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We study logistical investment flexibility provided by modular processing technologies for mitigating risk. 

Specifically, we propose a multi-stage stochastic programming formulation that determines optimal ca- 

pacity expansion plans that mitigate demand uncertainty. The formulation accounts for multi-product 

dependencies between small/large units and for trade-offs between expected profit and risk. The for- 

mulation uses a cumulative risk measure to avoid time-consistency issues of traditional, per-stage risk- 

minimization formulations, and we argue that this approach is more compatible with typical investment 

metrics such as the net present value. Case studies of different com plexity are presented to illustrate 

the developments. Our studies reveal that the Pareto frontier of a flexible setting (allowing for deploy- 

ment of small units) dominates the Pareto frontier of an inflexible setting (allowing only for deployment 

of large units). Notably, this dominance is prevalent despite benefits arising from economies of scale of 

large processing units. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Modularization is a manufacturing trend that is being adopted 

n different industrial sectors such as power generation, data cen- 

ers, and chemical processes ( Frivaldsky et al., 2018; Berthélemy 

nd Rangel, 2015; Dong et al., 2009; Chakraborty et al., 2009; 

., 1999 ). Modularization enables technology size reduction and 

rovides logistical flexibility to adapt to fast-changing markets 

nd other externalities (e.g., climate, resource availability, and pol- 

cy) ( Jaikumar, 1986; Rajagopalan, 1993 ). For instance, decentral- 

zed power generation and storage systems are becoming increas- 

ngly attractive as climate changes, and the adoption of renew- 

ble power disrupts markets and space-time demand patterns 

 Heuberger et al., 2017; Liu et al., 2018; Shao and Zavala, 2019 ).

odular technologies can also be easily transported to different 

eographical locations to exploit changing market patterns and to 

nable the recovery of resources that are highly distributed and 

otentially short-lived ( Allman and Zhang, 2020; Chen and Gross- 

ann, 2019; Davis, 2016 ). We can interpret this ability as a form 

f spatial-shifting flexibility. This decentralized approach contrasts 

ith the more traditional monolithic approach in which a large 

rocessing system is installed at a fixed location over its entire 

ifetime ( Zhao et al., 2018 ). This centralized approach involves in- 

estments that can reach billions of US dollars and face signifi- 

ant risk due to changing markets and climate, shortages of re- 

ources at a specific location (e.g., water), and changes in the pol- 
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cy landscape (e.g., carbon emissions). As such, large central sys- 

ems can face significant economic fallouts that investors might 

ot be willing to tolerate. For instance, large ammonia production 

ystems in the US have shut down in the past due to low-cost sup- 

ly from China, and large coal power plants are shutting down due 

o decreasing costs of renewable power. Moreover, the mass de- 

loyment of small modular units facilitates experimentation, learn- 

ng, and sharing of best practices that can ultimately reduce oper- 

tional costs (compared to large facilities in which experimenta- 

ion is more difficult). On the downside, the flexibility provided by 

mall modular systems often comes at the expense of increased 

nvestment and operational costs ( Rajagopalan, 1993 ). Specifically, 

conomies of scale benefit large systems due to the favorable scal- 

ng of throughput with equipment size ( Peters et al., 1968 ). Due 

o complex trade-offs between costs and flexibility, industrial sys- 

ems will likely evolve into a mixed state in which certain pro- 

essing tasks are performed in small modular systems while others 

re performed in large centralized systems. Identifying optimal in- 

estment strategies in such settings is complicated due to complex 

roduct interdependencies and uncertainties. 

A key observation driving this work is that modular systems 

rovide logistical flexibility in investment size and timing that 

an be strategically exploited to mitigate risk. Specifically, expan- 

ion of production capacity in modular systems can proceed se- 

uentially, which provides a mechanism to hedge against risk (we 

an interpret this as temporal-shifting flexibility). To give an ex- 

mple, the deployment of new power generators and transmission 

ines is subject to significant short-term and long-term uncertain- 

ies. Specifically, short-term fluctuations in demand and wind/solar 

https://doi.org/10.1016/j.compchemeng.2021.107424
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107424&domain=pdf
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upply can affect an optimal generation mix, and changes in fuel 

rices and policy can render entire technologies uneconomical 

 Liu et al., 2018 ). Therefore, the progressive expansion of capacity 

sing both large and small processing systems can help make and 

orrect decisions and better balance cost and risk. 

In this work, we investigate investment flexibility provided by 

odular technologies; to do so, we propose a multi-product ca- 

acity expansion (CE) problem that exploits the availability of 

echnologies of different types and sizes to mitigate risk. Vari- 

nts of the CE problem have been studied in different appli- 

ations such as power generation, semiconductor manufacturing, 

ailroad networks, and waste-to-energy systems ( Cardin and Hu, 

015; Sun and Schonfeld, 2015; SHIINA et al., 2018; Geng et al., 

009 ). A cost-minimization CE problem that considers a single- 

roduct deterministic setting with installation decisions of a fixed- 

apacity facility was formulated in Luss (1979) . This formulation 

as extended to incorporate facilities with multiple capacities in 

uss (1983, 1986) . Uncertainty in demand for a single-product 

ost-minimization CE problem was addressed by using a stochas- 

ic programming (SP) model in F.H. Murphy and Soyster (1982) ; 

apkLus and Bowe (1984) ; Shiina and Birge (2003) . A stochas- 

ic CE formulation for planning investments in electricity gen- 

ration, storage, and transmission investments over a long plan- 

ing horizon was proposed in Liu et al. (2018) . These CE problem 

ormulations use the expected cost as an investment metric and 

hus do not control investment risk. Recently, a CE problem for- 

ulation that trades-off expected cost and risk was proposed in 

hao et al. (2019) ; here, the conditional value-at-risk (CVaR) was 

sed as a risk metric that is minimized at each stage. 

