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Abstract—In this paper, we develop an in-memory analog
computing (IMAC) architecture realizing both synaptic behavior
and activation functions within non-volatile memory arrays.
Spin-orbit torque magnetoresistive random-access memory (SOT-
MRAM) devices are leveraged to realize sigmoidal neurons as
well as binarized synapses. First, it is shown the proposed IMAC
architecture can be utilized to realize a multilayer perceptron
(MLP) classifier achieving orders of magnitude performance
improvement compared to previous mixed-signal and digital
implementations. Next, a heterogeneous mixed-signal and mixed-
precision CPU-IMAC architecture is proposed for convolutional
neural networks (CNNs) inference on mobile processors, in which
IMAC is designed as a co-processor to realize fully-connected
(FC) layers whereas convolution layers are executed in CPU.
Architecture-level analytical models are developed to evaluate
the performance and energy consumption of the CPU-IMAC
architecture. Simulation results exhibit 6.5% and 10% energy
savings for CPU-IMAC based realizations of LeNet and VGG
CNN models, for MNIST and CIFAR-10 pattern recognition
tasks, respectively.

Index Terms—in-memory computing, magnetic random ac-
cess memory (MRAM), convolutional neural networks (CNNs),
mixed-precision and mixed-signal inference.

I. INTRODUCTION

Deep learning algorithms are playing an important role in
pursuing safer self-driving cars, smarter robots, smartphone
applications, etc., which are typically running on mobile com-
puting devices. One of the major limitations of implementing
deep learning models on these mobile computing devices is
their limited computing power and severe energy constraints.
Machine learning (ML) applications such as image and speech
recognition are known to be more data-centric tasks, in which
most of the energy and time is consumed in data movement
rather than computation [1]. As alternatives to von Neumann
architectures, in-memory computing (IMC) and near-memory
computing (NMC) architectures aim to address these issues
through performing processing within or near storage devices,
respectively. Various approaches have been proposed in recent
years to achieve this goal, from 3D integration technology [2]
to emerging nonvolatile resistive memory devices, which can
store information in their conductance states [1], [3]. Some
of the resistive memory technologies that have been used
to realize IMC systems are resistive random-access memory
(ReRAM) [4], [5], phase-change memory (PCM) [6], and
magnetoresistive random-access memory (MRAM) [7].

A wide range of the previous memristive-based IMC and
NMC schemes operate in the digital domain [7], meaning
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that they leverage resistive memory crossbars to implement
Boolean logic operations such as XNOR/XOR within memory
subarrays, which can be utilized to implement multiplication
operation in binarized neural networks [8]. While digital IMC
approaches provide important energy and area benefits, they
are not fully leveraging the true potential of resistive memory
devices that can be realized in the analog domain. Mixed-
signal analog/digital IMC architectures, such as the recently-
proposed AiMC [9], leverage the resistive memory crossbars to
compute multiply and accumulation (MAC) operation in O(1)
time complexity using various physical mechanisms such as
Ohm’s law and Kirchhoff’s law in electrical circuits. Here, we
use MRAM technology to develop analog neurons as well as
synapses to form an in-memory analog computing (IMAC)
architecture that can compute both MACs and activation
functions within an MRAM array. This enables maintaining
the computation in the analog domain while processing and
transferring data from one layer to another layer in fully con-
nected (FC) classifiers. Despite their performance and energy
benefits, the low precision computation associated with analog
IMC architectures is prohibitive for many practical mobile
computing applications which require large scale deep learning
models [3]. Thus, alternative solutions are sought to integrate
the energy-efficient but low-precision IMAC architecture with
high-precision mobile CPUs. In this work, we will conduct
algorithm- and architecture-level innovations to design and
simulate a heterogeneous mixed-precision and mixed-signal
CPU-IMAC mobile processor achieving low-energy and high-
performance inference for deep convolutional neural networks
(CNNs) without compromising their accuracy.

