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Abstract—We study lower bounds for minimax statistical
estimation over a Gaussian multiple-access channel (MAC) under
squared error loss, using techniques from both statistical esti-
mation and information theory. We characterize these bounds
in terms of the number of nodes n and the dimension of the
parameter space d, showing that the risk must be Q(d/nlogn).
This is within a logn factor of previous analog achievability
results. While lower bounds for minimax statistical estimation
have been previously studied under quantization constraints that
abstract the physical layer as noiseless bit pipes, to our knowl-
edge our paper provides the first lower bounds for statistical
estimation over noisy multi-user channels. This adds to a body
of works showing how analog schemes that consider the physical
layer jointly with the estimation scheme, can outperform digital
schemes that separate the two with an abstraction layer.

I. INTRODUCTION

One interesting facet of the modern data explosion is not so
much its quantity, but that increasingly, data is being generated
“at the edge”: by countless sensors and other devices, away
from the central servers that churn through it. The study of
machine learning has therefore in recent years been paying
increasing attention to techniques that make inferences by
combining data from many nodes. The key differentiating
feature that this introduces is the need to communicate the
data from edge devices to the central server, often over
noisy bandwidth-limited networks. As a result, learning and
estimation in networks has received significant interest in the
recent years.

One approach to modelling bandwidth limitations is to
consider each node to be limited in how many bits it can send
to the central server. That is, the observed samples are first
encoded using a fixed, finite number of bits, and these bits are
then communicated errorlessly using a reliable channel coding
scheme over the underlying noisy network. This amounts to
introducing a digital interface separating source coding (to
represent samples) from channel coding, and we refer to it in
this paper as the “digital” approach. A number of recent works
[1]-[6] studied this framework, and derived lower bounds on
the estimation error in terms of the bit budget for each sample.

On the other hand, enforcing a digital interface between
communication and statistical estimation may lead to subop-
timal performance for the end-to-end system. In our earlier
work [7], we introduced an “analog” framework for distributed
minimax estimation over a Gaussian multiple-access channel

(MAC) (see Fig. 1). This framework removed the digital
interface between source and channel coding, permitting ob-
served samples to be mapped to the MAC input by any
encoding function that satisfies the power constraint at the
transmitters. In this framework, we proposed analog schemes
for the Gaussian and Bernoulli location estimation models,
where nodes simply transmit scaled but uncoded samples over
the MAC, leveraging its additive nature to average samples
over the air. By comparing the performance of these schemes
to the aforementioned digital lower bounds, with the bit budget
set to the Shannon capacity of the Gaussian MAC for the
same power constraint, we showed that, judged by minimax
risk under squared error loss, these analog schemes yield
an exponential improvement over even the lower bounds for
digital schemes presented in [6].

These results reinforced similar gains that have been ob-
served in source coding for sensor networks [8], [9], as well
as a number of studies modifying common machine learning
algorithms, such as gradient descent, to account for the wire-
less physical layer. These latter works comparing analog and
digital approaches experimentally include [10], [11], which
studied stochastic gradient descent, and [12], which studied
transmission of model parameters. On a similar tune, several
further works have continued to progress analog superposition-
based methods in over-the-air learning [13]-[18].

While our own earlier work demonstrated the value of such
“analog” transmission-estimation schemes, it didn’t offer any
fundamental lower bounds against which to assess the analog
schemes therein proposed. In this paper, we fill this gap by
deriving a lower bound for risk under squared error loss for
estimation of sub-Gaussian models over a Gaussian MAC.
Because we don’t impose a separation between transmission
and estimation, but instead analyze estimation over a physical
multi-user channel directly, our bounds differ from the digital
lower bounds developed in the previous literature both in
terms of their final scaling as well as the utilized techniques.
Moreover, these bounds are within a logarithmic factor of our
achievability results in [7], and they are the first lower bounds
of which we are aware for analog estimation over a multi-user
channel.