All the aforementioned formulations consider facilities that pro- 

uce a single product; in a chemical process, however, multi- 

roduct dependencies need to be captured. Specifically, a chemical 

anufacturing facility might involve processes that produce inter- 

ediate or final products, and demands for such products might 

ace different levels of uncertainty. Making investment decisions in 

 multi-product setting is a non-trivial problem. Capturing risk in 

ime-dependent decision-making settings (such as CE) is also an 

ctive topic of research. For instance, time-consistency of per-stage 

isk minimization is an issue of concern. In the context of CE, time 

onsistency indicates that if an alternative A is riskier than alterna- 

ive B at some time, then A should also be considered riskier than 

 at every prior time ( Boda and Filar, 2006 ). Unfortunately, deriv- 

ng SP formulations that achieve time-consistency is not straight- 

orward. Moreover, per-stage risk minimization is not necessarily a 

ecision-making strategy that investors might follow; specifically, 

nvestors are typically concerned with assessing the risk of cumu- 

ative metrics such as the net present value (NPV). 

In this work, we propose a multi-product CE formulation to in- 

estigate flexibility brought by modularization for mitigating in- 

estment risk. Our framework is a multi-stage and multi-objective 

P problem that captures demand product uncertainty and trade- 

ffs between expected value and risk of the NPV. We provide case 

tudies of different complexity to illustrate the developments. Our 

nalysis reveals that the Pareto frontier of a flexible setting (allow- 

ng for deployment of units of various sizes) dominates the Pareto 

rontier of an inflexible setting (allowing only for deployment of 

arge units). Our formulation also avoids difficulties associated with 

ime-consistency issues of stage-wise risk-minimization formula- 

ions, and we argue that it is more compatible with more tradi- 

ional investment strategies. 

. Problem formulations 

In this section, we present CE formulations of different com- 

lexity (single-product/multi-product and deterministic/stochastic) 

n order to highlight different aspects of the problem. We begin 
2 
ur discussion by posing a couple of illustrative examples; this will 

elp us introduce some key concepts that are essential in develop- 

ng more complex CE formulations. 

.1. Problem setting 

Consider the following deterministic CE setting: a decision- 

aker (investor) wants to progressively add capacity to a produc- 

ion system by installing technologies of different sizes (capacities). 

he resulting assembled system seeks to generate sufficient prod- 

cts to satisfy a time-dependent demand over a given planning 

orizon. At each planning stage, the investor decides how many 

echnologies (and associated capacities) it should install; if a tech- 

ology is added at one stage, this will generate a product to sat- 

sfy the demand at the next stage (there is a deployment delay of 

ne stage). Demand satisfaction generates revenue. An important 

ssumption that we make in all the problem formulations studied 

s that an installed technology operates at full capacity. This is be- 

ause centralized systems operating at full capacity maximize the 

enefits of economies of scale; in other words, although central- 

zed systems can often operate at a lower capacity to accommo- 

ate market fluctuations, they might need to do so at the expense 

f operational efficiency. We also assume that if the system pro- 

uction exceeds demand at a given time, the investor can decide 

o either store the excess product at a cost (and carry the product 

ver to the next stage) or dispose of the excess product at a cost. 

t the final stage, the system disposes of leftover excess product. 

he goal is to make an optimal CE plan over the horizon that max- 

mizes NPV (accumulated cash flows over the horizon); in doing 

o, the investor is constrained by the capacities of the technologies 

vailable. 

To maximize the investment NPV, in general, we need to min- 

mize the cumulative costs of the entire process, including capital 

ost (cost of technology installation) and operational cost (storage 

ost, waste disposal cost, and so on). In the following illustrative 

xample, we assume that the NPV is simply determined by the ex- 

ess product (waste) at the end of the planning horizon (which is 

art of the operational cost that we would like to minimize). Com- 

rehensive examples that involve general NPV calculations will be 

resented in the following sections. 

We illustrate this decision-making setting in Fig. 1 ; here, we 

ould like to make decisions on how much capacity to install at 

tage 1 and Stage 2 to minimize waste at Stage 3. In Case 1, only

arge technologies are available (with a capacity of 100 units); to 

atisfy future demands, it is decided to install 2 units of this large 

echnology at Stage 1. Since the demand at Stage 2 is 150, it is re-

uired to shift excess production to Stage 3. Moreover, since the 

emand at Stage 3 is 200, it is necessary to dispose of 50 units 

f excess product. In Case 2, both largeand small technologies are 

vailable; this opens the possibility of an investment strategy in 

hich we install a large unit (size 100) and a small unit (size 50) 

t Stage 1 and add a small unit at Stage 2. This strategy prevents

asting material at Stage 3 and highlights the flexibility provided 

y the availability of small technologies. Note that, in this setting, 

he demands are time-dependent but are assumed to be known at 

he moment of decision (deterministic setting). 

The CE setting can be extended to account for uncertainty in 

he demands (stochastic setting); here, demand uncertainty is rep- 

esented in the form of possible scenarios. An illustrative example 

f this setting is shown in Fig. 2 . We would like to make installa-

ion decisions at each stage and scenario (here, we consider two 

ossible scenarios per stage). Stages and scenarios are represented 

s a decision tree, and each node is associated with a different de- 

and scenario. Installation decisions are shown next to the node, 

nd wasted amounts are shown exiting the nodes at the last stage. 

n Case 1 (only large technologies available), we decide to install a 
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Fig. 1. Illustrative example of the single-product deterministic capacity expansion setting. 

Fig. 2. Illustrative example of the single-product stochastic capacity expansion setting. 
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arge technology in Stage 1; in Stage 2, we can decide to install a 

arge technology in scenario 1 (high demand) or no technology in 

cenario 2 (low demand). This investment strategy results in four 

cenarios of waste product in Stage 3 (0,75,50,125). Assuming that 

hese scenarios have equal probability (1/4), the expected value of 

he waste is 65, and the standard deviation (typical measure of 

isk) is 48. In Case 2 (large and small technologies available), we 

nstall a small unit in Stage 1; in Stage 2, in Scenario 1 we in-

tall a large and a small technology (to satisfy the large demand) 

nd in Scenario 2 we install another small technology (to satisfy 

he small demand). This investment strategy results in four sce- 

arios of waste excess product in Stage 3 (0,75,0,25). This gives a 

ean waste of 25 and a risk of 35. We can thus see that adding

he possibility of installing small units reduces expected waste and 

isk. 

Risk can be measured in different ways; in the previous setting, 

e computed the risk at Stage 3 (last stage), but we could have 

lso computed the risk at Stage 2, and we could have added this 

o the risk of Stage 3 (add risks for all stages) to determine the 

est investment strategy. This highlights issues that one may en- 

ounter when measuring risk in a multi-stage decision-making set- 

ing. Specifically, risk can vary over time and one might or might 

ot be interested in shaping risk over time. This is similar in spirit 

o how investors think about cash flows; typically, investors are not 

ecessarily interested in the temporal behavior of cash flows but 

ant to aggregate cash flows in a single metric (e.g., NPV). Follow- 

ng this reasoning, in this work, we will compute NPV for every 

ranch in the tree and compute the associated risk. 

