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Abstract—We study schemes and lower bounds for distributed
minimax statistical estimation over a Gaussian multiple-access
channel (MAC) under squared error loss, in a framework com-
bining statistical estimation and wireless communication. First,
we develop ‘“‘analog” joint estimation-communication schemes
that exploit the superposition property of the Gaussian MAC and
we characterize their risk in terms of the number of nodes and
dimension of the parameter space. Then, we derive information-
theoretic lower bounds on the minimax risk of any estimation
scheme restricted to communicate the samples over a given
number of uses of the channel and show that the risk achieved
by our proposed schemes is within a logarithmic factor of these
lower bounds. We compare both achievability and lower bound
results to previous ‘““digital”” lower bounds, where nodes transmit
errorless bits at the Shannon capacity of the MAC, showing that
estimation schemes that leverage the physical layer offer a drastic
reduction in estimation error over digital schemes relying on a
physical-layer abstraction.

Index Terms—federated learning, over-the-air learning, statis-
tical estimation

I. INTRODUCTION

To fully appreciate the plenitude of data fueling the modern
rise of machine learning, we might pause to consider not
just its volume, but its origins. While the computational
lifting is often concentrated in powerful central servers, the
data they rely on is largely and increasingly born “at the
edge”’—spawned in a myriad of devices, scattered ubiqui-
tously, equipped with sensors and user input to collect all sorts
of information from the world.

Recognizing this growing decentralization of data, there has
been growing interest in the study of techniques to combine
samples from many nodes to make inferences. The key distinc-
tion between this and traditional approaches to learning and
estimation is an explicit consideration of the communication
channels between edge devices and the central server, which
are often noisy or unreliable channels, like wireless links.
Two disciplines with decades-long histories, wireless networks
and statistical estimation, thus find themselves with common
cause.

Recent years have seen significant activity in this nascent
intersection. One simple and intuitive way to study the im-
pact of bandwidth-limitations on estimation performance is
to model them as imposing constraints on the number of
bits available to encode each observed sample. A number of
works in the machine learning literature have taken this tack
[1]-[6], providing both achievable schemes and information-
theoretic lower bounds under bit constraints, and characteriz-
ing the dependence of the estimation error on the number of
bits available to represent each sample. Since these analyses
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assume the encoded bits to be received without error, they
can be interpreted as assuming that a reliable scheme is used
for transmission over the underlying noisy channels. This in
effect suggests an abstraction layer, separating the question of
physical-layer communication from the statistical estimation
problem.

Our goal in this paper is to study the problem of distributed
statistical estimation over a noisy multiple-access channel from
first principles. Our main contributions are as follows.

First, we introduce a model for minimax parameter estima-
tion over a fixed number of uses of the Gaussian multiple-
access channel (MAC), defining the estimation schemes of
interest in this setting and providing a rigorous and tractable
mathematical model for quantifying their performance and
studying their optimality.

Second, we develop analog transmission-estimation
schemes for two canonical estimation tasks, the Gaussian
location and product Bernoulli models, in which each node
scales and transmits its uncoded sample to the central
server, leveraging the superposition of the Gaussian MAC to
perform averaging over the air. We analyze these schemes
and characterize their risk under squared error loss. When
compared to information theoretic lower bounds for digital
schemes, controlling for physical resources, we find that the
worst-case risk of these analog schemes is exponentially
smaller than that of any digital scheme. This suggests that
analog schemes that consider estimation and physical layer
transmission jointly can bring about drastic improvements
over digital schemes that separate the two with an abstraction
layer.

We next address the question of whether the analog schemes
we develop are close to optimality. We derive a fundamen-
tal lower bound on the risk achievable by any estimation-
communication scheme satisfying the physical constraints of
our model. This bound uses the recent result of [7], which
showed an upper bound on the Fisher information of a chan-
nel’s output in terms of the channel’s Shannon mutual informa-
tion when the statistical model being estimated exhibits a sub-
Gaussian score. We apply this result to the aforementioned two
estimation tasks, and find the risk achieved by our estimation
schemes to be within a logarithmic factor of the lower bound.
To the best of our knowledge, this is the first information-
theoretic lower bound for distributed minimax estimation over
a noisy multi-user channel.

A. Related works

Our results corroborate similar gains from uncoded analog
transmission that have been observed in source coding for sen-
sor networks [8], [9]. They also reinforce a number of recent
works proposing adaptations of common learning algorithms



in a wireless federated learning context. A notable example is
distributed stochastic gradient descent, where leveraging the
Gaussian MAC for analog averaging has been observed exper-
imentally to far outperform digital approaches [10]-[12]. On
the theoretical side, analysis of methods using analog over-the-
air gradient aggregation has shown convergence rates similar
to error-free channels [13]-[15], albeit without comparison to
digital counterparts.

Other works with analog aggregration showing an advantage
over digital methods include [16], which replaced digital
with analog modulation of model parameters to improve
latency with comparable accuracy, and [17], which used an
analog method with MIMO antennas. On the other hand, [18]
found the digital and analog schemes it studied to perform
comparably in numerical experiments. Such analog methods
have seen wider development efforts [19], [20], including
with privacy considerations in mind [21]—[24]. This idea has
also been applied to over-the-air computation more generally
[25]-[29]. While the current literature supports the utility
of analog schemes, none of these works provide an explicit
analytical comparison from first principles between analog
achievability and digital lower bounds for canonical estimation
and inference tasks.

More broadly, there has been interest in federated learning
over wireless networks from a range of angles. One idea to
preserve bandwidth is to take advantage of gradient sparsity
[10], [30], [31]. Other angles include quantization [32], [33],
incentive mechanisms [34], power control [24], [35] and
optimization [36]—[38].

B. Structure of paper

The rest of this paper is structured as follows. In Section II
we define the problem and introduce the definition of a mini-
max estimation scheme in this setting. We summarize our main
results for achievability in Section IIT and discuss how they
compare to existing digital lower bounds in Section IV. We
then derive our lower bounds and discuss them in Section V.
Proofs of our results are in Sections VI (achievability) and
VII (lower bounds). We validate our results with simulations
in Section VIII and conclude in Section IX.

