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Abstract—In this work, we focus on the problem of byzantine
agreement (BA), in which n distributed processors seek to reach
an agreement on an `-bit value, but up to t processors might be
corrupted by a Byzantine adversary and act as dishonest nodes.
In particular, we consider the communication-efficient BA in an
asynchronous setting, where the network communication might
have arbitrarily time delay. The primary challenge of designing
the BA protocol in this setting is that we need to handle both
the message delay from honest nodes and the Byzantine behavior
from dishonest nodes simultaneously. In this work we propose
a new signature-free asynchronous byzantine agreement (ABA)
protocol, which achieves the optimal communication complexity
of O(n`) when ` ≥ t log t, given n ≥ 5t + 1. A protocol is said
to be signature-free if the protocol design does not depend on
the cryptographic machinery such as hashing and signature. To
the best of our knowledge, this is the first signature-free ABA
protocol that achieves the optimal communication complexity of
O(n`) when ` is almost linearly scaled with t.

I. INTRODUCTION

Byzantine agreement (BA), as a 40-year-old distributed
consensus problem (cf. [1], [2]), is one of the fundamental
building blocks for distributed computing and cryptography
(e.g. [1]–[12]). In the BA problem, n distributed processors
seek to reach an agreement on some value, but up to t proces-
sors might be corrupted by a Byzantine adversary and act as
dishonest nodes. The BA problem has been broadly studied
in varying settings, such as authenticated BA (cf. [5]–[12]),
unauthenticated BA (cf. [13]–[16]), BA with synchronous
communication (cf. [17]–[20]), BA with asynchronous com-
munication (cf. [21]–[33]), binary BA (cf. [13]–[15], [30],
[34]), and multi-valued BA (cf. [35]–[45]). In this work, we fo-
cus on the communication-efficient multi-valued asynchronous
BA (ABA) in an unauthenticated (signature-free) setting. A
protocol is said to be signature-free if the protocol design does
not depend on the cryptographic machinery such as hashing
and signature.

In the research line of signature-free multi-valued ABA, the
work of [39] proposed an ABA protocol with communication
complexity O(n`+n5 log n), given n ≥ 3t+1. This result was
recently improved in [45] to the communication complexity
of O(n` + n4 log n). The communication complexity of [39]
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TABLE I
COMPARISON OF DIFFERENT ABA PROTOCOLS

Model Resilience Communication Round Signature
complexity complexity -free

[39] t < n
3

O(n`+ n5 log n) O(1) yes

[45] t < n
3

O(n`+ n4 log n) O(1) yes

Proposed t < n
5

O(max{n`, nt log t}) O(1) yes

and [45] is optimal when ` ≥ n4 log n and ` ≥ n3 log n,
respectively. A recent work of [16] has shown that the optimal
communication complexity O(n`) can be achieved when ` ≥
t log t in the synchronous setting. This inspires us to raise the
following question.

Is it possible to achieve the optimal communication com-
plexity O(n`) when ` ≥ t log t in the signature-free asyn-
chronous setting?

In this work, we seek to investigate the above ques-
tion. Specifically, we propose a new signature-free ABA
protocol that achieves the communication complexity of
O(max{n`, nt log t}), given n ≥ 5t + 1. It implies that the
optimal communication complexity of O(n`) can be achieved
when ` ≥ t log t. To the best of our knowledge, this is the
first signature-free ABA protocol that achieves the optimal
communication complexity of O(n`) when ` is almost linearly
scaled with t.

The proposed protocol (called as A-COOL) is extended
from the COOL protocol introduced in the synchronous setting
[16]. Note that, in the asynchronous setting the message trans-
mission might be delayed with arbitrary time. Therefore, we
need to handle both the message delay from honest nodes and
the Byzantine behavior from dishonest nodes simultaneously.
This is the primary challenge of designing the BA protocol in
this asynchronous setting.

We provide some comparison between different ABA pro-
tocols in Table I and Fig. 1. Note that Fig. 1 focuses on the
comparison in the communication complexity exponent, which
is defined in (1), capturing the exponent of communication
complexity performance. As shown in Fig. 1, compared to the
protocols in [39] and [45], A-COOL protocol provides additive
gains up to 3 and 2, respectively, in terms of communication
complexity exponent performance.
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Fig. 1. Communication complexity exponent β vs. message size exponent
α of the proposed A-COOL, the protocols in [39] and [45], focusing on the
case with δ = 1.

