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Abstract—We study lower bounds for minimax statistical
estimation over a Gaussian multiple-access channel (MAC) under
squared error loss, using techniques from both statistical esti-
mation and information theory. We characterize these bounds
in terms of the number of nodes n and the dimension of the
parameter space d, showing that the risk must be Ω(d/n log n).
This is within a log n factor of previous analog achievability
results. While lower bounds for minimax statistical estimation
have been previously studied under quantization constraints that
abstract the physical layer as noiseless bit pipes, to our knowl-
edge our paper provides the first lower bounds for statistical
estimation over noisy multi-user channels. This adds to a body
of works showing how analog schemes that consider the physical
layer jointly with the estimation scheme, can outperform digital
schemes that separate the two with an abstraction layer.

I. INTRODUCTION

One interesting facet of the modern data explosion is not so

much its quantity, but that increasingly, data is being generated

“at the edge”: by countless sensors and other devices, away

from the central servers that churn through it. The study of

machine learning has therefore in recent years been paying

increasing attention to techniques that make inferences by

combining data from many nodes. The key differentiating

feature that this introduces is the need to communicate the

data from edge devices to the central server, often over

noisy bandwidth-limited networks. As a result, learning and

estimation in networks has received significant interest in the

recent years.

One approach to modelling bandwidth limitations is to

consider each node to be limited in how many bits it can send

to the central server. That is, the observed samples are first

encoded using a fixed, finite number of bits, and these bits are

then communicated errorlessly using a reliable channel coding

scheme over the underlying noisy network. This amounts to

introducing a digital interface separating source coding (to

represent samples) from channel coding, and we refer to it in

this paper as the “digital” approach. A number of recent works

[1]–[6] studied this framework, and derived lower bounds on

the estimation error in terms of the bit budget for each sample.

On the other hand, enforcing a digital interface between

communication and statistical estimation may lead to subop-

timal performance for the end-to-end system. In our earlier

work [7], we introduced an “analog” framework for distributed

minimax estimation over a Gaussian multiple-access channel

(MAC) (see Fig. 1). This framework removed the digital

interface between source and channel coding, permitting ob-

served samples to be mapped to the MAC input by any

encoding function that satisfies the power constraint at the

transmitters. In this framework, we proposed analog schemes

for the Gaussian and Bernoulli location estimation models,

where nodes simply transmit scaled but uncoded samples over

the MAC, leveraging its additive nature to average samples

over the air. By comparing the performance of these schemes

to the aforementioned digital lower bounds, with the bit budget

set to the Shannon capacity of the Gaussian MAC for the

same power constraint, we showed that, judged by minimax

risk under squared error loss, these analog schemes yield

an exponential improvement over even the lower bounds for

digital schemes presented in [6].

These results reinforced similar gains that have been ob-

served in source coding for sensor networks [8], [9], as well

as a number of studies modifying common machine learning

algorithms, such as gradient descent, to account for the wire-

less physical layer. These latter works comparing analog and

digital approaches experimentally include [10], [11], which

studied stochastic gradient descent, and [12], which studied

transmission of model parameters. On a similar tune, several

further works have continued to progress analog superposition-

based methods in over-the-air learning [13]–[18].

While our own earlier work demonstrated the value of such

“analog” transmission-estimation schemes, it didn’t offer any

fundamental lower bounds against which to assess the analog

schemes therein proposed. In this paper, we fill this gap by

deriving a lower bound for risk under squared error loss for

estimation of sub-Gaussian models over a Gaussian MAC.

Because we don’t impose a separation between transmission

and estimation, but instead analyze estimation over a physical

multi-user channel directly, our bounds differ from the digital

lower bounds developed in the previous literature both in

terms of their final scaling as well as the utilized techniques.

Moreover, these bounds are within a logarithmic factor of our

achievability results in [7], and they are the first lower bounds

of which we are aware for analog estimation over a multi-user

channel.

The rest of this paper is structured as follows. In Section II,

we set out our problem of interest, and in Section III we

introduce some statistical definitions that will be key in our
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Fig. 1. System diagram

results. We present our results in Section IV, including our

main result (IV-A), bounds for specific cases (IV-B), where this

fits in with earlier results (IV-C) and a more general version

of our main result (IV-D). We provide proofs in Section V.

II. PROBLEM STATEMENT

We study the same Gaussian multiple-access channel as in

our previous work [7], a system diagram of which is in Fig. 1.

