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large processing units.

We study logistical investment flexibility provided by modular processing technologies for mitigating risk.
Specifically, we propose a multi-stage stochastic programming formulation that determines optimal ca-
pacity expansion plans that mitigate demand uncertainty. The formulation accounts for multi-product
dependencies between small/large units and for trade-offs between expected profit and risk. The for-
mulation uses a cumulative risk measure to avoid time-consistency issues of traditional, per-stage risk-
minimization formulations, and we argue that this approach is more compatible with typical investment
metrics such as the net present value. Case studies of different complexity are presented to illustrate
the developments. Our studies reveal that the Pareto frontier of a flexible setting (allowing for deploy-
ment of small units) dominates the Pareto frontier of an inflexible setting (allowing only for deployment
of large units). Notably, this dominance is prevalent despite benefits arising from economies of scale of

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Modularization is a manufacturing trend that is being adopted
in different industrial sectors such as power generation, data cen-
ters, and chemical processes (Frivaldsky et al., 2018; Berthélemy
and Rangel, 2015; Dong et al., 2009; Chakraborty et al., 2009;
R., 1999). Modularization enables technology size reduction and
provides logistical flexibility to adapt to fast-changing markets
and other externalities (e.g., climate, resource availability, and pol-
icy) (Jaikumar, 1986; Rajagopalan, 1993). For instance, decentral-
ized power generation and storage systems are becoming increas-
ingly attractive as climate changes, and the adoption of renew-
able power disrupts markets and space-time demand patterns
(Heuberger et al., 2017; Liu et al,, 2018; Shao and Zavala, 2019).
Modular technologies can also be easily transported to different
geographical locations to exploit changing market patterns and to
enable the recovery of resources that are highly distributed and
potentially short-lived (Allman and Zhang, 2020; Chen and Gross-
mann, 2019; Davis, 2016). We can interpret this ability as a form
of spatial-shifting flexibility. This decentralized approach contrasts
with the more traditional monolithic approach in which a large
processing system is installed at a fixed location over its entire
lifetime (Zhao et al., 2018). This centralized approach involves in-
vestments that can reach billions of US dollars and face signifi-
cant risk due to changing markets and climate, shortages of re-
sources at a specific location (e.g., water), and changes in the pol-
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icy landscape (e.g., carbon emissions). As such, large central sys-
tems can face significant economic fallouts that investors might
not be willing to tolerate. For instance, large ammonia production
systems in the US have shut down in the past due to low-cost sup-
ply from China, and large coal power plants are shutting down due
to decreasing costs of renewable power. Moreover, the mass de-
ployment of small modular units facilitates experimentation, learn-
ing, and sharing of best practices that can ultimately reduce oper-
ational costs (compared to large facilities in which experimenta-
tion is more difficult). On the downside, the flexibility provided by
small modular systems often comes at the expense of increased
investment and operational costs (Rajagopalan, 1993). Specifically,
economies of scale benefit large systems due to the favorable scal-
ing of throughput with equipment size (Peters et al., 1968). Due
to complex trade-offs between costs and flexibility, industrial sys-
tems will likely evolve into a mixed state in which certain pro-
cessing tasks are performed in small modular systems while others
are performed in large centralized systems. Identifying optimal in-
vestment strategies in such settings is complicated due to complex
product interdependencies and uncertainties.

A key observation driving this work is that modular systems
provide logistical flexibility in investment size and timing that
can be strategically exploited to mitigate risk. Specifically, expan-
sion of production capacity in modular systems can proceed se-
quentially, which provides a mechanism to hedge against risk (we
can interpret this as temporal-shifting flexibility). To give an ex-
ample, the deployment of new power generators and transmission
lines is subject to significant short-term and long-term uncertain-
ties. Specifically, short-term fluctuations in demand and wind/solar
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supply can affect an optimal generation mix, and changes in fuel
prices and policy can render entire technologies uneconomical
(Liu et al., 2018). Therefore, the progressive expansion of capacity
using both large and small processing systems can help make and
correct decisions and better balance cost and risk.

In this work, we investigate investment flexibility provided by
modular technologies; to do so, we propose a multi-product ca-
pacity expansion (CE) problem that exploits the availability of
technologies of different types and sizes to mitigate risk. Vari-
ants of the CE problem have been studied in different appli-
cations such as power generation, semiconductor manufacturing,
railroad networks, and waste-to-energy systems (Cardin and Hu,
2015; Sun and Schonfeld, 2015; SHIINA et al., 2018; Geng et al.,
2009). A cost-minimization CE problem that considers a single-
product deterministic setting with installation decisions of a fixed-
capacity facility was formulated in Luss (1979). This formulation
was extended to incorporate facilities with multiple capacities in
Luss (1983, 1986). Uncertainty in demand for a single-product
cost-minimization CE problem was addressed by using a stochas-
tic programming (SP) model in FH. Murphy and Soyster (1982);
DapkLus and Bowe (1984); Shiina and Birge (2003). A stochas-
tic CE formulation for planning investments in electricity gen-
eration, storage, and transmission investments over a long plan-
ning horizon was proposed in Liu et al. (2018). These CE problem
formulations use the expected cost as an investment metric and
thus do not control investment risk. Recently, a CE problem for-
mulation that trades-off expected cost and risk was proposed in
Zhao et al. (2019); here, the conditional value-at-risk (CVaR) was
used as a risk metric that is minimized at each stage.