This paper is organized as follows. The system model is
provided in Section II, while the main results are presented in
Section III. The proposed A-COOL is detailed in Section IV.
The conclusion is drawn in Section V.

II. SYSTEM MODELS

We consider the ABA problem, in which a set of n
distributed processors {P1, P2, · · · , Pn} seek to reach an
agreement on an `-bit value, but up to t processors might
be corrupted by a Byzantine adversary and act as dishon-
est nodes. The processors are communicated over an asyn-
chronous network. Each pair of processors is connected via
a reliable and private communication channel. We consider
a static adversary, denoted by At, which selects the set of
corrupted processors before starting the protocol. We assume
that the adversary has complete knowledge of the state of the
other processors. The processors that are not corrupted by
the adversary are honest processors. We provide the formal
definition of ABA as below.

Definition 1 (ABA). A protocol for a set of processors
{P1, P2, · · · , Pn}, where Pi holds an initial `-bit input value
wi, i ∈ [1 : n], is said to be an ABA protocol tolerating an
adversary At, if the following properties hold
• Termination: Every honest processor eventually almost-

surely1 terminates.
• Consistency: All of the honest processors eventually decide

on the same value.
• Validity: If every honest processor holds an initial value w,

then all of the honest processors eventually decide on this
initial value w.

In this work we use the following three parameters to
measure the quality of a BA protocol:
• Resilience: the maximum number of dishonest nodes al-

lowed in the protocol, denoted by t.
• Communication complexity: the total number of communi-

cation bits during the protocol execution, denoted by b.
• Round complexity: the expected number of rounds taken by

the protocol to terminate, denoted by r.

1The probability that an honest processor is undecided after r rounds
approaches 0 as r grows to infinity [46].

We define the notion of communication complexity exponent
of the ABA protocol as

β(α, δ), lim
n→∞

log b(n, δ, α)

log n
(1)

where α, limn→∞
log `
logn (message size exponent) and

δ, limn→∞
log t
logn (faulty size exponent). β, α and δ capture

the exponents of communication complexity b, the message
size ` and faulty size t respectively with n as the base, when
n is large.

Recall that a protocol is said to be signature-free if the
protocol design does not depend on the cryptographic ma-
chinery such as hashing and signature. A protocol is said to
be information-theoretic secure if the protocol can tolerate the
computationally unbounded adversary.

III. MAIN RESULTS

In this section we will provide the main results of this work.

Theorem 1 (ABA). For the ABA problem, the proposed A-
COOL is a signature-free multi-valued ABA protocol that
reaches an agreement on an `-bit value with communication
complexity O(max{n`, nt log t}), given n ≥ 5t+ 1.

Proof. The proposed A-COOL protocol is provided in Sec-
tion IV.

Theorem 1 implies that the proposed A-COOL protocol
achieves the optimal communication complexity O(n`) when
` ≥ t log t. The following result is directly derived from
Theorem 1.

Corollary 1 (Communication complexity exponent). For the
proposed A-COOL protocol, when n ≥ 5t+ 1, the communi-
cation complexity exponent is

β(α, δ) = max{1 + α, 1 + δ}. (2)

The proposed A-COOL protocol does not assume the cryp-
tographic machinery such as hashing and signature (signature
free). Also, the proposed protocol can tolerate the computa-
tionally unbounded adversary (information-theoretic secure).

IV. THE PROPOSED A-COOL PROTOCOL

In this section, we will provide the proposed A-COOL
protocol. This proposed A-COOL protocol seeks to reach an
agreement on an `-bit value w over n distributed processors
{Pi}ni=1 under asynchronous communication. In the design of
the A-COOL protocol, coding scheme is used to reduce the
communication complexity during the information exchange
steps. Specifically, the (n, k) Reed-Solomon error correction
code will be used in the protocol design. We will show
that the proposed A-COOL is a signature-free multi-valued
ABA protocol that reaches an agreement on an `-bit value
with communication complexity O(max{n`, nt log t}), when
n ≥ 5t+ 1. This result serves as the proof of Theorem 1.

