equivocation pairs. A rate R is said to be perfectly secure if we
have R, = R, that is, if there exists an (n, 2"%) code satisfying
limy, 00 £ I(W;2Z™) = 0, where I(W;Z") is the mutual
information between the random variables W and Z". The
supremum of such rates is defined to be the secrecy capacity
and is denoted by Clg.

Since under the assumptions (3)—(4), the DT-PWC is de-
graded, its entire rate-equivocation region, denoted by R, can
be expressed in a single-letter expression, and it is given by
the union of all rate-equivocation pairs (R, R.) such that [14]

{0 < R<I(X;Y),

&)
0<R.<I(X;Y)—-I(X;Z),
for some input distribution Fx € JFT where FT 2
oo (oo}
{Fx: [ dFx(z) =1, [z dFx(z) < E}.

III. MAIN RESULTS

In this section, we present our main results regarding
the structure of the optimal input distributions achieving the
secrecy capacity and exhausting the entire rate-equivocation
region of the degraded DT-PWC. Furthermore, we character-
ize the behavior of the asymptotic secrecy capacity in the low-
and high-intensity regimes.

A. Structure of the Secrecy-Capacity-Achieving Distributions

For the degraded DT-PWC, the secrecy capacity is given
by a single-letter expression as [5], [16, Chap. 3]

sup fo(Fx) 2 sup [I(X;Y)—I(X;Z)] (6)
FxeF+ FxeF+t

Cs(€) =

The optimal input is characterized as follows.

Theorem 1. There exists a unique input distribution that
attains the secrecy capacity of the DT-PWC with nonnegativity
and average-intensity constraints. The optimal distribution is
discrete with a countably infinite number of mass points, but
only finitely many mass points in any bounded interval.

Proof. To prove Theorem 1, we first prove that the set of input
distributions 7 is compact and convex. We then show that the
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objective function in (6) is continuous, strictly concave, and
weakly differentiable in the input distribution F'x. Therefore,
we conclude that the solution to the optimization problem (6)
exists and is unique. We continue the proof by showing first
that the intersection of the support set of the optimal input
distribution denoted by Sp; with any bounded interval B
contains a finite number of mass points, i.e., \SF;( N B| < oo,
where |B| denotes the cardinality of the set B. Then, we show
that Sp; must be an unbounded set. These structural properties
imply that the optimal distribution is discrete with a countably
infinite number of mass points, but with finitely many mass
points in any bounded interval. The first property is shown
by means of contradiction. We assume that |Sr; N B| = oo.
Then, using the KKT conditions and invoking the Bolzano-
Weierstrass and Identity Theorems from complex analysis, we
find that the Lagrangian multiplier is upper bounded by —oo
which is a contradiction. The second property is also shown
through contradiction. Assuming that the optimal support set is
bounded, we consider the following cases: 1) if the legitimate
user’s and the eavesdropper’s channel gains are not identical,
our contradiction hinges on the fact that a linearly increasing
function in x must be lower bounded by another function
which grows as fast as xlogz which is a contradiction for
large values of z; 2) if the channel gains are identical, we find
that the Lagrangian multiplier would be lower bounded by a
constant and using the Envelope Theorem [17], we observe
that the secrecy capacity must at least grow linearly in the
average-intensity constraint. However, in Theorems 5 and 6,
we establish that the secrecy capacity is always upper bounded
by a constant for all values of the average-intensity. Therefore,
the desired contradiction occurs. A detailed proof is provided
in [18, Section IV-C]. |

Next, we establish the existence of a mass point at xz =
0 in the support set of the secrecy-capacity-achieving input
distribution.

Proposition 1. Let Spy be the support set of the secrecy-
capacity-achieving input distribution F, for the DI-PWC
under nonnegativity- and average-intensity constraints. Then
r=0¢ SF}*(

Proof. The proof is by contradiction and follows along similar
lines of [19, Proposition 1] with the difference that the con-
ditional channel laws follow Poisson distributions. A detailed
proof is presented in [18, Appendix B]. ]

Next, we establish that the support set of the capacity-
achieving (with no secrecy constraint) input distribution of the
DT- Poisson channel also has a mass point at the origin.

Corollary 1. The capacity-achieving distribution of the
discrete-time Poisson channel, i.e., the case without secrecy
constraint, under nonnegativity- and average-intensity con-
straints has a mass point located at the origin.

