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Over-the-Air Statistical Estimation
Chuan-Zheng Lee, Leighton Pate Barnes, and Ayfer Özgür, Senior Member, IEEE

Abstract—We study schemes and lower bounds for distributed
minimax statistical estimation over a Gaussian multiple-access
channel (MAC) under squared error loss, in a framework com-
bining statistical estimation and wireless communication. First,
we develop “analog” joint estimation-communication schemes
that exploit the superposition property of the Gaussian MAC and
we characterize their risk in terms of the number of nodes and
dimension of the parameter space. Then, we derive information-
theoretic lower bounds on the minimax risk of any estimation
scheme restricted to communicate the samples over a given
number of uses of the channel and show that the risk achieved
by our proposed schemes is within a logarithmic factor of these
lower bounds. We compare both achievability and lower bound
results to previous “digital” lower bounds, where nodes transmit
errorless bits at the Shannon capacity of the MAC, showing that
estimation schemes that leverage the physical layer offer a drastic
reduction in estimation error over digital schemes relying on a
physical-layer abstraction.

Index Terms—federated learning, over-the-air learning, statis-
tical estimation

I. INTRODUCTION

To fully appreciate the plenitude of data fueling the modern

rise of machine learning, we might pause to consider not

just its volume, but its origins. While the computational

lifting is often concentrated in powerful central servers, the

data they rely on is largely and increasingly born “at the

edge”—spawned in a myriad of devices, scattered ubiqui-

tously, equipped with sensors and user input to collect all sorts

of information from the world.

Recognizing this growing decentralization of data, there has

been growing interest in the study of techniques to combine

samples from many nodes to make inferences. The key distinc-

tion between this and traditional approaches to learning and

estimation is an explicit consideration of the communication

channels between edge devices and the central server, which

are often noisy or unreliable channels, like wireless links.

Two disciplines with decades-long histories, wireless networks

and statistical estimation, thus find themselves with common

cause.

Recent years have seen significant activity in this nascent

intersection. One simple and intuitive way to study the im-

pact of bandwidth-limitations on estimation performance is

to model them as imposing constraints on the number of

bits available to encode each observed sample. A number of

works in the machine learning literature have taken this tack

[1]–[6], providing both achievable schemes and information-

theoretic lower bounds under bit constraints, and characteriz-

ing the dependence of the estimation error on the number of

bits available to represent each sample. Since these analyses
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assume the encoded bits to be received without error, they

can be interpreted as assuming that a reliable scheme is used

for transmission over the underlying noisy channels. This in

effect suggests an abstraction layer, separating the question of

physical-layer communication from the statistical estimation

problem.

Our goal in this paper is to study the problem of distributed

statistical estimation over a noisy multiple-access channel from

first principles. Our main contributions are as follows.

First, we introduce a model for minimax parameter estima-

tion over a fixed number of uses of the Gaussian multiple-

access channel (MAC), defining the estimation schemes of

interest in this setting and providing a rigorous and tractable

mathematical model for quantifying their performance and

studying their optimality.

Second, we develop analog transmission-estimation

schemes for two canonical estimation tasks, the Gaussian

location and product Bernoulli models, in which each node

scales and transmits its uncoded sample to the central

server, leveraging the superposition of the Gaussian MAC to

perform averaging over the air. We analyze these schemes

and characterize their risk under squared error loss. When

compared to information theoretic lower bounds for digital

schemes, controlling for physical resources, we find that the

worst-case risk of these analog schemes is exponentially

smaller than that of any digital scheme. This suggests that

analog schemes that consider estimation and physical layer

transmission jointly can bring about drastic improvements

over digital schemes that separate the two with an abstraction

layer.

We next address the question of whether the analog schemes

we develop are close to optimality. We derive a fundamen-

tal lower bound on the risk achievable by any estimation-

communication scheme satisfying the physical constraints of

our model. This bound uses the recent result of [7], which

showed an upper bound on the Fisher information of a chan-

nel’s output in terms of the channel’s Shannon mutual informa-

tion when the statistical model being estimated exhibits a sub-

Gaussian score. We apply this result to the aforementioned two

estimation tasks, and find the risk achieved by our estimation

schemes to be within a logarithmic factor of the lower bound.

To the best of our knowledge, this is the first information-

theoretic lower bound for distributed minimax estimation over

a noisy multi-user channel.

A. Related works

Our results corroborate similar gains from uncoded analog

transmission that have been observed in source coding for sen-

sor networks [8], [9]. They also reinforce a number of recent

works proposing adaptations of common learning algorithms
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in a wireless federated learning context. A notable example is

distributed stochastic gradient descent, where leveraging the

Gaussian MAC for analog averaging has been observed exper-

imentally to far outperform digital approaches [10]–[12]. On

the theoretical side, analysis of methods using analog over-the-

air gradient aggregation has shown convergence rates similar

to error-free channels [13]–[15], albeit without comparison to

digital counterparts.

Other works with analog aggregration showing an advantage

over digital methods include [16], which replaced digital

with analog modulation of model parameters to improve

latency with comparable accuracy, and [17], which used an

analog method with MIMO antennas. On the other hand, [18]

found the digital and analog schemes it studied to perform

comparably in numerical experiments. Such analog methods

have seen wider development efforts [19], [20], including

with privacy considerations in mind [21]–[24]. This idea has

also been applied to over-the-air computation more generally

[25]–[29]. While the current literature supports the utility

of analog schemes, none of these works provide an explicit

analytical comparison from first principles between analog

achievability and digital lower bounds for canonical estimation

and inference tasks.

More broadly, there has been interest in federated learning

over wireless networks from a range of angles. One idea to

preserve bandwidth is to take advantage of gradient sparsity

[10], [30], [31]. Other angles include quantization [32], [33],

incentive mechanisms [34], power control [24], [35] and

optimization [36]–[38].

B. Structure of paper

The rest of this paper is structured as follows. In Section II

we define the problem and introduce the definition of a mini-

max estimation scheme in this setting. We summarize our main

results for achievability in Section III and discuss how they

compare to existing digital lower bounds in Section IV. We

then derive our lower bounds and discuss them in Section V.

Proofs of our results are in Sections VI (achievability) and

VII (lower bounds). We validate our results with simulations

in Section VIII and conclude in Section IX.

II. PROBLEM STATEMENT

We study statistical estimation over a Gaussian multiple-

access channel, a system diagram of which is in Fig. 1. In

each channel use C = 1, . . . , B, each of = senders transmits

a symbol -1C , . . . , -=C ∈ R to the central server (which we

interchangeably refer to as the receiver), which receives a

noisy superposition

.C = -1C + -2C + · · · + -=C + /C , (1)

where /C ∼ N(0, f2
n ) is the noise in the Cth channel use. We

assume an average power constraint % on each sender,

1

B

B∑

C=1

E[-2
8C ] ≤ %, for all 8 = 1, . . . , =, (2)

where the expectation is over whatever randomness might exist

in -8C , which we will make more precise shortly.

