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Abstract—We propose schemes for minimax statistical es-
timation of sparse parameter or observation vectors over a
Gaussian multiple-access channel (MAC) under squared error
loss, using techniques from statistics, compressed sensing and
wireless communication. These ‘“analog” schemes exploit the
superposition inherent in the Gaussian MAC, using compressed
sensing to reduce the number of channel uses needed. For the
sparse Gaussian location and sparse product Bernoulli models,
we derive expressions for risk in terms of the numbers of nodes,
parameters, channel uses and nonzero entries (sparsity). We
show that they offer exponential improvements over existing
lower bounds for risk in “digital” schemes that assume nodes to
transmit bits errorlessly at the Shannon capacity. This shows that
analog schemes that design estimation and communication jointly
can efficiently exploit the inherent sparsity in high-dimensional
models and observations, and provide drastic improvements over
digital schemes that separate source and channel coding in this
context.

I. INTRODUCTION

Consider the problem of estimating the parameters 6 € R¢
of a distribution pg from samples drawn from it. This fun-
damental problem is well studied in statistics, going back to
the early 1800s [1], [2]. Yet two recent trends in data science
bring new challenges to this framework.

The first trend is that data are increasingly being generated
“at the edge”, by many different users or sensors, who must
send their observations to a central server. This has spawned
burgeoning topics such as edge computing and federated
learning, which aim to aggregate data from many nodes for
learning, inference and estimation. This decentralization would
be inconsequential to the estimation problem if the samples
could be relayed to the server as they are, but as wireless
engineers know well, communication is resource-constrained
and costly. This makes communication a new and important
bottleneck in the quest to better design these systems.

The second trend is that modern machine learning data
and models are becoming increasingly high-dimensional. For
example, the number of parameters d in popularly used neural
network models has been growing into the millions.

The combination of these trends can pose prohibitive costs
on communication resources. Consider a federated learning
setting, in which a central machine learning model is trained
from data split among a large number of mobile clients. This
is typically done by running distributed stochastic gradient
descent (SGD), a flavor of SGD where, in each iteration of
the algorithm, clients compute gradients with respect to their
local data and communicate them to the central server for

aggregation. The dimension of these gradients scales with
the number of model parameters, and when that is in the
millions, communicating the gradients becomes impractical.
Fortunately, some recent works [3], [4] have observed that
these gradients can in practice be treated as sparse vectors. In
many problems with large ambient dimension, such sparsity
presents an opportunity to develop cost-efficient solutions.

To study these trends, we can examine the impact of com-
munication constraints and dimensionality d on the estimation
error of the parameter 6 € R4. Recent works [5]-[10] have
modeled this by imposing a digital data rate constraint: each
node is assumed to have some finite number of bits to represent
its sample U;, which are communicated errorlessly to the
server. In this abstraction, the questions of communication and
estimation are in effect separated—physical constraints in the
channel impose themselves on the estimation strategy only as
a bit limit. These works provided schemes and information-
theoretic lower bounds on estimation error in terms of such
“digital” constraints, including for sparse regimes [4]-[7].

However, we have recently shown [11], [12] that, in the
Gaussian MAC, “analog” schemes can drastically outperform
such digital schemes. In the schemes we proposed for the
Gaussian location and product Bernoulli models, nodes sim-
ply transmit a scaled uncoded version of the samples. The
superposition in the MAC in effect carries out the averaging
that would, in classical statistics, be used to estimate the mean.
This scheme jointly designs the estimation and communication
protocols, so would be preempted by the aforementioned
digital abstraction. That preemption has a hefty price: judged
by worst-case risk under squared error loss for the same
physical resources, our analog schemes yielded an exponential
improvement even over the digital lower bounds in [10].

Even so, a major drawback of the schemes in [11] is
that they require at least as many channel uses as there
are parameters. With the trend towards having millions of
parameters, this would be prohibitive in many applications,
including distributed SGD, a mainstay of federated and dis-
tributed learning. At the same time, digital schemes have been
shown to be able to efficiently exploit sparse model structure to
reduce communication requirements [5], [6]. This left a gap: If
we’re starved of the ability to dedicate at least one channel use
per parameter, is it still possible to exploit the additive nature
of the Gaussian MAC and the structure of sparse models to
conduct parameter estimation? Can such analog schemes still
trounce their digital counterparts?
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Fig. 1. System diagram

In this paper, we answer these questions in the affirmative.
In distributed SGD, local gradients can often be sparsified
using a number of techniques, such as communicating only the
top k gradients [3], [4]. We leverage this observation to treat
samples as coming from distributions with high-dimensional
but k-sparse parameters or observations. This allows us to use
the compressed sensing framework of [13], [14] to reduce the
dimension of the transmitted vector, while still harnessing the
over-the-air superposition in the Gaussian MAC. We propose
schemes for the sparse Gaussian location and sparse product
Bernoulli models, and show that they offer drastically lower
estimation error than the digital lower bounds for the same
models in [4], [7].

