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ABSTRACT

The Wrangell Arc in Alaska (USA) and adjacent volcanic fields in the Yukon 
provide a long-term record of interrelations between flat-slab subduction of 
the Yakutat microplate, strike-slip translation along the Denali–Totschunda–
Duke River fault system, and magmatism focused within and proximal to 
a Cretaceous suture zone. Detrital zircon (DZ) U-Pb (n = 2640) and volcanic 
lithic (DARL) 40Ar/39Ar dates (n = 2771) from 30 modern river sediment sam-
ples document the spatial-temporal evolution of Wrangell Arc magmatism, 
which includes construction of some of the largest Quaternary volcanoes on 
Earth. Mismatches in DZ and DARL date distributions highlight the impact of 
variables such as mineral fertility and downstream mixing/dilution on result-
ing provenance signatures. Geochronologic data document the initiation of 
Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda 
fault on the north flank of the Wrangell–St. Elias Mountains in Alaska, followed 
by southeastward progression of magmatism at ca. 17–10 Ma along the Duke 
River fault in the Yukon. This spatial-temporal evolution is attributable to dex-
tral translation along intra-arc, strike-slip faults and a change in the geometry 
of the subducting slab (slab curling/steepening). Magmatism then progressed 
generally westward outboard of the Totschunda and Duke River faults at ca. 
13–6 Ma along the southern flank of the Wrangell–St. Elias Mountains in Alaska 
and then northwestward from ca. 6 Ma to present in the western Wrangell 
Mountains. The 13 Ma to present spatial-temporal evolution is consistent with 
dextral translation along intra-arc, strike-slip faults and previously documented 
changes in plate boundary conditions, which include an increase in plate con-
vergence rate and angle at ca. 6 Ma. Voluminous magmatism is attributed to 
shallow subduction-related flux melting and slab edge melting that is driven 
by asthenospheric upwelling along the lateral edge of the Yakutat flat slab. 
Magmatism was persistently focused within or adjacent to a remnant suture 
zone, which indicates that upper plate crustal heterogeneities influenced arc 
magmatism. Rivers sampled also yield subordinate Paleozoic–Mesozoic DZ 
and DARL age populations that reflect earlier episodes of magmatism within 

underlying accreted terranes and match magmatic flare-ups documented 
along the Cordilleran margin.

■■ INTRODUCTION

Junctions between magmatic arcs and transform margins are a fundamen-
tal feature of modern and ancient plate tectonics (e.g., Wakabayashi, 1996; 
Maury et al., 2004; Harrison et al., 2004; Cooper et al., 2010; Wang et al., 2009). 
Many active volcanic arcs transition laterally into transform margins in diverse 
oceanic settings (Kamchatka, Portnyagin et al., 2005; South Philippine Sea, 
Fitch, 1972; New Zealand, Lebrun et al., 2000; Papua New Guinea, Baldwin 
et al., 2012; Southern Patagonia, Polonia et al., 2007; East Scotia Sea, Leat et 
al., 2004; Tonga, Cooper et al., 2010). Compared to oceanic settings, active 
arc-transform junctions are less common in continental settings with notable 
examples in eastern Alaska (Wrangell Arc, Brueseke et al., 2019), Myanmar 
(Lee et al., 2016), and Cyprus-Turkey (Symeou et al., 2018).

Arc-transform junctions exhibit complex spatial transitions from typical 
subduction-related arc magmatism to upwelling of asthenosphere along sub-
ducting slab edges, tears, windows, and transform faults (e.g., Park et al., 
2002; Leat et al., 2004; Thorkelson et al., 2011; Lee et al., 2016; Grebennikov 
and Khanchuk, 2020). Active arc-transform junctions offer a unique geological 
record of both convergent and transform margin processes, yet the nature of 
such junctions and their influence on the evolution of orogenic belts is seldom 
discussed in the literature.

Subhorizontal (flat) subduction has shaped numerous modern and ancient 
plate margins (e.g., Gutscher et al., 2000; Lawton, 2008; Kapp and DeCelles, 
2019). Slab flattening has been attributed to the subduction of buoyant oce-
anic lithosphere, rapid trenchward progression of the overriding plate, and 
mantle wedge dynamic pressure (slab suction) (e.g., Kay and Mpodozis, 2002; 
Guillaume et al., 2009; Martinod et al., 2010; Schellart, 2020). Slab flattening 
induces upper plate compressional stresses that prompt intensification and 
inboard progression of upper plate shortening, exhumation, and sediment 
accumulation (e.g., Fan and Carrapa, 2014; Stevens Goddard and Carrapa, 
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2018; Capaldi et al., 2020) and can drive continental strike-slip fault motion 
(Giambiagi et al., 2017). Arc magmatism often shifts inboard and wanes or 
ceases in response to inboard progression of the locus of dehydration melt-
ing above the hinge of the subducting flat slab and displacement of lower 
continental mantle lithosphere into the asthenospheric wedge (e.g., Bishop 
et al., 2017; Schellart, 2017; Axen et al., 2018). Whereas recent studies eluci-
dated processes that shape the medial portions of overriding plates above 
subducted flat slabs, time-space studies from the lateral margins (edges) of 
flattened slabs are generally lacking.

The Yakutat microplate is actively colliding and subducting shallowly (i.e., 
flat-slab subduction, though we recognize here that the sub-horizontal por-
tion of the slab dips at an angle of ~20° and thus is not truly “flat”) beneath 
south-central Alaska and adjacent to a complex tectonic corner. The corner, 
referred to as the St. Elias syntaxis, marks a west-to-east transition from chiefly 
collision and flat-slab subduction of the Yakutat microplate to strain-partitioned, 
strike-slip deformation along transform faults (Fig. 1; Pavlis et al., 2019). Recent 
research provides insight into processes within and outboard (south) of the 
collision zone (e.g., Enkelmann et al., 2015a, 2015b; Gulick et al., 2015; Bootes 
et al., 2019; Schartman et al., 2019). Inboard of the collision zone, the Wrangell 
Arc spans the transitional position between flat-slab subduction of the Yakutat 
microplate and transform tectonics along the continental margin of western 
North America (Fig. 1). Wrangell Arc eruptive centers are superbly exposed 
where they are not covered by glacial ice, largely undeformed, and imaged 
with modern geophysical techniques, which thus makes the region a prime 
locale to study magmatism over a flat-slab transform environ.

This study quantifies the temporal and spatial evolution of Wrangell Arc 
magmatism and evaluates the role of tectonic processes and structures on 
magmatism. We present abundant new detrital zircon (DZ) U-Pb and detrital 
volcanic lithic (DARL) 40Ar/39Ar dates from modern river sediment samples and 
integrate these results with existing and new igneous bedrock geochronono-
logic data. The new dates also better quantify Mesozoic–Paleozoic magmatism 
that shaped the lithosphere prior to Wrangell Arc magmatism. Collectively, 
new DZ and DARL data reveal persistent magmatism since 30 Ma within a 
remnant suture zone and spatial changes in the location of magmatism that 
are interpreted to reflect changes in plate interactions and dextral translation 
of the overriding plate along regional strike-slip faults spanning the arc-trans-
form junction.

More broadly, the present study highlights the utility of multi-proxy meth-
ods in sedimentary sinks located proximal to magmatic arc sources. Detrital 
zircon U-Pb geochronology has become a fundamental, widely used prov-
enance tool in reconstructing sedimentary provenance, sediment dispersal 
pathways, and geologic/tectonic histories (e.g., Cawood et al., 2012; Gehrels, 
2014). Despite the widespread utility of DZ data, there are limitations in inter-
preting sediment provenance from DZ. For example, detrital contributions may 
not be proportional to source unit exposure area due to heterogeneous zircon 
fertility among bedrock sources (e.g., Dickinson, 2008; Malusà et al., 2016; 
Spencer et al., 2018), irregular bedrock erodibility (Capaldi et al., 2017), and 

variable lithologic breakdown by weathering, erosion, and climate (Amidon 
et al., 2005). In the present study, differences between DZ and DARL dates 
highlight the utility of the combined techniques for deciphering the evolution 
of magmatic provinces.

■■ REGIONAL TECTONIC SETTING

The northern Pacific plate margin is characterized by a west-to-east tran-
sition from typical subduction to flat-slab subduction to transform tectonics. 
Along-strike variations in seismicity and volcanism indicate two subducting 
plates with varying dip angles (e.g., Li et al., 2016; Yang and Gao, 2020). In 
the western region, northwesterly subduction of the Pacific plate beneath the 
North American plate along the Aleutian megathrust produces a well-defined 
trench, moderately dipping slab (~40°) that reaches depths of 100–150 km 
within ~400 km of the trench, and linear Aleutian volcanoes that are attributed 
to subducted-related arc magmatism (Jicha et al., 2006; Syracuse and Abers, 
2006; Nye et al., 2018). Aleutian arc volcanoes are chiefly stratovolcanoes 
with increasing arc-trench distance from southwest to northeast along strike 
(Fig. 1; Miller et al., 1998).

The central region is distinguished by a shallowly dipping slab resulting 
from collision and relatively flat subduction of the Yakutat microplate. The 
Yakutat microplate is a 15–30-km-thick oceanic plateau that thins inboard 
(northwestward) (Worthington et al., 2012). A subducted Yakutat slab extends 
subhorizontally (“flat”) for ~250 km northwestward beneath Alaska at a sub-
duction angle of ~6° before dip angle increases to ~20° and reaches a depth 
of 150 km >600 km inboard of the Aleutian trench (Fig. 1; Eberhart-Phillips et 
al., 2006). The Pleistocene–Holocene Buzzard Creek-Jumbo Dome volcanoes, 
which are much smaller than the Aleutian arc volcanoes, occur along the 
northern edge of the subducted slab (JD and BM in Fig. 1) and reflect sub-
ducted-related continental arc magmatism (Albanese, 1980; Andronikov and 
Mukasa, 2010; Nye et al., 2018). A region with no active volcanism, referred to 
as the Denali volcanic gap, separates the Aleutian arc and the Buzzard Creek-
Jumbo Dome volcanoes (Fig. 1; Rondenay et al., 2010).