51

52

...

5=

*1

*2

*=

+

-1

-2

-= / ∼
N(0, f2

n �B)

\̂
.

\̂ (. )

estimator of \
at server

\̂ : RB → Θ

Gaussian MAC
B channel uses

encoders in nodes
58 : U → RB

Fig. 1. System diagram

This system has the following estimation task: Each of the

= senders has an i.i.d. sample *8 , 8 = 1, . . . , =, from an

unknown distribution ? \ on an alphabet U, belonging to a

parameterized family of distributions P = {? \ : \ ∈ Θ} with

parameter space Θ ⊆ R3 . We use the notation E\ [·] to mean

expectation under the distribution ? \ . The goal of the receiver

is to estimate \ given . , (.1, . . . , .B).
To complete this task, each sender 8 encodes its sample us-

ing a function 58 : U → RB to produce -8 , (-81, . . . , -8B) =
58 (*8). The receiver, which knows the encoding functions,

uses an estimator \̂ (. ). We thus define how an estimation

is carried out.

Definition 1. An estimation scheme for B channel uses is a

pair (f, \̂) comprising = encoding functions f = ( 51, . . . , 5=),
where 58 : U → R

B is used by sender 8, and an estimator

function \̂ : RB → Θ used by the receiver.

We are now in a position to elaborate on the average power

constraint in (2). The distribution of -8 depends (via 5 ) on

? \ , which is not known in advance. We therefore require that

schemes respect this power constraint for every \ ∈ Θ, that is,

that the encoding functions { 58} satisfy

1

B
E\

[
‖ 58 (*8)‖2

2

]
≤ %, for all 8 ∈ {1, . . . , =}, \ ∈ Θ. (3)

To evaluate possible schemes, we study risk under squared

error loss, with the goal of minimizing the squared error

E\ ‖\̂ (. ) − \‖2
2
. If we fix the encoding functions f, all that re-

mains is to choose an estimator function \̂. We can understand

these estimators using the same frameworks as in classical

statistics; the difference is that our estimator can access only

. , not the samples {*8}. In particular, when f is fixed, we will

call an estimator minimax if it minimizes the worst-case risk

(over \ ∈ Θ).

In our context, it is natural to extend this idea to schemes.

When referring to the risk of a scheme (f, \̂), we mean the

risk when that scheme is used. To remind ourselves that this

also depends on the encoding functions f, we write the risk

as '(\; f, \̂) = E\ ‖\̂ (. ) − \‖2
2
, with f being implicit on the

right-hand side. We can then extend minimaxity to schemes.

Definition 2. Consider a class S of estimation schemes for

B channel uses. A scheme (fM, \̂M) is minimax for S if it

minimizes the maximum risk among all those schemes in S
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that also satisfy the power constraint (3). That is, if S% is the

subset of S satisfying (3), then a scheme (f, \̂) is minimax if

it satisfies

inf
(f, \̂ ) ∈S%

sup
\

'(\; f, \̂) = sup
\

'(\; fM, \̂M). (4)

Where a scheme’s encoding functions are the same for all

nodes, 58 = 5 for all 8 = 1, . . . , =, we will abuse notation

by writing the common encoding function 5 in place of the

collection f, for example, '(\; 5 , \̂) , '(\; f, \̂).
The main achievability results in Section III and the lower

bound corollaries in Section V are concerned with two cases

of the general problem. The first is the Gaussian location

model, in which ? \ = N(\, f2�3), with U = R3 and Θ =

{\ ∈ R3 : ‖\‖2 ≤ �
√
3} for some known � > 0. The goal

of the receiver is to estimate the mean \ of the multivariate

Gaussian distribution with known covariance matrix f2�3 .

The second is the product Bernoulli parameter model,

in which ? \ =
∏3

9=1 Bernoulli(\ 9 ), with U = {0, 1}3 and

Θ = [0, 1]3. The goal of the receiver is to estimate the mean

\ of the Bernoulli distribution.

We note that the gradient aggregation problem in distributed

stochastic gradient descent, a key part of federated machine

learning, can be cast as a distributed parameter estimation

problem of this type; see e.g. [39].

III. RESULTS FOR ANALOG ACHIEVABILITY

We develop linear estimation schemes for the Gaussian

and Bernoulli mean estimation tasks described in Section II.

A defining feature of these schemes is their analog nature:

they simply scale and transmit their samples to the central

server in an uncoded fashion. This is in contrast to a digital

approach where samples are encoded with a finite number of

bits, which are then reliably communicated to the server using

channel coding techniques. This analog approach allows us to

exploit the additive nature of the Gaussian MAC to average

the statistical samples over the air. The following theorems

characterize the risk of these analog schemes.

Theorem 1. In the Gaussian location model, consider the

class of all estimation schemes for 3 channel uses, and using

a scale-and-offset encoding function common to all senders

5 (D) = UD + V for some U ∈ R, V ∈ R3 (and any estimator

function). The minimax scheme is given by the choice

5M(D) =
√

%

�2 + f2
D, \̂M(. ) = 1

=

√
�2 + f2

%
., (5)

and yields the minimax risk

sup
\

'(\; 5M, \̂M) = 3f2

=

[
1 + f2

n

=%

(
1 + �2

f2

)]
. (6)

By using a repetition code, Theorem 1 can be extended to

cases where B > 3.

Corollary 1. In the Gaussian location model, if B ≥ 3, there

exists a scheme ( 5R, \̂R) achieving the worst-case risk

sup
\

'(\; 5R, \̂R) =
3f2

=

[
1 + f2

n

⌊B/3⌋=%

(
1 + �2

f2

)]
. (7)

This scheme involves repeating the encoding function (5)

⌊B/3⌋ times, leaving the remaining B − 3 ⌊B/3⌋ channel uses

unused, and averaging the corresponding repeated estimates.

The proofs of Theorem 1 and Corollary 1 are in Sec-

tion VI-A.

Where B/3 is not an integer, the unused channel uses

could be filled with another partial repetition, giving a slight

improvement on (7) but a more unwieldy expression.

For the product Bernoulli parameter model, we provide the

minimax scheme among those using affine estimators.

Theorem 2. In the product Bernoulli parameter model, con-

sider the class of all estimation schemes for 3 channel uses

(B = 3), and using affine estimators. The minimax scheme in

this class is the one using the encoding function defined per

element

[ 5M(D)]C =
{
−
√
%, if [D]C = 0√

%, if [D]C = 1,
(8)

where [·]C is the Cth element of its (vector) argument, and the

estimator function \̂M(. ) = UM. + VM1, where VM =
1
2

and

UM =





1

2
√
=%(√= + 1)

, if f2
n ≤ =3/2%,

=
√
%

2(f2
n + =2%)

, if f2
n ≥ =3/2%.