II. PROBLEM STATEMENT

We study statistical estimation over a Gaussian multiple-
access channel, a system diagram of which is in Fig. 1. In
each channel use t+ = 1,...,s, each of n senders transmits
a symbol Xy;,..., X, € R to the central server (which we
interchangeably refer to as the receiver), which receives a
noisy superposition

Y =Xy +Xor ++ -+ Xpr + 74, (1

where Z; ~ N (O, o-r%) is the noise in the rth channel use. We
assume an average power constraint P on each sender,
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where the expectation is over whatever randomness might exist
in X;;, which we will make more precise shortly.
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Fig. 1. System diagram

This system has the following estimation task: Each of the
n senders has an ii.d. sample U;, i = 1,...,n, from an
unknown distribution pg on an alphabet U, belonging to a
parameterized family of distributions P = {pg : 0 € O} with
parameter space ® C R?. We use the notation Eg[-] to mean
expectation under the distribution pg. The goal of the receiver
is to estimate 6 given Y = (Y1,...,Yy).

To complete this task, each sender i encodes its sample us-
ing a function f; : U — R* to produce X; = (X;1,..., Xis) =
fi(U;). The receiver, which knows the encoding functions,
uses an estimator 6(Y). We thus define how an estimation
is carried out.

Definition 1. An estimation scheme for s channel uses is a
pair (f,6) comprising n encoding functions £ = (fi,..., f,),
where f; : U — R® is used by sender i, and an estimator
function § : R® — © used by the receiver.

We are now in a position to elaborate on the average power
constraint in (2). The distribution of X; depends (via f) on
P o, which is not known in advance. We therefore require that
schemes respect this power constraint for every 8 € ©, that is,
that the encoding functions {f;} satisfy

1
;Eg[uﬁ(ui)ug]sp, forallie{l,...,n},0€®. (3)

To evaluate possible schemes, we study risk under squared
error loss, with the goal of minimizing the squared error
EollO(Y) - 9||§. If we fix the encoding functions f, all that re-
mains is to choose an estimator function §. We can understand
these estimators using the same frameworks as in classical
statistics; the difference is that our estimator can access only
Y, not the samples {U;}. In particular, when f is fixed, we will
call an estimator minimax if it minimizes the worst-case risk
(over 0 € O).

In our context, it is natural to extend this idea to schemes.
When referring to the risk of a scheme (f, é), we mean the
risk when that scheme is used. To remind ourselves that this
also depends on the encoding functions f, we write the risk
as R(6;f,0) = Eg|l6(Y) - 6|2, with f being implicit on the
right-hand side. We can then extend minimaxity to schemes.
Definition 2. Consider a class S of estimation schemes for

s channel uses. A scheme (fy, 0y) is minimax for S if it
minimizes the maximum risk among all those schemes in S



that also satisfy the power constraint (3). That is, if Sp is the
subset of S satisfying (3), then a scheme (f, é) is minimax if
it satisfies

inf sup R(0;f, é) = sup R(H;fM,éM). 4)
(£,0)eSp 0 0

Where a scheme’s encoding functions are the same for all
nodes, f; = f for all i = 1,...,n, we will abuse notation
by writing the common encoding function f in place of the
collection f, for example, R(6; f, é) £ R(0;f, 9).

The main achievability results in Section III and the lower
bound corollaries in Section V are concerned with two cases
of the general problem. The first is the Gaussian location
model, in which py = N(6,021,), with U = R? and © =
{6 € R? : ||8]], < BVd} for some known B > 0. The goal
of the receiver is to estimate the mean 6 of the multivariate
Gaussian distribution with known covariance matrix o21,.

The second is the product Bernoulli parameter model,
in which pgy = ]_[;d.=l Bernoulli(6;), with U = {0,1}? and
® = [0, 1]¢. The goal of the receiver is to estimate the mean
0 of the Bernoulli distribution.

We note that the gradient aggregation problem in distributed
stochastic gradient descent, a key part of federated machine
learning, can be cast as a distributed parameter estimation
problem of this type; see e.g. [39].

III. RESULTS FOR ANALOG ACHIEVABILITY

We develop linear estimation schemes for the Gaussian
and Bernoulli mean estimation tasks described in Section II
A defining feature of these schemes is their analog nature:
they simply scale and transmit their samples to the central
server in an uncoded fashion. This is in contrast to a digital
approach where samples are encoded with a finite number of
bits, which are then reliably communicated to the server using
channel coding techniques. This analog approach allows us to
exploit the additive nature of the Gaussian MAC to average
the statistical samples over the air. The following theorems
characterize the risk of these analog schemes.

Theorem 1. In the Gaussian location model, consider the
class of all estimation schemes for d channel uses, and using
a scale-and-offset encoding function common to all senders
f(u) = au + B for some « € R,B € R? (and any estimator
function). The minimax scheme is given by the choice

P o 1 |B2+o2
Sa(u) =4/ B2l om(Y) = ;\/ P Yy, (%

and yields the minimax risk

. 2 2 BZ
spRO: by = 2 1+ 2 14 B} (6
o n nP o2

By using a repetition code, Theorem 1 can be extended to
cases where s > d.

Corollary 1. In the Gaussian location model, if s > d, there
exists a scheme (fr,0Rr) achieving the worst-case risk

0'3 B2
1+7|_s/dJnP (1+F)]' 7

N do?
sup R(6; fr, 0r) = —
0 n

This scheme involves repeating the encoding function (5)
Ls/d] times, leaving the remaining s — d|s/d] channel uses
unused, and averaging the corresponding repeated estimates.

The proofs of Theorem 1 and Corollary 1 are in Sec-
tion VI-A.