The rest of this paper is structured as follows. In Section II,
we set out our problem of interest, and in Section III we
introduce some statistical definitions that will be key in our
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Fig. 1. System diagram

results. We present our results in Section IV, including our
main result (IV-A), bounds for specific cases (IV-B), where this
fits in with earlier results (IV-C) and a more general version
of our main result (IV-D). We provide proofs in Section V.

II. PROBLEM STATEMENT

We study the same Gaussian multiple-access channel as in
our previous work [7], a system diagram of which is in Fig. 1.
In each channel use t = 1,..., s, each of n senders transmits
a symbol X;; € R to a single receiver, which receives a noisy
superposition

Yi= X+ Xop + -+ Xy + Zy, (D

where Z; ~ N(0,02) is the noise in the tth channel use. We
denote X; = (X;1,...,X;s) and Y = (Y71,...,Y5). The goal
of our system is to estimate the parameter 6, belonging to a
parameter space © C R, of the distribution py from which
ii.d. samples Uy, ...,U, € U are drawn, with U; observed at
sender i. To do this, each sender ¢ encodes its sample using
a function f; : Y — R® to produce X; = f;(U;), and the
receiver, which knows the encoding functions, uses an esti-
mator é(Y) We refer to a combination of encoding functions
f 2 (f1,..., ) and an estimator function § : R® — © as an
estimation scheme.

Senders are subject to a power constraint, and as the
distribution py is not known, they must respect it for the entire
parameter space. That is, we require that

1
g1{«:9[|\ﬁ,(U,;)||§] <P, forallic{l,....,n},0 €0, (2

where we denote as
We study worst-case
supyeo Eol0(Y) — O[3

In this paper, we provide results in terms of the properties
of the parametric model py and the parameter space ©. We
will also apply this result to the two specific cases we studied
in our previous work [7]. The first of these is the Gaussian
location model, in which pp = N'(0,0%1;), Y = R? and © =
{6 € RY : ||0]|2 < BVd} for some known B > 0. The
second is the product Bernoulli parameter model, in which
Do = H?Zl Bernoulli(6;), with ¢/ = {0,1}¢ and © = [0, 1]%.

Eg[-] the expectation under py.
risk under squared error loss,

Finally, although our main focus is the Gaussian MAC, we
will also briefly consider how our result generalizes to other
MAC s, in terms of their sum capacity.

III. PRELIMINARIES

We begin by introducing some useful quantities. If U ~ pg,
where py is a member of a family of probability distributions
parameterized by § € © C R? and differentiable in 6, the
score function is defined as the gradient of the log-likelihood
function,

So(u) £ Vg log pe(u)

0 0
= =1 vy =1 .
(57 oepatu) . - lowm(w)
Where we have many samples Ui, ...,U, ~ pg, we may
denote the score function of the finite sequence as

So(u1, ..., un) = Vglogpy(us, ..

Note that both Sp(u) and Sp(ui,...,u,) have the same
number of elements as 6, independent of the size of the
argument passed into Sp(-). It is a well-known property of
the score function that E[Sy(U)] = 0.

The Fisher information is then defined as the d x d matrix

Iy (8) £ E[Sp(U)Se(U)"]

which makes its trace equal to

d 2
tr(Iy(0)) = ZEl(aaf)jlogpe(UO ] :

We say that a zero-mean random variable X is sub-Gaussian
with parameter p if

y Up).

)\2p2
E [exp(AX)] < exp <2> for all A € R.

Recall that if a zero-mean random variable X is bounded
within [a, b] with probability 1 then it is sub-Gaussian with
parameter (b—a)/2. Also, if X1,..., X, are independent and
sub-Gaussian with parameters p1, . .., p,, then their sum X; +
-+++ X,, is sub-Gaussian with parameter \/p? + - - + p2.

Our lower bounds require the regularity conditions de-
scribed in [19], which we recite here:

() v/po(u1,...,u,) is  continuously  differentiable
with respect to each component 6; at almost all
(u1,...,up) € U™ (with respect to some measure
dominating {py : 6 € O}).

(ii) The Fisher information for each component 6;
]E([a%j logpe (U, - ..,Up)]?), exists and is a continuous
function of 6;.