(9)

The minimax risk given by this choice of 5M and (UM, VM) is

sup
\

'(\; 5M, \̂M) =





3

4(
√
= + 1)2

(
1 + f2

n

=%

)
, if f2

n ≤ =3/2%,

3

4
· 1

1 + = · =%

f2
n

, if f2
n ≥ =3/2%.

(10)

We can also similarly extend this using a repetition code.

Corollary 2. In the product Bernoulli parameter model, if

B ≥ 3, there exists a scheme ( 5R, \̂R) achieving the risk

sup
\

'(\; 5R, \̂R) =





3

4(
√
= + 1)2

(
1 + f2

n

⌊B/3⌋=%

)
, if f2

n ≤ =3/2%,

3

4
· 1

1 + = · ⌊B/3⌋=%
f2

n

, if f2
n ≥ =3/2%.

(11)

This scheme involves repeating the encoding function (8)

⌊B/3⌋ times, leaving the remaining B − 3 ⌊B/3⌋ channel uses

unused, and averaging the corresponding repeated estimates.

The proofs of Theorem 2 and Corollary 2 are in Sec-

tion VI-B.

IV. COMPARISON TO DIGITAL LOWER BOUNDS

In the previous section, we characterized the performance

of analog estimation schemes for the Gaussian and Bernoulli
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models. In this section, we compare their performance to dig-

ital approaches that have been studied in the recent literature,

and show that analog schemes can lead to drastically smaller

estimation error for the same amount of physical resources,

i.e. transmission power and number of channel uses.

In particular, recent work in machine learning [1]–[6] has

studied the impact of communication constraints on distributed

parameter estimation. These works abstract out the physical

layer, simply assuming a constraint on the number of bits avail-

able to represent each sample. This implicitly corresponds to

assuming that communication is done in a digital fashion, with

channel coding used to transmit the resultant bits without any

errors. For example, in [6], the authors develop information-

theoretic lower bounds on the minimax squared error risk over

a parameter space Θ ⊂ R3 ,

sup
\∈Θ, f∈FD

:

'(\; f, \̂) = sup
\∈Θ, f∈FD

:

E\ ‖\̂ (. ) − \‖2
2,

where F D
:

now is defined as the set of all possible encoding

schemes f , ( 51, . . . , 5=), where 58 (D) ∈ {1, 2, . . . , 2:} for all

8 = 1, . . . =, i.e. each sample *8 is quantized to : bits, which

are then noiselessly communicated to the receiver. Note that

these information-theoretic results lower bound the minimax

risk achieved by any :-bit digital estimation scheme. In this

section, we compare our results to these lower bounds, as

applied to the Gaussian MAC we study in this paper.

We assume that senders can transmit errorlessly at the

Shannon capacity of the channel. The capacity region of a

Gaussian multiple-access channel with = users, power % and

channel noise f2
n is given by the region of all ('1, . . . , '=)

satisfying [40]

∑

8∈(
'8 <

1

2
log2

(
1 + |( |%̄

f2
n

)
, ∀( ⊆ {1, . . . , =}. (12)

We allocate rates equally among all the senders, in which

case the inequality in which ( comprises all the senders

dominates. If the MAC channel is utilized B times, we assume

that each sender is able to noiselessly communicate

: = sup
('1 ,...,'=)

B

=

=∑

8=1

'8 =
B

2=
log2

(
1 + =%

f2
n

)
bits (13)

to the receiver. Note that at finite block lengths, the senders

cannot communicate to the receiver at the Shannon capacity

and that this optimistic assumption benefits the performance

of the digital schemes.

We can then substitute (13) into the aforementioned lower

bound on minimax risk in [6]. However, that result (Corol-

lary 5 therein) has an unspecified constant, inhibiting direct

comparisons to our result from Corollary 1 above. Therefore,

we instead take advantage of more recent work [7] to rederive

the bound without the unspecified constant, and combine this

with (13) to arrive at the following digital lower bound for the

Gaussian location model.

Proposition 1. In the Gaussian location model, consider all

schemes in which senders send bits to the receiver at the

Shannon capacity for B channel uses. For B
=

log2

(
1 + =%

f2
n

)
< 3,

the risk associated with any such scheme is at least

sup
‖\ ‖2≤�

√
3

E\ ‖\̂ − \‖2
2 ≥ 3f2

B
3

log2

(
1 + =%

f2
n

)
+ c2f2

�2

. (14)

Proof. Use Theorem 5 (see Section VII) to rederive Theorem

2 of [6] without the unspecified constant. Then follow the

modifications to Corollary 1 of [6], then Corollary 5 of [6].

Finally, substitute (13) into this modified result. Note that

[−�, �]3 ⊂ Θ , {\ : ‖\‖2 ≤ �
√
3}, as required by their

lower bound result. �

Compare this to (7) from Corollary 1. Note that this

proposition implies that as the number of nodes and therefore

the number of samples = increases, the risk of any digital

scheme decreases as Ω(32/B log =), whereas the risk of the

scheme from Corollary 1 scales with $ (3/=). This implies

that, when B ≥ 3, the analog schemes can lead to an

exponentially smaller estimation error, or equivalently require

an exponentially smaller number of samples to achieve the

same estimation accuracy, as compared to digital schemes

employing the same physical resources.

On the other hand, we make a brief note on the case where

B < 3. Here, an analog scheme transmitting scaled versions of

samples cannot easily communicate more coordinates than it

has channel uses. A natural approach would be for each node

to transmit only the (scaled) first B elements of *8 . In this case,

the worst-case risk would scale as Θ(3), independent of B and

=, which is the maximal risk achievable even in the absence

of any samples. Thus, the digital scheme achieves risk better

than Θ(3) whenever B = l(3/log(1 + =%

f2
n
)), which can be the

case when the SNR or = is large, while our analog scheme

requires B ≥ 3 to be viable.

We also have a similar situation for the Bernoulli model,

derived in the same way.

Proposition 2. In the product Bernoulli model, consider all

schemes in which senders send bits to the receiver at the

Shannon capacity for B channel uses. For B
=

log2

(
1 + =%

f2
n

)
< 3,

the risk associated with any such scheme is at least

sup
\∈[0,1]3

E\ ‖\̂ − \‖2
2 ≥ 3

B
3

1

( 1
2
−2Y2)2

log2

(
1 + =%

f2
n

)
+ c2

Y2

(15)

Proof. Apply a similarly modified version of Corollary 8 from

[6] (via Corollary 4 of [6] and Theorem 2 of [7]), using (13).