The proposed A-COOL protocol is composed of at most
four phases, as shown in Algorithm 1. The proposed protocol
is guaranteed to satisfy the termination, consistency, and
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validity conditions. In what follows, we will describe the four
phases in detail. In the description of the proposed A-COOL,
we will just consider the case of t ≤ n−1

5 and t = Ω(n).
We first define some notations that will be used in the pro-

tocol design. Let w(i) be the updated value at Pi, i ∈ [1 : n].
Let u

[p]
i (j) be the binary link indicator for Pi and Pj , for

p ∈ [1 : 3] and i, j ∈ [1 : n]. Let s
[p]
i be the binary success

indicator at Pi, for p ∈ [1 : 3] and i ∈ [1 : n]. In our design the
initial value of w(i) is set as w(i) = wi, i ∈ [1 : n]. The binary
link indicator is initially set as u

[1]
i (j) = 0, i, j ∈ [1 : n].

A. Phase 1: exchange symbols and update information

The main idea of Phase 1 is to exchange coded symbols
and update information.

1) Encode and exchange symbols: By applying Reed-
Solomon error correction code, Pi, i ∈ [1 : n], first encodes
its `-bit initial value wi into `/k-bit symbols as

y
(i)
j ,hT

jwi, j ∈ [1 : n] (3)

where hj is defined as hj ,[hj,1, hj,2, · · · , hj,k]T, for

hj,m ,
k∏

p=1
p6=m

j − p
m− p

, j ∈ [1 : n], m ∈ [1 : k]. (4)

In our protocol design, the parameter k is designed as
k,
⌊
t
5

⌋
+ 1. Note that for the (n, k) Reed-Solomon error

correction code constructed in the Galois Field GF (2c), the
condition of n ≤ 2c−1 needs to be satisfied (cf. [47]). In this
protocol, the parameter c is designed as

c,
⌈max{`, (t/5 + 1) · log(n+ 1)}

k

⌉
. (5)

It can be verified that the condition of n ≤ 2c − 1 is satisfied
with the designed parameters k and c. In this protocol, each
coded symbol y(i)j has c bits. After this encoding process, Pi,
i ∈ [1 : n], sends a pair of coded symbols (y

(i)
j , y

(i)
i ) to Pj

for j ∈ [1 : n] \ i.
2) Update information: Upon receiving n − t pairs of

symbols {(y(j)i , y
(j)
j )}j , Pi compares the received (y

(j)
i , y

(j)
j )

with its symbol pair (y
(i)
i , y

(i)
j ) and sets a link indicator u

[1]
i (j)

as

u
[1]
i (j) =

{
1 if (y

(j)
i , y

(j)
j ) = (y

(i)
i , y

(i)
j ) (6)

0 else

for i ∈ [1 : n]. The value of u
[1]
i (j) = 0 implies that Pi

and Pj might have mismatched value, i.e., w(i) 6= w(j). If
u
[1]
i (j) = 0, we consider the pair of (y

(j)
i , y

(j)
j ) from Pj as

a mismatched symbol pair at Pi. By counting the number of
mismatched symbol pairs, Pi sets a success indicator s

[1]
i as

s
[1]
i =

{
1 if

∑n
j=1 u

[1]
i (j) ≥ n− 2t (7)

0 else

for i ∈ [1 : n]. The event of s
[1]
i = 0 means that the number

of mismatched symbol pairs is more than 2t, which implies

that the initial value of Pi does not match the majority of
other processors’ initial values. If s

[1]
i = 0, Pi updates w(i)

as w(i) = φ (a default value), else keeps the original value of
w(i).

3) Exchange success indicators: Pi, i ∈ [1 : n], sends the
value of success indicator s

[1]
i to Pj , j ∈ [1 : n] \ i. Upon

receiving n− t success indicators {s[1]j }j , Pi creates the sets:

S1 ,{j : s
[1]
j = 1, j ∈ [1 : n]}, S0 ,[1 : n] \ S1 (8)

based on {s[1]j }j . In this step, different processors might have
different views on S0 and S1, due to the inconsistent value
possibly sent from dishonest processors.

