
An In-Memory Analog Computing Co-Processor for

Energy-Efficient CNN Inference on Mobile Devices

Mohammed Elbtity1, Abhishek Singh2, Brendan Reidy1, Xiaochen Guo2, Ramtin Zand1

1Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
2Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA

Abstract—In this paper, we develop an in-memory analog
computing (IMAC) architecture realizing both synaptic behavior
and activation functions within non-volatile memory arrays.
Spin-orbit torque magnetoresistive random-access memory (SOT-
MRAM) devices are leveraged to realize sigmoidal neurons as
well as binarized synapses. First, it is shown the proposed IMAC
architecture can be utilized to realize a multilayer perceptron
(MLP) classifier achieving orders of magnitude performance
improvement compared to previous mixed-signal and digital
implementations. Next, a heterogeneous mixed-signal and mixed-
precision CPU-IMAC architecture is proposed for convolutional
neural networks (CNNs) inference on mobile processors, in which
IMAC is designed as a co-processor to realize fully-connected
(FC) layers whereas convolution layers are executed in CPU.
Architecture-level analytical models are developed to evaluate
the performance and energy consumption of the CPU-IMAC
architecture. Simulation results exhibit 6.5% and 10% energy
savings for CPU-IMAC based realizations of LeNet and VGG
CNN models, for MNIST and CIFAR-10 pattern recognition
tasks, respectively.

Index Terms—in-memory computing, magnetic random ac-
cess memory (MRAM), convolutional neural networks (CNNs),
mixed-precision and mixed-signal inference.

I. INTRODUCTION

Deep learning algorithms are playing an important role in

pursuing safer self-driving cars, smarter robots, smartphone

applications, etc., which are typically running on mobile com-

puting devices. One of the major limitations of implementing

deep learning models on these mobile computing devices is

their limited computing power and severe energy constraints.

Machine learning (ML) applications such as image and speech

recognition are known to be more data-centric tasks, in which

most of the energy and time is consumed in data movement

rather than computation [1]. As alternatives to von Neumann

architectures, in-memory computing (IMC) and near-memory

computing (NMC) architectures aim to address these issues

through performing processing within or near storage devices,

respectively. Various approaches have been proposed in recent

years to achieve this goal, from 3D integration technology [2]

to emerging nonvolatile resistive memory devices, which can

store information in their conductance states [1], [3]. Some

of the resistive memory technologies that have been used

to realize IMC systems are resistive random-access memory

(ReRAM) [4], [5], phase-change memory (PCM) [6], and

magnetoresistive random-access memory (MRAM) [7].

A wide range of the previous memristive-based IMC and

NMC schemes operate in the digital domain [7], meaning

that they leverage resistive memory crossbars to implement

Boolean logic operations such as XNOR/XOR within memory

subarrays, which can be utilized to implement multiplication

operation in binarized neural networks [8]. While digital IMC

approaches provide important energy and area benefits, they

are not fully leveraging the true potential of resistive memory

devices that can be realized in the analog domain. Mixed-

signal analog/digital IMC architectures, such as the recently-

proposed AiMC [9], leverage the resistive memory crossbars to

compute multiply and accumulation (MAC) operation in O(1)

time complexity using various physical mechanisms such as

Ohm’s law and Kirchhoff’s law in electrical circuits. Here, we

use MRAM technology to develop analog neurons as well as

synapses to form an in-memory analog computing (IMAC)

architecture that can compute both MACs and activation

functions within an MRAM array. This enables maintaining

the computation in the analog domain while processing and

transferring data from one layer to another layer in fully con-

nected (FC) classifiers. Despite their performance and energy

benefits, the low precision computation associated with analog

IMC architectures is prohibitive for many practical mobile

computing applications which require large scale deep learning

models [3]. Thus, alternative solutions are sought to integrate

the energy-efficient but low-precision IMAC architecture with

high-precision mobile CPUs. In this work, we will conduct

algorithm- and architecture-level innovations to design and

simulate a heterogeneous mixed-precision and mixed-signal

CPU-IMAC mobile processor achieving low-energy and high-

performance inference for deep convolutional neural networks

(CNNs) without compromising their accuracy.

II. BACKGROUND

A. Fundamentals of SOT-MRAMs

We use spin-orbit torque (SOT) MRAM devices [10] as the

building block for our proposed IMAC architecture. The SOT-

MRAM cell includes a magnetic tunnel junction (MTJ) with

two ferromagnetic (FM) layers separated by a thin oxide layer.