The eastern region, the focus of this study, is a tectonic corner where the 
plate margin transitions from fully convergent to a transpressional transform 
system (Schartman et al., 2019). Deformation transitions from an east-west–
trending, fold-thrust belt above the colliding Yakutat microplate to a system 
of northwest-trending, strike-slip faults along the eastern edge of the terrane 
(Fig. 1; Pavlis et al., 2019). The dominantly strike-slip Fairweather fault accom-
modates dextral motion of the Yakutat microplate relative to North America 
(Figs. 1 and 2). Right lateral shear is currently transferred inboard to the central 
Denali fault via the Totschunda fault and perhaps via an inferred Connector 
fault (Figs. 1 and 2; Haeussler et al., 2017; Marechal et al., 2018). Along the 
northern, inboard margin of the tectonic corner, the edge of the subducted 
Yakutat microplate dips northerly from ~11° to ~16° and projects to ~80 km 
beneath clustered volcanoes comprising the Wrangell Arc (Bauer et al., 2014).
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Figure 1. Tectonic framework of southern Alaska, the Yukon, and coastal British Columbia shows regional faults with known or suspected Neogene and younger 
displacement (from Plafker et al., 1994; Koehler et al., 2012; Yukon Geological Survey, 2020), exposed (light yellow) and interpreted subducted extent (region 
within bold dashed yellow line) of the Yakutat microplate and volcanic fields comprising the Wrangell Arc (transparent red) in Alaska (SCVF—Sonya Creek field, 
WF—Wrangell field) and Canada (AF—Alsek field, NF—Nines Creek field, SF—St. Clare field) including <5 Ma volcanoes denoted by red asterisks (Cameron, 2005). 
Solid red line denotes the region of flat-slab subduction of Yakutat microplate. Yellow line denotes loosely constrained edge of subducted Yakutat microplate 
based chiefly on tomography data (adapted from Eberhart-Phillips et al., 2006). Blue line denotes loosely constrained edge of subducted Yakutat microplate 
based chiefly on plate kinematics (adapted from Pavlis et al., 2019). Dashed magenta curve in index map in upper left shows Fairweather–Transition–Queen 
Charlotte fault intersection triple junction track during the past 25 m.y. (from Pavlis et al., 2019, using Doubrovine and Tarduno, 2008, plate model). Yellow 
crosses show Fairweather–Transition–Queen Charlotte triple junction location at time points. Inset at upper right shows Cretaceous suture zone separating 
Insular terranes from inboard terranes. Abbreviations: A—Anchorage, B.C.—British Columbia, BM—Buzzard Creek maar, CAR—central Alaska Range, CB—Cop-
per River basin, CF—Connector fault (inferred), CMF—Castle Mountain fault, CSEF—Chugach-St. Elias fault, DRF—Duke River fault, EAR—eastern Alaska Range, 
FF—Fairweather fault, HCF—Hines Creek fault, JD—Jumbo Dome volcano, KB—Kahiltna basin, NB—Nutzotin basin, QFF—Queen-Charlotte-Fairweather fault, 
PWS—Prince William Sound, SEM—St. Elias Mountains, TAF—Talkeetna fault, TM—Talkeetna Mountains, TF—Totschunda fault, UTi—undifferentiated terranes 
and igneous rocks, UTs—unidentified terranes and sedimentary rocks, WAR—western Alaska Range, WF—Wrangell volcanic field, YTT—Yukon-Tanana terrane.
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Figure 2. Geological map shows the Wrangell Arc (orange and red polygons) and older bedrock in the Wrangell–St. Elias Mountains of eastern 
Alaska and the Yukon. Orange polygons show Wrangell Arc volcanics, which include the Wrangell volcanic field (large field southwest of the Tot-
schunda fault) and smaller fields to the east (NF—Nines Creek field, SCVF—Sonya Creek field, SF—St. Clare field, Na - town of Nabesna, My - town 
of McCarthy). Inset at upper right shows map location (pink polygon); refer to Figure 1 for additional location information. Geology is from Richter 
et al. (2006), Wilson et al. (2015), and Yukon Geological Survey (2020).
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■■ WRANGELL ARC

The Wrangell volcanic belt consists of a >450-km-long and up to 190-km-wide 
belt of ca. 30 Ma to 1500 ka volcanoes in the Wrangell–St. Elias Mountains 
in eastern Alaska, southwestern Yukon, and northwestern British Columbia 
(Figs. 1–2). Wrangell Arc eruptive centers occur within and immediately out-
board (south) of a Cretaceous suture zone that separates the accreted Insular 
terranes from older terranes exposed inboard (northeast) of the Denali fault 
(Figs. 1–2).

Wrangell volcanic belt lavas, domes, and pyroclastic deposits erupted 
from large shield volcanoes and subordinate stratovolcanoes, caldera 
complexes, and scoria cones after ca. 30 Ma (Figs. 1–3 and Item S1 in the 
Supplemental Material1; Richter et al., 1990, 2006; Brueseke et al., 2019). Previ-
ously reported geochronological data consist chiefly of whole rock K-Ar dates 
and subordinate whole rock and single crystal U-Pb and 40Ar/39Ar dates; vast, 
ice-covered areas lack geochronologic data.

At least six volcanic fields make up the belt: the Wrangell, Sonya Creek, 
St. Clare, Nines Creek, Alsek, and Stanley Creek fields (Fig. 1). The largest of the 
fields, the Wrangell field in Alaska (WF in Fig. 1), reflects subduction-related arc 
magmatism and slab-edge upwelling of asthenosphere based on transitional 
to calc-alkaline geochemical compositions (Preece and Hart, 2004; Brueseke et 
al., 2019) and the spatial association of Quaternary shield and stratovolcanoes 
above a geophysically imaged, northeastward-dipping subducting slab along 
the northeastern edge of the Yakutat microplate (Bauer et al., 2014). Geochemi-
cal spatial trends in <5 Ma volcanoes in the western Wrangell field are consistent 
with north-dipping subduction, including calc-alkaline to tholeiitic suites related 
to intra-arc extension within the interior and northern back-side of the Wrangell 
Arc, a calc-alkaline suite that crops out throughout the arc, and a calc-alkaline 
adakitic suite found only along the front-side of the arc during this time period.

In the eastern part of the Wrangell field, 13–5 Ma calc-alkaline to tholeiitic 
lavas, pyroclastic deposits, shallow intrusives, and sedimentary strata record 
intra-arc transtensional basin development attributed to subduction of oceanic 
lithosphere of the Yakutat microplate and strike-slip deformation (Trop et al., 
2012). The Sonya Creek field (SCVF in Figs. 1–2), located immediately west of the 
Yukon-Alaska border, comprises ca. 30–19 Ma calc-alkaline, transitional-tholeiitic, 
and adakite-like, volcanic-intrusive suites and represents the earliest phase of 
arc magmatism related to subduction of Yakutat microplate oceanic lithosphere 
beneath North America (Berkelhammer et al., 2019; Brueseke et al., 2019).

In Canada, four volcanic fields composed of Miocene lavas, pyroclastic 
rocks, and intrusions crop out for >300 km along the Duke River fault (AF, SF, 
SCF, and NF in Fig. 1). The St. Clare field consists of 18–10 Ma transitional 
and minor alkaline and calc-alkaline lavas, and 16–13 Ma transitional lavas 
make up the Nines Creek field (Skulski et al., 1992). The Alsek field consists of 
14–11 Ma calc-alkaline and minor transitional and alkaline lavas (Dodds and 
Campbell, 1988), whereas transitional and minor alkaline lavas make up the 
Stanley Creek field (Skulski et al., 1991). Wrangell Arc volcanic fields in Canada 
are interpreted as the product of both subduction-related arc magmatism and 

intraplate-type magmatism; eruptions occurred along strike-slip faults judging 
from geochemical compositions and the close spatial association of volcanoes 
and strike-slip faults (Skulski et al., 1992; Thorkelson et al., 2011).

In summary, the Wrangell and Sonya Creek fields in Alaska record subduc-
tion-related arc volcanism and are thus referred to as the Wrangell Arc, whereas 
volcanic fields in Canada record both subduction-related arc magmatism and 
magmatism sourced from mantle unaffected by arc processes. Magmatic 
products in both Canada and Alaska erupted along “leaky” strike-slip faults 
that were active conduits for magma ascent.

■■ METHODS

Modern river detrital geochronology and targeted bedrock dating was used 
to maximize spatial coverage and access material eroded beneath glacial ice. 
Modern river bars composed of unconsolidated sand and gravel were sampled 
from 22 transverse rivers and eight tributaries (Fig. 3, Table 1, and Items S2–S3 
[see footnote 1]). Sand and cobble fractions were sampled for detrital zircon 
and volcanic lithic geochronology. Unlike detrital minerals such as zircon, dates 
from volcanic lithics provide direct lithologic information about the volcanic 
source region. Dating of volcanic lithics also addresses mineral fertility concerns 
associated with zircon-poor mafic to intermediate composition igneous rocks 
that are common in the study area (Richter et al., 2006). At each sample site, 
a petrological survey of the cobble fraction was completed prior to sampling 
cobbles that are representative of all observed igneous lithologies; ~15–20 cob-
bles were sampled per site for companion geochemical analyses. Individual 
cobbles were then split by hammer and prepared for 40Ar/39Ar geochronologic 
analyses (DARL) and wavelength dispersive X-ray fluorescence (XRF) geochem-
ical analyses (refer to Morter, 2017, for XRF results). From the same river bars, 
several kilograms of sand were collected for U-Pb geochronology on sand-sized 
DZ grains and 40Ar/39Ar geochronology on sand-sized DARL grains. Bedrock 
samples were also collected from some previously unsampled portions of the 
study region to provide a framework to compare more abundant and inclusive 
detrital dates from modern river sediments reported herein.