II. BACKGROUND

A. Fundamentals of SOT-MRAMs

We use spin-orbit torque (SOT) MRAM devices [10] as the
building block for our proposed IMAC architecture. The SOT-
MRAM cell includes a magnetic tunnel junction (MTJ) with
two ferromagnetic (FM) layers separated by a thin oxide layer.
MTIJ has two different resistance levels that are determined
based on the angle (6) between the magnetization orientation
of the FM layers. The resistance of the MTJ in parallel (P) and
antiparallel (AP) magnetization configurations can be obtained
using the following equations [11]:



TABLE I
PARAMETERS OF THE SHE-MRAM DEVICE [11].

Parameter Description Value
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Fig. 1. The SOT-MRAM based binary synapse.
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where Ryry = %, in which RA is the resistance-area

product value. TMR is the tunneling magnetoresistance that
is a function of bias voltage (V3). Vp is a fitting parameter,
and TM R, is a material-dependent constant. In MTJ, the
magnetization direction of electrons in one of the FM layers is
fixed (pinned layer), while those of the other FM layer (free
layer) can be switched. In [10], it is shown that passing a
charge current through a heavy metal (HM) generates a spin-
polarized current using the spin Hall Effect (SHE), which can
switch the magnetization direction of the free layer. The ratio
of the generated spin current to the applied charge current
is normally greater than one leading to an energy-efficient
switching operation [12]. Herein, we use (1) and (2) to develop
an SOT-MRAM device model using the parameters listed in
Table I [11]. The SOT-MRAM model is used along with the
14nm HP-FinFET PTM library to implement the neuron and
synapse circuits as described in the following.

B. SOT-MRAM Based Synapse

Resistive devices have been broadly studied to be used as
weighted connections between neurons in neural networks.
Fig. 1 shows a neuron with Y; = X; x W, as its input, in
which X; is the input signal and W; is a binarized weight.
The corresponding circuit implementation is also shown in the
figure, which includes two SOT-MRAM cells and a differential
amplifier as the synapse. The output of the differential ampli-
fier (Y;) is proportional to (I* — I7), where It = X;G;
and I~ = X;G;. Thus, ¥; o< X;(G} — G;), in which
G} and G; are the conductance of SOT-MRAM1 and SOT-
MRAM?2, respectively. The conductance of SOT-MRAMs can
be adjusted to realize negative and positive weights in a binary
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Fig. 2. (a) The SOT-MRAM based neuron, (b) The VTC curves showing var-
ious operating regions (ORs) of PMOS (MP) and NMOS (MN) transistors, in
which L, S, and C represent linear, saturation, and cutoff regions, respectively.

TABLE II
COMPARISON OF VARIOUS ANALOG SIGMOIDAL NEURONS.
[13] [14] Proposed Herein

Normalized Power Consumption ~ 7.4x  0.98% 1x

Normalized Area Consumption 10x 12.3x 1x

Normalized Power-Area Product 74X 12 Ix
synapse. For instance, for W; = —1, SOT-MRAMI1 and

SOT-MRAM?2 should be in AP and P states, respectively,
Rap > Rp, which means Gap < Gp since G = 1/R,
therefore G < G; and Y; < 0.

III. PROPOSED SOT-MRAM BASED NEURON

Here, we propose an analog sigmoidal neuron, which in-
cludes two SOT-MRAM devices and a CMOS-based inverter,
as shown in Fig. 2 (a). The magnetization configurations of
SOT-MRAM!1 and SOT-MRAM2 devices should be in P and
AP states, respectively. The SOT-MRAMs in the neuron’s
circuit create a voltage divider, which reduces the slope of
the linear operating region in the inverter’s voltage transfer
characteristic (VTC) curve. The reduction in the slope of the
linear region in the CMOS inverter creates a smooth high-to-
low output voltage transition, which enables the realization of
a stgmoid activation function. Fig. 2 (b) shows the SPICE
circuit simulation results of the proposed SOT-MRAM based
neuron using Vpp = 0.8V and Vsg = OV. The results verify
that the neuron can approximate a sigmoid(—x) activation
function that is biased around b = £(Vpp — Vss) voltage.
The non-zero bias voltage can be canceled at both circuit-
and algorithm-level.