(iii) The conditional density p(y|ui,...,u,) is square inte-
grable in the sense that for almost all y € R® for each 0,
I p(ylut, ..., up)?dpe(u, ... u,) < co.

It is easily verified that (i) and (ii) are satisfied in both the

Gaussian location and product Bernoulli parameter models.

As for (iii), this follows from the bounded conditional density

p(y|z1,...,x,) of the Gaussian MAC; details are in the

relevant proofs.
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IV. RESULTS

A. Main result: Lower bound on worst-case risk

The main result of this paper is a lower bound on the
squared error risk for any estimation scheme in the setting
described in Section II when the parametric model has a sub-
Gaussian score.

Theorem 1. Suppose that [-B,B|* C ©, and that the
samples (U;)?_, are iid. and satisfy conditions (i) and (ii),
and that (v, Sy(U;)) is sub-Gaussian with parameter p for
all unit vectors v € R Then in a Gaussian multiple-access
channel with s channel uses, the worst-case risk under squared

error loss of any estimation scheme (f,0) must satisfy

A 1
sup E|0(Y) — ]2 > £
6e6

"2 p2log (1 + %) + n”;z

3)

The proof for this builds on a relationship between Fisher
information and mutual information established by [19], and a
Bayesian Cramer-Rao type bound to relate minimax risk and
Fisher information. We provide the proof in Section V-B.

B. Bounds for specific problem instances

In the case of the Gaussian location model, we can charac-

terize this bound in terms of the sample variance o2

Corollary 1. In the Gaussian location model with s channel
uses, the worst-case risk under squared error loss of any
estimation scheme (f,0) must satisfy
R do? 1
sup E[[9(Y) - 0]* > — - N
USE n glog(l—&—%)ﬁ-%%

“4)

We can also derive a result for product Bernoulli models
where elements of 6 are close to %, i.e., where the samples
are dense.

Corollary 2. Consider the relatively dense product Bernoulli
model, where Uy,..., U, ~ H?Zl Bernoulli(§;), with © =
(L —c,34+¢€% e €(0,%), with s channel uses. The worst-
case risk under squared error loss of any estimation scheme

(£,0) must satisfy

. d 1

sup E[0(Y) — 0]> > = - N~

" i e (14 3F) +
S

The proofs of the above two corollaries, which both follow
from Theorem 1, are in Section V-C.

C. Comparison to prior results

In our previous work [7], we considered over-the-air estima-
tion schemes using scaled encoding functions for both models
of interest, and analyzed their performance. We recite these
achievability results in Proposition 1.

Proposition 1. In the Gaussian location model, if s > d,
there exists an estimation scheme (f,0) achieving the worst-
case risk

] - ,  do? o2 B?
sup E[() — 0]} = - [1 P (1 + J)} L ©

In the product Bernoulli parameter model, if s > d and oﬁ <
n3/2P, there exists a scheme (f,0) achieving

d 14— o 7
e (U i) @
We also applied the result in [6] to find a lower bound
for schemes that abstract out the physical layer, considering
instead bits transmitted errorlessly at the Shannon capacity.
We recite the resulting bounds in Proposition 2.

supE[0(Y) — 0] =
6eo

Proposition 2. Consider all schemes in which senders
send bits to the receiver at the Shannon capacity for
s channel uses. In the Gaussian location model, for
B?min{z5 log, (1 +nP/o2) ,n} > o the risk associated
with any such scheme is at least

R 2d? d
sup  Egllf —0]3 > Co’max{ ——F———, —
loll.<BVd slog, (1 + ’Z,’S) "
®)
with a universal constant C.
In the product Bernoulli model, for

min{ log, (1+nP/o2),n} > 1, the risk associated
with any such scheme is at least

A 242
sup Eg|lf — 0]|3 > C max o 4

; ;9
0€[0,1]4 slog, (1 + Z—z) n

with a universal constant C.