ArcMap Geographic Information System (GIS) software was used to plot sam-
ple locations, delineate watershed areas upslope of detrital samples, and calculate 
the areal extent of ice, surficial deposits, and bedrock units within the watersheds 
sampled. Refer to Items S4–S5 (footnote 1) for GIS methods and results.

40Ar/39Ar geochronologic analyses were carried out at the University of 
Alaska Fairbanks Geochronology Lab using the single grain and multi-grain 
fusion method to optimize the number of samples versus the precision and 
full isotopic evaluation that step-heating analysis allows. The new fusion (total 
gas) data yield uncertainties comparable to legacy K-Ar data reported from the 
Wrangell Arc. U-Pb geochronology was carried out on zircon grains by Laser 
Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA‐ICP‐MS) at the 
University of Arizona LaserChron Center. Refer to Items S6–S12 (footnote 1) 
for full 40Ar/39Ar and U-Pb analytical details and results.

Mt. Wrangell

Mt. St. Helens

Mt. Rainier

Supplemental Item S1 - Rugged, glaciated, massive volcanoes (A-E) make conventional bedrock sampling challenging. Photo-graphs 
and cross-sections profiles in B and C show the massive scale of ice-covered Mt. Wrangell shield volcano, which has a volume of 
>900 km3 (Nye, 1983). The volume of Mt. Zanetti, a large cinder cone on the west flank of Mt. Wrangell volume is similar to that of Mt.
St. Helens. F and G show photographs of representative proglacial rivers that allow for efficient sampling of sand and gravel eroded from
the rugged glaciated volcanoes (F - East Fork Glacier/River; G - Kotsina River). H - Representative sample of  felsic intrusive (light-col-
ored clasts) and mafic to intermediate volcanic (dark colored clasts) clasts that dominate unconsolidated gravels on modern river bars.

Mt. Zanetti
Mt. Wrangell

Mt. Blackburn

Root Glacier
Kennicott Glacier

A.

B.

C. D.

E. F..

G. H.

1 Supplemental Material. Item S1: Physiographic as-
pects of the Wrangell Arc that make bedrock sampling 
challenging, including scale of eruptive centers and 
glaciated, rugged, roadless terrain. Item S2: Photo-
micrographs of representative sand samples from 
modern rivers showing abundant volcanic lithic 
grains. Item S3: Modern river sediment sample lo-
cation information. Item S4: Methods for calculating 
watershed boundaries, surface area of ice, surficial 
deposits, and bedrock, and geochronologic samples. 
Item S5: Summary of surface area of ice, surficial de-
posits, and bedrock within sampled watersheds. Item 
S6: 40Ar/39Ar and U-Pb analytical details. Item S7: New 
igneous bedrock 40Ar/39Ar fusion data. Item S8: Previ-
ously reported igneous bedrock data. Item S9: Detrital 
cobble-sized 40Ar/39Ar (DARL) fusion data. Item S10: 
Detrital sand-sized 40Ar/39Ar (DARL) step-heat data. 
Item S11: Detrital sand-sized volcanic-lithic 40Ar/39Ar 
(DARL) fusion data. Item S12: Detrital zircon (DZ) U-Pb 
age data. Item S13: Examples of differences between 
detrital zircon (DZ) vs. volcanic lithic (DARL) dates. 
Please visit https://doi.org/10.1130/GEOS.S.15167367 
to access the supplemental material, and contact 
editing@geosociety.org with any questions.
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TABLE 1. SUMMARY OF DETRITAL DATES FROM MODERN RIVERS DRAINING THE WRANGELL ARC, WRANGELL–ST. ELIAS MOUNTAINS, ALASKA-CANADA

Catchment name Catchment type Latitude Longitude

Detrital zircon (DZ)
U-Pb dates

Detrital 40Ar/39Ar 
volcanic lithics 

(DARL) (sand-sized)

Detrital 40Ar/39Ar 
volcanic lithics (DARL) 

(cobble-sized)

ntotal n<35 Ma %<35 Ma ntotal n<35 Ma %<35 Ma ntotal n<35 Ma %<35 Ma ntotal n<35 Ma %<35 Ma

Northeastern Watershed

Francis Tributary (Ptarmagin) N61°52′16.47″ W141°09′21.22″ n/a n/a n/a 113 111 98 n/a n/a n/a 113 111 98
Rocker Tributary (Ptarmagin) N61°48′25.60″ W141°18′43.39″ 299 3 1 119 83 70 n/a n/a n/a 418 86 21
Rock Lake Tributary (Ptarmagin) N62°54′46.08″ W141°03′43.22″ n/a n/a n/a 37 33 89 n/a n/a n/a 37 33 89
Ptarmagin Main River N61°54′48.99″ W141°04′15.21″ 309 29 9 108 107 99 n/a n/a n/a 417 136 33
Willow Main River N62°00′18.61″ W141°44′30.73″ n/a n/a n/a 28 14 50 n/a n/a n/a 28 14 50
Cross Tributary (Chisana) N62°07′56.29″ W142°18′11.36″ n/a n/a n/a 115 20 17 11 4 36 126 24 19
Chisana Main River N62°11′25.09″ W142°05′45.75″ 56 6 11 110 49 45 19 17 89 185 72 39
Totals/Means 664 38 6 630 417 66 30 21 70 1324 476 36

Eastern

Duke River Main River N61°22′32.54″ W139°08′40.41″ 290 10 3 n/a n/a n/a n/a n/a n/a 290 10 3
Donjek Main River N61°40′46.14″ W139°45′02.09″ 297 21 7 n/a n/a n/a n/a n/a n/a 297 21 7
Lime Tributary (U. White) N62°45′25.60″ W141°49′56.50″ n/a n/a n/a 101 29 29 n/a n/a n/a 101 29 29
Upper White Tributary (L. White) N61°43′37.94″ W141°17′15.88″ 308 63 20 120 77 64 14 10 71 442 150 34
Lower White Main River N61°59′15.80″ W140°33′ 29.03″ 291 133 46 n/a n/a n/a n/a n/a n/a 291 133 46
Totals/Means 1186 227 19 221 106 48 0 14 10 71 1421 343 24

Southern

Kuskulana Main River N61°36′42.48″ W143°42′29.72″ 86 86 100 109 78 72 16 16 100 211 180 85
Kotsina Main River N61°42′58.03″ W144°16′52.77″ 26 15 58 109 85 78 13 10 77 148 110 74
Kennicott Main River N61°26′02.36″ W142°56′26.90″ 145 123 85 111 72 65 n/a n/a n/a 256 195 76
Nizina Main River N61°29′30.03″ W142°34′32.95″ 305 51 17 105 52 50 n/a n/a n/a 410 103 25
Chitistone Main River N61°27′35.26″ W142°28′26.69″ 257 160 62 94 37 39 n/a n/a n/a 351 197 56
Hawkins Main River N61°08′36.73″ W142°03′10.52″ 279 235 84 108 37 34 n/a n/a n/a 387 272 70
Totals/Means 1098 670 61 636 361 57 29 26 90 1763 1057 60

North Central

Jacksina Tributary (Nabesna) N62°21′36.70″ W142°57′13.10″ n/a n/a n/a 115 114 99 n/a n/a n/a 115 114 99
Monte Cristo Tributary (Nabesna) N62°13′26.97″ W142°55′30.73″ n/a n/a n/a 100 93 93 n/a n/a n/a 100 93 93
Bond Tributary (Nabesna) N62°16′26.10″ W142°51′00.00″ n/a n/a n/a 108 13 12 n/a n/a n/a 108 13 12
Nabesna Main River N62°25′22.27″ W142°47′46.93″ 107 6 6 119 112 94 12 10 83 238 128 54
Totals/Means 107 6 6 442 332 75 12 10 83 561 348 62

Northwestern

Copper Main River N62°34′06.10″ W143°41′48.80″ 77 60 78 101 101 100 n/a n/a n/a 178 161 90
Drop Main River N62°32′14.00″ W143°47′31.70″ 251 234 93 110 110 100 n/a n/a n/a 361 344 95
Boulder Main River N62°31′42.50″ W144°21′54.10″ 122 34 28 48 48 100 n/a n/a n/a 170 82 48
Sanford Main River N62°11′06.16″ W144°29′54.45″ 158 30 19 117 117 100 18 18 100 293 165 56
Nadina (east) Main River N61°58′35.97″ W144°44′48.67″ 84 81 96 n/a n/a n/a n/a n/a n/a 84 81 96
Nadina (west) Main River N62°00′27.24″ W144°32′33.60″ n/a n/a n/a n/a n/a n/a 8 8 100 8 8 100
Dadina Main River N61°57′29.60″ W144°40′12.44″ 83 5 6 114 114 100 11 11 100 208 130 63
Chetaslina Main River N62°45′02.66″ W144°41′01.92″ 110 0 0 221 212 96 9 7 78 340 219 64
Totals/Means 885 444 50 711 702 99 46 44 96 1642 1190 72

Total 3940 1385 35 2640 1918 73 131 111 85 6711 3414 51

Note: n/a—data not collected.
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Summary of New Bedrock Dates

This study reports a total of 61 new single grain fusion and multi-grain 
fusion bedrock 40Ar/39Ar groundmass dates (Item S7 [footnote 1]). These dates 
both confirm and supplement previously published bedrock dates (n = 348; 
Item S8). New bedrock dates document magmatism between 30 Ma and <1 Ma 
among the sampled watersheds and are consistent with previous bedrock 
dates reported from the Wrangell Arc (Item S8). These new bedrock dates 
are integrated with abundant new detrital dates that are presented below in 
the Discussion.