�

Note that analogously to the Gaussian case, this result

implies that the risk of any digital scheme for the Bernoulli

model scales as Ω(32/B log =), while the risk of our analog

scheme from Corollary 2 decreases as $ (3/=). In the low

SNR case, f2
n ≥ =3/2%, the analog scheme appears to achieve

$ (32/B=2) (compared to Ω(3/=)), but since increasing = also

increases the SNR given by =%/f2
n , this relationship will even-

tually give way to the high SNR regime, where f2
n ≤ =3/2%.

These results show that building on the inherent summation

of transmitted signals in the Gaussian MAC to perform the

averaging that classical statistical estimators would do can
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TABLE I
COMPARISON OF RESULTS

analog achievability digital lower bound analog lower bound

Gaussian location 3f2

=

[
1 + f2

n
⌊B/3⌋=%

(
1 + �2

f2

)]
3f2

B
3

log2

(
1+ =%

f2
n

)
+ f2

�2
c2

3f2

=
· 1

B
3

log2

(
1+ =%

f2
n

)
+ f2

�2
c2

=

product Bernoulli 3

4(
√
=+1)2

(
1 + f2

n
⌊B/3⌋=%

)
3

B
3

1

( 1
2
−2Y2 )2

log2

(
1+ =%

f2
n

)
+ c2

Y2

3
=
· 1

B
3

1

( 1
2
−2Y2 )2

log2

(
1+ =%

f2
n

)
+ c2

=Y2

.

B ≥ 3 (both) $

(
3

=

)
Ω

(
32

B log =

)
Ω

(
32

B · = log =

)

B ∝ 3 (both) $

(
3

=

)
Ω

(
3

log =

)
Ω

(
3

= log =

)

provide drastic gains in estimation performance. Similar gains

have been observed in asymptotic lossy source coding for

Gaussian sensor networks in [8], [9], where one is interested

in communicating an i.i.d. Gaussian source over a MAC

under mean-squared error distortion, as well as for distributed

stochastic gradient descent in experimental comparisons in

[10].

We summarize all these results, as well as the new lower

bounds we present in Section V below, in Table I.

V. RESULTS FOR ANALOG LOWER BOUNDS

So far in this paper, we have shown that the analog

joint communication-estimation schemes in Section III can

exponentially outperform lower bounds for digital schemes

with a physical layer abstraction. Having shown this striking

advantage, the next question this naturally raises is what lower

bounds exist for analog schemes. That is: if these analog

schemes can achieve what digital schemes could never hope

for, how close are we to the fundamental limits for such analog

approaches?

In this section, we present new lower bounds on worst-case

squared error risk for any estimation scheme in our setting of

interest where the parametric model has a sub-Gaussian score

function. This work draws on the findings of [7], for which

we first introduce some relevant quantities. We then apply

them to the same models for which we presented achievability

results in Section III. We find that these lower bounds are

within a logarithmic factor of the risk achieved by the schemes

presented above.

A. Preliminaries

If * ∼ ? \ , where ? \ is a member of a family of probability

distributions parameterized by \ ∈ Θ ⊆ R3 and differentiable

in \, the score function is defined as the gradient of the log-

likelihood function,

(\ (D) , ∇\ log ? \ (D)

=

(
m

m\1

log ? \ (D), . . . ,
m

m\3
log ? \ (D)

)
.

Where we have many samples *1, . . . , *= ∼ ? \ , we may

denote the score function of the finite sequence as

(\ (D1, . . . , D=) , ∇\ log ? \ (D1, . . . , D=).
Note that both (\ (D) and (\ (D1, . . . , D=) have the same

number of elements as \, independent of the size of the

argument passed into (\ (·). It is a well-known property of

the score function that E[(\ (*)] = 0.

The Fisher information is then defined as the 3 × 3 matrix

�* (\) , E[(\ (*)(\ (*)T]
which makes its trace equal to

tr(�* (\)) =
3∑

9=1

E

[(
m

m\ 9

log ? \ (D)
)2
]

.

We say that a zero-mean random variable - is sub-Gaussian

with parameter d if

E [exp(_-)] ≤ exp

(
_2d2

2

)
for all _ ∈ R.

Recall that if a zero-mean random variable - is bounded

within [0, 1] with probability 1 then it is sub-Gaussian with

parameter (1 − 0)/2. Also, if -1, . . . , -= are independent and

sub-Gaussian with parameters d1, . . . , d=, then their sum -1 +
· · · + -= is sub-Gaussian with parameter

√
d2

1
+ · · · + d2

=.

Our lower bounds require the regularity conditions de-

scribed in [7], which we recite here:

(i)
√
? \ (D1, . . . , D=) is continuously differentiable

with respect to each component \ 9 at almost all

(D1, . . . , D=) ∈ U= (with respect to some measure

dominating {? \ : \ ∈ Θ}).
(ii) The Fisher information for each component \ 9 ,

E( [ m
m\ 9

log ? \ (*1, . . . ,*=)]2), exists and is a continuous

function of \ 9 .

(iii) The conditional density ?(H |D1, . . . , D=) is square inte-

grable in the sense that for almost all H ∈ RB for each \,∫
?(H |D1, . . . , D=)2 3? \ (D1, . . . , D=) < ∞.

It is easily verified that (i) and (ii) are satisfied in both the

Gaussian location and product Bernoulli parameter models.

As for (iii), this follows from the bounded conditional density

?(H |G1, . . . , G=) of the Gaussian MAC; details are in the

relevant proofs.
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B. Main lower bound on worst-case risk

We have now covered the background necessary to state our

main lower bound, which is on the squared error risk for any

estimation scheme in the setting described in Section II when

the parametric model has a sub-Gaussian score.

Theorem 3. Suppose that [−�, �]3 ⊂ Θ, and that the samples

(*8)=8=1
are i.i.d. and satisfy conditions (i) and (ii), and that

〈E, (\ (*8)〉 is sub-Gaussian with parameter d for all unit

vectors E ∈ R3 . Then in a Gaussian multiple-access channel

with B channel uses, the worst-case risk under squared error

loss of any estimation scheme (f, \̂) must satisfy

sup
\∈Θ

'(\; f, \̂) ≥ 3

=
· 1

B
3
d2 log2

(
1 + =%

f2
n

)
+ c2

=�2

. (16)

The proof for this builds on a relationship between Fisher

information and Shannon information established by [7], and

a Bayesian Cramer-Rao type bound to relate minimax risk and

Fisher information. We provide the proof in Section VII-B.

C. Bounds for specific models

In the case of the Gaussian location model, we can charac-

terize this bound in terms of the sample variance f2.

Corollary 3. In the Gaussian location model with B channel

uses, the worst-case risk under squared error loss of any

estimation scheme (f, \̂) must satisfy

sup
\∈Θ

'(\; f, \̂) ≥ 3f2

=
· 1

B
3

log2

(
1 + =%

f2
n

)
+ f2

�2
c2

=

. (17)

We can also derive a result for product Bernoulli models

where elements of \ are close to 1
2
, i.e., where the samples

are dense.