Our results provide a theoretical basis for a growing
body of literature suggesting that analog, joint estimation-
communication schemes can be markedly advantageous over
digital schemes that separate source and channel coding. These
include studies in source coding for sensor networks [15]-
[17], experimental comparisons of analog and digital versions
of distributed SGD [18], [19] and transmission of model
parameters [20], as well as our own findings in [11], [12].
Other authors have progressed analog over-the-air computation
methods [21], [22]. Note that in the dense models of [11], [12],
the superposition in the Gaussian MAC can be easily harnessed
by uncoded transmission, while the current paper develops
more sophisticated encoding techniques, based on compressed
sensing, that simultaneously make use of the additive nature
of the channel and the sparsity of the model.

The rest of this paper is structured as follows. In Section II,
we describe our models of interest. In Section III, we sum-
marize relevant concepts from compressed sensing. Our main
results come in Sections IV and V, and a discussion on their
significance follows in Section VI. Proofs are in Section VII.

II. PROBLEM FORMULATION

Consider the Gaussian multiple-access channel (MAC) de-
picted in Fig. 1. In each of s channel uses, indexed = 1,...,s,
the n senders each transmit a symbol X;, € R to a single
receiver, which observes a noisy superposition

Vi =Xuu+Xor 4+ + Xpr + 74, (D

where Z; ~ N (0, of) is the noise in the rth channel use. We
set aside questions of phase synchronization, power control
and fading to focus on the additive nature of MACs.

Our system seeks to estimate a parameter vector ¢, which
belongs to a parameter space ® C R and determines the dis-
tribution p ¢ from which each senderi = 1,...,n draws a sam-
ple U;. Each sender thus chooses a vector X; = (X;1,. .., Xis)
to transmit over the s channel uses, which is a function of its
sample U;. We similarly denote the concatenation of received
symbols as Y = (Y1,...,Ys), and the receiver’s estimate 6 must
be a function of Y. We study worst-case risk under squared
error 10ss, Supyee Eo[l16(Y) - 9||§], where Eg|[-] denotes the
expectation under pyg.

The senders must abide by a power constraint, and since the
distribution py is not known, they must obey it for the entire
parameter space. That is, we require that

1
~Eg[lIX:l3] <P, forallie{l,....n},0e€®. (2)
S

In our earlier works [11], [12] we considered the case where
s > d. In this paper, we turn our attention to the case where
there are fewer channel uses than parameters, s < d, and we
focus on the sparse analogs of the models we considered in
[11], [12]. In particular, we focus on two different models that
allow us to investigate the impact of sparsity in the parameter
space and the sample space respectively.

Our first model of interest is the sparse Gaussian location
model, in which 6 is the k-sparse mean of a Gaussian
distribution of known variance o->. That is, pg = N (0, c*1)
and 6 belongs to the parameter space

Osc 2 {0 € [-B, Bl : |0]lo < k} 3)

for some known B > 0, and some integer 0 < k < d
representing the sparsity level. Here ||6]|p denotes the number
of nonzero elements in 6. We say that a vector 6 is k-sparse if
it contains at most k nonzero elements, i.e., if ||0||o < k. Note
that this corresponds to a model where the parameter vector
6 is sparse but the observed samples U; ~ pg are dense.

Our second model of interest is the sparse product
Bernoulli model, in which the elements of 8 are parameters
of independent Bernoulli variables, pg = I—[?:] Bernoulli(6;),
and 6 belongs to

Oss = {60,119 :]|6]l; < k}. 4)

Note that 6 here is not itself sparse, but rather, its elements
sum to k < d, so the samples U; ~ pg will be on average
k-sparse. This models the scenario where observations rather
than parameters of the model have a sparse structure. Note,
however, that the sparsity is subtle: observation vectors are
only sparse on average, and the assumed sparsity structure
does not directly reduce the dimensionality of the problem
from d to k.

IIT. COMPRESSED SENSING: PRELIMINARIES

The schemes we propose use a method from compressed
sensing to reduce the number of channel uses needed to com-
municate the samples. The problem of interest in compressed



sensing is as follows. We wish to recover a k-sparse signal
x € R from only s < d measurements

yt=<X,at>,l‘=1,...,s, or y:Ax’

for a known, and possibly designed, A € R**?. A series of
works in the 2000s [13] showed that, under a certain condition
on A, x can be recovered exactly by solving the convex
program

minimize

||X]]1 subject to AX =y. (5)

The condition that A must satisfy is called a restricted isometry
hypothesis, and is defined as follows. Let Ag, K € {1,...,d}
be the n X || submatrix of A whose columns are extracted
from A according to the indices in K. The k-restricted
isometry constant 8, of A is the smallest value such that,
for all index subsets K with |X]| < k, for all vectors u € RI%I

(1=80)llull3 < [[Agull; < (1 +6k)]lull3. (6)

Intuitively, when &y is small, (6) requires that submatrices
of A with up to k columns behave approximately like an
orthonormal system. A restricted isometry hypothesis is then
a condition imposing an upper bound on a linear combination
of restricted isometry constants of A, for example,

O + 0o + 031 < 1. (7

The work [13] showed that if A satisfies (7), then solving (5)
recovers any x that is k-sparse.