Summary of Modern River Sediment Detrital Dates

This study reports a total of 3940 sand-sized DZ U-Pb, 2640 sand-sized DARL 
40Ar/39Ar, and 131 cobble-sized DARL 40Ar/39Ar dates from modern sediment 
from 22 major rivers and eight tributaries. Figure 4 summarizes the geology 
with the watersheds that were sampled. Figures 5–9 display relative age 
probability plots of modern river sediment samples. Figures 10–12 display 
composite probability plots of all samples. Figures 13–15 show the spatial 
distribution of <35 Ma detrital dates. The following sections summarize key 
age results from the overall study region followed by age patterns from five 
sub-regions.

Detrital dates (n = 6711) from the modern rivers sampled are chiefly Ceno-
zoic (58% of total age population) with subordinate Mesozoic (25%), Paleozoic 
(15%), and Precambrian (2%) populations. Detrital dates of <35 Ma compose 
the dominant age population, comprising 51% of all detrital dates, including 
35% of DZ dates, 73% of sand-sized DARL dates, and 85% of cobble-sized DARL 
dates (Table 1). Ages of <35 Ma make up the dominant age population of 19 
of 30 sand-sized DARL samples, nine of 10 cobble DARL samples, and eight of 
21 DZ samples. For sediment samples with both DZ and DARL dates, 14 of 17 
rivers yield a higher proportion of <35 Ma DARL dates than <35 Ma DZ dates. 
Subordinate detrital populations are >320 Ma (4%), 320–270 Ma (early Pennsyl-
vanian–Early Permian; 12% of total population), 270–220 Ma (Late Permian–Late 
Triassic; 2%), 220–160 Ma (Late Triassic–Late Jurassic; 4%), 160–130 Ma (Early 
Cretaceous–Late Jurassic; 9%), 130–110 Ma (Early Cretaceous; 5%), 90–50 Ma 
(early Eocene–Late Cretaceous; 10%), and 50–35 Ma (Paleogene; 0.6%).

Spatial Variations in Modern River Detrital Dates

Northeastern Rivers

Modern river sediment samples along the northeastern flank of the 
Wrangell–St. Elias Mountains show abundant Cenozoic (60%) detrital dates 
and subordinate Mesozoic (37%), Paleozoic (2%), and Precambrian (1%) 
detrital dates (n = 1421) (Figs. 5, 10 and Items S9–S12 [footnote 1]). Detrital 

dates >35 Ma include three main populations: 235–185 Ma (Triassic–Jurassic), 
118–100 Ma (Early Cretaceous), and 70–58 Ma (Late Cretaceous–Paleogene). 
Detrital dates >35 Ma are substantially more common within the DZ sand 
fraction (94%) than in the DARL sand fraction (44%). Detrital dates <35 Ma 
represent 36% of all detrital dates, including ~6% of DZ dates, ~66% of sand-
sized DARL dates, and ~70% of cobble-sized DARL dates (Table 1). Seven 
rivers yield dominant apparent age peaks between 17 Ma and 35 Ma, whereas 
three rivers show dominant apparent age peaks that fall between 6 Ma and 
13 Ma (Fig. 5).

Detrital dates from northeastern river sediment samples overlap with 
<35 Ma bedrock dates reported from their watersheds, although some detrital 
dates are not present in the available bedrock data (Fig. 5). Samples from the 
Ptarmigan, Francis, Willow, and Rock Lake drainages yield dominant detrital 
age populations between 17 Ma and 35 Ma that match bedrock dates reported 
from their watersheds. Samples from the Chisana and Cross drainages show 
detrital dates between 17 Ma and 35 Ma and 1 Ma to 3 Ma that correspond 
with bedrock dates from those watersheds. However, the Chisana and Cross 
samples also yield 13–17 Ma and 6–8 Ma detrital dates that are not present 
among the available bedrock dates within their watersheds.

Eastern Rivers

Modern sediment samples from five watersheds spanning the Alaska-​
Yukon border reveal Cenozoic (28%), Mesozoic (11%), Paleozoic (54%), and 
Precambrian (7%) detrital dates (n = 1421) (Figs. 6, 10, and Items S9–S12 
[footnote 1]). Detrital dates >35 Ma comprise five main populations between 
65 Ma and 54 Ma (Paleogene), 127–110 Ma (Cretaceous), 312–271 Ma 
(Pennsylvanian–Permian), 2110–1710 Ma (Proterozoic), and 2840–2460 Ma 
(Proterozoic–Archean). The Duke, Donjek, and Lower White Rivers yield the 
majority of Proterozoic detrital dates. Detrital dates >35 Ma are more common 
in the DZ sand fraction (81%) than in the DARL sand fraction (52%). Dates of 
<35 Ma comprise 24% of the total age population in eastern river samples. 
Samples from the Upper White, Lower White, and Donjek drainages yield 
dominant DZ populations between 8 Ma and 13 Ma, whereas samples from 
the Duke drainage show dominant DZ populations between 17 Ma and 35 Ma. 
Samples from the Lime and Upper White drainages show dominant DARL 
populations between 17 Ma and 35 Ma and 8 Ma to 13 Ma, respectively.

Detrital dates from eastern sediment samples broadly correspond with 
8–35 Ma bedrock dates reported from their watersheds. Dominant detrital age 
populations between 17 Ma and 35 Ma and 13 Ma to 11 Ma in the Lime and 
Upper White samples match dominant bedrock dates reported from those 
watersheds. However, minor populations of <11 Ma detrital dates from those 
drainages are not present in the available bedrock data. Detrital dates in sam-
ples from the Lower White, Duke, and Donjek Rivers match bedrock dates in 
spatially associated watersheds. However, sparse 17–35 Ma bedrock dates in 
the Donjek watershed are not among the Donjek detrital dates.
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Southern Rivers

Sediment samples from six modern rivers that drain the south flank of 
the Wrangell Mountains yield chiefly Cenozoic (63%) and subordinate Meso-
zoic (28%), Paleozoic (10%), and Precambrian (<1%) detrital dates (n = 1763) 
(Figs. 7, 10, and Items S9–S12 [footnote1]). Ages >35 Ma represent 40% of 
the population and consist of three main populations between 57 Ma and 
51 Ma (Paleogene), 174 Ma and 137 Ma (Jurassic–Cretaceous), and 320 Ma 
to 288 Ma (Pennsylvanian–Permian). The proportion of >35 Ma dates is com-
parable among DZ (39%) and DARL (43%) sand fractions. Ages of <35 Ma 
represent 60% of the detrital population in sediment sampled from southern 
rivers, including 61% of DZ dates, 57% of sand-sized DARL dates, and 90% 
of cobble-sized DARL dates. Ages between 12 Ma and 3 Ma are most com-
mon within the <35 Ma detrital population. Detrital dates generally young 

northwestward among the rivers sampled. Samples from the Hawkins, Chit-
istone, and Nizina Rivers yield dominant DZ populations between 3 Ma and 
6 Ma, 8 Ma and 13 Ma, and 6 Ma and 8 Ma, respectively. To the northwest, 
the Kennicott, Kotsina, and Kuskulana Rivers show dominant DZ populations 
between 3 Ma and 6 Ma. DARL dates show a broadly similar trend. In the 
southeast, samples from the Hawkins, Chitistone, and Nizina Rivers reveal 
DARL dates that are dominantly 3–6 Ma, 8–13 Ma, and 8–13 Ma, respectively. In 
the northwest, the Kennicott, Kotsina, and Kuskulana Rivers yield DARL dates 
that are dominantly <1 Ma, 3–6 Ma, and <1 Ma, respectively.

Southern river detrital dates overlap with 3–13 Ma bedrock dates reported 
from southern watersheds. However, detrital samples yield a much broader 
distribution of dates than bedrock data reported from southern watersheds. 
DZ dates between 1 Ma and 3 Ma and 3 Ma to 6 Ma in the Kennicott River, and 
6–8 Ma DZ dates in the Nizina and Chitistone Rivers, lack matching bedrock 
dates in their watersheds. Moreover, DARL dates between 1 Ma and 3 Ma in 
the Kotsina River; 1–3 Ma, 3–6 Ma, and >8 Ma in the Kennicott River; 6–8 Ma 
in the Nizina River; and 17–35 Ma in the Chitistone River lack corresponding 
bedrock dates within their watersheds.
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Figure 5. Normalized distribution plots of detrital samples from modern rivers in the 
draining northeastern flank of the Wrangell–St. Elias Mountains are shown. Bottom plots 
show <400 Ma dates; top plots show details of <35 Ma dates. DARL—volcanic rock lithic, 
DZ—detrital zircon.

Figure 6. Normalized distribution plots of detrital samples from modern rivers in the 
draining eastern flank of the Wrangell–St. Elias Mountains are shown. Bottom plots 
show <400 Ma dates; top plots show details of <35 Ma dates. DARL—volcanic rock lithic, 
DZ—detrital zircon.
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Northwestern Rivers

Sediments from seven modern rivers traversing the northwestern Wrangell 
Mountains reveal Cenozoic (73%), Mesozoic (24%), and Paleozoic (3%) detrital 
dates (n = 1642) (Figs. 8, 10, and Items S9–S12 [footnote 1]). Dates >35 Ma 
represent 28% of the detrital population and include three main populations 
between 136 Ma and 120 Ma (Cretaceous), 152 Ma and 141 Ma (Jurassic–Cre-
taceous), and 313 Ma and 289 Ma (Pennsylvanian–Permian). Dates >35 Ma are 
more common in the DZ sand fraction (50%) than in the DARL sand fraction 
(1%). Dates of <35 Ma represent 72% of the population in northwestern river 
samples, including ~50% of DZ dates, 99% of sand-sized DARL dates, and 
~96% of cobble-sized DARL dates. DZ dates of <3 Ma dominate, making up 
~41% of DZ dates and ~81% of DARL dates. Samples from the Nadina, Sanford, 
Boulder, Drop, and Copper Rivers yield dominant <1 Ma populations along 
with subordinate 1–3 Ma populations for both DZ and DARL. The Dadina 
River shows dominant populations of <1 Ma and 1–3 Ma for DARL and DZ, 

respectively. The Chetaslina River exhibits a dominant population of <1 Ma 
DARL dates and no <35 Ma DZ dates.