In each channel use t = 1, . . . , s, each of n senders transmits

a symbol Xit ∈ R to a single receiver, which receives a noisy

superposition

Yt = X1t +X2t + · · ·+Xnt + Zt, (1)

where Zt ∼ N (0, σ2
n) is the noise in the tth channel use. We

denote Xi = (Xi1, . . . , Xis) and Y = (Y1, . . . , Ys). The goal

of our system is to estimate the parameter θ, belonging to a

parameter space Θ ⊆ R
d, of the distribution pθ from which

i.i.d. samples U1, . . . , Un ∈ U are drawn, with Ui observed at

sender i. To do this, each sender i encodes its sample using

a function fi : U → R
s to produce Xi = fi(Ui), and the

receiver, which knows the encoding functions, uses an esti-

mator θ̂(Y ). We refer to a combination of encoding functions

f , (f1, . . . , fn) and an estimator function θ̂ : Rs → Θ as an

estimation scheme.

Senders are subject to a power constraint, and as the

distribution pθ is not known, they must respect it for the entire

parameter space. That is, we require that

1

s
Eθ

[

‖fi(Ui)‖22
]

≤ P, for all i ∈ {1, . . . , n}, θ ∈ Θ, (2)

where we denote as Eθ[·] the expectation under pθ.

We study worst-case risk under squared error loss,

supθ∈Θ Eθ‖θ̂(Y )− θ‖22.

In this paper, we provide results in terms of the properties

of the parametric model pθ and the parameter space Θ. We

will also apply this result to the two specific cases we studied

in our previous work [7]. The first of these is the Gaussian

location model, in which pθ = N (θ, σ2Id), U = R
d and Θ =

{θ ∈ R
d : ‖θ‖2 ≤ B

√
d} for some known B > 0. The

second is the product Bernoulli parameter model, in which

pθ =
∏d

j=1 Bernoulli(θj), with U = {0, 1}d and Θ = [0, 1]d.

Finally, although our main focus is the Gaussian MAC, we

will also briefly consider how our result generalizes to other

MACs, in terms of their sum capacity.

III. PRELIMINARIES

We begin by introducing some useful quantities. If U ∼ pθ,

where pθ is a member of a family of probability distributions

parameterized by θ ∈ Θ ⊆ R
d and differentiable in θ, the

score function is defined as the gradient of the log-likelihood

function,

Sθ(u) , ∇θ log pθ(u)

=

(

∂

∂θ1
log pθ(u), . . . ,

∂

∂θd
log pθ(u)

)

.

Where we have many samples U1, . . . , Un ∼ pθ, we may

denote the score function of the finite sequence as

Sθ(u1, . . . , un) , ∇θ log pθ(u1, . . . , un).

Note that both Sθ(u) and Sθ(u1, . . . , un) have the same

number of elements as θ, independent of the size of the

argument passed into Sθ(·). It is a well-known property of

the score function that E[Sθ(U)] = 0.

The Fisher information is then defined as the d× d matrix

IU (θ) , E[Sθ(U)Sθ(U)T]

which makes its trace equal to

tr(IU (θ)) =

d
∑

j=1

E

[

(

∂

∂θj
log pθ(u)

)2
]

.

We say that a zero-mean random variable X is sub-Gaussian

with parameter ρ if

E [exp(λX)] ≤ exp

(

λ2ρ2

2

)

for all λ ∈ R.

Recall that if a zero-mean random variable X is bounded

within [a, b] with probability 1 then it is sub-Gaussian with

parameter (b−a)/2. Also, if X1, . . . , Xn are independent and

sub-Gaussian with parameters ρ1, . . . , ρn, then their sum X1+
· · ·+Xn is sub-Gaussian with parameter

√

ρ21 + · · ·+ ρ2n.

Our lower bounds require the regularity conditions de-

scribed in [19], which we recite here:

(i)
√

pθ(u1, . . . , un) is continuously differentiable

with respect to each component θj at almost all

(u1, . . . , un) ∈ Un (with respect to some measure

dominating {pθ : θ ∈ Θ}).

(ii) The Fisher information for each component θj ,

E([ ∂
∂θj

log pθ(U1, . . . , Un)]
2), exists and is a continuous

function of θj .

(iii) The conditional density p(y|u1, . . . , un) is square inte-

grable in the sense that for almost all y ∈ R
s for each θ,

∫

p(y|u1, . . . , un)
2 dpθ(u1, . . . , un) < ∞.

It is easily verified that (i) and (ii) are satisfied in both the

Gaussian location and product Bernoulli parameter models.

As for (iii), this follows from the bounded conditional density

p(y|x1, . . . , xn) of the Gaussian MAC; details are in the

relevant proofs.
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IV. RESULTS

A. Main result: Lower bound on worst-case risk

The main result of this paper is a lower bound on the

squared error risk for any estimation scheme in the setting

described in Section II when the parametric model has a sub-

Gaussian score.