The CE problem can be further extended to a multi-product 

etting in which a system can produce multiple intermediate or 
3 
nal products. Intermediate products generate interdependencies 

etween possible technologies (i.e., technology can take interme- 

iate products obtained from another technology as raw materi- 

ls). Multi-product dependencies make the problem significantly 

ore complicated and we will see that, in such a setting, invest- 

ent flexibility provided by small units becomes particularly rel- 

vant. We now proceed to formulate single-product deterministic 

nd stochastic CE problems, and we then proceed to extend this to 

 multi-product setting. 

.2. Single-Product, deterministic setting 

Consider the decision-making setting shown in Fig. 3 . We 

onsider a planning horizon comprising a set of stages T = 

 1 , 2 , . . . , T } with cardinality |T | := T . The time-dependent prod-

ct demand is given by d t , t ∈ T . Investment decisions are made at

tages t ∈ { 1 , 2 , . . . , T − 1 } and we thus define the decision stages

 = { 1 , 2 , . . . , T − 1 } with cardinality |D| := T − 1 . In a determinis-

ic setting, the planning horizon is a linear graph (a tree) in which 

ach node represents a stage. As such, for each node t , we define a 

arent node a t ∈ T (in this case we have a t = t − 1 ). The root node

 = 1 does not have a parent node and thus a 1 = ∅ . 
The investor has a list of possible technology choices that can 

e installed at each stage. Each choice has a different capacity and 

ssociated installation cost (which capture economies of scale). We 

efine the set of capacities as B = { B 1 , B 2 , . . . , B N } ∈ Z 
N + and the set

f associated costs as C = { C 1 , C 2 , . . . , C N } ∈ R 
N + , both with same car-

inality |B| = |C| := N. For convenience, we also define a set of 

hoice indexes F = { 1 , 2 , . . . , N} . To capture economies of scale, it

s typical to assume that costs follow the so-called 2/3 scaling rule 
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Fig. 3. Tree representation of planning horizon in deterministic case. 
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nd thus: 

B k 
B k ’ 

)
= 

(
C k 
C k ’ 

) 2 
3 

, k, k ’ ∈ F (2.1) 

here B k , B k ′ ∈ B are the k th and k ′ th capacity choices and C k , C k ′ ∈
are the installation costs. 

Product storage comes at a cost ρs ∈ R + and we define a max- 

mum storage capacity s̄ ∈ Z + . Disposal of excess product comes at 

 cost ρw ∈ R + . We define a variable s t ∈ Z + , t ∈ T to capture the
mount of storage at stage t . We set s 1 = 0 and s n = 0 (any excess

roduct is regarded as waste at the final stage). We define the in- 

eger variable w t ∈ Z + , t ∈ T to represent the waste generated at

ach stage. We assume w 1 = 0 (waste is generated at the end of

ach stage). The investor has a choice to deal with any excess prod- 

ct; either to dispose of the product or to store it (shift it to the

ext stage). To capture installation delays , we assume that capacity 

nstalled at stage t generate production, storage, disposal and sales 

f products at stage t + 1 . 

We define integer variables u t,k ∈ Z + , t ∈ D, k ∈ F; here, u t,k is

he number of technologies of type k ∈ B installed at stage t ∈ D. 

he total capacity installed at time t is thus: 

 t = 

∑ 

k ∈F 
u t,k B k , t ∈ D (2.2) 

nd the total installation cost at time t is: 

 t = 

∑ 

k ∈F 
u t,k C k , t ∈ D (2.3) 

e define variable X t , t ∈ T to represent the total amount of prod-

ct generated at stage t; X t is the cumulative installed capacity up 

o stage t and follows the dynamic evolution: 

X t = X a t + x a t , t ∈ T (2.4) 

e set the initial production as X 1 = 0 and recall that a t = t − 1 .

n the proposed setting, we can install more than one technology 

t each time but we limit the total final installed capacity X T by 

sing the upper bound x̄ ∈ Z + . 
We use the following constraint to ensure that demand is sat- 

sfies at each stage: 

0 ≤ s a t + X t − s t − w t ≤ d t , t ∈ T (2.5) 

e define a production cost as ρp ∈ R + and selling price as πp ∈ 

 + . Under these definitions, the cost at stage t (denoted as q t ∈ R )

an be expressed as: 

q t = y t + ρp X t + ρs s t + ρw w t , t ∈ T . (2.6a) 

nd the revenue at stage t (denoted as r t ∈ R ) is expressed as: 

r t = πp (X t + s a t − s t − w t ) , t ∈ T . (2.7) 

ote that s 0 , X 1 , s 1 , w 1 = 0 and thus r 1 = 0 . 

We consider a CE formulation that maximizes the NPV of the 

roject; to do so, we define an interest rate γ ∈ [0 , 1] that is used
4 
o discount any future cash flow and we define the discount fac- 

or βt = 1 / (1 + γ ) t−1 . We define the discounted profit (cash flow)

chieved at stage t as v t and the cumulative profit up to stage t as 

 t . These quantities are computed as: 

v t = βt · (r t − q t ) , t ∈ T (2.8a) 

V t = V a t + v t , t ∈ T . (2.8b) 

With this, the NPV is given by V T = 

∑ 

t∈T v t . 
In summary, the CE problem is a mixed-integer linear program 

MILP) of the form: 

ax 
u,s 

V T (2.9a) 

.t. x t = 

∑ 

k ∈F 
u t,k B k , t ∈ D (2.9b) 

y t = 

∑ 

k ∈F 
u t,k C k , t ∈ D (2.9c) 

X t = X a t + x a t , t ∈ T (2.9d) 

q t = y t + ρp X t + ρs s t + ρw w t , t ∈ T (2.9e) 

r t = πp (X t + s a t − s t − w t ) , t ∈ T (2.9f) 

v t = βt · (r t − q t ) , t ∈ T (2.9g) 

V t = V a t + v t , t ∈ T (2.9h) 