Table II provides a comparison between our SOT-MRAM
based sigmoidal neuron and previous power- and area-efficient
analog neurons [13], [14]. The SPICE circuit simulation results
obtained show an average power consumption of 64 W for the
SOT-MRAM based sigmoid neuron. Moreover, the layout de-
sign of the proposed neuron circuit shows an area occupation
of 13X x 302, in which X is a technology-dependent parameter.
Herein, we used the 14nm FinFET technology, which leads to
the approximate area occupation of 0.02um?2. To provide a fair
comparison in terms of area and power dissipation, we utilized
the general scaling method [15] to normalize the power dissi-
pation and area of the designs listed in Table II. Comparison
results indicate that the proposed SOT-MRAM-based neuron
achieves significant area reduction while realizing comparable
power consumption compared to the previous analog neuron
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Fig. 4. The 784 x 16 x 10 SOT-MRAM based MLP circuit.

implementations. This leads to a 74x and 12X reduction in
power-area product compared to the designs introduced in [13]
and [14], respectively. Moreover, our proposed implementation
is compatible with SOT-MRAM synapses, and consequently,
this enables developing MRAM-based memory arrays that can
realize both synaptic behaviors and activation functions within
their architecture without requiring to transfer the data to the
processor to compute the activation functions.

IV. IMAC ARCHITECTURE

The proposed SOT-MRAM-based neurons and synapses are
utilized to form an in-memory analog computing (IMAC)
architecture, as shown in Fig. 3. IMAC architecture includes a
network of tightly coupled IMAC subarrays, which consist of
weights, differential amplifiers, and neuron circuits, as shown
in Fig. 3 (b). We have only shown the read path of the array for
simplicity since the focus of this work is on the inference phase
of the neural networks. The synaptic connections are designed
in the form of a crossbar architecture, in which the number of
columns and rows can be defined based on the number of input
and output nodes in a single FC layer, respectively. During the
configuration phase, the resistance of the SOT-MRAM-based
synapses will be tuned using the bit-lines (BLs) and source-
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Fig. 5. Python-based simulation framework developed for SPICE circuit
realization of IMAC unit.

IMAC-n (.sp)

lines (SLs) which are shared among different rows. The write
word line (WWL) control signals will only activate one row
in each clock cycle, thus the entire array can be updated using
j clock cycles, where j is equal to the number of neurons in
the output layer. In the inference phase, BL is connected to
the input signals, SL is in a high-impedance (Hi-Z) state, and
read word line (RWL) and WWL control signals are connected
to VDD and GND, respectively. This will generate It and
I~ currents shown in Fig. 3 (b). The amplitude of produced
currents depends on the input signals and the resistances
of SOT-MRAM synapses already tuned in the configuration
phase. Each row includes a shared differential amplifier, which
generates an output voltage proportional to Zl(Ijn -1, )
for the nth row, where 7 is the total number of nodes in the
input layer. Finally, the outputs of the differential amplifiers
are connected to the SOT-MRAM-based sigmoidal neurons to
compute the activation functions.

In the IMAC architecture, each subarray computes both
MAC operations and neurons’ activation functions of a single
FC layer and passes the result to its downstream neighbor
IMAC subarrays that can compute the next FC layer. Thus, the
IMAC architecture can be readily used to implement a multi-
layer perceptron (MLP). Fig. 4 depicts the circuit realization
of a 784 x 16 x 10 SOT-MRAM based MLP classifier. In this
regard, we developed a Python-based simulation framework to
realize the SPICE circuit implementation of the IMAC-based
MLP classifier, as shown in Fig. 5. The simulation framework
includes a Map Subarray component that receives the trained
weights and biases from an offline learning algorithm and
builds individual subcircuits of IMAC subarrays for each FC
layer in the MLP model. Then, the Map/Test IMAC component
maps the generated IMAC subcircuits into the IMAC archi-



TABLE III
THE NOTATIONS AND DESCRIPTIONS OF THE PROPOSED LEARNING
MECHANISM FOR THE IMAC-BASED MLP.

Teacher Network Student Network

Weights w, €R W, € {-1,+1}
Biases b; € R B; € {—1,+1}
Transfer Function yi =w;z+b; yi = Wiz + B;

Activation Function o, = sigmoid(—y;) 0; = sigmoid(—y;)

TABLE IV
PERFORMANCE COMPARISON AMONG VARIOUS IMPLEMENTATIONS OF
THE BINARIZED 784 X 16 x 10 MLP CLASSIFIER.