Theorem 1. Suppose that [−B,B]d ⊂ Θ, and that the

samples (Ui)
n
i=1 are i.i.d. and satisfy conditions (i) and (ii),

and that 〈v, Sθ(Ui)〉 is sub-Gaussian with parameter ρ for

all unit vectors v ∈ R
d. Then in a Gaussian multiple-access

channel with s channel uses, the worst-case risk under squared

error loss of any estimation scheme (f , θ̂) must satisfy

sup
θ∈Θ

E‖θ̂(Y )− θ‖2 ≥ d

n
· 1

s
dρ

2 log
(

1 + nP
σ2
n

)

+ π2

nB2

. (3)

The proof for this builds on a relationship between Fisher

information and mutual information established by [19], and a

Bayesian Cramer-Rao type bound to relate minimax risk and

Fisher information. We provide the proof in Section V-B.

B. Bounds for specific problem instances

In the case of the Gaussian location model, we can charac-

terize this bound in terms of the sample variance σ2.

Corollary 1. In the Gaussian location model with s channel

uses, the worst-case risk under squared error loss of any

estimation scheme (f , θ̂) must satisfy

sup
θ∈Θ

E‖θ̂(Y )− θ‖2 ≥ dσ2

n
· 1

s
d log

(

1 + nP
σ2
n

)

+ σ2

B2
π2

n

. (4)

We can also derive a result for product Bernoulli models

where elements of θ are close to 1
2 , i.e., where the samples

are dense.

Corollary 2. Consider the relatively dense product Bernoulli

model, where U1, . . . , Un ∼ ∏d
j=1 Bernoulli(θj), with Θ =

[ 12 − ε, 1
2 + ε]d, ε ∈ (0, 1

2 ), with s channel uses. The worst-

case risk under squared error loss of any estimation scheme

(f , θ̂) must satisfy

sup
θ∈Θ

E‖θ̂(Y )− θ‖2 ≥ d

n
· 1

s
d

1
( 1
2−2ε2)2

log
(

1 + nP
σ2
n

)

+ π2

nε2

.

(5)

The proofs of the above two corollaries, which both follow

from Theorem 1, are in Section V-C.

C. Comparison to prior results

In our previous work [7], we considered over-the-air estima-

tion schemes using scaled encoding functions for both models

of interest, and analyzed their performance. We recite these

achievability results in Proposition 1.

Proposition 1. In the Gaussian location model, if s ≥ d,

there exists an estimation scheme (f , θ̂) achieving the worst-

case risk

sup
θ∈Θ

E‖θ̂(Y )− θ‖2 =
dσ2

n

[

1 +
σ2
n

⌊s/d⌋nP

(

1 +
B2

σ2

)]

. (6)

In the product Bernoulli parameter model, if s ≥ d and σ2
n ≤

n3/2P , there exists a scheme (f , θ̂) achieving

sup
θ∈Θ

E‖θ̂(Y )− θ‖2 =
d

4(
√
n+ 1)2

(

1 +
σ2
n

⌊s/d⌋nP

)

. (7)

We also applied the result in [6] to find a lower bound

for schemes that abstract out the physical layer, considering

instead bits transmitted errorlessly at the Shannon capacity.

We recite the resulting bounds in Proposition 2.

Proposition 2. Consider all schemes in which senders

send bits to the receiver at the Shannon capacity for

s channel uses. In the Gaussian location model, for

B2 min{ s
2d log2

(

1 + nP/σ2
n

)

, n} ≥ σ2, the risk associated

with any such scheme is at least

sup
‖θ‖2≤B

√
d

Eθ‖θ̂ − θ‖22 ≥ Cσ2 max







2d2

s log2

(

1 + nP
σ2
n

) ,
d

n







,

(8)

with a universal constant C.

In the product Bernoulli model, for

min{ s
2d log2

(

1 + nP/σ2
n

)

, n} ≥ 1, the risk associated

with any such scheme is at least

sup
θ∈[0,1]d

Eθ‖θ̂ − θ‖22 ≥ Cmax







2d2

s log2

(

1 + nP
σ2
n

) ,
d

n







, (9)

with a universal constant C.

Table I summarizes behavior in s, d and n for our new

lower bounds and the above prior results. The last row shows

the case where s grows with d, for ease of comparison.

Although the Gaussian location and product Bernoulli cases

look different, their asymptotic behavior in s, d and n is the

same. Our new lower bound is within a log n factor of the

scheme we proposed in [7]. Note that the digital lower bound

establishes that the minimax risk of any digital scheme can

decrease at most logarithmically in the number of samples,

while the risk of analog schemes decreases linearly in n.