0 ≤ s a t + X t − s t − w t ≤ d t , t ∈ T (2.9i) 

0 ≤ s t ≤ s̄ , t ∈ D (2.9j) 

X T ≤ x̄ (2.9k) 

u t,k ∈ Z + , t ∈ D, k ∈ F (2.9l) 

s t ∈ Z + , t ∈ T . (2.9m) 

The NPV metric accumulates all the cash flows v t , t ∈ T to the
nitial stage t = 1 and this accounts for time value of money. If we

et γ = 0 , we obtain βt = 1 and the CE problem maximizes the 

umulative cash flows over the planning horizon (the total profit). 

s we discuss next, the NPV is a convenient metric that allows us 

o summarize random cash flows that arise in settings that face 

ncertainty. 
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Fig. 4. Tree representation of planning horizon in stochastic case. 
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.3. Single-Product, stochastic setting 

We now extend the CE problem to a stochastic setting; this for- 

ulation allows us to explore trade-offs between expected profit 

nd risk. The stochastic setting is illustrated in Fig. 4 . We define 

he set of scenarios at each stage t ∈ T as S t = { 1 , 2 , . . . S t } with

ardinality |S t | := S t . Each scenario is represented as a node in a

ree; the number of levels in the tree is given by the number of 

tages. We define parent node a t, j , t ∈ T , j ∈ S t as the parent stage
nd scenario that node { t, j} emanates from. For example, if sce- 

ario { t, j ′ 1 } is generated from scenario j at stage t − 1 , the parent

ode is a t, j ′ 
1 

= { t − 1 , j} (see Fig. 5 ). The scenario set of the root
ode is a singleton S 1 = { 1 } and the parent of the root node is
mpty and thus a 1 , 1 = ∅ . 
The demand is a discrete random variable; the realization of 

his variable at time t and scenario j is denoted as d t, j , t ∈ T , j ∈
 t . The probability of realization d t, j is represented as p t, j ∈ [0 , 1] .

or each stage t ∈ T , these probabilities satisfy 
∑ 

j∈S t p t, j = 1 . It is

mportant to highlight that these are joint probabilities that cap- 

ure the history of events leading to node { t, j} . In other words,

oint probabilities are node probabilites (conditional probabilities 

re arc/edge probabilities and marginal probabilities ignore his- 

ory). For example, in Fig. 4 , p 3 , 1 is the probability of node { 3 , 1 }
orresponding to the demand event sequence d 1 , 1 , d 2 , 1 and d 3 , 1 
nd carries information of p 2 , 1 and p 1 , 1 . We thus have that proba- 

ility p t, j carries information of its ancestor nodes. 
ig. 5. Schematic of parent-node notation. Here, node { t − 1 , j} is the ancestor of 
 t, j 1 } and { t, j 2 } and thus a t, j 1 = a t, j 2 = { t − 1 , j} . 

r

r  

S
n  
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f

5 
We define an integer variable u t, j,k ∈ Z + , t ∈ D, j ∈ S t , k ∈ F to

epresent the number of technologies of type k ∈ B installed at 

tage t ∈ T and at scenario j ∈ S t . The total capacity installed at
ime t and scenario j is: 

 t, j = 

∑ 

k ∈F 
u t, j,k B k , t ∈ D, j ∈ S t , (2.10) 

nd total installation cost at time t and scenario j is: 

 t, j = 

∑ 

k ∈F 
u t, j,k C k , t ∈ D, j ∈ S t . (2.11) 

e use the integer variable s t, j ∈ Z + , t ∈ T , j ∈ S t to denote the
mount of storage at stage t in scenario j. Similar to the deter- 

inistic case, the storage for the first and last stage are assumed 

o be zero. We define the waste variable as w t, j ∈ Z + , t ∈ T , j ∈ S t 
nd we assume that the waste for the first stage is zero. 

We define a variable X t, j , t ∈ T , j ∈ S t as the total amount of

roduct produced at stage t and scenario j. Here, X t, j is inter- 

reted as the cumulative installed capacity up to stage and sce- 

ario a t, j , expressed in (2.12) . The total installed capacity at stage 

ne is X 1 , j = 0 , j ∈ S 1 . 

X t, j = X a t, j + x a t, j , t ∈ T , j ∈ S t (2.12) 

ith the above definitions, we can define the undiscounted cost at 

tage t for scenario j as q t, j , and is given by: 

q t, j = y t, j + ρp X t, j + ρs s t, j + ρw w t, j , t ∈ T , j ∈ S t . (2.13a) 

The undiscounted revenue at stage t scenario j is denoted as 

 t, j and can be expressed as 

r t, j = πp (X t, j + s a t, j − s t, j − w t, j ) , t ∈ T , j ∈ S t . (2.14a) 

Our goal is to maximize the expected NPV and to minimize its 

isk. To model these quantities, we introduce variable v t, j , t ∈ T , j ∈
 t that denotes the cash flow (profit) achieved in stage t and sce- 

ario j. We also define the cumulative variable V t, j , t ∈ T , j ∈ S t to
enote the cumulative profit up to stage t and scenario j. Using 

he notation proposed, these quantities can be computed using a 

orm that is analogous to the deterministic case: 

v t, j = βt · (r t, j − q t, j ) , t ∈ T , j ∈ S t (2.15a) 

V t, j = V a t, j + v t, j , t ∈ T , j ∈ S t . (2.15b) 
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The NPV is the total accumulated cash flow and is given by 

 T, j , j ∈ S T . We note that this is a random quantity and that each

ealization correspond to a branch of the scenario tree connect- 

ng the root node { 1 , 1 } to the final nodes { T , j} with j ∈ S T . The
PV thus summarizes information of the entire project and cap- 

ures probabilities of the different paths that the project can take. 

hen the interest rate is zero, the NPV of a given path is the total

rofit of the project for such path. 

The expected NPV is given by: 

E = 

∑ 

j∈S T 
p T, j V T, j , (2.16) 

nd its risk is measured by using the mean deviation: 

R = 

∑ 

j∈S T 
p T, j | V T, j − E| . (2.17) 

lternative risk metrics can be used; here, we provide the mean 

eviation as this is a coherent risk measure that is easy to inter- 

ret. 