Architecture —pr= ADsri?/th?on Funciion~ Performance (%)
cpu® Digital Digital ~ 10%
NMC [7] Digital Digital ~10°
AIMC [9] Analog Digital ~ 106
IMAC Analog Analog ~ 108

™

@ Implemented on Intel® Core™ i9-10900X.

tecture, and runs SPICE circuit simulation to obtain accuracy,
and measure power consumption and execution time.
Furthermore, we developed a hardware-aware teacher-
student learning approach for IMAC with full-precision
teacher and binarized student networks. Table III provides the
notations and descriptions for the networks, in which z is the
input of the network and y; and o; are the input and output of
the ith neuron, respectively. To incorporate the features of the
SOT-MRAM based synapses and neurons within our training
mechanism, we made two modifications to the approaches
previously used for training binarized neural networks (BNNs)
[8]. First, we used binarized biases in the student networks
instead of real-valued biases. Second, since our SOT-MRAM
neuron realizes sigmoidal activation function (sigmoid(—z))
without any computation overheads, we could avoid binarizing
the activation functions and reduce the possible information
loss in the teacher or student networks [8]. After each weight
update in the teacher network, we clip the real-valued weights
and biases within the [—1, 1] interval and then use the below
deterministic binarization approach to binarize them:

Wi]' = { and Bij = {

Simulation results show a classification accuracy of 85.56%
for 784 x 16 x 10 IMAC-based MLP classifier, which is
comparable to the 86.54% accuracy realized by BNNs such as
XNOR-Net [8] and [16]. Moreover, Table IV provides a per-
formance comparison between IMAC and other CPU, NMC,
and IMC implementations of a 784 x 16 x 10 MLP architecture.
As listed in the table, IMAC-based MLP can complete the
classification task approximately four, three, and two orders
of magnitude faster than CPU, digital NMC [7], and mixed-
signal AiIMC [9] architectures, respectively. In particular, the
IMAC’s execution time to perform the recognition task is less
than 40 clock cycles of the Intel® Core™ i9-10900X CPU with
3.7 GHz frequency, while it takes more than 1,000,000 cycles
for the CPU to complete the similar task.

+1,
-1,

wij>0

wij <0

+1,
-1,
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Fig. 6. Heterogeneous CPU-IMAC data flow architecture.
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TABLE V
X86 ISA EXTENSION.
Function
Signed binarization and store data to buffer
Load data from buffer

Instruction
store_imac rl, addr;
load_imac rl, addr;

V. HETEROGENEOUS CPU-IMAC ARCHITECTURE

Despite the aforementioned performance advantages of the
IMAC arrays for MLP classifiers, their low-precision compu-
tation can be prohibitive for many mobile computing applica-
tions that require large-scale deep learning models. Thus, this
section proposes a simple but effective method to integrate
IMAC with general-purpose mobile processors to realize a
mixed-signal and mixed-precision CNN inference achieving
performance and energy improvements.

We propose a heterogeneous architecture that uses the CPU
to realize full-precision convolution layers, while the low-
precision FC layers are implemented on IMAC. The CPU-
IMAC architecture uses IMAC as an on-chip co-processor that
shares the cache hierarchy with CPU as shown in Fig. 6. This
is because the intermediate data transfer between CPU and
IMAC can be faster as compared to placing IMAC off-chip.
To remove the need for digital-to-analog converters (DACs)
between conventional digital CPU and analog IMAC, a sign
unit is used in the last convolution layer to convert the output
of the convolution layer to -1, 0,1 values which can be
realized by Vsg, GND, Vpp voltages without requiring a
DAC. To enable fast data transfer between CPU and IMAC, a
hardware buffer and a ‘ready’ register are added. The buffer
can be used to store both inputs and outputs of the IMAC.