Northwestern rivers yield chiefly <3 Ma dates that correspond with domi-
nantly <3 Ma bedrock dates among northwestern watersheds. However, several 
rivers show subordinate 1–3 Ma dates in watersheds that lack 1–3 Ma bedrock 
dates. Moreover, minor populations of >3 Ma DZ and DARL dates are absent 
in the available bedrock data.

North-Central Rivers

Sediment samples from seven modern rivers traversing the north-central 
Wrangell Mountains show Cenozoic (62%), Mesozoic (32%), Paleozoic (5%), 
and Precambrian (1%) detrital dates (n = 561) (Figs. 9, 10, and Items S9–S12 
[footnote 1]). Dates >35 Ma represent 38% of the population and include a major 
population between 123 Ma and 115 Ma (Early Cretaceous), as well as sparse 
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Figure 7. Normalized distribution plots of detrital samples from modern rivers in the drain-
ing southern flank of Wrangell–St. Elias Mountains. Bottom plots show <400 Ma dates; 
top plots show details of <35 Ma dates. Note that the detrital zircon age spectra >50 Ma 
is vertically exaggerated 5x. DARL—volcanic rock lithic, DZ—detrital zircon.

Figure 8. Normalized distribution plots of detrital samples from modern rivers in the drain-
ing northwestern flank of the Wrangell–St. Elias Mountains are shown. Bottom plots show 
<400 Ma dates; top plots show details of <35 Ma dates. Note that the detrital zircon age 
spectra >50 Ma is vertically exaggerated 5×. DARL—volcanic rock lithic, DZ—detrital zircon.
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dates between 340 Ma and 130 Ma (Early Cretaceous–Mississippian). Ages 
>35 Ma are substantially more common in the DZ sand fraction (94%) than in 
the DARL sand fraction (25%). Ages of <35 Ma dominate north-central rivers 
overall (62% of all detrital dates) but the proportion of <35 Ma ages varies from 
6% of DZ dates to 75% of sand-sized DARL dates and ~83% of cobble-sized 
DARL dates. The Nabesna River watershed exhibits substantial variations in 
detrital dates. Sparse DZ dates from the Nabesna River are chiefly >17–35 Ma 
along with subordinate 11–13 Ma and 3–6 Ma dates. DARL dates from the 
Nabesna River include a dominant population between 3 Ma and 6 Ma and 
minor populations of <3 Ma, 6–8 Ma, and 17–35 Ma. Nabesna River tributar-
ies exhibit these variations; the Jacksina, Monte Cristo, and Bond tributaries 
show dominant DARL dates of <1 Ma, 1–3 Ma, and 17–35 Ma, respectively.

Detrital dates obtained from north-central river sediment samples generally 
overlap with bedrock dates reported from watersheds. However, mismatches 
occur locally. Specifically, Nabesna River DZ samples lack <3 Ma and 6–8 Ma 
dates, which are evident in bedrock data, and the Jacksina tributary yields 
3–6 Ma DARL dates that are not captured in the available bedrock age data.

■■ DISCUSSION

Provenance

DZ and DARL dates from modern river sediments in the watersheds sam-
pled reflect derivation chiefly from primary volcanic and plutonic sources 
with smaller contributions from secondary sedimentary and metasedimentary 
sources. Sparse populations of early Paleozoic (440 Ma apparent age peak) and 
Precambrian detrital dates (1710–2110 Ma, 2460–2840 Ma) recovered chiefly 
from eastern rivers are comparable to bedrock age populations reported from 
the Alexander and Yukon-Tanana terranes within the sampled watersheds 
as well as outside the watersheds in eastern Alaska, Yukon Territory, and 
southeastern Alaska (Pz in Figs. 2, 4, and Item S5). Alexander terrane Paleo-
zoic–Proterozoic rocks show dominant apparent age peaks between 490 Ma 
and 410 Ma and 610 Ma and 520 Ma, and minor peaks span 2300–900 Ma 
(Beranek et al., 2014; Tochilin et al., 2014; White et al., 2016). Yukon-Tanana 
terrane Paleozoic metasedimentary strata yield 2000–1700 Ma apparent age 
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Figure 9. Normalized distribution plots of detrital samples from modern rivers in the drain-
ing north-central flank of Wrangell–St. Elias Mountains are shown. Bottom plots show 
<400 Ma dates; top plots show details of <35 Ma dates. Note that the detrital zircon age 
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Figure 10. Probability density plots summarize <35 Ma detrital dates from modern rivers 
that drain the Wrangell–St. Elias Mountains. Plots include all detrital zircon (DZ) U-Pb 
dates as well as sand- and cobble-sized volcanic lithic (DARL) 40Ar/39Ar dates.
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peaks and 380–340 Ma intrusive suites (Aleinikoff et al., 1981, 1984, 1986; 
Dusel-Bacon et al., 2006; Nelson and Gehrels, 2007; Dusel-Bacon and Williams, 
2009; Day et al., 2014; Pecha et al., 2016).

Subordinate 320–270 Ma detrital dates (301 Ma apparent age peak) from 
the sampled rivers correspond with late Paleozoic magmatism in the Insular 
terranes (Skolai Arc in Fig. 12). In the watersheds sampled and adjacent parts 
of eastern Alaska and Yukon, the late Paleozoic magmatic suite consists of 
ca. 360–273 Ma volcanic and volcaniclastic rocks, intrusions, and sedimentary 
strata (PP in Figs. 2, 4, and Item S5 [footnote 1]; Smith and MacKevett, 1970; 
MacKevett, 1971; Read and Monger, 1976; Beranek et al., 2014) that record island 
arc magmatism, slab breakoff, and post-collision arc magmatism (Greene et 
al., 2009; Beranek et al., 2014; Israel et al., 2014).

Sparse 270–220 Ma detrital dates record erosion of 233–222 Ma plume-​
related volcanics, intrusions, and associated sedimentary rocks (JTr in Figs. 2, 4, 
and Item S5 [footnote 1]; Wrangellia flood basalt in Fig. 12) that formed within 
the remnant late Paleozoic island arc (Mortensen and Hulbert, 1992; Greene et 
al., 2010). The paucity of both DZ and DARL dates matching the emplacement 
age of this igneous suite is consistent with the low zircon fertility that typifies 
basaltic igneous rocks, evidence for thermal resetting of the argon thermo-
chronologic system within the Triassic igneous rocks (Greene et al., 2010), and 
our DARL sampling strategy that targeted fresh, unaltered volcanic lithics.

A minor population of 160–140 Ma (apparent age peak of 145 Ma) DZ and 
DARL dates reflects erosion of Late Jurassic–Early Cretaceous magmatic arc 
igneous rocks and associated sedimentary strata (Chitina arc in Fig 12; Ji and 
KJs in Figs. 2, 4, and Item S5 [footnote 1]). In the sampled watersheds and 
adjacent parts of eastern Alaska, Chitina Arc plutons yield 150–138 Ma dates 
(Plafker et al., 1989; Roeske et al., 2003). Late Jurassic detrital dates also reflect 
erosion of Mesozoic sedimentary and volcanic rocks that crop out within the 
sampled watersheds (JTr and JKs in Figs. 2, 4, and Item S5 [footnote 1]) and 
yield abundant 160–140 Ma detrital zircon dates (Fasulo et al., 2020) and 191–
145 Ma 40Ar/39Ar dates (Greene et al., 2010). Chitina Arc magmatism overlapped 
with subduction, arc magmatism, and deformation across the Insular terranes 
between 160 Ma and 140 Ma in the Yukon, British Columbia, and southeastern 
Alaska (van der Heyden, 1992; Gehrels et al., 2009; Berenek et al., 2017) and 
between 180 Ma and 140 Ma in south-central Alaska (Rioux et al., 2007; Finzel 
and Ridgway, 2017; Stevens Goddard et al., 2018).

A subordinate population of 130–110 Ma (apparent age peak of 117 Ma) DZ 
and DARL dates corresponds with erosion of late Early Cretaceous arc igne-
ous rocks and associated sedimentary strata (Chisana Arc in Fig. 12; Kvi and 
KJs in Figs. 2, 4, and Item S5 [footnote 1]). The largest 130–110 Ma apparent 
age peaks are in samples from north-central and northeastern rivers draining 
watersheds with aerially extensive Chisana Arc igneous rocks (e.g., Chisana, 
Cross, and Nabesna Rivers in Figs. 3, 4, and Item S5 [footnote 1]). In the water-
sheds sampled and adjacent parts of eastern Alaska, the Chisana Arc yields 
ages of 126–113 Ma, judging from 40Ar/40Ar and U-Pb dates (Snyder and Hart, 
2007; Graham et al., 2016; Trop et al., 2020; Manselle et al., 2020). Dates of 
130–110 Ma from the watersheds sampled reflect erosion of arc igneous rocks 
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as well as recycling of late Early to Late Cretaceous sedimentary strata that 
bear apparent age peaks of 130–110 Ma (Fasulo et al., 2020; Trop et al., 2020). 
Correlative igneous and sedimentary strata crop out regionally to the east in 
southeastern Alaska and Canada (Gehrels, 2000; Yokelson et al., 2015) and to 
the northwest in the Talkeetna Mountains and the Alaska Range (Hampton et 
al., 2010; Reid et al., 2018; Stevens Goddard et al., 2018; Trop et al., 2019; Box 
et al., 2019). Subordinate 70–55 Ma (apparent age peak of 62 Ma) DZ dates 
correspond with erosion of latest Cretaceous–Paleocene arc igneous rocks 
that are uncommon within the sampled watersheds but crop out regionally 
in the Alaska Range and the Yukon (Kluane Arc of Plafker and Berg, 1994).