Proof. The proof is via contradiction and it follows along
similar lines of the proof of Proposition 1 without a secrecy
constraint, i.e., disregarding the eavesdropper’s link. ]

It is worth mentioning that this result provides an alternative
proof of the existence of a mass point at the origin which was
previously established in [20, Corollary 2].

B. Structure of the Optimal Distributions Exhausting the En-
tire Rate-Equivocation Region

By a time-sharing argument, it can be shown that the rate-
equivocation region of the DT-PWC is convex. Therefore,
the region can be characterized by finding tangent lines to
‘R which are given by the solutions of
2

sup  fu(Fx)
FxeF+

LS WI(X;Y)+ (1 —p)
x[I(X;Y) = I(X;Z)]], V p e 0,1],
)

We start by characterizing the optimal distributions exhaust-
ing the entire rate-equivocation region when nonnegativity and
average-intensity constraints are active.

Theorem 2. Every point on the boundary of the rate-
equivocation region of the DT-PWC with nonnegativity and
average-intensity constraints is achieved by a unique and
discrete input distribution with a countably infinite number
of mass points, but finitely many mass points in any bounded
interval.

Proof. The proof of Theorem 2 follows along similar lines of
the proof of Theorem 1 with a difference in the unboundedness
proof of the optimal support set. Here, we do not consider
different cases on the channel gains and the desired contra-
diction occurs by showing that a linearly increasing function
in  would be lower bounded by another function growing as
fast as x log x. A detailed proof is provided in [18, Section IV-
E]. |

A direct consequence of Theorem 2 is that when ¢ =1 in
(7) (the point corresponding to the capacity of the DT Poisson
channel with nonnegativity and average-intensity constraints),
the optimal distribution is discrete with a countably infinite
number of mass points, but finitely many mass points in
any bounded interval. This result coincides with the one
established in [11, Theorem 15].

Remark. As mentioned earlier, in this work, we do not
consider the case where A\p = 0 and A\g > 0. However, in
our extended version of the paper, we have established that
the structural results pertaining to the non-zero dark current
case will indeed carry over to this case. For details, please
refer to [18, Appendix I].

C. Asymptotic Behavior of the Secrecy Capacity in the Low-
and High-Intensity Regimes

This section investigates the asymptotic analysis for the
secrecy capacity of the DT-PWC in both low- and high-
intensity regimes.
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1) Low-Intensity Regime: We formalize the results for the
cases ap = ag and ap > ag in Theorem 3 and Theorem 4,
respectively.!

Theorem 3. If the channel gains ap = ag, then the secrecy

capacity satisfies
= {QB log (AE)] . (8)
AB

Proof. We first show that the secrecy capacity is a concave
function in the average-intensity constraint. Next, we invoke
the secrecy capacity per unit cost argument established by
El-Halabi et al. [21] to find a closed-form expression of the
secrecy capacity. However, we note that the secrecy capacity
per unit cost argument does not lead to the characterization of
the secrecy-capacity-achieving input distribution [21]. Thus, in
this case, we do not characterize the optimal input distribution.
This is because, as established by Theorem 1, the optimal
distribution admits a countably infinite number of mass points,
and evaluating the mutual information difference is onerous.
A detailed proof is presented in [18, Appendix E]. ]

. Cs(&)
}13%] &

Theorem 4. If the channel gains ap > o, then the secrecy
capacity satisfies

L liminf Os€) ©)
2 £-0 (ap —ag)€loglog &
<lim sup Cs(é) <2

e»0 (ap —ag)€log log%
Proof. We establish Theorem 4 by providing lower and upper
bounds on the secrecy capacity. The lower bound is based on
evaluating the mutual information difference for the binary
input distribution with mass points located at {0,(} with

— p,p}, where ( =
= % Furthermore, we upper bound the

corresponding probability masses {1

secrecy capacity of the DT-PWC under an average-intensity
constraint by the capacity of another discrete-time Poisson

channel whose input is X and whose output is Z with
(Glz) = e —(Gz+N)A [(59«"*;/'\)A]z

Xé(@_

- A
, where @ = ap — ag,

e ) Ag, and the input is subject to nonnegativity
and average-intensity constraint E[X] < £. We derive the
upper bound by invoking the results found by Lapidoth and
Moser pertaining to the asymptotic capacity of the discrete-
time Poisson channel with an average-intensity constraint and
with constant nonzero dark current [8, Proposition 2]. A

detailed proof is presented in [18, Appendix FJ. ]

Theorem 4 suggests that the asymptotic secrecy capacity
scales, to within a constant, like & log log% in the low-
average-intensity regime when the channel gains are different.