The CE problem can be cast as the following stochastic, multi- 

tage, multiobjective optimization (SMMO) problem: 

ax 
u,s 

{E, −R} (2.18a) 

.t. x t, j = 

∑ 

k ∈F 
u t, j,k B k , t ∈ D, j ∈ S t (2.18b) 

y t, j = 

∑ 

k ∈F 
u t, j,k C k , t ∈ D, j ∈ S t (2.18c) 

X t, j = X a t, j + x a t, j , t ∈ T , j ∈ S t (2.18d) 

q t, j = y t, j + ρp X t, j + ρs s t, j + ρw w t, j , t ∈ T , j ∈ S t (2.18e) 

r t, j = πp (X t, j + s a t, j − s t, j − w t, j ) , t ∈ T , j ∈ S t (2.18f) 

v t, j = βt (r t, j − q t, j ) , t ∈ T , j ∈ S t (2.18g) 

V t, j = V a t, j + v t, j , t ∈ T , j ∈ S t (2.18h) 

E = 

∑ 

j∈S T 
p T, j V T, j (2.18i) 

R = 

∑ 

j∈S T 
p T, j | V T, j − E| (2.18j) 

0 ≤ s a t, j + X t, j − s t, j − w t, j ≤ d t, j , t ∈ T j ∈ S t (2.18k) 

0 ≤ s t, j ≤ s̄ , t ∈ D, j ∈ S t (2.18l) 

X T, j ≤ x̄ , j ∈ S T (2.18m) 

u t, j,k ∈ Z + , t ∈ D, j ∈ S t , k ∈ F (2.18n) 

s t, j ∈ Z + , t ∈ T , j ∈ S t (2.18o) 

The Pareto solutions of this problem are found by using an ε- 
onstrained method. It is important to highlight that the SMMO 

roblem does not seek to optimize the conditional expectation 

nd risk at every time (as in traditional multi-stage SP formula- 

ions). Instead, the SMOO problem optimizes the joint expectation 

nd risk (over the entire planning horizon). This formulation thus 

voids ambiguity issues associated with the time consistency of 

onditional risk evaluation encountered in traditional formulations. 

nother way to think about this difference is that our formulation 

rst determines the accumulated cash flow over all stages and then 

ptimizes its risk, while a traditional formulation determines the 

isk of the cash flow at each stage and then optimizes the accu- 

ulated risk over all stages. 
6 
.4. Multi-Product, stochastic setting 

We can conveniently extend the previous formulation to a 

ulti-product setting. Assume that the investor now has a choice 

f producing multiple products I = { i 1 , i 2 , . . . , i I } . We use αi,i ′ , i, i ′ ∈
to represent the inter-dependencies between product i and i ′ . 

pecifically, αi,i ′ denotes the units of product i ′ required to pro- 
uce i . Note that αi,i = 1 , i ∈ I . For each product i ∈ I , we define

 set of technologies that can produce it; these technologies have 

apacities B 
i and installation costs C i . Also, for each product i ∈ I , 

e define a storage cost, waste disposal cost, operational cost, and 

elling price as ρ i 
s , ρ

i 
w , ρ

i 
p , and π

i 
p . We also define a capacity limit

or product i as x̄ i , i ∈ I , and storage limit for product i as s̄ i , i ∈ I .
e define the demand for product i at stage t and scenario j as 

 
i 
t, j 

, t ∈ T , j ∈ S t , i ∈ I . Our decision variables are the number of

echnologies with capacity B i 
k 
to be installed from the capacities 

ist at stage t and scenario j for product i and these are modeled 

sing the integer variables u i 
t, j,k 

∈ Z + , t ∈ D, j ∈ S t , k ∈ F 
i , i ∈ I . 

The total capacity installed at stage t and scenario j for product 

 is denoted as x i 
t, j 

, t ∈ D, j ∈ S t , i ∈ I . The total installation cost at
tage t and scenario j for product i is denoted as y i 

t, j 
, t ∈ D, j ∈

 t , i ∈ I . These quantities are computed as: 

x i t, j = 

∑ 

k ∈F i 
u i t, j,k B 

i 
k , t ∈ D, j ∈ S t , i ∈ I (2.19a) 

y i t, j = 

∑ 

k ∈F i 
u i t, j,k C 

i 
k , t ∈ D, j ∈ S t , i ∈ I (2.19b) 

The amount of storage at stage t and scenario j for product i is 

efined as s i 
t, j 

∈ Z + , t ∈ T , j ∈ S t , i ∈ I , and the amount of product

isposed at stage t and scenario j for product i is w 
i 
t, j 

∈ Z + , t ∈
 , j ∈ S t , i ∈ I . The total production at stage t and scenario j for

roduct i is denoted as X i 
t, j 

, t ∈ D, j ∈ S t , i ∈ I . We also incorporate

he cumulative installation cost occurred along the path to time t

nd scenario j for product i and denote this as Y i 
t, j 

, t ∈ D, j ∈ S t , i ∈
. These quantities are computed as: 

X i t, j = X i a t, j + x i a t, j , t ∈ T , j ∈ S t , i ∈ I (2.20a) 

Y i t, j = Y i a t, j + y i t, j , t ∈ D, j ∈ S t , i ∈ I (2.20b) 

The cost incurred at stage t and scenario j, is q t, j , j ∈ S T and is
omputed as: 

q t, j = 

∑ 

i ∈I 
y i t, j + ρ i 

p X 
i 
t, j + ρ i 

s s 
i 
t, j + ρ i 

w w 
i 
t, j , t ∈ T , j ∈ S t . (2.21) 

he profit incurred at stage t and scenario j is r t, j , t ∈ D, j ∈ S t and
s computed as: 

r t, j = 

∑ 

i ∈I 
π i 

p (X 
i 
t, j + s i a t, j − s i t, j − w 

i 
t, j −

∑ 

i ′ ∈I 
X i 

′ 
t, j αi ′ ,i ) , t ∈ T , j ∈ S t . 

(2.22) 

nder these definitions, we can define the rest of the quantities for 

ash flow, cumulative cash flow, and NPV in the same way that we 

id for the single-product case. This gives the SMMO problem: 

ax 
u,s 

{E, −R} (2.23a) 

.t. x i t, j = 

∑ 

k ∈F i 
u i t, j,k B 

i 
k , t ∈ D, j ∈ S t , i ∈ I (2.23b) 

y i t, j = 

∑ 

k ∈F i 
u i t, j,k C 

i 
k , t ∈ D, j ∈ S t , i ∈ I (2.23c) 

X i t, j = X i a t, j + x i a t, j , t ∈ T , j ∈ S t , i ∈ I (2.23d) 
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Table 1 

Data for single-product problem. 