Table I summarizes behavior in s, d and n for our new
lower bounds and the above prior results. The last row shows
the case where s grows with d, for ease of comparison.
Although the Gaussian location and product Bernoulli cases
look different, their asymptotic behavior in s, d and n is the
same. Our new lower bound is within a logn factor of the
scheme we proposed in [7]. Note that the digital lower bound
establishes that the minimax risk of any digital scheme can
decrease at most logarithmically in the number of samples,
while the risk of analog schemes decreases linearly in n.
This shows that analog over-the-air estimation schemes can
provide an exponential improvement in sample complexity for
the Gaussian and Bernoulli location models.

D. Lower bound for a general multiple-access channel

The result of Theorem 1 can be generalized to other
multiple-access channels, in terms of the total capacity of the
network, that is, the maximum achievable sum of all rates in
the network,

Ctota.l - ma(X )I(Xlta"'7Ynt;Yt)7 (10)
i Pi(Zit
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TABLE I
COMPARISON OF RESULTS

‘ analog achievability ‘

analog lower bound ‘ digital lower bound

Gaussian location

do2 o2 B2 do?
%{“Fw(“r?z)} ra

1 Cdo'2 max 2dn 1
s log( 14 2L )4 o2 x2 " slogy (1428 )’
a8 02 )T BZ &2 o2

product Bernoulli

d op d
A(VntD? (1+ Ls/dJnP) n

2
- 1 - > Cmax{mp,:}
nP i nP
I-2e22 tos (1428 )+ stoss (1428

s > d (both models)

2
5oz
slogn

s o< d (both models)

*(r)
logn

where the maximum is over all product distributions for
(X14y..., Xnt). We will refer to this quantity as the “sum
capacity”, recalling that it does not fully describe the capacity
region of the network.

Theorem 2. Suppose that the samples (U;)_, are i.i.d. and
satisfy conditions (i) and (ii), and that (v, Se(U;)) is sub-
Gaussian with parameter p for all unit vectors v € R
Consider any discrete memoryless multiple-access channel
that is constrained by the sum capacity Cioia1 (per channel
use), whose conditional density p(y|z1,...,x,) is bounded.
The worst-case risk of any estimation scheme (f ,é) must
satisfy

d 1

5—-
n Z%pZCtotal + 7,”?

supE[|0(Y) — 0> > (11)
0co

Proof. Follow the proof of Theorem 1, but replace the right-
hand side of (19) with sCiota1 (i.e., Ciotal for s channel uses).
Note that the stipulation that p(y|x1,...,2,) be bounded (by
some different finite M) ensures that (16), and hence (iii), is
satisfied. O

V. PROOFS
A. Prior results

We first present two results that are key to our main theorem.
These results characterize the worst-case risk in terms of the
trace of the Fisher information matrix, and in turn in terms
of mutual information. First, Equation 8 of [6] tells us the
following, which we list as a lemma here.

Lemma 1. Suppose [~B,B]* C ©. For any estimator

9(Y1, ..., Y,), the worst-case squared error risk must satisfy

d2

. (12)
supgee tr(ly (9)) + 9o

sup E[[6(Y) — 0] >
6ee

We will also lean on the following theorem, due to [19].

Theorem 3. Let X ~ py and let Y be the output of a
channel characterized by p(y|z). Suppose that (u, Sp(X)) is

sub-Gaussian with parameter N for any unit vector u € R
Under regularity conditions (i)—(iii),

tr(Iy(0)) < 2N?I,(X;Y),

where Ig(X;Y) is the mutual information between X and Y
when X ~ py.

B. Proof of main result

We first provide an upper bound for the mutual information
between the channel input and output. For brevity we omit
the proof, which can be derived using standard results in
information theory.

Proposition 3. Consider the Gaussian multiple-access chan-
nel with s channel uses, ¥ = X1 +---+ X, + 2, Z ~
N(0,021,), with a power constraint 1E[||X;|?] < P. If

Xi,..., X, are independent, then the mutual information
between its input (X1,...,X,,) and its output Y is bounded
by

I(le"an;Y)g (13)

P
log (1 + n2> .
0’1‘1
We now have all of the ingredients necessary to prove
Theorem 1, which uses the data processing inequality to chain
the above results together.