Corollary 4. Consider the relatively dense product Bernoulli

model, where *1, . . . , *= ∼ ∏3
9=1 Bernoulli(\ 9 ), with Θ = [ 1

2
−

Y, 1
2
+Y]3 , Y ∈ (0, 1

2
), with B channel uses. The worst-case risk

under squared error loss of any estimation scheme (f, \̂) must

satisfy

sup
\∈Θ

'(\; f, \̂) ≥ 3

=
· 1

B
3

1

( 1
2
−2Y2)2

log2

(
1 + =%

f2
n

)
+ c2

=Y2

. (18)

The proofs of the above two corollaries, which both follow

from Theorem 3, are in Section VII-C.

D. Lower bound for a general multiple-access channel

The result of Theorem 3 can be generalized to other

multiple-access channels, in terms of the total capacity of the

network, that is, the maximum achievable sum of all rates in

the network,

�total = max∏
8 ?8 (G8C )

� (-1C , . . . , .=C ;.C ), (19)

where the maximum is over all product distributions for

(-1C , . . . , -=C ). We will refer to this quantity as the “sum

capacity”, recalling that it does not fully describe the capacity

region of the network.

Theorem 4. Suppose that the samples (*8)=8=1
are i.i.d. and

satisfy conditions (i) and (ii), and that 〈E, (\ (*8)〉 is sub-

Gaussian with parameter d for all unit vectors E ∈ R3 .

Consider any discrete memoryless multiple-access channel

that is constrained by the sum capacity �total (per channel use),

whose conditional density ?(H |G1, . . . , G=) is bounded. The

worst-case risk of any estimation scheme (f, \̂) must satisfy

sup
\∈Θ

'(\; f, \̂) ≥ 3

=
· 1

2 B
3
d2�total + c2

=�2

. (20)

Proof. Follow the proof of Theorem 3, but replace the right-

hand side of (40) with B�total (i.e., �total for B channel uses).

Note that the stipulation that ?(H |G1, . . . , G=) be bounded (by

some different finite ") ensures that (37), and hence (iii), is

satisfied. �

VI. PROOFS OF ANALOG ACHIEVABILITY

A. Gaussian location model

In this section, we prove our main results for the Gaussian

location model, Theorem 1 and Corollary 1. In this model, the

samples *8 ∼ N(\, f2�3), where \ lies in an ℓ2-ball in a 3-

dimensional space, {‖\‖2 ≤ �
√
3}, and the goal is to estimate

\.

Since the multiple-access channel already produces a sum,

one might suspect that that an estimation scheme emulating the

sample mean would be a natural candidate, given its properties

in classical estimation. Indeed, it is minimax among schemes

using affine encoders (and any estimator). First, we show that

this estimator is minimax for a fixed affine encoder, as we

state formally in the following proposition.

Proposition 3. In the Gaussian location model, let the senders

use any scale-and-offset encoding function 5 (D) = UD + V for

some U ∈ R, V ∈ R3 , common to all senders, and assume that

this encoding function satisfies the power constraint, and that

the channel is used 3 times (i.e., B = 3). Then the minimax

estimator is given by

\̂M (. ) = 1

U=
. − 1

U
V,

which yields risk

E\ ‖\̂M (. ) − \‖2
2 =

3

=

(
f2 + f2

n

=U2

)
. (21)

Remark. The estimator given by Proposition 3 is also the

maximum likelihood estimator.

The proof for this follows similar lines to the classical result

using a least favorable sequence of priors, with modifications

for channel noise.

Lemma 1. If ) is distributed according to the prior

N(`, 12�3), and all senders use the common encoding func-

tion 5 (D) = UD + V for some U ∈ R, V ∈ R3 , then the Bayes

estimator \̂`,12 (H) is given by

\̂`,12 (. ) = ` + U=12

U2=212 + U2=f2 + f2
n

(. − U=` + =V), (22)
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and the Bayes risk is

E‖\̂`,12 (. ) − ) ‖2
=

3 (U2=f2 + f2
n )

U2=2 + U2=f2+f2
n

12

. (23)

Proof. Under squared error loss, the Bayes estimator for

N(`, 12�3) is (by well-known theorem, e.g. [41, Cor.

4.1.2(a)]) \̂`,12 (H) = E() |H), which we will evaluate. The

relevant covariance matrices are

Σ. = (U2=212 + U2=f2 + f2
n )�3 ,

Σ.) = E
[
(U=, + U

∑
8 +8),⊤]

= U=12�3 .

Then the Bayes estimate is given by

\̂`,12 (. ) = E() |. ) = E) + Σ).Σ
−1
. (. − E. )

= ` + U=12 · 1

U2=212 + U2=f2 + f2
n

· (. − U=` − =V),

and since this estimator is unbiased, the squared error is given

by the trace of the conditional variance,

E‖\̂`,12 − ) ‖2
= tr var() |. ) = tr(Σ) − Σ).Σ

−1
. Σ.))

= 312 − 3 (U=12)2

U2=212 + U2=f2 + f2
n

. �

Proof of Proposition 3. Take the Bayes estimator from

Lemma 1. Let 12 → ∞, then we have a sequence of priors

N(`, 12) yielding increasing Bayes risk converging to

lim
1→∞
E‖\̂`,12 − ) ‖2

=
3 (U2=f2 + f2

n )
U2=2

=
3

=

(
f2 + f2

n

=U2

)
.

The minimax estimator is then

lim
1→∞

\̂`,12 (. ) = ` + 1

U=
. − ` − 1

U
V. �

In the absence of a power constraint, the offset V has

no effect—since it is known, it is easily cancelled by the

receiver’s estimator. Intuitively, with a power constraint, one

would expect no offset to be preferable. In Theorem 1, where

we find the best choice of (U, V), we find that this is indeed

the case.

Proof of Theorem 1. For any given U, V, the minimax risk

from Proposition 3 is decreasing in U. Therefore, we choose

the largest U satisfying the power constraint (3). Note that

E\

[
‖-8 ‖2

2

]
= U2(‖\‖2 + 3f2) + 2U\⊤V + ‖V‖2

= ‖U\ + V‖2
2 + U23f2. (24)

We thus solve

maximize U

subject to ‖U\ + V‖2
2
+ U23f2 ≤ 3% ∀\ : ‖\‖ ≤

√
3�.

(25)

If we relax the constraint to ‖V ± U�1‖2
2
+ U23f2 ≤ 3%, we

can use Lagrange multipliers to find the solution

U =

√
%

�2 + f2
, V = 0, (26)

and verify that it also satisfies the constraints of, and is

therefore also a solution to, (25). �

We now turn to the case where B > 3. A natural extension of

the scheme from Theorem 1 would be to transmit repetitions

of the sample.