All the aforementioned formulations consider facilities that pro-
duce a single product; in a chemical process, however, multi-
product dependencies need to be captured. Specifically, a chemical
manufacturing facility might involve processes that produce inter-
mediate or final products, and demands for such products might
face different levels of uncertainty. Making investment decisions in
a multi-product setting is a non-trivial problem. Capturing risk in
time-dependent decision-making settings (such as CE) is also an
active topic of research. For instance, time-consistency of per-stage
risk minimization is an issue of concern. In the context of CE, time
consistency indicates that if an alternative A is riskier than alterna-
tive B at some time, then A should also be considered riskier than
B at every prior time (Boda and Filar, 2006). Unfortunately, deriv-
ing SP formulations that achieve time-consistency is not straight-
forward. Moreover, per-stage risk minimization is not necessarily a
decision-making strategy that investors might follow; specifically,
investors are typically concerned with assessing the risk of cumu-
lative metrics such as the net present value (NPV).

In this work, we propose a multi-product CE formulation to in-
vestigate flexibility brought by modularization for mitigating in-
vestment risk. Our framework is a multi-stage and multi-objective
SP problem that captures demand product uncertainty and trade-
offs between expected value and risk of the NPV. We provide case
studies of different complexity to illustrate the developments. Our
analysis reveals that the Pareto frontier of a flexible setting (allow-
ing for deployment of units of various sizes) dominates the Pareto
frontier of an inflexible setting (allowing only for deployment of
large units). Our formulation also avoids difficulties associated with
time-consistency issues of stage-wise risk-minimization formula-
tions, and we argue that it is more compatible with more tradi-
tional investment strategies.

2. Problem formulations
In this section, we present CE formulations of different com-

plexity (single-product/multi-product and deterministic/stochastic)
in order to highlight different aspects of the problem. We begin
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our discussion by posing a couple of illustrative examples; this will
help us introduce some key concepts that are essential in develop-
ing more complex CE formulations.

2.1. Problem setting

Consider the following deterministic CE setting: a decision-
maker (investor) wants to progressively add capacity to a produc-
tion system by installing technologies of different sizes (capacities).
The resulting assembled system seeks to generate sufficient prod-
ucts to satisfy a time-dependent demand over a given planning
horizon. At each planning stage, the investor decides how many
technologies (and associated capacities) it should install; if a tech-
nology is added at one stage, this will generate a product to sat-
isfy the demand at the next stage (there is a deployment delay of
one stage). Demand satisfaction generates revenue. An important
assumption that we make in all the problem formulations studied
is that an installed technology operates at full capacity. This is be-
cause centralized systems operating at full capacity maximize the
benefits of economies of scale; in other words, although central-
ized systems can often operate at a lower capacity to accommo-
date market fluctuations, they might need to do so at the expense
of operational efficiency. We also assume that if the system pro-
duction exceeds demand at a given time, the investor can decide
to either store the excess product at a cost (and carry the product
over to the next stage) or dispose of the excess product at a cost.
At the final stage, the system disposes of leftover excess product.
The goal is to make an optimal CE plan over the horizon that max-
imizes NPV (accumulated cash flows over the horizon); in doing
so, the investor is constrained by the capacities of the technologies
available.

To maximize the investment NPV, in general, we need to min-
imize the cumulative costs of the entire process, including capital
cost (cost of technology installation) and operational cost (storage
cost, waste disposal cost, and so on). In the following illustrative
example, we assume that the NPV is simply determined by the ex-
cess product (waste) at the end of the planning horizon (which is
part of the operational cost that we would like to minimize). Com-
prehensive examples that involve general NPV calculations will be
presented in the following sections.

We illustrate this decision-making setting in Fig. 1; here, we
would like to make decisions on how much capacity to install at
Stage 1 and Stage 2 to minimize waste at Stage 3. In Case 1, only
large technologies are available (with a capacity of 100 units); to
satisfy future demands, it is decided to install 2 units of this large
technology at Stage 1. Since the demand at Stage 2 is 150, it is re-
quired to shift excess production to Stage 3. Moreover, since the
demand at Stage 3 is 200, it is necessary to dispose of 50 units
of excess product. In Case 2, both largeand small technologies are
available; this opens the possibility of an investment strategy in
which we install a large unit (size 100) and a small unit (size 50)
at Stage 1 and add a small unit at Stage 2. This strategy prevents
wasting material at Stage 3 and highlights the flexibility provided
by the availability of small technologies. Note that, in this setting,
the demands are time-dependent but are assumed to be known at
the moment of decision (deterministic setting).

The CE setting can be extended to account for uncertainty in
the demands (stochastic setting); here, demand uncertainty is rep-
resented in the form of possible scenarios. An illustrative example
of this setting is shown in Fig. 2. We would like to make installa-
tion decisions at each stage and scenario (here, we consider two
possible scenarios per stage). Stages and scenarios are represented
as a decision tree, and each node is associated with a different de-
mand scenario. Installation decisions are shown next to the node,
and wasted amounts are shown exiting the nodes at the last stage.
In Case 1 (only large technologies available), we decide to install a
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Fig. 2. Illustrative example of the single-product stochastic capacity expansion setting.

large technology in Stage 1; in Stage 2, we can decide to install a
large technology in scenario 1 (high demand) or no technology in
Scenario 2 (low demand). This investment strategy results in four
scenarios of waste product in Stage 3 (0,75,50,125). Assuming that
these scenarios have equal probability (1/4), the expected value of
the waste is 65, and the standard deviation (typical measure of
risk) is 48. In Case 2 (large and small technologies available), we
install a small unit in Stage 1; in Stage 2, in Scenario 1 we in-
stall a large and a small technology (to satisfy the large demand)
and in Scenario 2 we install another small technology (to satisfy
the small demand). This investment strategy results in four sce-
narios of waste excess product in Stage 3 (0,75,0,25). This gives a
mean waste of 25 and a risk of 35. We can thus see that adding
the possibility of installing small units reduces expected waste and
risk.