The <35 Ma dominant population of DZ and DARL dates reflects erosion 
of Oligocene–Quaternary Wrangell Arc volcanic-intrusive rocks, which con-
stitute ~16% of the surface area of watersheds sampled (Figs. 2–4 and Item 
S5 [footnote 1]). Notably, Wrangell Arc volcanic-intrusive rocks likely under-
lie extensive portions of ice that make up 29% of the watersheds sampled 
(Item S5), judging from Wrangell Arc bedrock exposures protruding above 
ice (Figs. 2–3) and the dominance of <35 Ma DARL dates in modern rivers 
located downslope of glacial ice. Below, the Discussion summarizes the spa-
tial-temporal evolution of the Wrangell Arc as inferred from the available 
geochronologic data.

In summary, modern river detrital and bedrock dates obtained during the 
present study, with previously reported bedrock dates, document erosion of 
magmatic arcs with the following apparent age peaks: 301 Ma, 145 Ma, 132 Ma, 
116 Ma, 62 Ma, and <35 Ma (Fig. 12). Sparse detrital dates also record a single 

phase of Triassic plume magmatism that is associated with mafic large igne-
ous province development.

Implications for Sediment Provenance Analysis

Assessment of DZ and DARL dates from modern river sediment in the 
Wrangell Arc adds to the growing number of studies demonstrating the addi-
tional insight afforded by multi-proxy detrital geochronology (e.g., Nie et al., 
2012; Bush et al., 2016; Di Giulio et al., 2017; Arboit et al., 2020). DZ populations 
reveal higher proportions of Mesozoic–Paleozoic arc igneous sources that 
are missing or incomplete in DARL populations, whereas DARL populations 
record higher proportions of Neogene arc igneous sources that are missing or 
incomplete in DZ age spectra (refer to Item S13 for details [footnote 1]). Higher 
zircon fertility from plutons with ages >35 Ma and recycling from sedimentary 
deposits contribute a disproportionate and greater volume of detrital zircon 
grains relative to generally mafic <35 Ma volcanic sources. This interpretation 
is compatible with higher average zircon concentrations reported from the 
majority of >35 Ma igneous rocks in the study region compared with <35 Ma 
Wrangell Arc igneous rocks (Berkelhammer et al., 2019; Brueseke et al., 2019; 
Manselle et al., 2020), and we acknowledge that geochemical data from >35 Ma 
rocks are not abundant. Although not unexpected, this relationship under-
scores the potential for disproportionate detrital zircon contributions eroded 
from older, mainly felsic arc plutons or recycled from sediments.
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Arc Episodicity and Flare-Ups

Assessment of geochronological records from the Wrangell Arc in east-
ern Alaska adds to the growing evidence for non-steady-state behavior in arc 
magmatism along the eastern Pacific margin. Wrangell Arc geochronologic 
data indicate episodes of high-volume arc magmatism alternating with peri-
ods of reduced magmatism during Paleozoic–Holocene time (Fig. 12), which 
is comparable to the high-volume arc magmatism with apparent cyclicity of 
~15–35 m.y. documented in other Alaskan arc segments in the Aleutian Islands 
(Jicha et al., 2006), Alaska Peninsula (Finzel and Ridgway, 2017), Alaska Range 
(Fasulo, 2019; Jones et al., 2021), and Talkeetna Mountains (Reid et al., 2018; 
Stevens Goddard et al., 2018). Further south, high-volume arc magmatism 
with apparent cyclicity of ~25 m.y. to >50 m.y. is evident along the Cordilleran 
margin from western Canada to South America (Ferrari et al., 1999; Haschke 
et al., 2006; Trumbull et al., 2006; Gehrels et al., 2009; Girardi et al., 2012; 

Paterson et al., 2014; Premo et al., 2014; DeCelles et al., 2015; Beranek et al., 
2017). Models explaining arc episodicity invoke plate motion controls (Jicha et 
al., 2018), intra-arc processes (Ducea and Barton, 2007; DeCelles et al., 2009), 
or crustal modulation of mantle power input (de Silva et al., 2015).

Wrangell Arc geochronologic data and offshore Gulf of Alaska tephra 
records (Benowitz and Addison, 2017) indicate an apparent increase in mag-
matic flux at ca. 1 Ma, although the trend may be impacted by decreased 
marine core recovery with depth-time, sample biases, the better preserva-
tion of younger volcanic rock products, and the younger eruptive centers 
covering older volcanic centers. A ca. 1 Ma flare-up would be coeval with 
increased amplitude glacial-interglacial variability documented during the 
mid-Pleistocene transition (1.25–0.7 Ma; Willeit et al., 2019) across the North-
ern Hemisphere and southern Alaska (Gulick et al., 2015). Volcanic activity 
increased worldwide during this time period as a result of glacial-interglacial 
cycles (“glacial pumping”; Wilson and Russell, 2020).
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Strike-Slip Deformation along Intra-Arc Faults

Geologic observations indicate that dextral-oblique slip occurred along 
the Denali and Totschunda faults (Figs. 1–3) throughout 30 Ma to Holocene 
Wrangell Arc magmatism. Offset features along the Denali and Totschunda 
faults indicate dextral-oblique slip during Paleocene–Holocene time (Haeus-
sler et al., 2017). Metamorphic complexes exposed adjacent to the easterly 
Denali fault reflect dextral transpressional exhumation at ca. 20–6 Ma (Richter 
et al., 1975; Benowitz et al., 2011, 2012b, 2014, 2019; Tait et al., 2016). Estimated 
Cenozoic displacements along the strike-slip easterly Denali fault system are 
~400 km (Denali and Totschunda fault combined) since 57 Ma (Lowey, 1998; 
Riccio et al., 2014) and ~305 km since 33 Ma (Waldien et al., 2018b). Along 
the western Denali fault, where a larger component of thrusting accom-
modates fault displacement (Fitzgerald et al., 2014), offset markers indicate 
~150 km of dextral slip since 29 Ma (Trop et al., 2019). Collectively, the available 

observations indicate the eastern Denali fault accommodated ~180 km of 
dextral slip between ca. 30 Ma and 6 Ma at a time-averaged rate of ~7.6 mm/
yr with minimum and unknown slip after ca. 6 Ma.

The Totschunda fault was active during Wrangell Arc magmatism, considering 
evidence for diking within the fault zone at ca. 29 Ma (Brueseke et al., 2019), rapid 
exhumation along the fault at ca. 25 Ma (Milde et al. 2013), and transtensional 
basin development between 13 Ma and 10 Ma (Trop et al., 2012). Offset geologic 
piercing points along the Totschunda fault indicate ~90 km of dextral slip since 
7 Ma (Waldien et al., 2018b), as much as ~85 km of dextral slip since ca. 18 Ma 
(Berkelhammer et al., 2019), and a Pleistocene rate of 14 mm/yr (Marechal et al., 
2018). The available geologic data indicate the following dextral slip estimates 
along the Totschunda fault: ~14 mm/yr offset totaling 85 km from 6 Ma to present 
and 0.6 mm/yr totaling ~15 km between 30 Ma and 6 Ma. In the following section, 
we combine these offset estimates with geochronologic data from the Wrangell 
Arc to reconstruct the spatial-temporal evolution of Wrangell magmatism.
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Spatial-Temporal Evolution of Wrangell Magmatism

Wrangell Arc magmatism initiated along the northern flank of the Wrangell–
St. Elias Range at ca. 30 Ma, based on currently available geochronologic data 
(Berkelhammer et al., 2019; Brueseke et al., 2019; this study). The oldest known 
Wrangell Arc eruptive centers crop out on both sides of the Totschunda fault 
within the north-central and northeastern river watersheds (Figs. 16–17). North 
of the fault, 30–19 Ma magmatism prompted construction of the Sonya Creek 
volcanic field (SCVF in Figs. 1, 16, and 17), judging from new DZ and DARL dates 
from Ptarmigan, Rocker, Francis, and Rock Lake and recently reported volcanic/
intrusive bedrock dates (Berkelhammer et al., 2019). The Upper White and Lower 
White Rivers also yield minor populations of 30–17 Ma DZ and DARL dates that 
may reflect sediment contributions from tributaries that extend into the SCVF. 
However, much of the White and Lower White drainages traverse bedrock 
southwest of SCVF. At ca. 30–17 Ma, eruptive centers also formed along the west 

side of the Totschunda fault; north-central watersheds yield 30–17 Ma DZ and 
DARL dates (Bond, Chisana, and Cross tributaries) and several K-Ar intrusive 
bedrock dates. Ca. 30–17 Ma eruptive centers exposed on opposite sides of the 
Totschunda fault were likely proximal to one another and subsequently offset 
by dextral displacement along the Totschunda fault (B and SCVF in Figs. 16–17).

Wrangell magmatism progressed from northwest to southeast ca. 18 Ma based 
on geochronologic data within eastern river watersheds spanning the Alaska-​
Yukon border (Figs. 16–17). Volcanic bedrock dates document the construction of 
18–10 Ma eruptive centers presently exposed along the Duke River fault (St. Clare, 
Alsek, and Nines Creek fields in Figs. 1–2). The youngest population of DZ dates 
from the Duke (18–16 Ma) and Donjek (10–9 Ma and 16–15 Ma) watersheds over-
lap 18–10 Ma bedrock dates from the St. Clare field (Fig. 16), which indicates 
that magmatism persisted there ~1 m.y. longer than was previously recognized.