Finally, it is worth mentioning that the capacity of the
discrete-time Poisson channel in the low-intensity regime and
with constant non-zero dark current also scales like £ log log é
[8, Proposition 2]. This implies that in the low-intensity regime

INote that ap > ag due the degradedness assumption (3)

the capacity and secrecy capacity (for the case of different
channel gains) scale similarly with the average-intensity con-
straint. However, when channel gains are identical, the channel
capacity still scales like & log log% (because of disregarding
the eavesdropper’s link in channel capacity calculations), but
the secrecy capacity scales linearly with the average-intensity
constraint.

2) High-Intensity Regime: We start by considering two
scenarios based on the degradedness conditions in (3)—(4) and
for each of these scenarios, we provide an upper bound on the
secrecy capacity. The first scenario deals with the case where
the inequality (3) is tight and the inequality (4) is strict, i.e.,
ap = ag, ;\’z > ’\B . The second scenario refers to the case
where the mequallty (3) is strict and the inequality (4) is either
strict or tight, i.e., ap > ag, ;\j > ;\yg 2 Although for both
scenarios, the final results are the same (cf. Theorem 5 and
Theorem 6 below), we found it more convenient to distinguish
the two scenarios as the proof techniques are different.

Before we present the main results regarding the asymptotic
behavior of the secrecy capacity in the high-intensity regime,
we state a lemma which we use in our analysis throughout
this subsection.

Lemma 1. For a degraded DT-PWC (i.e., when the condi-
tions in (3)—-(4) hold true), the mutual information difference
fo(Fx)=I(X;Y)—I(X; Z) can be upper bounded as
foFx) =I(X;Y) = I(X;Y) + I(X;Y) - I(X; Z)
<I(X;Y) = I(X;Y) 4+ I(X; Z), (10)

where Y = Y + Np, with Np being a Poisson distributed
random variable with mean \pA independent of X and Y,

where A\p = O‘B )\E Ap. Moreover, Z\X is a Poisson random
variable wzth mean (aX + M)A independent of Z|X and such

that Y|X = Z|X + Z|X, where & = ap — ap and A =
28— 1) A,

Proof. The proof follows along a similar line of [13, Lemma 1,

Lemma 7]. |

Now, we are ready to present the asymptotic results of the
secrecy capacity in the high-intensity regime.

a) Upper Bound on the Secrecy Capacity When ap =
ap and i—i > (’:—g We start by noting that according to
Lemma 1, the random variable Z = 0, the upper bound in
(10) is tight and the secrecy capacity is equal to

Cs(€) = fo(Fx)
— Hy (Fy) — Hy (F3) + Hy  (F) — Hyx (F3),
(11
where [y € F*,and Hy (F%) and Hy (F% ) are the entropies

of the discrete random variables Y and Y, respectively,
induced by the optimal input distribution F'%. Furthermore,

2As we mentioned at the end of subsection II-A, one of the conditions in
(3)—(4) is assumed to be strict, otherwise the secrecy capacity would be equal
to zero.
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Hy x(F%) and Hy, (F%) are the conditional entropies of

Y|X and }7|X , respectively, induced by F'5. Next, we present
the upper bound on the secrecy capacity of the DT-PWC in
the high-intensity regime.

Theorem 5. If ap = ag, i—i > 25, then the secrecy
capacity of the DI-PWC with nonnegativity and average-

intensity constraints is upper bounded by

Ab 4 Ap
Cs(&) < 2—5-. (12)
AB
Proof. Under the assumption of ap = ap and AE > i’;

we first show that Hy (Fy) — Hy(Fx) < 0. Thus to upper
bound the secrecy capacity, it is sufﬁcient to provide an upper
bound for the term HY|X(F)*<) —Hy | x (F%). A detailed proof
is presented in [18, Appendix G]. ]