MTJ has two different resistance levels that are determined

based on the angle (θ) between the magnetization orientation

of the FM layers. The resistance of the MTJ in parallel (P) and

antiparallel (AP) magnetization configurations can be obtained

using the following equations [11]:

188

2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

978-1-6654-3946-6/21/$31.00 ©2021 IEEE
DOI 10.1109/ISVLSI51109.2021.00043

20
21

 IE
EE

 C
om

pu
te

r S
oc

ie
ty

 A
nn

ua
l S

ym
po

siu
m

 o
n

V
LS

I (
IS

V
LS

I)
| 9

78
-1

-6
65

4-
39

46
-6

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
V

LS
I5

11
09

.2
02

1.
00

04
3

TABLE I
PARAMETERS OF THE SHE-MRAM DEVICE [11].

Parameter Description Value

MTJArea lMTJ .wMTJ .π/4 50nm × 30nm × π/4

HMV lHM .wHM .tHM 100nm × 50nm × 3nm

RA RA 10 Ω.µm2

TMR0 TMR 200

V0 Fitting Parameter 0.65

Fig. 1. The SOT-MRAM based binary synapse.

R(θ) =
2RMTJ(1 + TMR)

2 + TMR(1 + cos θ)

=

{

RP = RMTJ , θ = 0

RAP = RMTJ(1 + TMR), θ = π

(1)

TMR =
TMR0/100

1 + (Vb

V0
)2

(2)

where RMTJ = RA
Area , in which RA is the resistance-area

product value. TMR is the tunneling magnetoresistance that

is a function of bias voltage (Vb). V0 is a fitting parameter,

and TMR0 is a material-dependent constant. In MTJ, the

magnetization direction of electrons in one of the FM layers is

fixed (pinned layer), while those of the other FM layer (free

layer) can be switched. In [10], it is shown that passing a

charge current through a heavy metal (HM) generates a spin-

polarized current using the spin Hall Effect (SHE), which can

switch the magnetization direction of the free layer. The ratio

of the generated spin current to the applied charge current

is normally greater than one leading to an energy-efficient

switching operation [12]. Herein, we use (1) and (2) to develop

an SOT-MRAM device model using the parameters listed in

Table I [11]. The SOT-MRAM model is used along with the

14nm HP-FinFET PTM library to implement the neuron and

synapse circuits as described in the following.

B. SOT-MRAM Based Synapse

Resistive devices have been broadly studied to be used as

weighted connections between neurons in neural networks.

Fig. 1 shows a neuron with Yi = Xi × Wi as its input, in

which Xi is the input signal and Wi is a binarized weight.

The corresponding circuit implementation is also shown in the

figure, which includes two SOT-MRAM cells and a differential

amplifier as the synapse. The output of the differential ampli-

fier (Yi) is proportional to (I+ − I−), where I+ = XiG
+
i

and I− = XiG
−

i . Thus, Yi ∝ Xi(G
+
i − G−

i), in which

G+
i and G−

i are the conductance of SOT-MRAM1 and SOT-

MRAM2, respectively. The conductance of SOT-MRAMs can

be adjusted to realize negative and positive weights in a binary

Fig. 2. (a) The SOT-MRAM based neuron, (b) The VTC curves showing var-
ious operating regions (ORs) of PMOS (MP) and NMOS (MN) transistors, in
which L, S, and C represent linear, saturation, and cutoff regions, respectively.

TABLE II
COMPARISON OF VARIOUS ANALOG SIGMOIDAL NEURONS.

[13] [14] Proposed Herein

Normalized Power Consumption 7.4× 0.98× 1×
Normalized Area Consumption 10× 12.3× 1×
Normalized Power-Area Product 74× 12× 1×

synapse. For instance, for Wi = −1, SOT-MRAM1 and

SOT-MRAM2 should be in AP and P states, respectively,

RAP > RP , which means GAP < GP since G = 1/R,

therefore G+
i < G−

i and Yi < 0.