Lemma 2. Let (f, \̂) be a scheme with \̂ (. ) affine in .

and consider a scheme (f', \̂R) that repeats the encoding

function < times and averages the estimates for each repe-

tition, \̂R (. ) = 1
<

∑<
9=1 \̂ ( [. ] 9 ), where [. ] 9 is the part of .

corresponding to the 9th repetition. The risk of (f', \̂R) is the

same as for (f, \̂), but with f2
n /< in place f2

n .

Proof. The bias of the estimator is unaffected by the repetition

(and is independent of f2
n ), and if the original estimator is

written as \̂ (. ) = �. + 2, the variance can be shown to be∑
8 var(�-8) + 1

<
var(�/). Relative to the original estimator

variance, this is equivalent to dividing f2
n � by <. �

This then yields the achievability result of Corollary 1.

Proof of Corollary 1. Apply Lemma 2 to Theorem 1, with

< = ⌊B/3⌋ and ignoring the leftover channel uses. �

Comparing this to the B = 3 case, the repetition reduces the

noise by a factor of roughly B/3, which is the expected effect

of averaging a repeated transmission. The minimax risk then

converges more quickly to the noiseless case as B/3 → ∞.

B. Product Bernoulli model

In this section, we prove our main results for the Bernoulli

parameter model, Theorem 2 and Corollary 2. In this model,

*8 ∼
∏3

8=1 Bernoulli(\), and the goal is to estimate \, which

is in [0, 1]3. Our calculations in this section will work with

the parameterized encoding function common to all senders

5� (D) =
{
−�, if D = 0

�, if D = 1.
(27)

Our analysis of the Bernoulli parameter model focuses on the

scalar case, as stated in Proposition 4 below. Theorem 2 will

then follow by extension to independent dimensions.

Proposition 4. In the scalar Bernoulli parameter model

(3 = 1), consider the class of all estimation schemes using

affine estimators \̂U,V (. ) = U. + V, U, V ∈ R (and any scalar

encoding function with B = 1). The minimax scheme in this

class is the one using the encoding function

5M(D) =
{
−
√
%, if D = 0√

%, if D = 1,
(28)

and the estimator \̂M (. ) = UM. + VM, where VM =
1
2

and UM

is as provided in (9). The minimax risk given by this choice

of (UM, VM) is

sup
\

'(\; 5M, \̂M) =



1
4(√=+1)2

(
1 + f2

n

=%

)
, if f2

n ≤ =3/2%,

1
4
· 1

1+=·=%/f2
n
, if f2

n ≥ =3/2%.
(29)

Our steps for proving Proposition 4 will be first to establish

the minimax risk for the common encoding function 5� , then

to show that a scheme using any other encoding function can
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be transformed to one using 5� for some � of equal risk, and

finally to show that the optimal value for � is
√
%. Before we

continue, we compute the risk for a general affine estimator.

Lemma 3. In the scalar Bernoulli parameter model (3 = 1), if

all senders use the encoding function 5� (27), and the receiver

uses the affine estimator \̂U,V (. ) = U. + V, then the risk is

'(\; 5� , \̂U,V) = U2
[
4=�2\ (1 − \) + f2

n

]

+ [U=� (2\ − 1) + V − \]2 . (30)

Proof. Recall that . =
∑=

8=1 5� (*8) + / and that 5� (*8) = �

w.p. \ and 5� (*8) = −� w.p. 1 − \. The variance and bias of

the estimator are then

var\ [\̂U,V (. )] = U2
var(. ) = U2

[
4=�2\ (1 − \) + f2

n

]
.

bias\ [\̂U,V (. )] , E\ \̂U,V (. ) − \ = U=� (2\ − 1) + V − \.

The result then follows from combining these as

E\ [\̂U,V (. ) − \]2
2 = var\ [\̂U,V (. )] + (bias\ [\̂U,V (. )])2. �

The bulk of the work in proving Proposition 4 is in showing

Proposition 5, which establishes the minimax estimator for the

encoding function 5� .

Proposition 5. In the scalar Bernoulli parameter model, let

all senders use the encoding function 5� (D) from (27), and

consider the class of all affine estimators Θ̂aff = {\̂U,V (. ) =
U. + V, U, V ∈ R}. The minimax affine estimator is given by

\̂M(. ) = UM. + VM, where VM =
1
2

and

UM =




1

2
√
=� (

√
=+1) , if f2

n ≤ =3/2�2,

=�

2(f2
n+=2�2) , if f2

n ≥ =3/2�2.
(31)

The minimax risk given by this choice of (UM, VM) is

sup
\

'(\; 5M, \̂M) =




1

4(
√
=+1)2

(
1 + f2

n

=�2

)
, if f2

n ≤ =3/2�2,

1
4
· 1

1+=·=�2/f2
n
, if f2

n ≥ =3/2�2.

(32)

Proof. Define Ulo =
1

2
√
=� (√=+1) and Uhi =

=�

2(f2
n+=2�2) . Note

that then UM = min{Ulo, Uhi}. For convenience, and with some

abuse of notation, let '(\; 5� , U, V) refer to the expression in

(30). We will repeatedly use the facts that:

(a) '(\; 5� , Ulo, VM) is constant with respect to \.

(b) '(\; 5� , Uhi, VM) is convex in \ and minimized at \ ∈
{0, 1}, at which the risk is equal.

(c) '(0; 5� , U, VM) is convex in U and minimized at U = Uhi.

These can all be verified by appropriate substitutions into (30).

Where we invoke these facts, we will label the equality or

inequality signs accordingly.

We will show that for every other choice (U, V), there exists

some \ ∈ [0, 1] with risk exceeding sup\ '(\; UM, VM). We

divide into three cases.

Case 1: U > Ulo, or U = Ulo and V ≠
1
2
. In this case, take

\ =
1
2

and we have

'( 1
2
; 5� , U, V) = U2(=�2 + f2

n ) + (V − 1
2
)2

> U2
lo(=�

2 + f2
n ) = '( 1

2
; 5� , Ulo, VM).

Then, if UM = Ulo, then by (a), the right-hand side is equal to

sup\ '(\; 5� , UM, VM). If UM = Uhi, then note that

'( 1
2
; 5� , Ulo, VM) (a)

= '(0; 5� , Ulo, VM)
(c)
≥ '(0; 5� , Uhi, VM) (b)

= sup
\

'(\; 5� , UM, VM),

where labeled steps refer to corresponding facts above.