Parameters Values 

Capacities (tons), B {100, 500, 1000, 1500} 

Installation Cost ($), C {247, 721, 1145, 1500} 

Capacity Limit (tons), x̄ 1500 

Installation Cost Limit ($), ȳ 2000 

Storage Cost ($), ρs 30 

Storage Limit (tons), s̄ 400 

Waste Cost ($), ρw 30 

Operational Cost ($), ρp 50 

Selling Price ($), πp 140 

Discount rate, γ 0.06 

Table 2 

Investment strategy and associated risks (undiscounted NPV setting). 

Cases Technology Sizes (tons) Risk ($) Expected Value ($) 

Case 1 {1000, 0, 0} 93,149 7 . 0 × 10 4 

Case 2 {500, 500, 0} 24,361 7 . 0 × 10 4 

Case 3 {100 × 4, 500, 0} 16,495 7 . 0 × 10 4 
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Y i t, j = Y i a t, j + y i t, j , t ∈ D, j ∈ S t , i ∈ I (2.23e) 

q t, j = 

∑ 

i ∈I 
y i t, j + ρ i 

p X 
i 
t, j + ρ i 

s s 
i 
t, j + ρ i 

w w 
i 
t, j , t ∈ D, j ∈ S t (2.23f) 

r t, j = 

∑ 

i ∈I 
π i 

p (X 
i 
t, j + s i a t, j − s i t, j − w 

i 
t, j −

∑ 

i ′ ∈I 
X i 

′ 
t, j αi ′ ,i ) , t ∈ T , j ∈ S t 

(2.23g) 

v t, j = βt (r t, j − q t, j ) , t ∈ T , j ∈ S t (2.23h) 

V t, j = V a t, j + v t, j , t ∈ T , j ∈ S t (2.23i) 

E = 

∑ 

j∈S T 
p T, j V T, j (2.23j) 

R = 

∑ 

j∈S T 
p T, j | V T, j − E| (2.23k) 

0 ≤ s i a t, j + X i t, j − s i t, j − w 
i 
t, j −

∑ 

i ’ ∈I 
X i 

’ 

t, j αi ’ ,i ≤ d i t, j , t ∈ T , j ∈ S t , i ∈ I 

(2.23l) 

αi,i ′ X 
i 
t, j ≤ s i 

′ 
a t, j 

+ X i 
′ 
t, j , t ∈ D, j ∈ S t , i, i ′ ∈ I (2.23m) 

0 ≤ s i t, j ≤ s̄ i , t ∈ D, j ∈ S t , i ∈ I (2.23n) 

X i T, j ≤ x̄ i , j ∈ S T , i ∈ I (2.23o) 

∑ 

i ∈I 
Y i T, j ≤ ȳ , j ∈ S T (2.23p) 

u i t, j,k ∈ Z + , i ∈ D, j ∈ S t , k ∈ F 
i , i ∈ I (2.23q) 

s i t, j ∈ Z + , t ∈ T , j ∈ S t , i ∈ I (2.23r) 

We highlight that the proposed formulation can be extended in 

 number of ways to add different investment logic (e.g., account 

or limited investment budgets). Here, we present a formulation 

hat contains enough features to highlight the benefits of modular 

echnologies in mitigating risk. 

. Case studies 

In this section, we present different case studies to illustrate 

ow modularization can help mitigate risk. The first case study in- 

olves a single-product setting with three stages and has a struc- 

ure of a binary tree. We then present a more complex and realistic 

ase study that includes interdependent products and more stages 

nd scenarios. The optimization problems were solved using Gurobi 

version 0.7.6) with a default MIP Gap of 0 . 01% and were imple-

ented in the JuMP modeling framework. The scripts to reproduce 

ll results can be found in https://github.com/zavalab/JuliaBox/tree/ 

aster/ModularPlanning . 

.1. Single-Product problem 

Fig. 6 shows the stages, scenarios, and their corresponding de- 

and and probabilities. The number inside each node represents 

he scenarios at each stage and the other number next to the node 

ndicates the demand for each scenario in tons. Each parent node 

as two children nodes, and we assume that each outcome has 

qual probability. All other required data is summarized in Table 1 . 

ll the capacity-related quantities have the units of metric tons, 

nd price-related quantities have units of US dollars. 
7 
In this problem, we seek to make investment decisions at stage 

 and 2 that can help minimize NPV risk while achieving a con- 

tant level of expected NPV. To see the effect that modular units 

ave on flexibility, we solved this problem under three different 

apacity options (we call them Cases 1,2,3). In Case 1, we only al- 

ow the investor to choose between large capacities of 1500 tons 

nd 10 0 0 tons. In Case 2, we add a medium capacity unit (500

ons) to the list to provide more flexibility. In Case 3, we allow 

he investor to choose from the complete capacity list (which in- 

ludes smaller modular units). The three cases are solved for the 

ndiscounted and discounted NPV problem (to see the impact of 

he time value of money). 

The Pareto frontiers for both problems are shown in Fig. 7 . Ex- 

mples of investment plans obtained with these formulations are 

hown in Table 2 . We can see that the shape of the Pareto fron-

iers for the discounted and undiscounted problems is similar. We 

an thus see that the discounting factor does not influence the de- 

isions made at each stage since the number of stages is small. 

s we will see in the next case study, the effect of discounting 

an be quite pronounced for problems that involve long planning 

orizons. The Pareto frontiers highlight that that a strong trade- 

ff exists between the expected value and risk of the NPV (higher 

xpected NPV results in higher risk). This trade-off arises from 

conomies of scale and flexibility (it is less expensive but riskier 

o install large units). It is clear that the Pareto frontiers for Cases 

 and 3 (under which small units are available) dominate the fron- 

ier of case 1 (under which only large units are available). Impor- 

antly, this occurs even if the installation costs of the large units 

ave better economies of scale. At the same level for the expected 

PV, Cases 2 and 3 achieve a significantly lower risk (reduction 

y a factor of 3). Similarly, at the same risk level, Cases 2 and 3

chieve a much higher expected NPV (increase by a factor of 2). 

e can also see that Cases 2 and 3 achieve levels of expected NPV 

hat are not achievable in Case 1. 