Where s/d is not an integer, the unused channel uses
could be filled with another partial repetition, giving a slight
improvement on (7) but a more unwieldy expression.

For the product Bernoulli parameter model, we provide the
minimax scheme among those using affine estimators.

Theorem 2. In the product Bernoulli parameter model, con-
sider the class of all estimation schemes for d channel uses
(s = d), and using affine estimators. The minimax scheme in
this class is the one using the encoding function defined per

element
_ _\/ﬁ’ lf [u]t =0
[fM(u)]l - {\/ﬁ, UC [I,{]t — 1’ (8)

where [-]; is the tth element of its (vector) argument, and the
estimator function Oy (Y) = amY + Bml, where By = % and

1

2VnP(Vn+1) o
aM =

P gz,

2(c? +n?P)

ifof <n3p,

The minimax risk given by this choice of fm and (am, Bm) is

sup R(6; fu, Om) =
P

d o2 .
W(l'{‘ﬁ), lfa'gSnsz,
J 1 (10)
A T if i = P
oq

We can also similarly extend this using a repetition code.

Corollary 2. In the product Bernoulli parameter model, if
s > d, there exists a scheme (fR, 0r) achieving the risk

S‘;P R(6; fr,OR) =

d (1 o’

+ , if o2 <n’?P,
4(vfn+1)2 Ls/dJnP) if o

(11
d 1
YT ifo-r%zn:;/zP.
4 l+n- Ls/dJZnP
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This scheme involves repeating the encoding function (8)
Ls/d] times, leaving the remaining s — d|s/d] channel uses
unused, and averaging the corresponding repeated estimates.

The proofs of Theorem 2 and Corollary 2 are in Sec-
tion VI-B.

IV. COMPARISON TO DIGITAL LOWER BOUNDS

In the previous section, we characterized the performance
of analog estimation schemes for the Gaussian and Bernoulli



models. In this section, we compare their performance to dig-
ital approaches that have been studied in the recent literature,
and show that analog schemes can lead to drastically smaller
estimation error for the same amount of physical resources,
i.e. transmission power and number of channel uses.

In particular, recent work in machine learning [1]-[6] has
studied the impact of communication constraints on distributed
parameter estimation. These works abstract out the physical
layer, simply assuming a constraint on the number of bits avail-
able to represent each sample. This implicitly corresponds to
assuming that communication is done in a digital fashion, with
channel coding used to transmit the resultant bits without any
errors. For example, in [6], the authors develop information-
theoretic lower bounds on the minimax squared error risk over
a parameter space © c RY,

sup  R(6;f,0) =
He@),fe?‘,?

sup  Eqlld(Y) - 6113,
He@),fe?‘,?

where ?'D now is defined as the set of all possible encoding
schemes f £ (fi,..., fn), where fi(u) € {1,2,...,2%} for all
i=1,...n,ie each sample U; is quantized to k bits, which
are then noiselessly communicated to the receiver. Note that
these information-theoretic results lower bound the minimax
risk achieved by any k-bit digital estimation scheme. In this
section, we compare our results to these lower bounds, as
applied to the Gaussian MAC we study in this paper.

We assume that senders can transmit errorlessly at the
Shannon capacity of the channel. The capacity region of a
Gaussian multiple-access channel with n users, power P and
channel noise o is given by the region of all (Ry,...,R,)
satisfying [40]

S|P
ZR <= log2(1+| | ) vSc{l,...,n}.
€S n

12)

We allocate rates equally among all the senders, in which
case the inequality in which § comprises all the senders
dominates. If the MAC channel is utilized s times, we assume
that each sender is able to noiselessly communicate

nP
10g2 (1+—2) bits  (13)
0—1'1

to the receiver. Note that at finite block lengths, the senders
cannot communicate to the receiver at the Shannon capacity
and that this optimistic assumption benefits the performance
of the digital schemes.

We can then substitute (13) into the aforementioned lower
bound on minimax risk in [6]. However, that result (Corol-
lary 5 therein) has an unspecified constant, inhibiting direct
comparisons to our result from Corollary 1 above. Therefore,
we instead take advantage of more recent work [7] to rederive
the bound without the unspecified constant, and combine this
with (13) to arrive at the following digital lower bound for the
Gaussian location model.

Proposition 1. In the Gaussian location model, consider all
schemes in which senders send bits to the receiver at the

Shannon capacity for s channel uses. For < log, (1 + "—1;) <d,
n O—ll
the risk associated with any such scheme is at least
5 do?
sup  Eglld -6l > —. a4
lol.<BVd 5 log, (1 + r;_g) + 28

Proof. Use Theorem 5 (see Section VII) to rederive Theorem
2 of [6] without the unspecified constant. Then follow the
modifications to Corollary 1 of [6], then Corollary 5 of [6].
Finally, substitute (13) into this modified result. Note that
[-B,B]¢ c ©® 2 {6 : ||6]l < BVd}, as required by their
lower bound result. O

Compare this to (7) from Corollary 1. Note that this
proposition implies that as the number of nodes and therefore
the number of samples n increases, the risk of any digital
scheme decreases as Q(d?/slogn), whereas the risk of the
scheme from Corollary 1 scales with O(d/n). This implies
that, when s > d, the analog schemes can lead to an
exponentially smaller estimation error, or equivalently require
an exponentially smaller number of samples to achieve the
same estimation accuracy, as compared to digital schemes
employing the same physical resources.

On the other hand, we make a brief note on the case where
s < d. Here, an analog scheme transmitting scaled versions of
samples cannot easily communicate more coordinates than it
has channel uses. A natural approach would be for each node
to transmit only the (scaled) first s elements of U;. In this case,
the worst-case risk would scale as ®(d), independent of s and
n, which is the maximal risk achievable even in the absence
of any samples. Thus, the digital scheme achieves risk better
than ©(d) whenever s = w(d/log(1 + "P)) which can be the
case when the SNR or n is large, Whlfe our analog scheme
requires s > d to be viable.