III. PROPOSED SOT-MRAM BASED NEURON

Here, we propose an analog sigmoidal neuron, which in-

cludes two SOT-MRAM devices and a CMOS-based inverter,

as shown in Fig. 2 (a). The magnetization configurations of

SOT-MRAM1 and SOT-MRAM2 devices should be in P and

AP states, respectively. The SOT-MRAMs in the neuron’s

circuit create a voltage divider, which reduces the slope of

the linear operating region in the inverter’s voltage transfer

characteristic (VTC) curve. The reduction in the slope of the

linear region in the CMOS inverter creates a smooth high-to-

low output voltage transition, which enables the realization of

a sigmoid activation function. Fig. 2 (b) shows the SPICE

circuit simulation results of the proposed SOT-MRAM based

neuron using VDD = 0.8V and VSS = 0V . The results verify

that the neuron can approximate a sigmoid(−x) activation

function that is biased around b = 1

2
(VDD − VSS) voltage.

The non-zero bias voltage can be canceled at both circuit-

and algorithm-level.

Table II provides a comparison between our SOT-MRAM

based sigmoidal neuron and previous power- and area-efficient

analog neurons [13], [14]. The SPICE circuit simulation results

obtained show an average power consumption of 64µW for the

SOT-MRAM based sigmoid neuron. Moreover, the layout de-

sign of the proposed neuron circuit shows an area occupation

of 13λ×30λ, in which λ is a technology-dependent parameter.

Herein, we used the 14nm FinFET technology, which leads to

the approximate area occupation of 0.02µm2. To provide a fair

comparison in terms of area and power dissipation, we utilized

the general scaling method [15] to normalize the power dissi-

pation and area of the designs listed in Table II. Comparison

results indicate that the proposed SOT-MRAM-based neuron

achieves significant area reduction while realizing comparable

power consumption compared to the previous analog neuron

189

Fig. 3. (a) IMAC architecture, (b) The read path of an n×m IMAC subarray.

Fig. 4. The 784× 16× 10 SOT-MRAM based MLP circuit.

implementations. This leads to a 74× and 12× reduction in

power-area product compared to the designs introduced in [13]

and [14], respectively. Moreover, our proposed implementation

is compatible with SOT-MRAM synapses, and consequently,

this enables developing MRAM-based memory arrays that can

realize both synaptic behaviors and activation functions within

their architecture without requiring to transfer the data to the

processor to compute the activation functions.

IV. IMAC ARCHITECTURE

The proposed SOT-MRAM-based neurons and synapses are

utilized to form an in-memory analog computing (IMAC)

architecture, as shown in Fig. 3. IMAC architecture includes a

network of tightly coupled IMAC subarrays, which consist of

weights, differential amplifiers, and neuron circuits, as shown

in Fig. 3 (b). We have only shown the read path of the array for

simplicity since the focus of this work is on the inference phase

of the neural networks. The synaptic connections are designed

in the form of a crossbar architecture, in which the number of

columns and rows can be defined based on the number of input

and output nodes in a single FC layer, respectively. During the

configuration phase, the resistance of the SOT-MRAM-based

synapses will be tuned using the bit-lines (BLs) and source-

Fig. 5. Python-based simulation framework developed for SPICE circuit
realization of IMAC unit.

lines (SLs) which are shared among different rows. The write

word line (WWL) control signals will only activate one row

in each clock cycle, thus the entire array can be updated using

j clock cycles, where j is equal to the number of neurons in

the output layer. In the inference phase, BL is connected to

the input signals, SL is in a high-impedance (Hi-Z) state, and

read word line (RWL) and WWL control signals are connected

to VDD and GND, respectively. This will generate I+ and

I− currents shown in Fig. 3 (b). The amplitude of produced

currents depends on the input signals and the resistances

of SOT-MRAM synapses already tuned in the configuration

phase. Each row includes a shared differential amplifier, which

generates an output voltage proportional to
∑

i(I
+
i,n − I−i,n)

for the nth row, where i is the total number of nodes in the

input layer. Finally, the outputs of the differential amplifiers

are connected to the SOT-MRAM-based sigmoidal neurons to

compute the activation functions.

In the IMAC architecture, each subarray computes both

MAC operations and neurons’ activation functions of a single

FC layer and passes the result to its downstream neighbor

IMAC subarrays that can compute the next FC layer. Thus, the

IMAC architecture can be readily used to implement a multi-

layer perceptron (MLP). Fig. 4 depicts the circuit realization

of a 784× 16× 10 SOT-MRAM based MLP classifier. In this

regard, we developed a Python-based simulation framework to

realize the SPICE circuit implementation of the IMAC-based

MLP classifier, as shown in Fig. 5. The simulation framework

includes a Map Subarray component that receives the trained

weights and biases from an offline learning algorithm and

builds individual subcircuits of IMAC subarrays for each FC

layer in the MLP model. Then, the Map/Test IMAC component

maps the generated IMAC subcircuits into the IMAC archi-

190

TABLE III
THE NOTATIONS AND DESCRIPTIONS OF THE PROPOSED LEARNING

MECHANISM FOR THE IMAC-BASED MLP.