In Table 2 , the installation column shows installation decisions 

ade for the undiscounted problem. These decisions are also visu- 

lized in Figs. 8 , 9 , and 10 . We can see that, with only larger ca-

acity options (Case 1), we have no choice but to install the large 

nit at stage 1. In Case 2, we install a medium-sized unit in stage 1

nd another medium-sized unit in stage 2; this achieves the same 

xpected NPV, but the risk is drastically reduced. For Case 3, we 

nstalled four small-sized units in the first stage and one medium- 

ized unit in the second stage. This achieves the same expected 

PV, but further decreases the risk. We thus conclude that the 

https://github.com/zavalab/JuliaBox/tree/master/ModularPlanning
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Fig. 6. Tree representation for single-product stochastic case over 3 stages. 

Fig. 7. Pareto frontiers under undiscounted NPV (left) and discounted NPV (right) settings. 

Fig. 8. Investment strategy under Case 1 (undiscounted NPV setting). 
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ifferent capacity choices enable higher investment flexibility and 

educed risk. 

.2. Multi-Product problem 

Biogas is a methane-rich gas mixture that can be produced 

rom anaerobic digestion of organic waste (such as cow manure). 
8 
he biogas (in metric tons) can be sold directly or can be used 

s raw material to produce electricity (in MWh) and liquefied 

iomethane (in gallons). These products are represented as i 1 , i 2 , 

nd i 3 respectively ( Krich et al., 2005; Sampat et al., 2018 ). The

rocess under study is visualized in Fig. 11 . The available technol- 

gy capacities, investment cost, operation cost and other required 

nformation are summarized in Table 3 ( Hu et al., 2018; Beddoes 
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Fig. 9. Investment strategy under Case 2 (undiscounted NPV setting). 

Fig. 10. Investment strategy under Case 3 (undiscounted NPV setting). 

Fig. 11. Process for the production of biogas and its byproducts. 
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t al., 2007; Patel, 2019 ). The capital cost for these technologies 

oughly follows the 2/3 rule. The products are interdependent: pro- 

ucing 1 MWh of i 2 requires 0.68 tons of i 1 and producing 1 gallon

f i 3 requires 0.0046 tons of i 1 . The planning stages have a dura-

ion of one year; as such, all capacities and production levels are 

xpressed on a per-year basis. 

The stochastic multistage setting is illustrated in Fig. 12 . Here, 

e have a planning horizon with 10 stages. From stage 1 to stage 
9 
, each parent node has two children nodes (which capture vari- 

bility in market demands); after stage 6, the market is assumed 

o stay constant and thus each parent node only has one children 

ode. The demand for selected nodes is shown next to the node. 

or the first six stages, the children nodes of each parent node rep- 

esent an optimistic market and a pessimistic market. 

We consider 3 possible cases; for Case 1, the unit for producing 

 has a capacity of 1200 tons, the unit producing i has a capac-
1 2 
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Fig. 12. Tree representation of planning stages and scenarios of biogas case study. 

Fig. 13. Pareto frontier for undiscounted NPV (left) and discounted NPV (right) settings. 
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ty of 20 0 0 MWh, and the unit for producing i 3 has the capacity

f 30 0,0 0 0 gallons (all capacities are annual). In Case 2, we add a

nit with a capacity of 800 tons for producing i 1 , we add a unit

ith a capacity of 10 0 0 MWh for the choices for i 2 , and a capacity

f 180,0 0 0 gallons for i 3 . For Case 3, we further expand the capac-

ty choices for product i 1 to include 400 tons, expand choices for i 2 
o include 500 MWh, and expand choices for i 3 to include 60,0 0 0

allons. To provide some context on the size of these units, an an- 

ual capacity of 500 MWh corresponds to a power output capacity 

f 500/8760 = 0.057 MW (57 kW). As such, the small capacities for 

he power generators correspond to those of small modular sys- 

ems. 

We would like to determine the number of planning stages that 

t takes for the investment to be profitable. As such, we gradually 
10 
ncrease the planning horizon of the CE problem until the profit 

s positive. We found that, for both discounted and undiscounted 

roblems, the expected NPV remains zero for any planning hori- 

on with less than 8 stages. In other words, the investment is only 

rofitable if the project lifetime is at least 8 years. We can thus 

ee that the length of the planning horizon plays an important 

ole in making investment decisions. We assume that the planning 

orizon is 10 years (as shown in Fig. 12 ). Again, we would like to

etermine an optimal investment strategy that maximizes the ex- 

ected NPV and minimizes its risk. The Pareto frontiers are shown 

n Fig. 13 and we compare risks obtained under the different cases 

n Table 4 and Table 6 . 

We again find that the Pareto frontier of Case 3 (considering 

mall technologies) dominates. Looking horizontally (for the same 
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Table 3 

Data for biogas capacity expansion problem. 

Parameters Notation Values 

Capacities List B i 1 (tons) [400, 800, 1200] 

B i 2 (MWh) [500, 1000, 2000] 

B i 3 (gallons) [60000, 180000, 300000] 

Installation Cost ($) C i 1 [272844, 374693, 457138] 

C i 2 [172219, 234688, 347021] 

C i 3 [577269, 1930312, 2935611] 

Capacity Limit x̄ i 1 (tons) 6000 

x̄ i 2 (MWh) 6000 

x̄ i 3 (gallons) 1500000 

Storage Cost ρ i 1 
s ($ per tons) 0 

ρ i 2 
s ($ per MWh) 150000 

ρ i 3 
s ($ per gallon) 0.2 

Storage Limit s̄ i 1 (tons) 800 

s̄ i 2 (MWh) 1000 

s̄ i 3 (gallons) 180000 

Waste Disposal Cost ρ i 1 
w ($ per ton) 0 

ρ i 2 
w ($ per MWh) 0 

ρ i 3 
w ($ per gallon) 2 

Operational Cost ρ i 1 
p ($ per ton) 34 

ρ i 2 
p ($ per MWh) 40 

ρ i 3 
p ($ per gallon) 0.56 

Selling Price π i 1 
p ($ per ton) 100 

π i 2 
p ($ per MWh) 130 

π i 3 
p ($ per gallon) 2.5 

Interdependency αi 2 ,i 1 0.68 

αi 3 ,i 1 0.0046 

Total Installation Cost 

Limit ($) 

ȳ 1 × 10 7 

Interest Rate γ 0.06 

e

i

l

p

r

h

T

e

o

w

m

d

fl  

u

s

e

i

Table 5 

Investment strategy for discounted NPV problem with R = 3 . 9 × 10 5 . 