We also have a similar situation for the Bernoulli model,
derived in the same way.

Proposition 2. In the product Bernoulli model, consider all
schemes in which senders send bits to the receiver at the

Shannon capacity for s channel uses. For 7 log, (1 + %5 ) <d,
the risk associated with any such scheme is at least
A d
sup  Eolld - 6|3 > (15)

0¢e[0,114 Zﬁlogz (1+ )+£—§
Proof. Apply a similarly modified version of Corollary 8 from
[6] (via Corollary 4 of [6] and Theorem 2 of [7]), using (13).

m]

Note that analogously to the Gaussian case, this result
implies that the risk of any digital scheme for the Bernoulli
model scales as Q(d?/slogn), while the risk of our analog
scheme from Corollary 2 decreases as O(d/n). In the low
SNR case, o2 > n*/?P, the analog scheme appears to achieve
O(d?/sn?) (compared to Q(d/n)), but since increasing n also
increases the SNR given by nP /a2, this relationship will even-
tually give way to the high SNR regime, where o> < n*/?P.
These results show that building on the inherent summation
of transmitted signals in the Gaussian MAC to perform the
averaging that classical statistical estimators would do can



TABLE I
COMPARISON OF RESULTS

‘ analog achievability ‘

digital lower bound ‘

analog lower bound
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provide drastic gains in estimation performance. Similar gains
have been observed in asymptotic lossy source coding for
Gaussian sensor networks in [8], [9], where one is interested
in communicating an i.i.d. Gaussian source over a MAC
under mean-squared error distortion, as well as for distributed
stochastic gradient descent in experimental comparisons in
[10].

We summarize all these results, as well as the new lower
bounds we present in Section V below, in Table I.

V. RESULTS FOR ANALOG LOWER BOUNDS

So far in this paper, we have shown that the analog
joint communication-estimation schemes in Section III can
exponentially outperform lower bounds for digital schemes
with a physical layer abstraction. Having shown this striking
advantage, the next question this naturally raises is what lower
bounds exist for analog schemes. That is: if these analog
schemes can achieve what digital schemes could never hope
for, how close are we to the fundamental limits for such analog
approaches?

In this section, we present new lower bounds on worst-case
squared error risk for any estimation scheme in our setting of
interest where the parametric model has a sub-Gaussian score
function. This work draws on the findings of [7], for which
we first introduce some relevant quantities. We then apply
them to the same models for which we presented achievability
results in Section III. We find that these lower bounds are
within a logarithmic factor of the risk achieved by the schemes
presented above.

A. Preliminaries

If U ~ pg, where pg is a member of a family of probability
distributions parameterized by 6 € ® C R and differentiable
in 0, the score function is defined as the gradient of the log-
likelihood function,

Se(u) = Vglogpe(u)

0
logpe(u),...,—logpe(u)].

_(9
B 00, 08,

Where we have many samples Uj,...,U, ~ pg, we may
denote the score function of the finite sequence as
So(ui,...,up) =Vglogpg(ui,...,u,).

Note that both S¢(u) and S¢(ui,...,u,) have the same
number of elements as 6, independent of the size of the
argument passed into Sg(-). It is a well-known property of
the score function that E[Sy(U)] = 0.
The Fisher information is then defined as the d X d matrix
Iy (6) £ E[Se(U)Se(U)T]

which makes its trace equal to

d P 2
(6_0} logpe(u)) l .

tr(ly(6) = Y B
j=1

We say that a zero-mean random variable X is sub-Gaussian

with parameter p if

/12p2
E [exp(1X)] < exp (T) for all 1 € R.

Recall that if a zero-mean random variable X is bounded
within [a, b] with probability 1 then it is sub-Gaussian with
parameter (b —a)/2. Also, if X1, ..., X, are independent and
sub-Gaussian with parameters py, ..., o, then their sum X; +

-+ + X, is sub-Gaussian with parameter /pf +o 4 p2
Our lower bounds require the regularity conditions de-
scribed in [7], which we recite here:

1) Vpo(ui,...,uy) is continuously differentiable
with respect to each component 6#; at almost all
(U1,...,uy) € U™ (with respect to some measure
dominating {pg : 6 € O}).

(ii)) The Fisher information for each component 6;,
E([aig’_ log pg(Ui,...,Un)]?), exists and is a continuous
function of 6;.

(iii) The conditional density p(y|uj,...,u,) is square inte-
grable in the sense that for almost all y € R*® for each 6,
fp(y|u1, cottn)?dpo(uy,. .. uy) < co.

It is easily verified that (i) and (ii) are satisfied in both the

Gaussian location and product Bernoulli parameter models.

As for (iii), this follows from the bounded conditional density

p(y|x1,...,x,) of the Gaussian MAC; details are in the

relevant proofs.



B. Main lower bound on worst-case risk

We have now covered the background necessary to state our
main lower bound, which is on the squared error risk for any
estimation scheme in the setting described in Section II when
the parametric model has a sub-Gaussian score.

Theorem 3. Suppose that [-B, B]¢ c ©, and that the samples
(Ui, are i.id. and satisfy conditions (i) and (ii), and that
v, Se(Uy)) is sub-Gaussian with parameter p for all unit
vectors v € R4, Then in a Gaussian multiple-access channel
with s channel uses, the worst-case risk under squared error
loss of any estimation scheme (f,0) must satisfy

A d 1
sup R(6;£,0) > — -
0€0 n

. P 2 (16)
splog, (1+25) + 2

The proof for this builds on a relationship between Fisher
information and Shannon information established by [7], and

a Bayesian Cramer-Rao type bound to relate minimax risk and
Fisher information. We provide the proof in Section VII-B.

C. Bounds for specific models

In the case of the Gaussian location model, we can charac-

terize this bound in terms of the sample variance o

Corollary 3. In the Gaussian location model with s channel
uses, the worst-case risk under squared error loss of any
estimation scheme (f,0) must satisfy

2 1

o d
supR(H;f,H)zi- -
0<6 n %10g2(1+%§)+%%

a7

We can also derive a result for product Bernoulli models
where elements of 0 are close to %, i.e., where the samples
are dense.