Between ca. 13 Ma and 6 Ma, Wrangell Arc magmatism generally 
migrated from southeast to west away from the Alaska-Yukon border region 
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to the Wrangell Mountains (Figs. 16–17). After ca. 6 Ma, Wrangell magmatism 
migrated northwestward into Holocene time (Figs. 16–17). Richter et al. (1990) 
demonstrated this northwestward progression using bedrock dates primarily 
from <3 Ma volcanics in northwestern watersheds. Trop et al. (2012) expanded 
the evidence with bedrock and detrital dates from 13–5 Ma volcanics in the 
southern watersheds. New detrital data sets in the current study add additional 
support for westward to northwestward progression of magmatism since 13 Ma 
and document previously unrecognized complexities. Some eruptive centers 
remained active following the progression of magmatism away from a region; 
moreover, some areas experienced magmatism following the general migra-
tion of magmatism away from the region. For example, magmatism persisted 
from 9 Ma until 2 Ma in the Kennicott watershed, following the northwestward 
progression of magmatism from 6 Ma until 3 Ma into the adjacent Kotsina 
watershed and until <3 Ma in the northwestern watersheds. Also, magma-
tism occurred in the Hawkins watershed from 7 Ma until 4 Ma, following the 
northwestward progression of magmatism away from the adjacent 12–7 Ma 
Chitistone and Nizina watersheds. Another exception to the apparent progres-
sion of volcanism from southeast to northwest is Mt. Churchill, a stratovolcano 
located tens of kilometers east of other Wrangell Arc active volcanoes (MC in 
Figs. 3 and 16). The volcano has produced highly explosive, volumetrically 
significant ash eruptions over the past 2000 years (Lerbekmo, 2008; Preece et 
al., 2014; Jensen et al., 2014), unlike the andesitic lavas that have erupted from 
most Wrangell Arc volcanoes (Richter et al., 1990). Given its location above 
the eastern edge of the subducting slab (Bauer et al., 2014), we posit that Mt. 
Churchill may be related to slab edge magmatism and that the Connector-Duke 
River-Totschunda fault intersection serves as a magma conduit (Fig. 2).

In summary, modern river and bedrock dates document the initiation of 
Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda 
fault, the southeastward progression of magmatism at ca. 17–10 Ma along the 
Duke River fault, the westward progression of magmatism outboard (south-
west) of the Totschunda and Duke River faults at ca. 13–6 Ma, and a rapid 
northwestward progression of magmatism from ca. 6 Ma to present.

Tectonic Evolution of Wrangell Arc Magmatism

In the context of the offset history of the Denali–Duke River–Totschunda 
fault system, we present a model that relates long-term localization of Wrangell 
magmatism within and adjacent to the Cretaceous Insular terranes-North 
America suture zone and shifts in magmatism through time to tectonic pro-
cesses (Figs. 16–19).

Arc Initiation (30–18 Ma)

Subduction-related arc magmatism initiated at ca. 30 Ma based on new detrital 
dates from the present study and recently reported geochronological-​geochemical 

data from eruptive centers exposed on both sides of the Totschunda fault along 
the northern flank of the Wrangell Mountains (Figs. 16–17; Berkelhammer et 
al., 2019; Brueseke et al., 2019). Bedrock samples from the 30–19 Ma Sonya 
Creek volcanic field (SCVF) indicate hydrous, subduction-related, calc-alkaline 
magmatism along with an adakite-like component that is attributed to slab-
edge melting. A minor westward progression of volcanism within the SCVF 
at ca. 25 Ma was accompanied by continued subduction-related magmatism 
without the adakite-like component (i.e., mantle-wedge melting), which is rep-
resented by 25–20 Ma basaltic-andesite to dacite domes and associated diorites 
and transitional-tholeiitic, basaltic-andesite to rhyolite lavas and tuffs of the 
23–19 Ma Sonya Creek shield volcano (Richter et al., 2000; Berkelhammer et 
al., 2019). The Beaver Lake area, ~10 km west of the SCVF, is also characterized 
by 30–20 Ma magmatism (Fig. 3). Initial arc magmatism is also recorded along 
the southwestern side of the Totschunda fault west of the SCVF and Beaver 
Lake. Also, ca. 30–20 Ma calc-alkaline and adakitic Wrangell Arc intrusions 
occur proximal to the Totschunda fault in the Chisana, Cross, and Bond Creek 
drainages (Richter, 1976; Weber et al., 2017).

Geologic data sets indicate dextral displacement of ca. 30–20 Ma eruptive 
centers exposed on both sides of the presently active Totschunda fault. Dike-
lets that are 29.7 Ma in age and injected into Totschunda fault gouge indicate 
fluid flow into an active fault zone during initial arc magmatism (Brueseke et 
al., 2019). The fault system existed prior to Wrangell Arc magmatism, based 
upon 114 Ma dikelets that are injected into Totschunda fault gouge (Trop et 
al., 2020). Reconstructing the inferred initial alignment of the ca. 30–18 Ma 
eruptive centers exposed on opposite sides of the Totschunda fault requires 
~85 km of dextral offset since ca. 18 Ma (Waldien et al., 2018b; Berkelhammer 
et al., 2019).

We attribute 30–18 Ma arc magmatism to the subduction of oceanic litho-
sphere along the northeastern margin of the Yakutat microplate (Figs. 1 and 
17–19) during a transition in the tectonic configuration of southern Alaska 
between 30 Ma and 20 Ma. Regional exhumation within and proximal to the 
Alaska Range suture zone (Benowitz et al., 2012a; Riccio et al., 2014; Lease et al., 
2016; Terhune et al., 2019; Waldien et al., 2021), basin inversion and drainage 
reorganization related to topographic development (Ridgway et al., 2007; Finzel 
et al., 2016; Brennan and Ridgway, 2015; Benowitz et al., 2019), and shorten-
ing within the Yakutat microplate (Pavlis et al., 2012, 2019) are interpreted as 
upper-plate responses to initial flat-slab subduction and collision of the Yakutat 
microplate with southern Alaska (Finzel et al., 2011; Haynie and Jadamec, 2017).

Initiation of flat-slab subduction and Wrangell Arc magmatism was coin-
cident with the cessation of arc magmatism throughout most of the region 
underlain by the subducting Yakutat flat slab. Neogene arc magmatic products 
in the central Alaska Range are limited to a handful of small volume eruptive 
centers (Fig. 1; Triplehorn et al., 1999; Athey et al., 2006; Andronikov and 
Mukasa, 2010; Cameron et al., 2015). The 30 Ma age of the initiation of Wrangell 
Arc magmatism along the northeastern edge of the subducted Yakutat flat slab 
postdates the 33 Ma age of the youngest arc pluton in the Central Alaska Range 
(Regan et al., 2020), overlaps with the 29 Ma age of the youngest pluton in 
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the Western Alaska Range (Jones et al., 2021), and overlaps the 38–25 Ma age 
range of dike swarms emplaced along the Denali fault in the Central Alaska 
Range (Trop et al., 2019). Thus, arc magmatism was essentially shut off in the 
Central and Western Alaska Range by ca. 25 Ma. This scenario is attributed 
to flat-slab subduction of the Yakutat microplate and changes in Pacific plate 
relative plate motion that prompted a more highly convergent Denali fault 
system (Jicha et al., 2018; Trop et al., 2019).

Southeastward Progression (18–13 Ma)

Wrangell Arc magmatism progressed southeastward from Alaska to Can-
ada from ca. 18 Ma to 13 Ma, based upon new detrital dates in the present 

study and previous bedrock dates from volcanic centers and strike-slip basin 
fills exposed along the Duke River fault (Figs. 16–17). Strike-slip basin develop-
ment along the Duke River fault is evident from Eocene–Oligocene alluvial fan, 
fan-delta, and lacustrine strata that are overlain by Miocene (18–13 Ma) lavas 
and pyroclastic rocks (Fig. 1; Ridgway and DeCelles, 1993; Cole and Ridgway, 
1993). The limited spatial distribution of the volcanic rocks along strike-slip 
faults, with the predominance of small volume, fissure-​vent–​sourced alkaline 
volcanic rock compositions, has been attributed to leaky transform volcanism, 
with magmas being sourced from both mantle affected by subduction (e.g., 
hydrous mantle wedge like the Alaskan Wrangell Arc) and underlying anhy-
drous asthenospheric mantle (Skulski et al., 1992; Thorkelson et al., 2011; 
Brueseke et al., 2019). Age equivalent volcanic centers in the Saint Clare 
field (Yukon) and Sonya Creek–Rocker Creek area (Alaska) (Fig. 1) appear 
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to record a spatial transition from chiefly strike-slip to subduction tectonics. 
Overall, geochemical and isotope variations indicate that many Wrangell 
volcanic belt products exposed in the Yukon formed via a different melting 
regime and from different mantle sources than Wrangell Arc magmatism in 
Alaska. This scenario is consistent with Yukon magmatism occurring along 
the eastern edge of the subducted slab along the arcuate arc-transform con-
tinental margin. We infer that formation of 18–13 Ma volcanic centers along 
northwest-striking, strike-slip faults in the Yukon reflects oblique convergence 
and the subduction of oceanic crust along the inboard margin of the Yakutat 
microplate coeval with dextral-oblique slip on the Denali and Totschunda 
faults (Figs. 17–18).

We attribute the observed southeastward progression in Wrangell mag-
matism from Alaska ca. 30–18 Ma to Canada ca. 18–13 Ma (Figs. 16–17) to 
northwestward translation of the overriding plate via dextral-oblique displace-
ment along the Denali and Totschunda faults (Fig. 18). However, strike-slip 
translation along the Denali and Totschunda faults alone does not account for 
the magnitude of southeastward progression in magmatism between 18 Ma 
to 13 Ma. Given that the pace or orientation of relative plate convergence 
was relatively consistent along the southern Alaska-western Canada margin 
between 26 Ma and 13 Ma (Fig. 1; Doubrovine and Tarduno, 2008; Pavlis et al., 
2019), we hypothesize that the observed southeastward shift in magmatism 
also reflects slab steepening, possibly via slab curling related to gravitational 
pull on the edge of the subducted slab (e.g., Park et al., 2002).