Teacher Network Student Network

Weights wi ∈ R Wi ∈ {−1,+1}
Biases bi ∈ R Bi ∈ {−1,+1}
Transfer Function yi = wix+ bi yi = Wix+ Bi

Activation Function oi = sigmoid(−yi) oi = sigmoid(−yi)

TABLE IV
PERFORMANCE COMPARISON AMONG VARIOUS IMPLEMENTATIONS OF

THE BINARIZED 784× 16× 10 MLP CLASSIFIER.

Architecture
Domain

Performance (1
s
)

MAC Activation Function

CPU(1) Digital Digital ∼ 104

NMC [7] Digital Digital ∼ 105

AiMC [9] Analog Digital ∼ 106

IMAC Analog Analog ∼ 108

(1) Implemented on Intel® Core™ i9-10900X.

tecture, and runs SPICE circuit simulation to obtain accuracy,

and measure power consumption and execution time.

Furthermore, we developed a hardware-aware teacher-

student learning approach for IMAC with full-precision

teacher and binarized student networks. Table III provides the

notations and descriptions for the networks, in which x is the

input of the network and yi and oi are the input and output of

the ith neuron, respectively. To incorporate the features of the

SOT-MRAM based synapses and neurons within our training

mechanism, we made two modifications to the approaches

previously used for training binarized neural networks (BNNs)

[8]. First, we used binarized biases in the student networks

instead of real-valued biases. Second, since our SOT-MRAM

neuron realizes sigmoidal activation function (sigmoid(−x))
without any computation overheads, we could avoid binarizing

the activation functions and reduce the possible information

loss in the teacher or student networks [8]. After each weight

update in the teacher network, we clip the real-valued weights

and biases within the [−1, 1] interval and then use the below

deterministic binarization approach to binarize them:

Wij =

{

+1, wij ≥ 0

−1, wij < 0
and Bij =

{

+1, bij ≥ 0

−1, bij < 0
(3)

Simulation results show a classification accuracy of 85.56%

for 784 × 16 × 10 IMAC-based MLP classifier, which is

comparable to the 86.54% accuracy realized by BNNs such as

XNOR-Net [8] and [16]. Moreover, Table IV provides a per-

formance comparison between IMAC and other CPU, NMC,

and IMC implementations of a 784×16×10 MLP architecture.

As listed in the table, IMAC-based MLP can complete the

classification task approximately four, three, and two orders

of magnitude faster than CPU, digital NMC [7], and mixed-

signal AiMC [9] architectures, respectively. In particular, the

IMAC’s execution time to perform the recognition task is less

than 40 clock cycles of the Intel® Core™ i9-10900X CPU with

3.7 GHz frequency, while it takes more than 1,000,000 cycles

for the CPU to complete the similar task.

Fig. 6. Heterogeneous CPU-IMAC data flow architecture.

TABLE V
X86 ISA EXTENSION.

Instruction Function

store imac r1, addr; Signed binarization and store data to buffer
load imac r1, addr; Load data from buffer

V. HETEROGENEOUS CPU-IMAC ARCHITECTURE

Despite the aforementioned performance advantages of the

IMAC arrays for MLP classifiers, their low-precision compu-

tation can be prohibitive for many mobile computing applica-

tions that require large-scale deep learning models. Thus, this

section proposes a simple but effective method to integrate

IMAC with general-purpose mobile processors to realize a

mixed-signal and mixed-precision CNN inference achieving

performance and energy improvements.

We propose a heterogeneous architecture that uses the CPU

to realize full-precision convolution layers, while the low-

precision FC layers are implemented on IMAC. The CPU-

IMAC architecture uses IMAC as an on-chip co-processor that

shares the cache hierarchy with CPU as shown in Fig. 6. This

is because the intermediate data transfer between CPU and

IMAC can be faster as compared to placing IMAC off-chip.