Corollary 4. Consider the relatively dense product Bernoulli
model, where Uy, ..., U, ~ [1°_, Bernoulli(6,), with ® = [§—
g, %+8]d, € € (0, %), with s channel uses. The worst-case risk
under squared error loss of any estimation scheme (£f,8) must

satisfy

sup R(6;f, é) >
0O

d 1
pl— - — (18)
e om (1+25) +
The proofs of the above two corollaries, which both follow
from Theorem 3, are in Section VII-C.

D. Lower bound for a general multiple-access channel

The result of Theorem 3 can be generalized to other
multiple-access channels, in terms of the total capacity of the
network, that is, the maximum achievable sum of all rates in
the network,

max I(X]t,...,Yn[;Yt), (19)

i Pi(Xit

Ciotal =

where the maximum is over all product distributions for
(X1z5--+» Xnr). We will refer to this quantity as the “sum
capacity”, recalling that it does not fully describe the capacity

region of the network.

Theorem 4. Suppose that the samples (U;)!, are i.i.d. and
satisfy conditions (i) and (ii), and that (v,S¢(U;)) is sub-
Gaussian with parameter p for all unit vectors v € R%.
Consider any discrete memoryless multiple-access channel
that is constrained by the sum capacity Ciotal (per channel use),
whose conditional density p(y|xi,...,Xx,) is bounded. The
worst-case risk of any estimation scheme (f,0) must satisfy

sup R(6;f, é) > g . —1 5 (20)
€O n 2%p2Ctoml + nﬂ?

Proof. Follow the proof of Theorem 3, but replace the right-
hand side of (40) with sCioa1 (i.e., Cioral for s channel uses).
Note that the stipulation that p(y|xi,...,x,) be bounded (by
some different finite M) ensures that (37), and hence (iii), is
satisfied. O

VI. PROOFS OF ANALOG ACHIEVABILITY
A. Gaussian location model

In this section, we prove our main results for the Gaussian
location model, Theorem 1 and Corollary 1. In this model, the
samples U; ~ N (0, o-zld), where 6 lies in an {»-ball in a d-
dimensional space, {||6]|l» < BVd}, and the goal is to estimate
6.

Since the multiple-access channel already produces a sum,
one might suspect that that an estimation scheme emulating the
sample mean would be a natural candidate, given its properties
in classical estimation. Indeed, it is minimax among schemes
using affine encoders (and any estimator). First, we show that
this estimator is minimax for a fixed affine encoder, as we
state formally in the following proposition.

Proposition 3. In the Gaussian location model, let the senders
use any scale-and-offset encoding function f(u) = au + B for
some @ € R, B € R4, common to all senders, and assume that
this encoding function satisfies the power constraint, and that
the channel is used d times (i.e., s = d). Then the minimax
estimator is given by

1

an

u(r)= v - Lg,
a

which yields risk

A d o2
Bolln (1)~ 013 = 5 [0+ 25).

2y

Remark. The estimator given by Proposition 3 is also the
maximum likelihood estimator.

The proof for this follows similar lines to the classical result
using a least favorable sequence of priors, with modifications
for channel noise.

Lemma 1. [f 6 is distributed according to the prior
N (u, b*1y), and all senders use the common encoding func-
tion f(u) = au + B for some a € R, B € R, then the Bayes
estimator é'u’bz (y) is given by

anb?

a?n?b? + a?no? + 0'3

éy’bz(Y) =u+ (Y —anu+np), (22)



and the Bayes risk is

d(a’no? + o2)

i )
B () - 01 = (23)

Proof. Under squared error loss, the Bayes estimator for
N(u,b*1;) is (by well-known theorem, e.g. [41, Cor.
4.1.2(a)]) éﬂ’bz (y) = E(8]y), which we will evaluate. The
relevant covariance matrices are

Ty = (&?n?b? + a’no? + o)y,
Zyo = E[(anW +a 3, Vi) WT| = anb’1,.
Then the Bayes estimate is given by

0,.12(Y) =E(0]Y) = E0 + Zoy =y (Y — EY)

1
(Y —anu —np),
@?n?b? + a?no? + o? ( #=np)

=,u+cmb2~

and since this estimator is unbiased, the squared error is given
by the trace of the conditional variance,

El|f, 4> — 01> = trvar(0]Y) = tr(Zg — Zoy =y Zyo)

_ a2 d(anb?)? 5
a@2n2b? + a?no? + o2’

Proof of Proposition 3. Take the Bayes estimator from

Lemma 1. Let b> — oo, then we have a sequence of priors

N (u, b?) yielding increasing Bayes risk converging to
d(a’no?+0?) d (0_2 N 0’_[%) .

. A 2 _ _a
bh_IBOEHHM,bZ -0 = ——F5— = 5

(1’21/12 n na

The minimax estimator is then
lim §, ,,(Y) = u+ Ly ! B O
1im = —Y — — —0.
bosoo H:D? s an H a

In the absence of a power constraint, the offset S has
no effect—since it is known, it is easily cancelled by the
receiver’s estimator. Intuitively, with a power constraint, one
would expect no offset to be preferable. In Theorem 1, where
we find the best choice of (a, 8), we find that this is indeed
the case.

Proof of Theorem 1. For any given «,f3, the minimax risk

from Proposition 3 is decreasing in a. Therefore, we choose

the largest « satisfying the power constraint (3). Note that
Eo[IIXiI3] = @*(I1611* + do?) + 2267 B + 81>

= ||ab + B3 + a?do?. (24)
2

We thus solve

maximize «
subject to  [laf + B3 + a*do® < dP V6 : ||0|| < VdB.
(25

If we relax the constraint to || + aB1|| + a’do? < dP, we
can use Lagrange multipliers to find the solution

P
= N = 0, 26
¢ B2 + o2 p (26)
and verify that it also satisfies the constraints of, and is
therefore also a solution to, (25). O

We now turn to the case where s > d. A natural extension of
the scheme from Theorem 1 would be to transmit repetitions
of the sample.