Remark 1. In Phase 1, since y(i)j defined in (3) has c bits,
the communication complexity of exchanging coded data (see
Line 3 in Algorithm 1), denoted by b1, is b1 = 2cn(n −
1) bits. Since the success indicator s

[1]
i has only 1 bit, the

communication complexity of exchanging success indicators
(see Line 14), denoted by b2, is b2 = n(n− 1) bits.

Remark 2. Note that dishonest processors could send arbitrary
(inconsistent) value to different honest processors, which could
make honest processors output their updated values differently
in this phase. Phase 2 will further handle the issue of incon-
sistent updated values among honest processors.

B. Phase 2: mask errors, and update success indicator

In this phase, the main goal is to mask errors from honest
processors, based on the result of Phase 1.

1) Mask errors: If s
[1]
i = 1, Pi sets u

[2]
i (j) = u

[1]
i (j), ∀j ∈

S1 and u
[2]
i (j) = 0, ∀j ∈ S0.

2) Exchange success indicators: If s
[1]
i = 1, Pi updates

s
[2]
i as in (7) using updated values of {u[2]

i (j)}nj=1, else sets
s
[2]
i = 0. Then Pi sends s

[2]
i to Pj , j ∈ [1 : n] \ i. If s

[2]
i = 0,

Pi updates w(i) as w(i) = φ, else keeps the original value of
w(i).

3) Update S0 and S1: Upon receiving n − t success
indicators {s[2]j }j , Pi updates the sets of S0 and S1 as in (8)
for i ∈ [1 : n].

Remark 3. Since the success indicator s
[2]
i has 1 bit, the

communication complexity of exchanging success indicators
in Phase 2 (see Line 26 in Algorithm 1), denoted by b3, is
b3 = n(n− 1) bits.

C. Phase 3: mask errors, update information, and vote

In Phase 3, the main goal is to mask the rest of the errors
from the honest processors, and then vote for stopping in this
phase or going to Phase 4.

1) Mask errors: If s
[2]
i = 1, Pi sets u

[3]
i (j) = u

[2]
i (j), ∀j ∈

S1 and u
[3]
i (j) = 0, ∀j ∈ S0.

2) Exchange success indicator: If s
[2]
i = 1, Pi updates s

[3]
i as

in (7) using updated values of {u[3]
i (j)}nj=1, else sets s

[3]
i = 0.

Then Pi sends (s
[3]
i , y

(i)
j ) to Pj , j ∈ [1 : n] \ i. If s

[3]
i = 0,

Pi updates w(i) as w(i) = φ, else keeps the original value of
w(i).
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Algorithm 1 : A-COOL protocol, code for Pi, i ∈ [1 : n]

1: Set w(i) = wi; u
[1]
i (j) = 0, j ∈ [1 : n].

Phase 1

2: Pi encodes w(i) into n symbols as y(i)j ,hT
jwi, j∈ [1 :n].

3: Pi sends (y
(i)
j , y

(i)
i ) to Pj , ∀j ∈ [1 : n] \ i.

4: upon receiving n− t pairs of symbols {(y(j)i , y
(j)
j )}j

5: for each received (y
(j)
i , y

(j)
j ) do

6: if
(
(y

(j)
i , y

(j)
j ) == (y

(i)
i , y

(i)
j )
)

then
7: Pi sets u

[1]
i (j) = 1.

8: else
9: Pi sets u

[1]
i (j) = 0.

10: if
(∑n

j=1 u
[1]
i (j) >= n− 2t

)
then

11: Pi sets s
[1]
i = 1.

12: else
13: Pi sets s

[1]
i = 0 and w(i) = φ.

14: Pi sends s
[1]
i to Pj , j ∈ [1 : n] \ i.

15: upon receiving n− t success indicators {s[1]j }j
16: Pi sets S1 = {j : s

[1]
j = 1, j ∈ [1 : n]},

S0 = [1 : n] \ S1.

Phase 2

17: if (s
[1]
i == 1) then

18: Pi sets u
[2]
i (j) = u

[1]
i (j), ∀j ∈ S1.

19: Pi sets u
[2]
i (j) = 0, ∀j ∈ S0.

20: if
(∑n

j=1 u
[2]
i (j) >= n− 2t

)
then

21: Pi sets s
[2]
i = 1.