Risk can be measured in different ways; in the previous setting,
we computed the risk at Stage 3 (last stage), but we could have
also computed the risk at Stage 2, and we could have added this
to the risk of Stage 3 (add risks for all stages) to determine the
best investment strategy. This highlights issues that one may en-
counter when measuring risk in a multi-stage decision-making set-
ting. Specifically, risk can vary over time and one might or might
not be interested in shaping risk over time. This is similar in spirit
to how investors think about cash flows; typically, investors are not
necessarily interested in the temporal behavior of cash flows but
want to aggregate cash flows in a single metric (e.g., NPV). Follow-
ing this reasoning, in this work, we will compute NPV for every
branch in the tree and compute the associated risk.

The CE problem can be further extended to a multi-product
setting in which a system can produce multiple intermediate or

final products. Intermediate products generate interdependencies
between possible technologies (i.e., technology can take interme-
diate products obtained from another technology as raw materi-
als). Multi-product dependencies make the problem significantly
more complicated and we will see that, in such a setting, invest-
ment flexibility provided by small units becomes particularly rel-
evant. We now proceed to formulate single-product deterministic
and stochastic CE problems, and we then proceed to extend this to
a multi-product setting.

2.2. Single-Product, deterministic setting

Consider the decision-making setting shown in Fig. 3. We
consider a planning horizon comprising a set of stages 7 =
{1,2,..., T} with cardinality |7]|:=T. The time-dependent prod-
uct demand is given by d;, t € 7. Investment decisions are made at
stages t € {1,2,...,T — 1} and we thus define the decision stages
D={1,2,...,T — 1} with cardinality |D| := T — 1. In a determinis-
tic setting, the planning horizon is a linear graph (a tree) in which
each node represents a stage. As such, for each node t, we define a
parent node a; € 7 (in this case we have a; =t — 1). The root node
t =1 does not have a parent node and thus a; = @.

The investor has a list of possible technology choices that can
be installed at each stage. Each choice has a different capacity and
associated installation cost (which capture economies of scale). We
define the set of capacities as B = {By, By, ..., By} € ZY and the set
of associated costs as C = {C, Gy, ..., Cy} € RY, both with same car-
dinality |B| =|C| := N. For convenience, we also define a set of
choice indexes F = {1,2,...,N}. To capture economies of scale, it
is typical to assume that costs follow the so-called 2/3 scaling rule
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Stage 2 Stage 3
Ty Ty
Xo =21+ X4 X3 =mx2 + Xo
do ds

Fig. 3. Tree representation of planning horizon in deterministic case.

and thus:
2
B\ (G\® :
(BT> - (ck) CkkeF 1)

where By, By € B are the ki and K’ th capacity choices and G, Gy €
C are the installation costs.

Product storage comes at a cost ps € R, and we define a max-
imum storage capacity § € Z,. Disposal of excess product comes at
a cost pw € R,. We define a variable s; € Z,,t € T to capture the
amount of storage at stage t. We set s; = 0 and s, = 0 (any excess
product is regarded as waste at the final stage). We define the in-
teger variable w; € Z,,t € T to represent the waste generated at
each stage. We assume w; = 0 (waste is generated at the end of
each stage). The investor has a choice to deal with any excess prod-
uct; either to dispose of the product or to store it (shift it to the
next stage). To capture installation delays, we assume that capacity
installed at stage t generate production, storage, disposal and sales
of products at stage t + 1.

We define integer variables u; , € Z,,t € D,k € F; here, uy is
the number of technologies of type k € B installed at stage t € D.
The total capacity installed at time ¢ is thus:

Xt = ZU[‘kBkv teD (22)
keF

and the total installation cost at time t is:

Yo=Y UG, teD (2.3)

keF

We define variable X;, t € T to represent the total amount of prod-
uct generated at stage t; X; is the cumulative installed capacity up
to stage t and follows the dynamic evolution:

Xe =Xy +Xq, teT (24)

We set the initial production as X; = 0 and recall that a; =t — 1.
In the proposed setting, we can install more than one technology
at each time but we limit the total final installed capacity X; by
using the upper bound x € Z,.

We use the following constraint to ensure that demand is sat-

isfies at each stage:
O<sq+Xe—St—wy<d;, teT (2.5)

We define a production cost as pp € R4 and selling price as mp €
R.. Under these definitions, the cost at stage t (denoted as ¢; € R)
can be expressed as:

(2.6a)
and the revenue at stage t (denoted as r; € R) is expressed as:
(2.7)

qr =Yt + PpXe + psSt + pwWe, teT.

e =mp(Xe +Saq, — St —Wr), teT.