Lemma 2. Let (f,0) be a scheme with §(Y) affine in Y
and consider a scheme (fR,éR) that repeats the encoding
function m times and averages the estimates for each repe-
tition, Og(Y) = % 2?1:1 é([Y]j), where [Y]; is the part of Y
corresponding to the jth repetition. The risk of (fg,0R) is the
same as for (£,0), but with a2 /m in place 2.

Proof. The bias of the estimator is unaffected by the repetition
(and is independent of ), and if the original estimator is
written as §(Y) = AY + ¢, the variance can be shown to be
Yivar(AX;) + %Var(AZ). Relative to the original estimator
variance, this is equivalent to dividing o2 by m. O

This then yields the achievability result of Corollary 1.

Proof of Corollary 1. Apply Lemma 2 to Theorem 1, with
m = |s/d]| and ignoring the leftover channel uses. O

Comparing this to the s = d case, the repetition reduces the
noise by a factor of roughly s/d, which is the expected effect
of averaging a repeated transmission. The minimax risk then
converges more quickly to the noiseless case as s/d — oo.

B. Product Bernoulli model

In this section, we prove our main results for the Bernoulli
parameter model, Theorem 2 and Corollary 2. In this model,
U; ~ ]—[fl=l Bernoulli(), and the goal is to estimate 8, which
is in [0, 1]¢. Our calculations in this section will work with
the parameterized encoding function common to all senders

-C, ifu=0

27
C, ifu=1. @7

fe(u) = {
Our analysis of the Bernoulli parameter model focuses on the
scalar case, as stated in Proposition 4 below. Theorem 2 will
then follow by extension to independent dimensions.

Proposition 4. In the scalar Bernoulli parameter model
(d = 1), consider the class of all estimation schemes using
affine estimators éa,ﬁ (Y) =aY +B,a,8 €R (and any scalar
encoding function with s = 1). The minimax scheme in this
class is the one using the encoding function

P,
fM(“) = {\/F,
1

and the estimator éM(Y) = amY + v, where v = 5 and am
is as provided in (9). The minimax risk given by this choice

of (awm, Bwm) is

ifu=0

Fu-1. (28)

1 o e 2 o 3)2
W—+1)2(1+ﬁ>, lfU'nSn/P,

1 1 D 2 3/2
1’ l+n-nP/o2’ lfo-“ zn / p.
(29

sup R(6; fm, Om) =

0
Our steps for proving Proposition 4 will be first to establish
the minimax risk for the common encoding function fc, then
to show that a scheme using any other encoding function can



be transformed to one using fc for some C of equal risk, and
finally to show that the optimal value for C is VP. Before we
continue, we compute the risk for a general affine estimator.

Lemma 3. In the scalar Bernoulli parameter model (d = 1), if
all senders use the encoding function fc (27), and the receiver
uses the affine estimator éa,ﬁ(Y) = aY + B, then the risk is

R(0; fc,0ap) = @® [4nC?0(1 - 0) + 07 |
+[anC(20 - 1)+ B -0]>. (30)

Proof. Recall that Y = 37, fc(U;) + Z and that fc(U;) = C
w.p. 6 and fc(U;) = —C w.p. 1 — 6. The variance and bias of
the estimator are then

varg[fop(Y)] = a?var(Y) = o® [4nC*0(1 - 0) + 07| .
biasg (0o 5(Y)] £ B¢l p(Y) — 6 = anC(260 — 1) + - 6.

The result then follows from combining these as
Eg[0a,p(Y) = 013 = varg[fa,5(Y)] + (blasq (00,5 (1)), T

The bulk of the work in proving Proposition 4 is in showing
Proposition 5, which establishes the minimax estimator for the
encoding function fc.

Proposition 5. In the scalar Bernoulli parameter model, let
all senders use the encoding function fc(u) from (27), and
consider the class of all affine estimators Ou = {éa,ﬁ(Y) =
aY + B,a,B € R}. The minimax affine estimator is given by
Om(Y) = amY + Bm, where By = % and

1 2 300
ec(m: U ow < nCE

aM = nC 2 320 @1
NoT4n2 T if oy > n’=C~.

The minimax risk given by this choice of (am, Bm) is
1 Kurd 2 o 3202
e (1+nC2), if o2 < n¥2¢?,

1 1 D 2 3/22
I TG if o2 > n’2C2.
(32)

_ 1 . nC
Proof. Define aqo. = e and ahl. = ot cy” Note
that then @y = min{a),, @y }. For convenience, and with some
abuse of notation, let R(0; fc, a, B) refer to the expression in

(30). We will repeatedly use the facts that:

(a) R(O; fc, a0, Bm) is constant with respect to 6.

(b) R(O; fc, ani, BMm) is convex in @ and minimized at 6 €
{0, 1}, at which the risk is equal.

(¢) R(0; fc,a,Bm) is convex in @ and minimized at @ = ay;.

sup R(0; fm, éM) =
0

These can all be verified by appropriate substitutions into (30).
Where we invoke these facts, we will label the equality or
inequality signs accordingly.

We will show that for every other choice (a, ), there exists
some 6 € [0,1] with risk exceeding sup, R(6; am, Sm). We
divide into three cases.