This design extends the existing x86 Instruction Set
Architecture (ISA) with two new instructions, which are
store_imac and load_imac as their format and descrip-
tion listed in Table V. The buffer address is not part of the
memory address space. Before IMAC starts its computation,
each of the input data is converted through the sign unit
and stored in the buffer. A designated address (e.g., 0x0) is
reserved for the ‘ready’ register. Before transferring data to
the buffer, a store_imac instruction is executed to set the
‘ready’ register to 0. After all of the input data are stored
in the buffer, the ‘ready’ register is set to 1. When the
IMAC computation is done, the analog output of the IMAC
is converted to digital via an array of 3-bit analog-to-digital
converters (ADCs). The buffer is used to store the IMAC
output, and the ‘ready’ register is set to —1, indicating that
the buffer is not used for holding input data anymore.

When IMAC computes, the CPU waits for the results.
Typically, there are two ways to resume the CPU computation
after offloading computation to a co-processor: pulling and



interrupt. Pulling requires the CPU to periodically read the
completion status of the IMAC, which adds instruction over-
heads and wastes energy. Interrupt allows the co-processor to
notify the CPU when the computation on the co-processor is
done so that the CPU can run other tasks in the meanwhile.
However, handling interrupt requires additional latency. The
proposed IMAC computation is deterministic and has rela-
tively low latency (i.e., tens of CPU cycles time). Therefore,
the proposed design uses a timer instead of the pulling or in-
terrupt mechanism to resume CPU computation. For different
neural network topologies, the expected computation time can
be determined and loaded to a timer register before IMAC
starts computation. After input transfer to the buffer is done,
the timer register starts to count down. The CPU can start to
read the IMAC results after the timer counts down to zero.

A. Hardware-Aware Learning Algorithm

To fully leverage the energy and performance benefits of
the heterogeneous CPU-IMAC architecture without compro-
mising accuracy, we developed a hardware-aware learning
algorithm realizing the computation limitations and features
of our mixed-precision and mixed-signal CPU-IMAC archi-
tecture. The learning algorithm includes two training steps:
in step-1, the vanilla full-precision CNN model is trained
using backpropagation without any changes in the learning
mechanism or CNN model. In step-2, we divide the CNN
models into two parts, convolution layers, and FC layers, and
retrain the isolated FC layers while incorporating the hardware
characteristics of IMAC subarrays since that is the portion
of the CNN model that will be implemented on the IMAC
unit. To achieve this goal, first, we input the entire training
dataset to the CNN model trained in step-1 and read the output
of the last convolution layer after flattening to obtain a new
train dataset for training the FC layers. A sign function is
applied to the output of the convolution layer to imitate the
inference hardware and generate -1, 0, 1 values for the input
of the FC layers. Accordingly, we modify the FC layers based
on the features of IMAC by using binarized synapses and
sigmoid(—x) activation functions, which can be realized by
SOT-MRAM-based synapses and neurons. Finally, the teacher-
student learning mechanism described in the previous section
will be utilized along with the convoluted training dataset to
train the IMAC-based FC classifier. It is worth noting that
most of the existing CNN models use Rectified Linear Units
(ReLUs) to realize a non-saturating nonlinearity due to their
implementation simplicity and performance benefits compared
to digital implementations of tanh and sigmotid activation
functions. However, while we still use ReLLU in the convolu-
tion layers implemented on CPU, in IMAC architecture, our
proposed analog neurons realize intrinsic high-performance
sigmoidal activation functions that provide accuracy benefits
with minimal performance overheads.

B. Simulation Results and Discussion

In this work, we implemented two CNN models on the
proposed CPU-IMAC architecture, i.e. LeNet [17] and VGG
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Fig. 7. (a) LeNet-5 [17] for MNIST, (b) VGG [18] for CIFAR-10.

[18] for MNIST [17] and CIFAR-10 [19] pattern recognition
applications, respectively. To obtain the inference accuracy of
the CPU-IMAC based CNN implementations, first, we used
TensorFlow [20] platform to implement the convolution layers,
then the output of the last convolution layers is transferred to
the Python-based simulation framework that we developed for
the SPICE circuit implementation of IMAC, shown in Fig. 5.
The simulation results show recognition accuracy values of
97.39% and 92.87% for MNIST and CIFAR-10 datasets using
mixed-precision and mixed-signal CPU-IMAC implementation
of LeNet and VGG models, respectively, which is comparable
to the 98.29% and 93.14% accuracies realized by full-precision
digital implementations of these models on CPU.