Note that sq, X1, s, w; =0 and thus r; =0.
We consider a CE formulation that maximizes the NPV of the
project; to do so, we define an interest rate y € [0, 1] that is used

to discount any future cash flow and we define the discount fac-
tor B¢ = 1/(1+ y)'~1. We define the discounted profit (cash flow)
achieved at stage t as v¢ and the cumulative profit up to stage t as
V. These quantities are computed as:

Ve=PB-(e—q), teT (2.8a)

Vi=Vy +vp, teT. (2.8b)

With this, the NPV is given by Vr = > V.
In summary, the CE problem is a mixed-integer linear program
(MILP) of the form:

max Vr (2.9a)
u,s
St.x =) uyB, teD (2.9b)
keF
Yt = Zut,ka, teD (ch)
keF
X =Xo +Xa, teT (2.9d)
qe =Y + ppXe 4+ psSt + pwWr, teT (2.9e)
r[:n'p(Xt—i-Su[—S[—Wt), teT (29f)
Ve=PB - (t—q), teT (2.9g)
Vi=Vg +1:, teT (2.9h)
O<sq +Xe—St—wWy<d;, teT (2.91)
0<s <S, teD (2.9))
Xr <X (2.9k)
Uy €Zy, teDkeF (2.91)
St €Zy, teT. (2.9m)

The NPV metric accumulates all the cash flows v, t € T to the
initial stage t = 1 and this accounts for time value of money. If we
set y =0, we obtain B; =1 and the CE problem maximizes the
cumulative cash flows over the planning horizon (the total profit).
As we discuss next, the NPV is a convenient metric that allows us
to summarize random cash flows that arise in settings that face
uncertainty.
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Stage 1 S ={1}

Stage 2 So = {1,2}

d3,17p3,1

2.3. Single-Product, stochastic setting

We now extend the CE problem to a stochastic setting; this for-
mulation allows us to explore trade-offs between expected profit
and risk. The stochastic setting is illustrated in Fig. 4. We define
the set of scenarios at each stage t € T as St = {1,2,...5;} with
cardinality |S¢| :=S;. Each scenario is represented as a node in a
tree; the number of levels in the tree is given by the number of
stages. We define parent node a; ;,t € T, j € S as the parent stage
and scenario that node {t, j} emanates from. For example, if sce-
nario {t, j{} is generated from scenario j at stage t — 1, the parent
node is a j = {t — 1, j} (see Fig. 5). The scenario set of the root

node is a singleton S; = {1} and the parent of the root node is
empty and thus a; ; = 4.

The demand is a discrete random variable; the realization of
this variable at time ¢ and scenario j is denoted as d; j,t € T, j e
St. The probability of realization d; ; is represented as p; ; € [0, 1].
For each stage t € T, these probabilities satisfy Yjes Prj=1.1tis
important to highlight that these are joint probabilities that cap-
ture the history of events leading to node {t, j}. In other words,
joint probabilities are node probabilites (conditional probabilities
are arc/edge probabilities and marginal probabilities ignore his-
tory). For example, in Fig. 4, p3; is the probability of node {3, 1}
corresponding to the demand event sequence dq q,dy; and ds;
and carries information of p, 1 and p; ;. We thus have that proba-
bility p; j carries information of its ancestor nodes.

Stage t-1 Stage t

F 1, J2 € S

Fig. 5. Schematic of parent-node notation. Here, node {t — 1, j} is the ancestor of
{t.j1} and {t, j»} and thus a,;, =a.;, = {t -1, j}.

d3.2,p3,2
asq =as2 ={2,1}

Fig. 4. Tree representation of planning horizon in stochastic case.
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We define an integer variable u; j, € Z1,t €D, je S, ke F to
represent the number of technologies of type k e B installed at
stage t € 7 and at scenario j € S;. The total capacity installed at
time t and scenario j is:

Xj=Y U kB teD jes, (2.10)
keF

and total installation cost at time t and scenario j is:

Yej= Z urjkCe, t€D, jeS. (211)

keF

We use the integer variable s;;je€Zy,t €T, je S to denote the
amount of storage at stage t in scenario j. Similar to the deter-
ministic case, the storage for the first and last stage are assumed
to be zero. We define the waste variable as w; j € Zy,t € T, j € &
and we assume that the waste for the first stage is zero.

We define a variable X; ;,t € T, je S as the total amount of
product produced at stage t and scenario j. Here, X; ; is inter-
preted as the cumulative installed capacity up to stage and sce-
nario a; j, expressed in (2.12). The total installed capacity at stage
one is X; ; =0, j € Sy.

Xt.j :Xar.j +Xat.j, te T,] e St (2]2)

With the above definitions, we can define the undiscounted cost at
stage t for scenario j as g, j, and is given by:

Qr,j = Yi,j + PpXe,j + OsSt,j + PwWej, teT,jeSt. (2.13a)

The undiscounted revenue at stage t scenario j is denoted as
1. j and can be expressed as

Iej= JTP(X” +Sa[_j —Stj— thj), teT, ] € St. (214&)

Our goal is to maximize the expected NPV and to minimize its
risk. To model these quantities, we introduce variable v; j,t € T, j €
S; that denotes the cash flow (profit) achieved in stage t and sce-
nario j. We also define the cumulative variable V; ;,t € 7, j € S to
denote the cumulative profit up to stage t and scenario j. Using
the notation proposed, these quantities can be computed using a
form that is analogous to the deterministic case:

Vej=P (rej—Gqj) teT, jes (2.15a)

Vt,j = va:.j + Ve js teT, ] € St. (215'3)
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The NPV is the total accumulated cash flow and is given by
Vr,j, J € Sr. We note that this is a random quantity and that each
realization correspond to a branch of the scenario tree connect-
ing the root node {1, 1} to the final nodes {T, j} with j € Sr. The
NPV thus summarizes information of the entire project and cap-
tures probabilities of the different paths that the project can take.
When the interest rate is zero, the NPV of a given path is the total
profit of the project for such path.