Case 1: @ > ajo, Or @ = @) and B # % In this case, take
0 = % and we have

R(}: fe.a.p) = (nC? + o) + (B - 1)?
> alzo(nCz + of) = R(%;fc,alo,ﬁM)-

Then, if am = @0, then by (a), the right-hand side is equal to
supy R(6; fc, am, Bm)- If am = ani, then note that

R(%: fe, aion Br) & R(O; fe, ato, B)
(c) b
> R(0; fe, ani, Bn) 2 sup R(8; fe, ant, Bu),
2]

where labeled steps refer to corresponding facts above.
Case 2: @ < @), and B > % Take 6 = 0 and we have

R(0; fc,a, B) = a0 + (B — anC)?
> a0 + (L — anC)? = R(0; fc. o, Bu),

where in the inequality we used the fact that anC < ajonC =

Vn 1 : _ )
) < 3 The.n, if apm = 6%10, We also have aj, < api, and
by fact (c), is strictly decreasing in « for all @ < @), thus

R(0; fc, a, Bm) > R(0; fc, aio, Bm) @ Sl;P R(6; fc, am, Bm).

If o = api, then we have
() b
R(0; fc, a, Bm) = R(0; fc, ani, fm) o Sl;p R(6; fc, am, Bm).

Case 3: @ < @), and 8 < % Take 6 = 1 and argue similarly
to case 2 that R(1; fc, @, Bm) > supy R(6; fc, am, Bm). O

Lemma 4. In the scalar Bernoulli parameter model, consider
the scheme (f,0), in which all senders use the encoding
function f(0) = A, f(1) = B, and the receiver uses the
estimator 6. Then there exists a scheme (f’,0’) satisfying
£/(0) = —f’(1) and with minimax risk equal to that of (f,0).

Proof. Choose C = %, so that f"(u) = fc(u) = f(u)—#.
By construction, f’(0) = —f'(1) = %. Then, if ¥ and Y’
are what the receiver observes under f and f’ respectively, we
have Y = 3, f'(U) + Z = 5,[f(Ui) = 2581+ Z =Y - n L.
We can then define §’(Y’) 2 6(Y’ +n4%8), and this will have

2
exactly the same statistical properties as 6(Y). O

Now we may complete the proof of Proposition 4.

Proof of Proposition 4. Because Lemma 4 shows there is no
sacrifice in minimax risk, it suffices to consider just schemes
using encoding functions of the form fc in (27). The minimax
affine estimator for such encoding functions is found in
Proposition 5. From (32), the minimax risk for fc is strictly
decreasing in C2. Therefore, to minimize over all encoding
functions fc, we take the highest-magnitude C satisfying the
power constraint (3), C = +VP. |

The extension of this result to the product Bernoulli model
is then an application of the scalar case on a per-sample basis.

Proof of Theorem 2. Because each dimension 1,...,d is in-
dependent, each dimension can be optimized separately. Each
sender transmits its jth sample [fc(U;)]; using the scheme
from Proposition 4. The even division of power still satisfies
the average power constraint (3). The minimax risk is then d
times the minimax risk along one dimension. O

Finally, Corollary 2 follows using Lemma 2 again.

Proof of Corollary 2. Apply Lemma 2 to Theorem 2, with
m = |s/d] and ignoring the leftover channel uses. O



VII. PROOFS OF ANALOG LOWER BOUNDS
A. Preliminaries

We first present two results that are key to our main theorem.
These results characterize the worst-case risk in terms of the
trace of the Fisher information matrix, and in turn in terms
of Shannon information. First, Equation 8 of [6] tells us the
following, which we list as a lemma here.

Lemma 5. Suppose [-B,B]¢ c ©. For any estimator
0(Yy,...,Y,), the worst-case squared error risk must satisfy

d2
dn?’

sup E||6(Y) - 0])> >
) supgep tr(ly (0)) + G5

(33)

We will also lean on the following theorem, due to [7].

Theorem 5. Suppose that (u,S¢(X)) is sub-Gaussian with
parameter p for any unit vector u € R%. Under regularity
conditions (i)—(iii), tr(Iy (0)) < 2p*I9(X;Y).

B. Proof of main lower bound

We first provide an upper bound for the mutual information
between the channel input and output. For brevity we omit
the proof, which can be derived using standard results in
information theory.

Proposition 6. Consider the Gaussian multiple-access chan-
nel with s channel uses, Y = X1+---+X,+Z, Z ~ N(0, 0'[%15),
with a power constraint %E[HX,HZ] <P If Xy,...,X, are
independent, then the Shannon information between its input
(X1,...,Xy) and its output Y is bounded by

P
I(X1,. . Xp3Y) < Slog, [1+ 2], (34)
2 o2

n

We now have all of the ingredients necessary to prove
Theorem 3, which uses the data processing inequality to chain
the above results together.

Proof of Theorem 3. Recall that X; = f(U;),i =1,...,n and
Y is the output of the channel py|x (y|x1,...,x,) with inputs
X1, ..., X,. The conditional distribution of Y given U can be
expressed in terms of the channel’s conditional distribution,

sun) = pyix (Y (), ..o, f ().

That is, we have a channel from U to Y. (Note that this doesn’t
require invertibility in f, since it is in the condition, and
Py |x is defined by assumption.) To verify that this “channel”
satisfies regularity condition (iii), note that pyx is bounded,

1
VQ@rop)n

so chaining (35) and (36) verifies that

pyiv(ylui, ... (35)

pY|X(y|xl$---,-xn)S éM’ (36)

fPY\U()’|M1, cettn) dpy (Ui, .. iy)

Sszde(ul,...,un)=M2<00. (37)

We therefore satisfy the requirements to invoke Theorem 5,
so long as we can establish that (v, S¢(Uy,...,Up,)) is sub-
Gaussian for all unit vectors v € R<. Note that since
Ui,...,U, are independent,

Sg(Ul,. ey Un) = ng Ingg(Ui) = ZSQ(U,)
i=1 i=1
Then for every unit vector v € R?,

W, 8¢(Ur,...,Up)) = <V’ZS€(Ui)> = Z(V,Se(Ut»-
i=1 i=1

This is a sum of n independent sub-Gaussian random variables
each with parameter p, and is therefore sub-Gaussian with
parameter y/np. Theorem 5 thus gives

tr(ly (0)) < 2np*Ig(Uy, ..., UpY). (38)

Since (Uy,...,U,) — (Xi,...,X,) — Y form a Markov
chain, the data processing inequality implies that