To remove the need for digital-to-analog converters (DACs)

between conventional digital CPU and analog IMAC, a sign
unit is used in the last convolution layer to convert the output

of the convolution layer to -1,0,1 values which can be

realized by VSS , GND, VDD voltages without requiring a

DAC. To enable fast data transfer between CPU and IMAC, a

hardware buffer and a ‘ready’ register are added. The buffer

can be used to store both inputs and outputs of the IMAC.

This design extends the existing x86 Instruction Set

Architecture (ISA) with two new instructions, which are

store_imac and load_imac as their format and descrip-

tion listed in Table V. The buffer address is not part of the

memory address space. Before IMAC starts its computation,

each of the input data is converted through the sign unit

and stored in the buffer. A designated address (e.g., 0x0) is

reserved for the ‘ready’ register. Before transferring data to

the buffer, a store_imac instruction is executed to set the

‘ready’ register to 0. After all of the input data are stored

in the buffer, the ‘ready’ register is set to 1. When the

IMAC computation is done, the analog output of the IMAC

is converted to digital via an array of 3-bit analog-to-digital

converters (ADCs). The buffer is used to store the IMAC

output, and the ‘ready’ register is set to -1, indicating that

the buffer is not used for holding input data anymore.

When IMAC computes, the CPU waits for the results.

Typically, there are two ways to resume the CPU computation

after offloading computation to a co-processor: pulling and

191

interrupt. Pulling requires the CPU to periodically read the

completion status of the IMAC, which adds instruction over-

heads and wastes energy. Interrupt allows the co-processor to

notify the CPU when the computation on the co-processor is

done so that the CPU can run other tasks in the meanwhile.

However, handling interrupt requires additional latency. The

proposed IMAC computation is deterministic and has rela-

tively low latency (i.e., tens of CPU cycles time). Therefore,

the proposed design uses a timer instead of the pulling or in-

terrupt mechanism to resume CPU computation. For different

neural network topologies, the expected computation time can

be determined and loaded to a timer register before IMAC

starts computation. After input transfer to the buffer is done,

the timer register starts to count down. The CPU can start to

read the IMAC results after the timer counts down to zero.

A. Hardware-Aware Learning Algorithm

To fully leverage the energy and performance benefits of

the heterogeneous CPU-IMAC architecture without compro-

mising accuracy, we developed a hardware-aware learning

algorithm realizing the computation limitations and features

of our mixed-precision and mixed-signal CPU-IMAC archi-

tecture. The learning algorithm includes two training steps:

in step-1, the vanilla full-precision CNN model is trained

using backpropagation without any changes in the learning

mechanism or CNN model. In step-2, we divide the CNN

models into two parts, convolution layers, and FC layers, and

retrain the isolated FC layers while incorporating the hardware

characteristics of IMAC subarrays since that is the portion

of the CNN model that will be implemented on the IMAC

unit. To achieve this goal, first, we input the entire training

dataset to the CNN model trained in step-1 and read the output

of the last convolution layer after flattening to obtain a new

train dataset for training the FC layers. A sign function is

applied to the output of the convolution layer to imitate the

inference hardware and generate -1,0,1 values for the input

of the FC layers. Accordingly, we modify the FC layers based

on the features of IMAC by using binarized synapses and

sigmoid(−x) activation functions, which can be realized by

SOT-MRAM-based synapses and neurons. Finally, the teacher-

student learning mechanism described in the previous section

will be utilized along with the convoluted training dataset to

train the IMAC-based FC classifier. It is worth noting that

most of the existing CNN models use Rectified Linear Units

(ReLUs) to realize a non-saturating nonlinearity due to their

implementation simplicity and performance benefits compared

to digital implementations of tanh and sigmoid activation

functions. However, while we still use ReLU in the convolu-

tion layers implemented on CPU, in IMAC architecture, our

proposed analog neurons realize intrinsic high-performance

sigmoidal activation functions that provide accuracy benefits

with minimal performance overheads.

B. Simulation Results and Discussion

In this work, we implemented two CNN models on the

proposed CPU-IMAC architecture, i.e. LeNet [17] and VGG

Fig. 7. (a) LeNet-5 [17] for MNIST, (b) VGG [18] for CIFAR-10.

[18] for MNIST [17] and CIFAR-10 [19] pattern recognition

applications, respectively. To obtain the inference accuracy of

the CPU-IMAC based CNN implementations, first, we used

TensorFlow [20] platform to implement the convolution layers,

then the output of the last convolution layers is transferred to

the Python-based simulation framework that we developed for

the SPICE circuit implementation of IMAC, shown in Fig. 5.