This shows that analog over-the-air estimation schemes can

provide an exponential improvement in sample complexity for

the Gaussian and Bernoulli location models.

D. Lower bound for a general multiple-access channel

The result of Theorem 1 can be generalized to other

multiple-access channels, in terms of the total capacity of the

network, that is, the maximum achievable sum of all rates in

the network,

Ctotal = max
∏

i
pi(xit)

I(X1t, . . . , Ynt;Yt), (10)
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TABLE I
COMPARISON OF RESULTS

analog achievability analog lower bound digital lower bound

Gaussian location dσ2

n

[

1 +
σ2
n

⌊s/d⌋nP

(

1 + B2

σ2

)

]

dσ2

n
· 1

s
d

log

(

1+nP

σ2
n

)

+ σ2

B2
π2

n

C dσ2

n
max







2dn

s log2

(

1+nP

σ2
n

) , 1







product Bernoulli d
4(

√
n+1)2

(

1 +
σ2
n

⌊s/d⌋nP

)

d
n
· 1

s
d

1

( 1
2
−2ε2)2

log

(

1+nP

σ2
n

)

+ π2

nε2

. Cmax







2d2

s log2

(

1+nP

σ2
n

) , d
n







s ≥ d (both models) O

(

d

n

)

Ω

(

d2

s · n logn

)

Ω

(

d2

s logn

)

s ∝ d (both models) O

(

d

n

)

Ω

(

d

n logn

)

Ω

(

d

logn

)

where the maximum is over all product distributions for

(X1t, . . . , Xnt). We will refer to this quantity as the “sum

capacity”, recalling that it does not fully describe the capacity

region of the network.

Theorem 2. Suppose that the samples (Ui)
n
i=1 are i.i.d. and

satisfy conditions (i) and (ii), and that 〈v, Sθ(Ui)〉 is sub-

Gaussian with parameter ρ for all unit vectors v ∈ R
d.

Consider any discrete memoryless multiple-access channel

that is constrained by the sum capacity Ctotal (per channel

use), whose conditional density p(y|x1, . . . , xn) is bounded.

The worst-case risk of any estimation scheme (f , θ̂) must

satisfy

sup
θ∈Θ

E‖θ̂(Y )− θ‖2 ≥ d

n
· 1

2 s
dρ

2Ctotal +
π2

nB2

. (11)

Proof. Follow the proof of Theorem 1, but replace the right-

hand side of (19) with sCtotal (i.e., Ctotal for s channel uses).

Note that the stipulation that p(y|x1, . . . , xn) be bounded (by

some different finite M ) ensures that (16), and hence (iii), is

satisfied.

V. PROOFS

A. Prior results

We first present two results that are key to our main theorem.

These results characterize the worst-case risk in terms of the

trace of the Fisher information matrix, and in turn in terms

of mutual information. First, Equation 8 of [6] tells us the

following, which we list as a lemma here.

Lemma 1. Suppose [−B,B]d ⊂ Θ. For any estimator

θ̂(Y1, . . . , Yn), the worst-case squared error risk must satisfy

sup
θ∈Θ

E‖θ̂(Y )− θ‖2 ≥ d2

supθ∈Θ tr(IY (θ)) +
dπ2

B2

. (12)

We will also lean on the following theorem, due to [19].

Theorem 3. Let X ∼ pθ and let Y be the output of a

channel characterized by p(y|x). Suppose that 〈u, Sθ(X)〉 is

sub-Gaussian with parameter N for any unit vector u ∈ R
d.

Under regularity conditions (i)–(iii),

tr(IY (θ)) ≤ 2N2Iθ(X;Y ),

where Iθ(X;Y ) is the mutual information between X and Y
when X ∼ pθ.

B. Proof of main result

We first provide an upper bound for the mutual information

between the channel input and output. For brevity we omit

the proof, which can be derived using standard results in

information theory.

Proposition 3. Consider the Gaussian multiple-access chan-

nel with s channel uses, Y = X1 + · · · + Xn + Z, Z ∼
N (0, σ2

nIs), with a power constraint 1
sE[‖Xi‖2] ≤ P . If

X1, . . . , Xn are independent, then the mutual information

between its input (X1, . . . , Xn) and its output Y is bounded

by

I(X1, . . . , Xn;Y ) ≤ s

2
log

(

1 +
nP

σ2
n

)

. (13)

We now have all of the ingredients necessary to prove

Theorem 1, which uses the data processing inequality to chain

the above results together.