22: else
23: Pi sets s

[2]
i = 0 and w(i) = φ.

24: else
25: Pi sets s

[2]
i = 0.

26: Pi sends s
[2]
i to Pj , j ∈ [1 : n] \ i.

27: upon receiving n− t success indicators {s[2]j }j
28: Pi updates S0 and S1, based on {s[2]j }j .

Phase 3

29: if (s
[2]
i == 1) then

30: Pi sets u
[3]
i (j) = u

[2]
i (j), ∀j ∈ S1.

31: Pi sets u
[3]
i (j) = 0, ∀j ∈ S0.

32: if
(∑n

j=1 u
[3]
i (j) >= n− 2t

)
then

33: Pi sets s
[3]
i = 1.

34: else
35: Pi sets s

[3]
i = 0 and w(i) = φ.

36: else
37: Pi sets s

[3]
i = 0.

38: Pi sends (s[3]i , y
(i)
j ) to Pj , j ∈ [1 : n] \ i.

39: upon receiving n− t success indicators {s[3]j }j
40: Pi updates S0 and S1, based on {s[3]j }j .
41: if (

∑
j s

[3]
j >= n− 2t) then

42: Pi sets vi = 1.
43: else
44: Pi sets vi = 0.
45: Pi runs the one-bit consensus with all other processors

on the n votes {vi}ni=1, by using the one-bit consensus
protocol from [30].

46: if (the consensus of the votes {vi}ni=1 is 1) then
47: Pi goes to next phase.
48: else
49: Pi outputs w(i) = φ as a final consensus and stops.

Phase 4

50: if (s[3]i == 0) then
51: y

(i)
i ← Majority({y(j)i : j ∈ S1}).

52: Pi sends y(i)i to Pj , ∀j ∈ [1 : n] \ i.
53: if (s[3]i == 0) then
54: upon receiving n− t symbols {y(j)j }j
55: Pi decodes message and updates it into w(i) based

on the received symbols.
56: Pi outputs w(i) as the final consensus and stops.

3) Update S0 and S1: Upon receiving n − t success
indicators {s[3]j }j , Pi updates the sets of S0 and S1 as in (8)
for i ∈ [1 : n].

4) Vote: Pi, i ∈ [1 : n], sets a binary vote as

vi =

{
1 if

∑
j s

[3]
j ≥ n− 2t (9)

0 else

based on the n − t received success indicators {s[3]j }j . vi

denotes a vote from Pi for stopping in this phase or going
to Phase 4.

5) One-bit consensus on the n votes: Pi, i ∈ [1, n], runs
the one-bit consensus with all other processors on the n votes
{vi}ni=1, by using the one-bit consensus protocol from [30].

The consensus can be reached with O(n2) bits of communi-
cation complexity, and O(1) rounds of round complexity, for
t < n/5. If the consensus of the votes {vi}ni=1 is 0, then every
honest processor Pi outputs w(i) = φ as a final consensus and
stops, else every honest processor goes to Phase 4.

Remark 4. In Phase 3, since s
[3]
i and y

(i)
j has 1 bit and c

bits respectively, the communication complexity of exchanging
pairs of (s[3]i , y

(i)
j ), i ∈ [1 : n], j ∈ [1 : n] \ i (see Line 38 in

Algorithm 1), denoted by b4, is b4 = (1 + c)n(n− 1) bits.

Remark 5. The work of [30] provides the most efficient
unauthenticated binary ABA protocol that achieves the com-
munication complexity O(n2) and round complexity O(1),
assuming a common coin oracle. Since we run the one-
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bit consensus from [30], the communication complexity of
invoking one-bit consensus (see Line 45 in Algorithm 1),
denoted by b5, is b5 = O(n2) bits. Since the round complexity
of this step is constant (i.e., O(1)) and the round complexity of
other steps is also constant, it gives that the round complexity
of the proposed protocol is constant, i.e., O(1).

Remark 6. It can be proved that at the end of this phase,
there exists at most 1 group of honest processors, where the
honest processors within this group have the same non-empty
updated value (w(i) 6= φ), and the honest processors outside
this group have the same empty updated value (w(i) = φ).