The simulation results show recognition accuracy values of

97.39% and 92.87% for MNIST and CIFAR-10 datasets using

mixed-precision and mixed-signal CPU-IMAC implementation

of LeNet and VGG models, respectively, which is comparable

to the 98.29% and 93.14% accuracies realized by full-precision

digital implementations of these models on CPU.

For performance analyses, we use Champsim [21], a trace-

based simulator that models an out-of-order core with a

detailed memory system. The core parameters are adapted

from mobile processor Intel i7-8550U [22]. The main memory

(LPDDR3) timings are adopted from Micron EDF8132A1MC

[23]. IMAC architecture includes 128KB of SOT-MRAM cells

constituting four IMAC subarrays of 512b×512b. The size of

the buffer is 64 bytes, which is enough to transfer the data

produced in the last convolution layer of LeNet-5 and VGG

models to IMAC and the result of IMAC computation back to

CPU. The simulation results exhibit 11.2% and 1.3% speedup

for the inference operation of LeNet and VGG models, re-

spectively, which is proportional to the ratio of FC layers to

convolution layers computation. The LeNet model used herein

has 2 convolution layers and 3 FC layers, while the VGG

model used for the CIFAR-10 dataset includes 13 convolution

layers, and only 2 FC layers, as shown in Fig. 7.

To realize the energy benefits of the proposed CPU-IMAC

architecture, we developed an analytical model based on Mc-

PAT [24], CACTI [25], and Micron DDR3 SDRAM System-

Power Calculator [26]. CACTI is used to get per access energy

for different levels of cache. McPAT is used to get the energy

consumed by the core. We modify the Micron DDR3 SDRAM

System-Power Calculator to model memory power consump-

tion with current numbers from Micron EDF8132A1MC [23].

Fig. 8 provides a comparison between CPU-IMAC architecture

and the baseline mobile processor in terms of energy con-

sumption. The results demonstrate a 10% and 6.5% energy

reduction for CPU-IMAC-based implementations of LeNet-

5 and VGG models, respectively. It is worth noting that the

192

Fig. 8. Energy consumption comparison between baseline mobile processor
and CPU-IMAC architecture for LeNet-5 and VGG CNN models.

TABLE VI
SPEEDUP, ENERGY IMPROVEMENT AND ACCURACY DIFFERENCE OF

CPU-IMAC COMPARED TO THE BASELINE MOBILE PROCESSOR.

CNN Model Speedup Energy Improvement Accuracy Diff.

LeNet-5 [17] 11.2% 10% -0.9%
VGG [18] 1.3% 6.5% -0.27%

total energy consumption of IMAC is equal to 97 nJ and

512 nJ for the LeNet and VGG implementations, respectively,

which are negligible compared to the energy consumption

of CPU as shown in Fig. 8. Finally, Table VI summarizes

the speedup, energy improvement, and accuracy difference

of CPU-IMAC architecture compared to the baseline mobile

processor, showing that the proposed architecture can achieve

important performance and energy improvements while real-

izing comparable accuracy.

VI. CONCLUSION

We proposed a heterogeneous mixed-precision and mixed-

signal CPU-IMAC architecture to realize energy and perfor-

mance improvements for CNN inference in mobile devices.

The analog IMAC units were proposed to be integrated with

digital mobile processors to implement FC and convolution

layers of CNN models, respectively. We investigated the

circuit-, architecture-, and algorithm-level requirements for

efficient realization of the CPU-IMAC architecture and ver-

ified its potential performance and energy benefits via circuit

and architecture level simulations of two CNN models, i.e.

LeNet and VGG. It has been shown that the IMAC unit can

realize orders of magnitude performance improvement for FC

classifiers. However, when integrated with mobile processors

to implement CNN models, the CPU-IMAC architecture per-

formance and energy improvements follow Amdahl’s law and

is proportional to the ratio of FC layers to convolution layers.

Despite these limitations, we could obtain an energy reduction

of 6.5% and 10% for VGG and LeNet models, which is

considerable for mobile computing applications. The proposal

of CPU-IMAC architecture provides several possibilities for

future work to realize significantly more performance and

energy improvements, including but not limited to: (1) design

space exploration to develop CNN models optimized to take

advantage of the benefits of CPU-IMAC architecture, espe-

cially via tuning the ratio of convolution layers to FC layers

within a CNN model; (2) Extending the utilization of IMAC to

convolution layers through convolution unrolling techniques.