Case 2: U < Ulo and V ≥ 1
2
. Take \ = 0 and we have

'(0; 5� , U, V) = U2f2
n + (V − U=�)2

≥ U2f2
n + ( 1

2
− U=�)2

= '(0; 5� , U, VM),
where in the inequality we used the fact that U=� < Ulo=� =√

=

2(√=+1) < 1
2
. Then, if UM = Ulo, we also have Ulo < Uhi, and

by fact (c), is strictly decreasing in U for all U < Ulo, thus

'(0; 5� , U, VM) > '(0; 5� , Ulo, VM) (a)
= sup

\

'(\; 5� , UM, VM).

If UM = Uhi, then we have

'(0; 5� , U, VM)
(c)
≥ '(0; 5� , Uhi, VM) (b)

= sup
\

'(\; 5� , UM, VM).

Case 3: U < Ulo and V ≤ 1
2
. Take \ = 1 and argue similarly

to case 2 that '(1; 5� , U, VM) > sup\ '(\; 5� , UM, VM). �

Lemma 4. In the scalar Bernoulli parameter model, consider

the scheme ( 5 , \̂), in which all senders use the encoding

function 5 (0) = �, 5 (1) = �, and the receiver uses the

estimator \̂. Then there exists a scheme ( 5 ′, \̂ ′) satisfying

5 ′(0) = − 5 ′(1) and with minimax risk equal to that of ( 5 , \̂).
Proof. Choose � =

�−�
2

, so that 5 ′(D) , 5� (D) = 5 (D)− �+�
2

.

By construction, 5 ′(0) = − 5 ′(1) =
�−�

2
. Then, if . and . ′

are what the receiver observes under 5 and 5 ′ respectively, we

have . ′ =
∑

8 5
′(*8) + / =

∑
8 [ 5 (*8) − �+�

2
] + / = . − = �+�

2
.

We can then define \̂ ′(. ′) , \̂ (. ′ + = �+�
2

), and this will have

exactly the same statistical properties as \̂ (. ). �

Now we may complete the proof of Proposition 4.

Proof of Proposition 4. Because Lemma 4 shows there is no

sacrifice in minimax risk, it suffices to consider just schemes

using encoding functions of the form 5� in (27). The minimax

affine estimator for such encoding functions is found in

Proposition 5. From (32), the minimax risk for 5� is strictly

decreasing in �2. Therefore, to minimize over all encoding

functions 5� , we take the highest-magnitude � satisfying the

power constraint (3), � = ±
√
%. �

The extension of this result to the product Bernoulli model

is then an application of the scalar case on a per-sample basis.

Proof of Theorem 2. Because each dimension 1, . . . , 3 is in-

dependent, each dimension can be optimized separately. Each

sender transmits its 9th sample [ 5� (*8)] 9 using the scheme

from Proposition 4. The even division of power still satisfies

the average power constraint (3). The minimax risk is then 3

times the minimax risk along one dimension. �

Finally, Corollary 2 follows using Lemma 2 again.

Proof of Corollary 2. Apply Lemma 2 to Theorem 2, with

< = ⌊B/3⌋ and ignoring the leftover channel uses. �
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VII. PROOFS OF ANALOG LOWER BOUNDS

A. Preliminaries

We first present two results that are key to our main theorem.

These results characterize the worst-case risk in terms of the

trace of the Fisher information matrix, and in turn in terms

of Shannon information. First, Equation 8 of [6] tells us the

following, which we list as a lemma here.

Lemma 5. Suppose [−�, �]3 ⊂ Θ. For any estimator

\̂ (.1, . . . , .=), the worst-case squared error risk must satisfy

sup
\∈Θ
E‖\̂ (. ) − \‖2 ≥ 32

sup\∈Θ tr(�. (\)) + 3c2

�2

. (33)

We will also lean on the following theorem, due to [7].

Theorem 5. Suppose that 〈D, (\ (-)〉 is sub-Gaussian with

parameter d for any unit vector D ∈ R3 . Under regularity

conditions (i)–(iii), tr(�. (\)) ≤ 2d2�\ (- ;. ).

B. Proof of main lower bound

We first provide an upper bound for the mutual information

between the channel input and output. For brevity we omit

the proof, which can be derived using standard results in

information theory.

Proposition 6. Consider the Gaussian multiple-access chan-

nel with B channel uses, . = -1+· · ·+-=+/ , / ∼ N(0, f2
n �B),

with a power constraint 1
B
E[‖-8‖2] ≤ %. If -1, . . . , -= are

independent, then the Shannon information between its input

(-1, . . . , -=) and its output . is bounded by

� (-1, . . . , -=;. ) ≤ B

2
log2

(
1 + =%

f2
n

)
. (34)

We now have all of the ingredients necessary to prove

Theorem 3, which uses the data processing inequality to chain

the above results together.

Proof of Theorem 3. Recall that -8 = 5 (*8), 8 = 1, . . . , = and

. is the output of the channel ?. |- (H |G1, . . . , G=) with inputs

-1, . . . , -=. The conditional distribution of . given * can be

expressed in terms of the channel’s conditional distribution,

?. |* (H |D1, . . . , D=) = ?. |- (H | 5 (D1), . . . , 5 (D=)). (35)

That is, we have a channel from * to . . (Note that this doesn’t

require invertibility in 5 , since it is in the condition, and

?. |- is defined by assumption.) To verify that this “channel”

satisfies regularity condition (iii), note that ?. |- is bounded,

?. |- (H |G1, . . . , G=) ≤
1

√
(2cf2

n )=
, ", (36)

so chaining (35) and (36) verifies that
∫

?. |* (H |D1, . . . , D=)2 3?* (D1, . . . , D=)

≤
∫

"2 3?* (D1, . . . , D=) = "2 < ∞. (37)

We therefore satisfy the requirements to invoke Theorem 5,

so long as we can establish that 〈E, (\ (*1, . . . , *=)〉 is sub-

Gaussian for all unit vectors E ∈ R
3 . Note that since

*1, . . . ,*= are independent,

(\ (*1, . . . , *=) =
=∑

8=1

∇\ log ? \ (*8) =
=∑

8=1

(\ (*8).

Then for every unit vector E ∈ R3 ,

〈E, (\ (*1, . . . , *=)〉 =
〈

E,

=∑

8=1

(\ (*8)
〉

=

=∑

8=1

〈E, (\ (*8)〉.