The expected NPV is given by:

E=Y prjVrj. (2.16)
JjeSr

and its risk is measured by using the mean deviation:

R=>prjlVrj—€l (217)

jeSr
Alternative risk metrics can be used; here, we provide the mean
deviation as this is a coherent risk measure that is easy to inter-
pret.
The CE problem can be cast as the following stochastic, multi-
stage, multiobjective optimization (SMMO) problem:

max {¢, -R} (2.18a)
SLXj=) U jiBr, teD jes (2.18b)
keF
Vej= Ui teD, je& (2.18c)
keF

Xej=Xa;+tXa; teT . jeS (2.18d)

Gej =Yej+ PpXej+ OsStj+ pwWej, teT,jeS (2.18e)

TtijJTp(Xt{j—{—SaU _St,j_Wt_j)s tET,jGSt (2180

Vej=Be(rej—quj) teT.jes (2.18g)

Vt,j = Vu[.j + Ut j» te T,] e St (218h)
Jjesr

R=> prjlVrj—€l (2.18))
jeSr

0<Sq,+Xj—Sej—Wrj<dpj, teTjeS (2.18k)

0<s;<S5 teD je& (2.181)

Xrj <X jeSr (2.18m)

Up ik €Zy, t ED,]ES[,’(€]: (21811)

Stj€Ly, teT, jes (2.180)

The Pareto solutions of this problem are found by using an e-
constrained method. It is important to highlight that the SMMO
problem does not seek to optimize the conditional expectation
and risk at every time (as in traditional multi-stage SP formula-
tions). Instead, the SMOO problem optimizes the joint expectation
and risk (over the entire planning horizon). This formulation thus
avoids ambiguity issues associated with the time consistency of
conditional risk evaluation encountered in traditional formulations.
Another way to think about this difference is that our formulation
first determines the accumulated cash flow over all stages and then
optimizes its risk, while a traditional formulation determines the
risk of the cash flow at each stage and then optimizes the accu-
mulated risk over all stages.
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2.4. Multi-Product, stochastic setting

We can conveniently extend the previous formulation to a
multi-product setting. Assume that the investor now has a choice
of producing multiple products Z = {iy, iy, ..., i;}. We use «; 1,1 €
T to represent the inter-dependencies between product i and i'.
Specifically, c;  denotes the units of product i’ required to pro-
duce i. Note that «;; =1,i € Z. For each product i € Z, we define
a set of technologies that can produce it; these technologies have
capacities B! and installation costs C!. Also, for each product i € Z,
we define a storage cost, waste disposal cost, operational cost, and
selling price as pi, pi, ph, and 7). We also define a capacity limit
for product i as xi,i e Z, and storage limit for product i as §',i e 7.
We define the demand for product i at stage t and scenario j as
d;',j,t €T,je &, ieZ. Our decision variables are the number of

technologies with capacity B;'< to be installed from the capacities
list at stage t and scenario j for product i and these are modeled
using the integer variables u’t_j’k €ZyteD,jeS ke Fliel.

The total capacity installed at stage t and scenario j for product
i is denoted as x’tyj,t €D, j e &, ieZ. The total installation cost at
stage t and scenario j for product i is denoted as ylt‘j,t €D, je
S, i € I. These quantities are computed as:

Xi,f = Z ui,j,kB;cy teD,jeS,iel (2.19a)
keFi
Vij=2 UG teDjesSiiel (2.19b)

keFt

The amount of storage at stage t and scenario j for product i is
defined as s;_]. €Zi,teT,je&,ieZ, and the amount of product
disposed at stage t and scenario j for product i is W’t_]. €Zy,te
T.je€ St ie. The total production at stage t and scenario j for
product i is denoted as Xl_j, teD,jeS,ieZ. We also incorporate
the cumulative installation cost occurred along the path to time t
and scenario j for product i and denote this as Ytl,j’ teD,jeSie
Z. These quantities are computed as:

X ;= xg;u +xf,u, teT.jeSicl (2.20a)
Y=Yy +Vi teD jeSieT (2.20b)

The cost incurred at stage t and scenario j, is q; j, j € St and is
computed as:

Quj= Y Vij+oX+pisij+plwi; teT, jes:. (2.21)
ieT

The profit incurred at stage t and scenario j is 1; j,t € D, j € S and

is computed as:

_ ioyi oy o i i P ;
Tej= an(xt.j + S, =St W — th,jaz/,l), teT,jes:.
ieT i'eT

(2.22)

Under these definitions, we can define the rest of the quantities for
cash flow, cumulative cash flow, and NPV in the same way that we
did for the single-product case. This gives the SMMO problem:

max {&, -R} (2.23a)
stx ;=) ui,j_kB};, teD,jeS,iel (2.23b)
keFi
Vij= 2 UG teDjesSuiel (2.23c)
keFi
X=Xl +X, . teT jeS,iel (2.23d)
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Y=Y, +yi; teD jeSiel (2.23¢)
Qj=Y Vi, +p X +plsi +plwi, teDjes (2230
ieZ
Tt j= Z?T;)(thj +S£][,j - Si,j - WL]- - ZXt'tj(x,v,,»), teT, ] €St
ieZ i'eT