D. Phase 4: exchange coded symbols and make consensus

The idea of this phase is to calibrate and update the final
value of the honest processors in the set of S0 such that every
honest processor outputs the same value as the final consensus.

1) Update symbols with majority rule: Pi, i ∈ S0, updates
the value of y

(i)
i as y

(i)
i ← Majority({y(j)i : j ∈ S1}),

where the coded symbols {y(j)i }j∈S1 were received in Phase 3.
Majority(•) is a function defined to return the most frequent
value in the list, based on the majority rule. Note that Pi,
i ∈ S1 keeps its previous value of y(i)i .

2) Broadcast updated symbol: Pi, i ∈ [1 : n], sends the
value of y(i)i to Pj , ∀j ∈ [1 : n] \ i.

3) Decode: Upon receiving n − t coded symbols {y(j)j }j ,
Pi decodes message and updates it into w(i) using the n− t
received symbols, for i ∈ S0. For Pi, i ∈ S1, it skips this step.

4) Stop: Pi, i ∈ [1 : n], outputs w(i) as the final consensus
and stops.

Remark 7. In Phase 4, since y(i)i has c bits, the communi-
cation complexity of exchanging the coded symbols (see Line
52 in Algorithm 1), denoted by b6, is b6 = cn(n− 1) bits.

Remark 8. Note that up to bn−k2 c Byzantine errors can be
corrected in the design of an (n, k) error correction code,
using some efficient decoding algorithms [47]–[49]. It can be
verified that in Step 3 of this phase, every honest processor
decodes and outputs the same message, with the parameter
design of k and c in this protocol.

E. Performance analysis of A-COOL

This section provides the performance analysis of the pro-
posed A-COOL protocol.

Lemma 1. A-COOL reaches an agreement on an `-bit value
with the communication complexity of O(max{n`, nt log t})
bits and the round complexity of O(1) rounds, given n ≥
5t+ 1.

Proof. The proposed A-COOL reaches an agreement on an
`-bit value given n ≥ 5t+ 1 (see Lemma 2).

By adding the communication complexity b1, b2, · · · , b6
expressed in Remarks 1, 3, 4, 5 and 7, respectively, the total

communication complexity of the proposed A-COOL, denoted
by b, is computed as

b =
6∑

i=1

bi

= O(cn(n− 1) + n2)

= O(max{`/t, log n} · n(n− 1) + n2)

= O(max{`n2/t, n2 log n}) bits (10)

where c is designed as c =
⌈max{`, (t/5+1)·log(n+1)}

k

⌉
for

k =
⌊
t
5

⌋
+ 1. In the description of the proposed A-COOL, we

just considered the case of t ≤ n−1
5 and t = Ω(n). For this

case, the total communication complexity shown in (10) can
be rewritten as b = O(max{n`, nt log t}) bits. It can also be
shown that the same communication complexity performance
can be achieved, for the case with relatively small t compared
to n. Due to the lack of space, the detail is provided in the
long version [50]. By combining the above two cases, we
conclude that the total communication complexity of A-COOL
is b = O(max{n`, nt log t}) bits.

Given that the round complexity of the one-bit consensus
in Phase 3 is constant, it implies that the round complexity of
the proposed protocol is constant, i.e., O(1).

Lemma 2. The proposed A-COOL is a signature-free ABA
protocol, which satisfies the termination, consistency and
validity conditions in all executions, given n ≥ 5t+ 1.

Proof. The proof of Lemma 2 will use the tools from coding
theory and graph theory. Due to the lack of space, the proof
is provided in the long version [50].

V. CONCLUSION

In this work, we studied the ABA problem and proposed a
new signature-free protocol, i.e., A-COOL, which is commu-
nication efficient. Specifically, the proposed A-COOL protocol
achieves the optimal communication complexity O(n`) when
` ≥ t log t, given n ≥ 5t+1. The proposed A-COOL protocol
can also be extended to the asynchronous Byzantine broadcast
(ABB) problem, by adding one step of broadcasting `-bit
message from the leader to the distributed processors. The
`-bit message sent from the leader will serve as the initial
value at every distributed node in the ABA problem. Then, the
proposed A-COOL can be applied here to achieve the same
performance as in the ABA setting, in terms of resilience,
communication complexity and round complexity.
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