For performance analyses, we use Champsim [21], a trace-
based simulator that models an out-of-order core with a
detailed memory system. The core parameters are adapted
from mobile processor Intel 17-8550U [22]. The main memory
(LPDDR3) timings are adopted from Micron EDF8132A1MC
[23]. IMAC architecture includes 128KB of SOT-MRAM cells
constituting four IMAC subarrays of 512bx512b. The size of
the buffer is 64 bytes, which is enough to transfer the data
produced in the last convolution layer of LeNet-5 and VGG
models to IMAC and the result of IMAC computation back to
CPU. The simulation results exhibit 11.2% and 1.3% speedup
for the inference operation of LeNet and VGG models, re-
spectively, which is proportional to the ratio of FC layers to
convolution layers computation. The LeNet model used herein
has 2 convolution layers and 3 FC layers, while the VGG
model used for the CIFAR-10 dataset includes 13 convolution
layers, and only 2 FC layers, as shown in Fig. 7.

To realize the energy benefits of the proposed CPU-IMAC
architecture, we developed an analytical model based on Mc-
PAT [24], CACTI [25], and Micron DDR3 SDRAM System-
Power Calculator [26]. CACTI is used to get per access energy
for different levels of cache. McPAT is used to get the energy
consumed by the core. We modify the Micron DDR3 SDRAM
System-Power Calculator to model memory power consump-
tion with current numbers from Micron EDF8132A1MC [23].
Fig. 8 provides a comparison between CPU-IMAC architecture
and the baseline mobile processor in terms of energy con-
sumption. The results demonstrate a 10% and 6.5% energy
reduction for CPU-IMAC-based implementations of LeNet-
5 and VGG models, respectively. It is worth noting that the
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TABLE VI
SPEEDUP, ENERGY IMPROVEMENT AND ACCURACY DIFFERENCE OF
CPU-IMAC COMPARED TO THE BASELINE MOBILE PROCESSOR.

CNN Model Speedup  Energy Improvement Accuracy Diff.
LeNet-5 [17] 11.2% 10% -0.9%
VGG [18] 1.3% 6.5% -0.27%

total energy consumption of IMAC is equal to 97 nJ and
512 nJ for the LeNet and VGG implementations, respectively,
which are negligible compared to the energy consumption
of CPU as shown in Fig. 8. Finally, Table VI summarizes
the speedup, energy improvement, and accuracy difference
of CPU-IMAC architecture compared to the baseline mobile
processor, showing that the proposed architecture can achieve
important performance and energy improvements while real-
izing comparable accuracy.

VI. CONCLUSION

We proposed a heterogeneous mixed-precision and mixed-
signal CPU-IMAC architecture to realize energy and perfor-
mance improvements for CNN inference in mobile devices.
The analog IMAC units were proposed to be integrated with
digital mobile processors to implement FC and convolution
layers of CNN models, respectively. We investigated the
circuit-, architecture-, and algorithm-level requirements for
efficient realization of the CPU-IMAC architecture and ver-
ified its potential performance and energy benefits via circuit
and architecture level simulations of two CNN models, i.e.
LeNet and VGG. It has been shown that the IMAC unit can
realize orders of magnitude performance improvement for FC
classifiers. However, when integrated with mobile processors
to implement CNN models, the CPU-IMAC architecture per-
formance and energy improvements follow Amdahl’s law and
is proportional to the ratio of FC layers to convolution layers.
Despite these limitations, we could obtain an energy reduction
of 6.5% and 10% for VGG and LeNet models, which is
considerable for mobile computing applications. The proposal
of CPU-IMAC architecture provides several possibilities for
future work to realize significantly more performance and
energy improvements, including but not limited to: (1) design
space exploration to develop CNN models optimized to take
advantage of the benefits of CPU-IMAC architecture, espe-
cially via tuning the ratio of convolution layers to FC layers
within a CNN model; (2) Extending the utilization of IMAC to
convolution layers through convolution unrolling techniques.
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