(2.23g)
Vej=Be(rej—quj) teT.jes (2.23h)
Vij=Va,+Vj teT,jes (2.23i)
£=> prVrj (2.23j)

jeSr
R=> prjlVrj—£| (2.23K)
jeSr
O<sh +X st —w =3 X oy <dl, teT, jeS,iel
iez

(2.231)
Xy <sh +X{ teD.jes.iieT (2.23m)
O<s;;<§, teD jeS,iel (2.23n)
X;,j <X, jeSriez (2.230)
Svii<y. jes (2.23p)
ieZ
ui,,’,kGZJﬂ ieD,jeS,keFiet (2.23q)
i€l teT.jeSuiel (2.23r)

We highlight that the proposed formulation can be extended in
a number of ways to add different investment logic (e.g., account
for limited investment budgets). Here, we present a formulation
that contains enough features to highlight the benefits of modular
technologies in mitigating risk.

3. Case studies

In this section, we present different case studies to illustrate
how modularization can help mitigate risk. The first case study in-
volves a single-product setting with three stages and has a struc-
ture of a binary tree. We then present a more complex and realistic
case study that includes interdependent products and more stages
and scenarios. The optimization problems were solved using Gurobi
(version 0.7.6) with a default MIP Gap of 0.01% and were imple-
mented in the JuMP modeling framework. The scripts to reproduce
all results can be found in https://github.com/zavalab/JuliaBox/tree/
master/ModularPlanning.

3.1. Single-Product problem

Fig. 6 shows the stages, scenarios, and their corresponding de-
mand and probabilities. The number inside each node represents
the scenarios at each stage and the other number next to the node
indicates the demand for each scenario in tons. Each parent node
has two children nodes, and we assume that each outcome has
equal probability. All other required data is summarized in Table 1.
All the capacity-related quantities have the units of metric tons,
and price-related quantities have units of US dollars.
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Table 1
Data for single-product problem.

Values

{100, 500, 1000, 1500}
{247, 721, 1145, 1500}

Parameters

Capacities (tons), B
Installation Cost ($), C

Capacity Limit (tons), X 1500
Installation Cost Limit ($), y 2000
Storage Cost ($), ps 30
Storage Limit (tons), § 400
Waste Cost ($), pw 30
Operational Cost ($), p, 50
Selling Price ($), 7, 140
Discount rate, y 0.06
Table 2

Investment strategy and associated risks (undiscounted NPV setting).

Cases Technology Sizes (tons) Risk ($) Expected Value ($)
Case 1 {1000, 0, 0} 93,149 7.0 x 10*
Case 2 {500, 500, 0} 24,361 7.0 x 10*
Case 3 {100 x 4, 500, 0} 16,495 7.0 x 10*

In this problem, we seek to make investment decisions at stage
1 and 2 that can help minimize NPV risk while achieving a con-
stant level of expected NPV. To see the effect that modular units
have on flexibility, we solved this problem under three different
capacity options (we call them Cases 1,2,3). In Case 1, we only al-
low the investor to choose between large capacities of 1500 tons
and 1000 tons. In Case 2, we add a medium capacity unit (500
tons) to the list to provide more flexibility. In Case 3, we allow
the investor to choose from the complete capacity list (which in-
cludes smaller modular units). The three cases are solved for the
undiscounted and discounted NPV problem (to see the impact of
the time value of money).

The Pareto frontiers for both problems are shown in Fig. 7. Ex-
amples of investment plans obtained with these formulations are
shown in Table 2. We can see that the shape of the Pareto fron-
tiers for the discounted and undiscounted problems is similar. We
can thus see that the discounting factor does not influence the de-
cisions made at each stage since the number of stages is small
As we will see in the next case study, the effect of discounting
can be quite pronounced for problems that involve long planning
horizons. The Pareto frontiers highlight that that a strong trade-
off exists between the expected value and risk of the NPV (higher
expected NPV results in higher risk). This trade-off arises from
economies of scale and flexibility (it is less expensive but riskier
to install large units). It is clear that the Pareto frontiers for Cases
2 and 3 (under which small units are available) dominate the fron-
tier of case 1 (under which only large units are available). Impor-
tantly, this occurs even if the installation costs of the large units
have better economies of scale. At the same level for the expected
NPV, Cases 2 and 3 achieve a significantly lower risk (reduction
by a factor of 3). Similarly, at the same risk level, Cases 2 and 3
achieve a much higher expected NPV (increase by a factor of 2).
We can also see that Cases 2 and 3 achieve levels of expected NPV
that are not achievable in Case 1.

In Table 2, the installation column shows installation decisions
made for the undiscounted problem. These decisions are also visu-
alized in Figs. 8, 9, and 10. We can see that, with only larger ca-
pacity options (Case 1), we have no choice but to install the large
unit at stage 1. In Case 2, we install a medium-sized unit in stage 1
and another medium-sized unit in stage 2; this achieves the same
expected NPV, but the risk is drastically reduced. For Case 3, we
installed four small-sized units in the first stage and one medium-
sized unit in the second stage. This achieves the same expected
NPV, but further decreases the risk. We thus conclude that the
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Stage 1 S ={1}
dy 1 = 1200
1

P21 =3

Stage 2 Sy ={1,2}

Stage 3 S3 ={1,2,3,4}
ds1 = 1600
1

P31 = Z
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p1a1=1

ds 2 = 400
P22 =

DO | =

Fig. 6. Tree representation for single-product stochastic case over 3 stages.
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Fig. 7. Pareto frontiers under undiscounted NPV (left) and discounted NPV (right) settings.