Cases Installation Expected Value($) Risk ($) 

Case 1 x i 1 
1 , 1 

= 1200 × 2 tons 2 . 64 ×
10 5 

3 . 90 ×
10 5 x i 2 

1 , 1 
= 20 0 0 MWh 

Case 2 x i 1 
1 , 1 

= 1200 tons 3 . 72 ×
10 5 

3 . 90 ×
10 5 x i 1 

2 , 1 
= 1200 × 2 tons 

x i 2 
2 , 1 

= 20 0 0 MWh 

x i 3 
2 , 1 

= 180 0 0 0 gallons 

x i 2 
3 , 4 

= 10 0 0 MWh 

x i 2 
6 , 24 

= 10 0 0 MWh 

Case 3 x i 1 
1 , 1 

= 1200 tons 6 . 50 ×
10 5 

3 . 90 ×
10 5 x i 3 

1 , 1 
= 60 0 0 0 × 2 gallons 

x i 1 
2 , 1 

= 1200 × 2 tons 

x i 2 
2 , 1 

= 20 0 0 MWh 

x i 3 
3 , 1 

= 60 0 0 0 tons 

Table 6 

Investment strategy for discounted NPV problem with E = 1 . 5 × 10 4 . 

Cases Installation Expected Value($) Risk ($) 

Case 1 x i 1 
1 , 1 

= 1200 tons 1 . 5 × 10 4 3 . 06 × 10 6 

Case 2 x i 1 
1 , 1 

= 1200 tons 1 . 5 ×
10 4 

2 . 41 ×
10 6 x i 2 

3 , 4 
= 10 0 0 MWh 

x i 2 
5 , 12 

= 10 0 0 MWh 

x i 2 
6 , 16 

= 10 0 0 MWh 

Case 3 x i 1 
1 , 1 

= 1200 tons 1 . 5 ×
10 4 

2 . 41 ×
10 6 x i 2 

3 , 4 
= 10 0 0 MWh 

x i 2 
5 , 12 

= 10 0 0 MWh 

x i 2 
6 , 16 

= 10 0 0 MWh 
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xpected NPV), cases with more capacity options reduce risk. Look- 

ng vertically (for the same risk), we can see that modularity al- 

ows us to reach higher expected NPVs. For the discounted NPV 

roblem, we see that adding smaller capacity options (Case 2) 

educes risk, further reducing the capacity (Case 3) can achieve 

igher expected profits but does not help to mitigate the risk. 

his is because of complex interplays between discounting and 

conomies of scale. As we discount the future cash flow, the effect 

f installing small capacities at future stages reduces, and together 

ith the effect of economies of scale, the advantages brought by 

odular technologies become less obvious. This indicates that re- 

ucing technology sizes aids flexibility (but there is a limit to such 

exibility). From Table 4 and Table 5 , we can see that, for the

ndiscounted problem, most of the investment occurs at the early 

tages. Here, we can also see that modular technologies are used 

xtensively to reduce risk (risk is reduced by a factor of three) and 

ncrease profit (profit is increased by a factor of three). 
Table 4 

Investment strategy for undiscounted NPV problem with E = 3 . 0 × 10 5 . 

Cases Installation Expected Value 

($) 

Case 1 x i 1 
1 , 1 

= 1200 × 2 tons 3 . 0 × 10 5 

x i 2 
1 , 1 

= 20 0 0 MWh 

Case 2 x i 1 
1 , 1 

= 1200 tons 3 . 0 × 10 5 

x i 2 
1 , 1 

= 10 0 0 MWh 

x i 1 
2 , 1 

= 1200 tons 

x i 3 
2 , 1 

= 180 0 0 0 gallons 

x i 1 
3 , 1 

= 1200 tons 

x i 2 
5 , 1 

= 20 0 0 MWh 

x i 2 
5 , 4 

= 10 0 0 MWh 

x i 2 
6 , 6 

= 20 0 0 MWh 

Case 3 x i 1 
1 , 1 

= 800 tons 3 . 0 × 10 5 

x i 3 
1 , 1 

= 60 0 0 0 gallons 

x i 1 
3 , 1 

= 1200 × 2 tons 

x i 3 
3 , 1 

= 60 0 0 0 × 2 

gallons 

11 
. Conclusions and future work 

We examined the ability of using small modular technologies to 

ontrol investment risk. To do so, we propose a capacity expansion 

roblem that aims to determine optimal investment strategies over 

 given planning horizon. This expansion problem is a stochastic, 

ultistage, and multiobjective optimization problem. We propose 

o measure joint risk on the net present value over the entire plan- 

ing horizon in order to avoid the ambiguity associated with stan- 

ard multistage stochastic formulations. Our analysis reveals that 

mall technologies provide flexibility that translates into tangible 

eductions of risk (despite the fact that they are not benefited by 

conomies of scale). However, we also find that flexibility provided 

y capacity reductions has limits that result from the complex in- 

erplay between economies of scale and discounting. Our work as- 

umes that installed technologies need to operate at full capacity. 
Risk ($) # of 

Constraints 

# of Variables 

(Cont. + Int.) 

3 . 26 × 10 5 4355 2225 + 1623 

2 . 43 × 10 5 4355 2225 + 2100 

1 . 02 × 10 5 4355 2225 + 2577 
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his assumption maximizes the effect of economies of scale of cen- 

ralized facilities but neglects the fact that centralized plants can 

otentially change their output to adjust to market fluctuations. 

herefore, in the future, with additional modeling of the opera- 

ional cost of the plants based on different leve of capacity, we are 

nterested in comparing the centralized and modular technologies 

ith this assumption relaxed. Also, as part of future work, we are 

nterested in exploring the use of decomposition strategies to ad- 

ress tractability issues (e.g., by using stochastic dual dynamic pro- 

ramming techniques). In this work, we ignored engineering costs 

ssociated with different types of technologies (which can be re- 

uced using modularization). We will use more detailed cost rep- 

esentations and case studies in future work. 
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