From Theorem 5, we notice that the upper bound in (12)
holds for all values of the average-intensity constraint. This
implies that the secrecy capacity of the DT-PWC does not
scale with the average-intensity constraint, i.e., Cs(€) =
o), if ap = ag, ;\Y—E> 25

b) Upper Bound on the Secrecy Capacity When ap >
ap and ()‘1’; > ii : In this case, we first note that due to

Lemma 1, the secrecy capacity can be upper bounded as

05(5)=FSHI;+[I(X;Y)—I(X;Z)]
x €
= sup [I(X;Y)—I(X;Y)+1(X;Y) - I(X;2)]
FxeF+
< sup [I(X;Y)—I(X;Y)]
FxeF+
=Cs,u1
+ sup [I(X;Y)—I(X;Z)]. (13)
FxeF+
éC’s,Uz

Then, we upper bound each of the terms Cg ¢1(€) and
Csu2(E) and show that these upper bounds are constant
values and do not scale with the average-intensity constraint.
These results are formally stated by the following theorem.

A A
Theorem 6. If ap > ap and i > aB, then the secrecy

capacity of the DT-PWC with nonnegativity- and average-
intensity constraints is upper bounded by

i—F)\*D 1 ap
Cs(€) < 2—-2 + —log () )
ap

. A (14)

Proof. We start the proof by noting that since Y and Y in
(13) satisfy the condition in Theorem 5, then Cgy1(€) in
(13) can be readily upper bounded by a constant value as

2
22+ 22

A
To upper bound Cg 72(£), we first note that it corresponds
to the secrecy capacity of a degraded DT-PWC whose input

Cs,u1(€) < (15)

is X, and whose outputs are Y and Z. Observe that ?\X
is a Poisson distributed random variable with mean (apX +
Z—EAE)A. Also, Z|X is another Poisson distributed random
variable with mean (g X +Ag)A. Note that the observations
of the eavesdropper, i.e., Z is obtained from Y by thinning
with erasure probability 1 — g—i [13], [15]. Next, we note that
this new DT-PWC is degraded because th% é:onditions in (3)-

(4) are met since ap > ap and g—i = % . As a result,
we have that I(X;Y|Z) = I(X;Y) — I(X; Z) and Cs,py =
supp, e 7+ 1(X; }7\Z ). By applying the duality upper bound
in [3], [6] to the conditional mutual information I(X;Y|Z),
we find an upper bound on the secrecy capacity as

1 ap
< -1 — . 16
Csu2(€) < A log <aE> (16)
A detailed proof is presented in [18, Appendix H]. ]

Since the upper bound in (14) is a constant value and does
not scale with the average-intensity constraint, then combining
Theorem 5 and Theorem 6, we infer that the secrecy capacity
does not scale with the average-intensity constraint in the high-
intensity regime, i.e., Cs(&) = O(1).

Lastly, note that the capacity of the discrete-time Poisson
channel with constant non-zero dark current under an average-
intensity constraint scales logarithmically with the average-
intensity constraint [6, Theorem 7], while we proved that the
secrecy capacity of DT-PWC is a constant and does not scale
with the constraint.

IV. CONCLUSIONS

In this paper, we studied the DT-PWC where an average-
intensity constraint was considered. Our motivation behind
studying the secrecy capacity of such a wiretap channel was
that Poisson distribution can model most of the impairments
of a practical optical wireless channel (e.g., an optical wireless
channel model for visible light communication scenarios).
Thus, it is natural to understand the fundamental performance
limits of the Poisson optical wireless channel with secrecy
constraints. In summary, we found that the secrecy capacity,
as well as the entire boundary of the rate-equivocation region,
are attained by discrete distributions with a countably infinite
number of mass points, but finitely many mass points in
any bounded interval. Furthermore, we performed asymptotic
analysis for the secrecy capacity in both the low- and high-
intensity regimes. In the low-intensity regime and when the
channel gains of the legitimate receiver and the eavesdrop-
per were identical, the secrecy capacity scaled linearly in
the average-intensity. However, when the channel gains are
different, the secrecy capacity is scaled, to within a constant,
like £loglog % In the high-intensity regime, we established
that the secrecy capacity must be constant.

As future work, we plan to derive tight lower and upper
bounds on the secrecy capacity in both the low- and high-
intensity regimes for the zero dark currents case, i.e., A\g =0
and A\ > 0.
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