Generally Westward Progression (13 Ma to 6 Ma)

We postulate that slab shallowing (perhaps via uncurling) of the subducted 
Yakutat slab prompted the observed generally westward progression of volca-
nic centers and transtensional intra-arc basins along strike-slip faults between 
13 Ma and 6 Ma (Totschunda and Duke River faults in Figs. 17–19). Shallowing 
of the Yakutat slab may reflect slight flattening of the slab edge in response to 
the progressive subduction of thicker parts of the outboard-thickened, south-
ward Yakutat microplate (Worthington et al., 2012).

Generally Northwestward Progression (6 Ma to 200 ka)

Similar to Richter et al. (1990) and Preece and Hart (2004), we interpret 
northwestward progression of Wrangell Arc magmatism from 6 Ma to present 
(Figs. 16–17) as a response to a change in Pacific plate vectors at this time to 
more rapid (~37%) and with a higher angle of convergence (18° northerly shift) 
(Fig. 18; Engebretson, 1985; Doubrovine and Tarduno, 2008). Previous geo-
logic and geochronologic studies document a ca. 6 Ma tectonic event across 
southern Alaska (Fitzgerald et al., 1995; Ridgway et al., 2007; Enkelmann et 
al., 2008; Allen et al., 2014; Waldien et al., 2018b), which is consistent with a 
more convergent Pacific/Yakutat-North American interface.

Reduction in Wrangell Arc Magmatism by 200 ka

Richter et al. (1990) postulates a reduction in Wrangell Arc magmatism at 
ca. 200 ka related to northward progression of the Yakutat microplate. A geo-
physically imaged slab tear separates eastern (under the Wrangell Arc) and 
central (under south-central Alaska) segments of the subducted Yakutat slab 
(Fuis et al., 2008). The spatial association of most <1 Ma Wrangell Arc volcanoes 
directly southeast of the tear (Fig. 1) and rejuvenated magmatism northwest of 
the tear in the Alaska Range starting at ca. 1 Ma (Jumbo Dome, Buzzard Maar 
in the Alaska Range in Fig. 1) implies a change in slab geometry. We posit 
that these changes in magmatic flux may reflect development of the slab tear 
at ca. 1 Ma and concurrent with jamming of the trench (Gulick et al., 2013).

Suture Zone Localization of Wrangell Arc Magmatism

Structures are known to facilitate volcanism by acting as conduits (e.g., 
Gómez-Vasconcelos et al., 2020). The Totschunda-Duke River and Denali faults 
bracket a Cretaceous suture zone that separates the Insular terranes from 
inboard terranes in the study area (Figs. 1 and 17–19). The Totschunda and 
Duke River faults acted as conduits that facilitated magma focusing and rise, 
as is documented by the alignment of Wrangell Arc volcanoes with these struc-
tures (Figs. 1 and 17–19). For example, the 2.4 Ma Euchre Mountain volcano 
lies along the Totschunda fault and is a classic example of a volcanic edifice 
forming adjacent to a strike-slip fault (Figs. 3 and 17; Keast et al., 2016). Given 
that the suture zone has been translated ~180 km along the eastern Denali 
fault since 30 Ma (Fig. 18), and much of the Wrangell Arc magmatism is away 
from these faults (Fig. 17), the presence of these long-lived suture zone faults 
alone does not explain localization of Wrangell Arc magmatism within and 
adjacent to the Insular terranes-North America suture zone. The suture zone 
is defined by lithologic and thickness variations of the crust (Fitzgerald et al., 
2014), which include crustal thickness variations across the suture-bounding 
Denali, Totschunda, and Duke River faults (Fig. 19). Throughout its 30 m.y. evo-
lution, Wrangell Arc magmatism never migrated into crust north of the Denali 
fault (Yukon-Tanana terrane in Figs. 18–19). Given that the trench outboard 
(south) of the Wrangell Arc trends essentially the same as the eastern Denali 
fault, the distance between the Wrangell Arc and the trench was relatively 
constant (~300 km) during translation of the Insular terranes-North America 
suture zone along the Denali fault during the 30 Ma history of Wrangell Arc 
magmatism (Fig. 18).

Late Cretaceous–Paleogene arc magmatism in the Western and Central 
Alaska Range (Fig. 1) was similarly localized along the Insular terranes-North 
America suture zone (Jones et al., 2021), and crustal variations within the suture 
zone likely played a hydrostatic role in flattening the underlying slab(s) regard-
less of slab characteristics (Trop et al., 2019). We posit that similar geodynamic 
processes prompted the dewatering depth zone along the eastern edge of the 
subducted Yakutat slab to track with the migrating upper plate suture zone until 
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6 Ma. After the increase in the Pacific–North America plates’ convergence rate 
at ca. 6 Ma (Doubrovine and Tarduno, 2008), the leading lateral (northeastern) 
edge of the Yakutat slab was apparently less influenced by crustal thickness 
variations, and magmatism drifted away from the suture zone proper.

In summary, the reconstructed spatial-temporal evolution of arc-transform 
magmatism documented in the Wrangell Arc is attributed to dextral translation 
of the overriding plate, changes in the subducting slab geometry, variations 
in relative plate convergence, and the influence of a suture zone and intra-arc, 
strike-slip faults on magma-surface flux.

Voluminous Wrangell Arc-Transform Magmatism

Based on the enormous sizes of Wrangell Arc volcanoes, melt production 
along the arc-transform margin was voluminous (Item S1 [footnote 1]; Richter et 
al., 2006). We attribute this scenario partly to the flat slab setting and upwelling 
along the edge of the subducting Yakutat slab (Brueseke et al., 2019) as well 
as to the outsized surface area presented for dehydration due to the low angle 
of slab dip (Figs. 1 and 19) (Arce et al., 2020). The massive sizes of Wrangell 
Arc volcanoes also must reflect common depths of magma production, melt 
extraction, and similar transcrustal magmatic systems (Cashman et al., 2017; 
Jackson et al., 2018). The slab-edge setting helped to focus voluminous magma-
tism and led to the formation of large volcanoes and is similar to magmatism 
documented along subduction-transform edge propagator (STEP) faults along 
slab tears (Cocchi et al., 2017). Available geologic and geophysical data sets 
indicate a similar general type of mantle focusing, where toroidal and poloidal 
flow of the underlying mantle has occurred along the edge of the Yakutat slab 
(Jadamec and Billen, 2010). Although STEP faults have not been recognized in 
the Wrangell Arc, geophysical data sets indicate the presence of a significant 
slab tear along its northwestern edge (Fuis et al., 2008; Mann et al., 2020). Volu-
minous slab-edge magmatism characterized by complex spatial-temporal shifts 
documented in the present study may be a previously overlooked hallmark of 
arc-transform margins, especially for those influenced by flat-slab subduction.

■■ CONCLUSIONS

The Wrangell volcanic belt in eastern Alaska and the Yukon provides an 
archetypical environ in which to examine the relations between magmatism, 
deformation, and plate interactions along an active continental arc-transform 
junction. Abundant new DZ U-Pb and DARL 40Ar-39Ar dates from modern rivers 
and bedrock dates demonstrate that the Wrangell Arc was continuously active 
from ca. 30 Ma to present. Palinspastic reconstruction of the arc along regional 
strike-slip faults (Figs. 17–18) allows the spatial migration of arc magmatism 
during its evolution to be documented. First-order findings from our study are:

(1)	DARL dates provide a more robust record of the generally mafic <30 Ma 
Wrangell Arc than DZ dates, which better document older episodes of 

more felsic magmatism that shaped the crust and match Paleozoic–
Mesozoic magmatic flare-ups documented along the Cordilleran margin.

(2)	Wrangell Arc magmatism was emplaced within or adjacent to a suture 
zone separating the Insular terranes to the south and the Yukon-​Tanana 
terrane to the north. The spatial association of magmatism with the 
suture zone indicates localization of magmatism in response to upper 
plate crustal heterogeneities and pre-existing structural zones that 
served as active magma conduits.

(3)	The history of magmatism, combined with regional constraints, is 
interpreted to be most consistent with the following tectonic model 
(Figs. 17–19). The Wrangell Arc is interpreted to have initiated at ca. 
30–17 Ma in response to northward convergence and subduction of 
the lithosphere of the oceanic plateau along the inboard northeastern 
lateral edge of the Yakutat microplate. The Totschunda fault, an intra-
arc, strike-slip fault, was an active conduit for magmas during this time. 
Southeastward progression of magmatism from ca. 17 Ma to 10 Ma 
is attributable to strike-slip translation of the Wrangell Arc and slab 
steepening/curling. Magmatism was focused along the Duke River fault, 
which was an active conduit for magma ascent. Generally westward 
and northwestward shifts in magmatism from ca. 13 Ma to 6 Ma reflect 
translation of the Wrangell Arc along strike-slip faults and slab shallow-
ing/uncurling during the subduction of progressively thicker parts of 
the outboard (southward) thickened Yakutat microplate. A previously 
documented increase in plate convergence rate and angle at ca. 6 Ma 
prompted the northwestward migration of magmatism from ca. 6 Ma 
to Present and was accompanied by translation of older sectors of the 
Wrangell Arc along the rejuvenated Totschunda fault.

(4)	The exceptional volume of Wrangell Arc volcanoes is attributed to shal-
low subduction-related flux melting and slab edge melting driven by 
asthenospheric upwelling along the lateral edge of the Yakutat flat slab.

(5)	The observed spatial age patterns of magmatism demonstrate that the 
Wrangell Arc varied from ~110 km to ~190 km in length, which is sub-
stantially shorter than most modern arcs. The short arc length reflects 
subduction of a relatively short slab along the lateral edge of the shal-
lowly subducting Yakutat microplate within an arc-transform junction, 
which is unlike longer arcs that formed along extensive trenches.

(6)	Arc-transform junctions may be identified in the geologic record by 
the presence of short arc lengths with voluminous magmatism, volca-
nic products with calc-alkaline to transitional geochemical signatures, 
and complex age patterns resulting from strike-slip displacements and 
changes in plate interaction/slab geometry.
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