Installation

1,1 = 1000

Product produced Xi1 =10

Stage 1
Stage 2
Stage 3
X371 = 1000 X392 =1000 X33 = 1000 X34 = 1000
Cumulative profit V3, = 166335 V3.9 = 163955 V33 = 8855 V3.4 = —59145

Fig. 8. Investment strategy under Case 1 (undiscounted NPV setting).

different capacity choices enable higher investment flexibility and
reduced risk.

3.2. Multi-Product problem

Biogas is a methane-rich gas mixture that can be produced
from anaerobic digestion of organic waste (such as cow manure).

The biogas (in metric tons) can be sold directly or can be used
as raw material to produce electricity (in MWh) and liquefied
biomethane (in gallons). These products are represented as iy, ip,
and i3 respectively (Krich et al, 2005; Sampat et al., 2018). The
process under study is visualized in Fig. 11. The available technol-
ogy capacities, investment cost, operation cost and other required
information are summarized in Table 3 (Hu et al., 2018; Beddoes
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Installation

Computers and Chemical Engineering 153 (2021) 107424

211 = 500

Product produced X1 =0

Stage 1
Stage 2
Stage 3
X531 = 1000 X3, = 1000 X33 =500 X3,4 =500
Cumulative profit V3 = 118638 V3.0 = 70018 V33 ="70069 V34 =21279

Fig. 9. Investment strategy under Case 2 (undiscounted NPV setting).

Installation

1,1 = 400

Product produced X131 =0

Stage 1
Stage 2
Stage 3
Xg‘] = 900
Cumulative profit V31 = 102651

X3‘2 =900
Viy = 70181 Vi g = 70162

Vsq = 37012

Fig. 10. Investment strategy under Case 3 (undiscounted NPV setting).

Manure

v -

Anaerobic Digestion

Ol

Biogas

Electricity Generation Electricity

CO; Removal and Liquefaction Biomethane

Fig. 11. Process for the production of biogas and its byproducts.

et al., 2007; Patel, 2019). The capital cost for these technologies
roughly follows the 2/3 rule. The products are interdependent: pro-
ducing 1 MWh of i, requires 0.68 tons of i; and producing 1 gallon
of i3 requires 0.0046 tons of i;. The planning stages have a dura-
tion of one year; as such, all capacities and production levels are
expressed on a per-year basis.

The stochastic multistage setting is illustrated in Fig. 12. Here,
we have a planning horizon with 10 stages. From stage 1 to stage

6, each parent node has two children nodes (which capture vari-
ability in market demands); after stage 6, the market is assumed
to stay constant and thus each parent node only has one children
node. The demand for selected nodes is shown next to the node.
For the first six stages, the children nodes of each parent node rep-
resent an optimistic market and a pessimistic market.

We consider 3 possible cases; for Case 1, the unit for producing
iy has a capacity of 1200 tons, the unit producing i, has a capac-
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Stage 1 P1,s, =1
di 1 = [1800,3600, 324000]
Stage 2 P2,5, = 2
1
Stage 3 P3,5; = 3
L]
'Y L]
Y L]
Y L]
L]
1
Stage 6 P6,55 = 39
1
Stage 7 pr.s, = ED)

Stage 10 P10,S10 = @ @ @

diy.1 = [3000, 6000, 540000]
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dj 5 = [1200, 2400, 216000]

dip,32 = [0,0,0]

Fig. 12. Tree representation of planning stages and scenarios of biogas case study.
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Fig. 13. Pareto frontier for undiscounted NPV (left) and discounted NPV (right) settings.

ity of 2000 MWh, and the unit for producing i; has the capacity
of 300,000 gallons (all capacities are annual). In Case 2, we add a
unit with a capacity of 800 tons for producing i;, we add a unit
with a capacity of 1000 MWh for the choices for i,, and a capacity
of 180,000 gallons for i3. For Case 3, we further expand the capac-
ity choices for product i; to include 400 tons, expand choices for i,
to include 500 MWHh, and expand choices for i3 to include 60,000
gallons. To provide some context on the size of these units, an an-
nual capacity of 500 MWh corresponds to a power output capacity
of 500/8760=0.057 MW (57 kW). As such, the small capacities for
the power generators correspond to those of small modular sys-
tems.

We would like to determine the number of planning stages that
it takes for the investment to be profitable. As such, we gradually

10

increase the planning horizon of the CE problem until the profit
is positive. We found that, for both discounted and undiscounted
problems, the expected NPV remains zero for any planning hori-
zon with less than 8 stages. In other words, the investment is only
profitable if the project lifetime is at least 8 years. We can thus
see that the length of the planning horizon plays an important
role in making investment decisions. We assume that the planning
horizon is 10 years (as shown in Fig. 12). Again, we would like to
determine an optimal investment strategy that maximizes the ex-
pected NPV and minimizes its risk. The Pareto frontiers are shown
in Fig. 13 and we compare risks obtained under the different cases
in Table 4 and Table 6.