[NJ VA

Proof of Theorem 1. Recall that X; = f(U;),i = 1,...,n
and Y is the output of the channel py|x (y|z1,...,2,) with
inputs X7,...,X,. The conditional distribution of Y given
U can be expressed in terms of the channel’s conditional
distribution,

s fun)). (14

That is, we have a channel from U to Y. (Note that this doesn’t
require invertibility in f, since it is in the condition, and
Py |x is defined by assumption.) To verify that this “channel”
satisfies regularity condition (iii), note that py,x is bounded,

pywlur, ... un) = py|x (ylf(ur),. ..

1
>xn)§7éM7

15
(2wo2)m (1)

pY|X(y|9C17 .-
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so chaining (14) and (15) verifies that
/py|U ylur, .. un)? dpy (ug, . .. up)
/M dpy (uy, ..., up) = M?* < oco.  (16)
We therefore satisfy the requirements to invoke Theorem 3,

so long as we can establish that (v, Sp(Uy,...,U,)) is sub-
Gaussian for all unit vectors v € R? Note that since

Ui,...,U, are independent,
n n
So(Un, ..., Un) =Y Vologpe(U;) = Y _ Sp(Us)
i=1 i=1
Then for every unit vector v € R4,
(v, Sy(Un, ... Z So(Ui) ) = > (v, Sp(U:)).
i=1

This is a sum of n independent sub-Gaussian random variables
each with parameter p, and is therefore sub-Gaussian with
parameter /np. Theorem 3 thus gives

tr(Iy (0)) < 2np*Iy(Uy,..., Uy Y). (17)

Since (Uy,...,U,) — (X1,...,X,) — Y form a Markov
chain, the data processing inequality implies that

L(Ur,.. U Y) < I(Xp,., X Y). (18)
Now, Uy,...,U, are independent (by definition), and each
X;,i = 1,...,n is a function of the corresponding Uj;.

Therefore, X, ...
sition 3, we have

, X, are also independent, and from Propo-

S nP
I(Xl,...,Xn;Y)<210g<1+Ug>. (19)
Putting (17), (18) and (19) together yields
P
tr(Iy (0)) < np’slog (1 + 7;2) . (20)

Substituting this expression into the result given by Lemma 1
then yields the result. O
C. Specific problem instances

To find lower bounds for the Gaussian location and product
Bernoulli parameter models, we compute the sub-Gaussian
parameters of their score functions and apply our main result.

Proof of Corollary 1. The score function for a single sample
Ui is
(ui —0)" (u; — 0)

202

(ui — 9)

Sg(’uq) = VQ

1
o2

— log 270

Then, with U; ~ N (Q,UQId), the score function of each
sample Sp(U;) is Gaussian with mean zero and covariance
%Id. It follows that for any unit vector v and each sample

Ui, (v,8p(U;)) is Gaussian with zero mean and variance

T%Idv = %’UTU = % This is sub-Gaussian with parameter

L enabling an application of Theorem 1. O

Proof of Corollary 2. We can compute the score function of
each sample in the product Bernoulli model to be Sp(u;) =

(So, (us), ..., Sp, (us)), where
S@j (U’L) = b5 1 . !
71_791_, if Ui5 = 0.
Then Sy, (U;) is bounded, and therefore is sub-Gaussian with
parameter

LR SO S 1 o1
200, 1—-06;] 20;,(1—06;) ~ 1 —2e2’

where the last step uses the fact that 0 € © = [§ —¢, 3 +¢]*.
Being the sum of n independent sub-Gaussians, for all unit

vectors v € RY, (v, Sg(U;)) is sub-Gaussian with parameter

2L

This gives us a value for p to use in Theorem 1.

For B, we may reparameterize the parameter space to ©’ =
[—e, €] (so that the Bernoulli component means are § = 6+ %).
We can then apply Theorem 1 to arrive at Corollary 2. O
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