Proof of Theorem 1. Recall that Xi = f(Ui), i = 1, . . . , n
and Y is the output of the channel pY |X(y|x1, . . . , xn) with

inputs X1, . . . , Xn. The conditional distribution of Y given

U can be expressed in terms of the channel’s conditional

distribution,

pY |U (y|u1, . . . , un) = pY |X(y|f(u1), . . . , f(un)). (14)

That is, we have a channel from U to Y . (Note that this doesn’t

require invertibility in f , since it is in the condition, and

pY |X is defined by assumption.) To verify that this “channel”

satisfies regularity condition (iii), note that pY |X is bounded,

pY |X(y|x1, . . . , xn) ≤
1

√

(2πσ2
n)

n
, M, (15)
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so chaining (14) and (15) verifies that
∫

pY |U (y|u1, . . . , un)
2 dpU (u1, . . . , un)

≤
∫

M2 dpU (u1, . . . , un) = M2 < ∞. (16)

We therefore satisfy the requirements to invoke Theorem 3,

so long as we can establish that 〈v, Sθ(U1, . . . , Un)〉 is sub-

Gaussian for all unit vectors v ∈ R
d. Note that since

U1, . . . , Un are independent,

Sθ(U1, . . . , Un) =

n
∑

i=1

∇θ log pθ(Ui) =

n
∑

i=1

Sθ(Ui).

Then for every unit vector v ∈ R
d,

〈v, Sθ(U1, . . . , Un)〉 =
〈

v,

n
∑

i=1

Sθ(Ui)

〉

=
n
∑

i=1

〈v, Sθ(Ui)〉.

This is a sum of n independent sub-Gaussian random variables

each with parameter ρ, and is therefore sub-Gaussian with

parameter
√
nρ. Theorem 3 thus gives

tr(IY (θ)) ≤ 2nρ2Iθ(U1, . . . , Un;Y ). (17)

Since (U1, . . . , Un) → (X1, . . . , Xn) → Y form a Markov

chain, the data processing inequality implies that

Iθ(U1, . . . , Un;Y ) ≤ Iθ(X1, . . . , Xn;Y ). (18)

Now, U1, . . . , Un are independent (by definition), and each

Xi, i = 1, . . . , n is a function of the corresponding Ui.

Therefore, X1, . . . , Xn are also independent, and from Propo-

sition 3, we have

I(X1, . . . , Xn;Y ) ≤ s

2
log

(

1 +
nP

σ2
n

)

. (19)

Putting (17), (18) and (19) together yields

tr(IY (θ)) ≤ nρ2s log

(

1 +
nP

σ2
n

)

. (20)

Substituting this expression into the result given by Lemma 1

then yields the result.

C. Specific problem instances

To find lower bounds for the Gaussian location and product

Bernoulli parameter models, we compute the sub-Gaussian

parameters of their score functions and apply our main result.

Proof of Corollary 1. The score function for a single sample

Ui is

Sθ(ui) = ∇θ

[

(ui − θ)T(ui − θ)

2σ2
− log 2πσ

]

=
1

σ2
(ui − θ).

Then, with Ui ∼ N (θ, σ2Id), the score function of each

sample Sθ(Ui) is Gaussian with mean zero and covariance
1
σ2 Id. It follows that for any unit vector v and each sample

Ui, 〈v, Sθ(Ui)〉 is Gaussian with zero mean and variance

vT 1
σ2 Idv = 1

σ2 v
Tv = 1

σ2 . This is sub-Gaussian with parameter
1
σ , enabling an application of Theorem 1.

Proof of Corollary 2. We can compute the score function of

each sample in the product Bernoulli model to be Sθ(ui) =
(Sθ1(ui), . . . , Sθj (ui)), where

Sθj (ui) =

{

1
θj
, if uij = 1

− 1
1−θj

, if uij = 0.

Then Sθj (Ui) is bounded, and therefore is sub-Gaussian with

parameter

1

2

[

1

θj
+

1

1− θj

]

=
1

2θj(1− θj)
≤ 1

1
2 − 2ε2

,

where the last step uses the fact that θ ∈ Θ = [ 12 − ε, 1
2 + ε]d.

Being the sum of n independent sub-Gaussians, for all unit

vectors v ∈ R
d, 〈v, Sθ(Ui)〉 is sub-Gaussian with parameter
√

√

√

√

d
∑

j=1

v2j
1

( 12 − 2ε2)2
=

1
1
2 − 2ε2

. (21)

This gives us a value for ρ to use in Theorem 1.

For B, we may reparameterize the parameter space to Θ′ =
[−ε, ε] (so that the Bernoulli component means are θ = θ′+ 1

2 ).

We can then apply Theorem 1 to arrive at Corollary 2.
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