We again find that the Pareto frontier of Case 3 (considering
small technologies) dominates. Looking horizontally (for the same
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Table 3 Table 5
Data for biogas capacity expansion problem. Investment strategy for discounted NPV problem with R = 3.9 x 10°.
Parameters Notation Values Cases Installation Expected Value($) Risk ($)
Capacities List Bi (tons) [400, 800, 1200] Case 1 ] ; = 1200 x 2 tons 2.64 x 3.90 x
B2 (MWh) [500, 1000, 2000] ] ; =2000 MWh 10° 10°
31.3 (gallons) [50000, 180000, 300000] Case 2 ] 1= = 1200 tons 3.72 x 3.90 x
Installation Cost ($) ch [272844, 374693, 457138] W 1200 x 2 tons 105 105
i [172219, 234688, 347021] 21
) =2000 MWh
Ch [577269, 1930312, 2935611] 2:,231 — 180000 eallons
Capacity Limit X1 (tons) 6000 21~ & "
% (MWh) 65000 xi“ = 1000 MW
i (gallons) 1500000 Xs 24 = 1000 MWh
Storage Cost Pl ($ per tons) 0 Case 3 ] , = 1200 tons 6.550 X 3.20 X
,0;‘) ($ per MWh) 150000 ] 1= = 60000 x 2 gallons 10 10
p2 ($ per gallon) 0.2 2] =1200 x 2 tons
Storage Limit §h (tons) 800 2 , =2000 MWh
§2 (MWh) 1000 X2 = 60000 tons
s"l_ (gallons) 180000
Waste Disposal Cost oo ($ per ton) 0
,o",ﬁ ($ per MWh) 0 Table 6
piz ($ per gallon) 2 Investment strategy for discounted NPV problem with £ = 1.5 x 10% .
H i
Operational Cost pl’: Ei per :\z\r/l\;h) zg Cases Installation Expected Value($) Risk ($)
pp (8 per
p'; ($ per gallon)  0.56 Case 1 ] , = 1200 tons 1.5 x 10* 3.06 x 106
Selling Price zr ($ per ton) 100 Case 2 1 ; = 1200 tons 1.5x 2.41 x
7P ($ per MWh) 130 3 . = 1000 MWh 104 108
71 ($ per gallon) 25 5 1o = 1000 MWh
Interdependency i, i, 0.68 5 16 = 1000 MWh
iy iy 0.0046 Case 3 1 , = 1200 tons 15x 2.41 x
Total Installation Cost y 1 x 107 — 1000 MWh 10% 106
Limit (S) 34 — 1000 MWh
Interest Rate y 0.06 5 2
X2 15 = 1000 MWh

expected NPV), cases with more capacity options reduce risk. Look-
ing vertically (for the same risk), we can see that modularity al-
lows us to reach higher expected NPVs. For the discounted NPV
problem, we see that adding smaller capacity options (Case 2)
reduces risk, further reducing the capacity (Case 3) can achieve
higher expected profits but does not help to mitigate the risk.
This is because of complex interplays between discounting and
economies of scale. As we discount the future cash flow, the effect
of installing small capacities at future stages reduces, and together
with the effect of economies of scale, the advantages brought by
modular technologies become less obvious. This indicates that re-
ducing technology sizes aids flexibility (but there is a limit to such
flexibility). From Table 4 and Table 5, we can see that, for the
undiscounted problem, most of the investment occurs at the early
stages. Here, we can also see that modular technologies are used
extensively to reduce risk (risk is reduced by a factor of three) and
increase profit (profit is increased by a factor of three).

Table 4

Investment strategy for undiscounted NPV problem with & = 3.0 x 10°.

4. Conclusions and future work

We examined the ability of using small modular technologies to
control investment risk. To do so, we propose a capacity expansion
problem that aims to determine optimal investment strategies over
a given planning horizon. This expansion problem is a stochastic,
multistage, and multiobjective optimization problem. We propose
to measure joint risk on the net present value over the entire plan-
ning horizon in order to avoid the ambiguity associated with stan-
dard multistage stochastic formulations. Our analysis reveals that
small technologies provide flexibility that translates into tangible
reductions of risk (despite the fact that they are not benefited by
economies of scale). However, we also find that flexibility provided
by capacity reductions has limits that result from the complex in-
terplay between economies of scale and discounting. Our work as-
sumes that installed technologies need to operate at full capacity.

Cases Installation Expected Value Risk ($) # of # of Variables
%) Constraints (Cont.+Int.)
Case 1 X;‘,l = 1200 x 2 tons 3.0 x 10° 3.26 x 10° 4355 222541623
X2, =2000 MWh
Case 2 X;‘,l = 1200 tons 3.0 x 10° 243 x 10° 4355 222542100
X2, =1000 MWh
Xy, = 1200 tons
x5, = 180000 gallons
x3 , = 1200 tons
X2, =2000 MWh
X2, =1000 MWh
XZ5 = 2000 MWh
Case 3 xil'v1 =800 tons 3.0 x 10° 1.02 x 10° 4355 222542577

XY, = 60000 gallons
xgl = 1200 x 2 tons
X3 = 60000 x 2
gallons
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This assumption maximizes the effect of economies of scale of cen-
tralized facilities but neglects the fact that centralized plants can
potentially change their output to adjust to market fluctuations.
Therefore, in the future, with additional modeling of the opera-
tional cost of the plants based on different leve of capacity, we are
interested in comparing the centralized and modular technologies
with this assumption relaxed. Also, as part of future work, we are
interested in exploring the use of decomposition strategies to ad-
dress tractability issues (e.g., by using stochastic dual dynamic pro-
gramming techniques). In this work, we ignored engineering costs
associated with different types of technologies (which can be re-
duced using modularization). We will use more detailed cost rep-
resentations and case studies in future work.
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