Io(Ur,...,UnsY) < Ig(X1,..., X3 Y). (39)

Now, Uj,...,U, are independent (by definition), and each
Xi,i =1,...,n is a function of the corresponding U;. There-
fore, X1, ..., X, are also independent, and from Proposition 6,
we have

P
I(X1, .. Xn3Y) < 2 log, [1+ 25 ). (40)
2 )

n

Putting (38), (39) and (40) together yields

tr(Iy (0)) < np’slog, (1 + ';—i) ) (41)

n
Substituting this expression into the result given by Lemma 5
then yields
A d?
sup E||O(Y) - 6])* > ) O

2
) np?slog, (1+’(‘T—€)+‘;—”2
n

C. Specific problem instances

To find lower bounds for the Gaussian location and product
Bernoulli parameter models, we compute the sub-Gaussian
parameters of their score functions and apply our main result.

Proof of Corollary 3. The score function for a single sample
U,' is

—0T(u, -0
So(ui) =Ve (i —6) (=) )—10g27ro-
202
1
= E(MI—G)

Then, with U; ~ N(0, 0'21d), the score function of each
sample S¢(U;) is Gaussian with mean zero and covariance
#ld. It follows that for any unit vector v and each sample
Ui, (v,S¢(U;)) is Gaussian with zero mean and variance

vTﬁldv = #VTV = # This is sub-Gaussian with parameter
%, enabling an application of Theorem 3. O
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Proof of Corollary 4. We can compute the score function of
each sample in the product Bernoulli model to be S¢(u;) =
(Se, (i), ...,Se;(ui)), where

1

So,(ur) =1 %7

_1__91” if Mijzo.

if Uij =1

Then S, (U;) is bounded, and therefore is sub-Gaussian with
parameter

1]1 N
216,
where the last step uses the fact that 6 € © [% - &, % + s]d .

Being the sum of n independent sub-Gaussians, for all unit
vectors v € RY, (v, S¢(U;)) is sub-Gaussian with parameter

1] 1 o1
1-6;] 20;(1-6;) = 1 -2

d
, 1 1

v = .
T(3-282)2 1-2&2

(42)
j=1

This gives us a value for p to use in Theorem 3.
For B, we may reparameterize the parameter space to ®" =
[—¢&, €] (so that the Bernoulli component means are 6 = 6’ + %).
We can then apply Theorem 3 to arrive at Corollary 4. O

VIII. SIMULATIONS

We ran simulations to validate the schemes proposed in
Section III for both of our models of interest, and we plot
the results alongside each of our three theoretical results in
Figs. 2-5. Lines in the same color relate to the same value of
d, with different patterns corresponding to different results.

The points with ‘X’ markers are the squared error of our
proposed analog schemes, averaged over 100 simulations with
0 drawn uniformly at random from the parameter space ©, at
various values of d and n, in the case where s = d. The solid
lines are the theoretical results we presented in Section III,
namely Theorems 1 and 2, which are the worst-case risk
over parameters § € © for the schemes we proposed (which
are minimax among the classes of estimators noted in those
theorems).
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Since the theoretical results are the worst-case risk over the
parameters 6 € ©, we expect them to be at least as large as
the average squared error found in simulations with randomly
sampled 6 € ©. It turns out that in most cases, the worst-case
and average risk are equal, because the risk of the minimax
scheme is constant with respect to 6. The one exception is the
low-SNR regime (o2 > n/?P, see Theorem 2) of the product
Bernoulli model estimator (Fig. 4), where the risk depends on
0, leading to the observed difference between the theoretical
line and the average over randomly drawn 6 at low n.

The digital lower bounds of Propositions 1 and 2 are
plotted in dash-dot-dot lines. It is here that we see the marked
improvement discussed in Section IV. Since the error in digital
schemes scales at best with 1/logn, the simulated analog
schemes rapidly become significantly advantageous even in
moderately large values of n.

Finally, the analog lower bounds of Corollaries 3 and 4
are plotted in dashed lines, and run a logn factor from the
achievability and simulation results.

Recall that in the product Bernoulli model, both lower
bounds depend on &, where ® = [% - &, % + e]d . Our
achievability results and simulations, on the other hand, are for
the full parameter space ® = [0, 1]d. Note, however, that the
lower bounds for any € < %, yielding © c [0, 1]¢, also imply
a lower bound for [0, 1]¢. To generate the plots in Figs. 4 and
1

5, we used € = i

IX. CONCLUSIONS

We introduced and studied a new model for minimax
parameter estimation over the Gaussian multiple-access chan-
nel, developing estimation schemes for the Gaussian location
model and product Bernoulli model. These “analog” esti-
mation schemes directly leverage the superposition property
of the Gaussian MAC, and our analysis of their risk under
squared error loss showed that they exponentially outperform
even lower bounds on the risk of “digital” schemes that
separate the communication and estimation problems. We then
derived new “analog” lower bounds for this estimation prob-
lem that are within a logarithmic factor of our achievability
results. We confirmed our findings in simulations for both
models. This adds theoretical insight to a growing body of
literature on the advantages of analog schemes in over-the-air
learning and inference, demonstrating that even fundamental
limits of digital schemes can be beaten when estimation and
communication are considered jointly.

This opens a number of further questions to be examined
in future work. First, while the lower bounds we presented
are general, our achievability results pertain specifically to the
two estimation models we studied. With the additive nature
of the Gaussian MAC, one would imagine that this extends
to other mean estimation problems, but it raises the question
of whether other estimation problems, such as distribution or
empirical frequency estimation [6], [42], [43], can also harness
this or other channels to achieve similarly startling gains over
digital schemes.

Moreover, our estimation schemes work only when there is
at least one channel use available for each parameter (s > d).
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In many applications, models may have too many parameters
for this to be feasible, so the setting where s < d is also
important to study. Developing analog schemes for this regime
that outperform digital approaches remains as future work.
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