REFERENCES

[1] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nature Electronics, vol. 1, no. 6, pp. 333–343, 2018.

[2] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” in Proceedings of the 42nd Annual International

Symposium on Computer Architecture, ser. ISCA ’15, 2015, p. 105–117.
[3] M. Le Gallo et al., “Mixed-precision in-memory computing,” Nature

Electronics, vol. 1, no. 4, pp. 246–253, 2018.
[4] P. Chi et al., “Prime: A novel processing-in-memory architecture for

neural network computation in reram-based main memory,” in Proceed-

ings of the 43rd International Symposium on Computer Architecture, ser.
ISCA ’16, 2016, p. 27–39.

[5] S. Yin et al., “High-throughput in-memory computing for binary deep
neural networks with monolithically integrated rram and 90-nm cmos,”
IEEE Transactions on Electron Devices, vol. 67, no. 10, 2020.

[6] K. Spoon et al., “Accelerating deep neural networks with analog memory
devices,” in 2020 IEEE International Memory Workshop (IMW), 2020.

[7] S. Angizi et al., “Mrima: An mram-based in-memory accelerator,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 39, no. 5, pp. 1123–1136, 2020.
[8] M. Rastegari et al., “Xnor-net: Imagenet classification using binary

convolutional neural networks,” in Computer Vision – ECCV 2016,
B. Leibe et al., Eds., 2016, pp. 525–542.

[9] J. Doevenspeck et al., “Sot-mram based analog in-memory computing
for dnn inference,” in IEEE Symposium on VLSI Technology, 2020.

[10] L. Liu et al., “Spin-torque switching with the giant spin hall effect of
tantalum,” Science, vol. 336, no. 6081, pp. 555–558, 2012.

[11] Y. Zhang et al., “Compact modeling of perpendicular-anisotropy
cofeb/mgo magnetic tunnel junctions,” IEEE Transactions on Electron

Devices, vol. 59, no. 3, pp. 819–826, March 2012.
[12] R. Zand, A. Roohi, and R. F. DeMara, “Energy-efficient and process-

variation-resilient write circuit schemes for spin hall effect mram de-
vice,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 9,
pp. 2394–2401, Sep. 2017.

[13] G. Khodabandehloo, M. Mirhassani, and M. Ahmadi, “Analog imple-
mentation of a novel resistive-type sigmoidal neuron,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 20, no. 4, pp. 750–754, 2012.
[14] J. Shamsi et al., “Hyperbolic tangent passive resistive-type neuron,” in

IEEE International Symposium on Circuits and Systems (ISCAS), 2015.
[15] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction

of CMOS device performance from 180 nm to 7 nm,” Integration,
vol. 58, pp. 74–81, 6 2017.

[16] M. Courbariaux et al., “Binarized neural networks: Training deep neural
networks with weights and activations constrained to +1 or -1,” arXiv:

Learning, 2016.
[17] Y. Lecun et al., “Gradient-based learning applied to document recogni-

tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[18] S. Liu and W. Deng, “Very deep convolutional neural network based

image classification using small training sample size,” in 2015 3rd IAPR

Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730–734.
[19] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features

from tiny images,” 2009.
[20] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-

ing,” in 12th Symposium on Operating Systems Design and Implemen-

tation (OSDI 16), Nov. 2016, pp. 265–283.
[21] ChampSim, “Champsim simulator,” 2020. [Online]. Available:

https://github.com/ChampSim/ChampSim
[22] Intel, “Intel core i7-8550u,” 2020. [Online]. Avail-

able: https://laptopmedia.com/highlights/intel-core-i7-8550u-coffee-
lake-specs-performance-and-detailed-benchmarks/

[23] Micron, “Micron edf8132a1mc,” 2020. [Online]. Available:
https://datasheetspdf.com/datasheet/EDF8132A1MC.html

[24] S. Li et al., “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microar-

chitecture. ACM, 2009, pp. 469–480.
[25] R. Balasubramonian et al., “Cacti 7: New tools for interconnect ex-

ploration in innovative off-chip memories,” ACM Trans. Archit. Code

Optim., vol. 14, no. 2, pp. 14:1–14:25, Jun. 2017.
[26] Micron, “Micron system power calculators,” 2020.

[Online]. Available: https://media-www.micron.com/-
/media/client/global/documents/products/power-calculator

193