This is a sum of = independent sub-Gaussian random variables

each with parameter d, and is therefore sub-Gaussian with

parameter
√
=d. Theorem 5 thus gives

tr(�. (\)) ≤ 2=d2�\ (*1, . . . , *=;. ). (38)

Since (*1, . . . , *=) → (-1, . . . , -=) → . form a Markov

chain, the data processing inequality implies that

�\ (*1, . . . ,*=;. ) ≤ �\ (-1, . . . , -=;. ). (39)

Now, *1, . . . ,*= are independent (by definition), and each

-8, 8 = 1, . . . , = is a function of the corresponding *8 . There-

fore, -1, . . . , -= are also independent, and from Proposition 6,

we have

� (-1, . . . , -=;. ) ≤ B

2
log2

(
1 + =%

f2
n

)
. (40)

Putting (38), (39) and (40) together yields

tr(�. (\)) ≤ =d2B log2

(
1 + =%

f2
n

)
. (41)

Substituting this expression into the result given by Lemma 5

then yields

sup
\∈Θ
E‖\̂ (. ) − \‖2 ≥ 32

=d2B log2

(
1 + =%

f2
n

)
+ 3c2

�2

. �

C. Specific problem instances

To find lower bounds for the Gaussian location and product

Bernoulli parameter models, we compute the sub-Gaussian

parameters of their score functions and apply our main result.

Proof of Corollary 3. The score function for a single sample

*8 is

(\ (D8) = ∇\

[
(D8 − \)T(D8 − \)

2f2
− log 2cf

]

=
1

f2
(D8 − \).

Then, with *8 ∼ N(\, f2�3), the score function of each

sample (\ (*8) is Gaussian with mean zero and covariance
1
f2 �3 . It follows that for any unit vector E and each sample

*8 , 〈E, (\ (*8)〉 is Gaussian with zero mean and variance

ET 1
f2 �3E =

1
f2 E

TE =
1
f2 . This is sub-Gaussian with parameter

1
f

, enabling an application of Theorem 3. �
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Fig. 2. Simulation of Gaussian location model with %

f2
n

= 0.1, �

f2 = 0.4

Proof of Corollary 4. We can compute the score function of

each sample in the product Bernoulli model to be (\ (D8) =

((\1
(D8), . . . , (\ 9 (D8)), where

(\ 9 (D8) =
{

1
\ 9
, if D8 9 = 1

− 1
1−\ 9 , if D8 9 = 0.

Then (\ 9 (*8) is bounded, and therefore is sub-Gaussian with

parameter

1

2

[
1

\ 9

+ 1

1 − \ 9

]
=

1

2\ 9 (1 − \ 9 )
≤ 1

1
2
− 2Y2

,

where the last step uses the fact that \ ∈ Θ = [ 1
2
− Y, 1

2
+ Y]3.

Being the sum of = independent sub-Gaussians, for all unit

vectors E ∈ R3 , 〈E, (\ (*8)〉 is sub-Gaussian with parameter
√√√ 3∑

9=1

E2
9

1

( 1
2
− 2Y2)2

=
1

1
2
− 2Y2

. (42)

This gives us a value for d to use in Theorem 3.

For �, we may reparameterize the parameter space to Θ′ =
[−Y, Y] (so that the Bernoulli component means are \ = \ ′+ 1

2
).

We can then apply Theorem 3 to arrive at Corollary 4. �

VIII. SIMULATIONS

We ran simulations to validate the schemes proposed in

Section III for both of our models of interest, and we plot

the results alongside each of our three theoretical results in

Figs. 2–5. Lines in the same color relate to the same value of

3, with different patterns corresponding to different results.

The points with ‘×’ markers are the squared error of our

proposed analog schemes, averaged over 100 simulations with

\ drawn uniformly at random from the parameter space Θ, at

various values of 3 and =, in the case where B = 3. The solid

lines are the theoretical results we presented in Section III,

namely Theorems 1 and 2, which are the worst-case risk

over parameters \ ∈ Θ for the schemes we proposed (which

are minimax among the classes of estimators noted in those

theorems).
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Fig. 3. Simulation of Gaussian location model with %

f2
n

= 1000, �

f2 = 0.4

100 101 102 103 104 105 106

10−6

10−4

10−2

100

102

=

sq
u

ar
e

er
ro

r

simulation, 3 = 1000

simulation, 3 = 100

simulation, 3 = 10

theoretical worst-case risk

digital lower bound

analog lower bound
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Since the theoretical results are the worst-case risk over the

parameters \ ∈ Θ, we expect them to be at least as large as

the average squared error found in simulations with randomly

sampled \ ∈ Θ. It turns out that in most cases, the worst-case

and average risk are equal, because the risk of the minimax

scheme is constant with respect to \. The one exception is the

low-SNR regime (f2
n > =3/2%, see Theorem 2) of the product

Bernoulli model estimator (Fig. 4), where the risk depends on

\, leading to the observed difference between the theoretical

line and the average over randomly drawn \ at low =.

The digital lower bounds of Propositions 1 and 2 are

plotted in dash-dot-dot lines. It is here that we see the marked

improvement discussed in Section IV. Since the error in digital

schemes scales at best with 1/log =, the simulated analog

schemes rapidly become significantly advantageous even in

moderately large values of =.

Finally, the analog lower bounds of Corollaries 3 and 4

are plotted in dashed lines, and run a log = factor from the

achievability and simulation results.

Recall that in the product Bernoulli model, both lower

bounds depend on Y, where Θ = [ 1
2
− Y, 1

2
+ Y]3 . Our

achievability results and simulations, on the other hand, are for

the full parameter space Θ = [0, 1]3. Note, however, that the

lower bounds for any Y < 1
2
, yielding Θ ⊂ [0, 1]3, also imply

a lower bound for [0, 1]3. To generate the plots in Figs. 4 and

5, we used Y =
1
4
.

IX. CONCLUSIONS

We introduced and studied a new model for minimax

parameter estimation over the Gaussian multiple-access chan-

nel, developing estimation schemes for the Gaussian location

model and product Bernoulli model. These “analog” esti-

mation schemes directly leverage the superposition property

of the Gaussian MAC, and our analysis of their risk under

squared error loss showed that they exponentially outperform

even lower bounds on the risk of “digital” schemes that

separate the communication and estimation problems. We then

derived new “analog” lower bounds for this estimation prob-

lem that are within a logarithmic factor of our achievability

results. We confirmed our findings in simulations for both

models. This adds theoretical insight to a growing body of

literature on the advantages of analog schemes in over-the-air

learning and inference, demonstrating that even fundamental

limits of digital schemes can be beaten when estimation and

communication are considered jointly.

This opens a number of further questions to be examined

in future work. First, while the lower bounds we presented

are general, our achievability results pertain specifically to the

two estimation models we studied. With the additive nature

of the Gaussian MAC, one would imagine that this extends

to other mean estimation problems, but it raises the question

of whether other estimation problems, such as distribution or

empirical frequency estimation [6], [42], [43], can also harness

this or other channels to achieve similarly startling gains over

digital schemes.

Moreover, our estimation schemes work only when there is

at least one channel use available for each parameter (B ≥ 3).

In many applications, models may have too many parameters

for this to be feasible, so the setting where B < 3 is also

important to study. Developing analog schemes for this regime

that outperform digital approaches remains as future work.
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