Subsequent work studied perturbed sparse measurements,
where y = Ax + e for some perturbation e. Here, [14] showed
that under another restricted isometry hypothesis, the signal
can be recovered with error linear in the perturbation. We
recite the main result therein below.

Theorem 1 (Theorem 1 of [14]). Let A € R¥*? have restricted
isometry constants satisfying 63x + 3041 < 2, and for some
perturbation level €, let x¥ be the solution to the convex
program
minimize |A¥ -yl <e. (8)

(1% 1 subject to

Then for any k-sparse signal x and any perturbation e with
llella < & x* obeys

e = xll2 < G - &, ©)
where the constant Cy may only depend on S4.

It can be shown that if 64, < 0.4 then C; < 26 in the above
theorem. (This also implies 03z +304x < 2, as dy is increasing
in k.) A number of ways to generate matrices that satisfy this
condition are well known in the compressed sensing literature.
The most notable is that if the entries of A € R™4 are i.i.d.
Gaussian with zero mean and variance 1/s, then A satisfies
the condition with high probability when

d
sZC-klogE,

for a sufficiently large constant C. We refer the reader to [13,
Sec. 1] for details. In our schemes, for any k& and d, this

(10)

assures us of the existence of matrices A € R¥*?_ with s chosen
as in (10), that satisfy (6) with ¢; < 0.4 and Theorem 1 with
Cr < 26.

Our strategies for our two models of interest, explained
in the next two sections, are to think of sampling variance
and/or channel noise as “perturbations” in the sense defined
in Theorem 1.

IV. GAUSSIAN LOCATION MODEL
A. Estimation scheme

For the sparse Gaussian location model, we propose the
following scheme. Take any matrix A € R**¢ satisfying the
restricted isometry hypothesis with 64 < 0.4. As discussed
above, this requires s to satisfy (10); we will choose it to be
satisfied with equality. Each sender i transmits X; = aAU;
over the Gaussian MAC, where « is a scaling factor chosen
as

1>

1 sP 1 (1
a . .
1+6x \d(B2+02) [d/k]
The receiver observes the noisy superposition Y, given by (1).
The receiver computes its estimate 6 as follows:

1) Compute 6% as the solution to the convex program

2

1
subject to [|A9 — —VY|| <&% (12)
an

minimize |||
7 2

2 is chosen such that

2 d ol d B?
2|2 —n- —
(1+06x) LJ [1+nPs (1+ 0_2)}, (13)

2) Compute 6 to be 6% moved into [-B, B]¢ by clamping
wayward entries,

where &

2s0

b e |
G )9j| < B,
0;=3-B, if aﬁ. <-B,

B, if 9‘;‘. > B,

ji=1,....d, (14)

where 0 ; is the 6th entry of 8, and similarly for 05..
We verify in Proposition 1 that with the choice of @ in (11),
we satisfy the power constraint. The proof is in Section VII-A.

Proposition 1. If we choose « as in (11), then X; satisfies the
power constraint (2).
B. Main result on squared error risk

We are now in a position to present our first main result,
an upper bound on worst-case risk for sparse estimation under
the scheme proposed in Section IV-A.

Theorem 2. For any k-sparse vector 6 € Osg, the estimate 7
provided by the scheme proposed in Section IV-A satisfies

2 2
ﬁg 1+B_
nP s o?

15)

A d d
Eo[ll6 - 0113] < C10'2; log (%) [1 +

+4B%d - 015,



where Cy is an absolute (explicit) constant that does not
depend on the problem parameters.

The proof is in Section VII-A. Note that the second term
in (15) decays exponentially in s so when k and d are large
the error will be dictated by the first term. We further discuss
the implications of this result in Section VI.

V. PRODUCT BERNOULLI MODEL

A. Estimation scheme

For the sparse product Bernoulli model, we will work with
a matrix that satisfies the restricted isometry hypothesis for
sparsity level 2nk instead of k, i.e., A € R4 with g, < 0.4.
As discussed in Section III, such a matrix exists if

d
sZC-nklog(%).

Each sender i transmits X; = ¢ AU;, where « is chosen as

VsP
(1+6)Vak+1

The receiver observes Y as in (1) and computes § as follows:

(16)

A
a =

1) Compute 6* as the solution to the convex program
2

1
minimize ||@#||; subject to ||A% - —Y| <&, (17)
an ||,
where £2 is chosen as
2502
2 a n
e = el (18)

2) Compute § to be 6* moved into [0,1]¢ by clamping
wayward entries,
¢, ifo<ei<1,
d; =40, if ek <o,
Looifeh >,

where 6 ; is the 6th entry of 6, and similarly for 9?.
Proposition 2 verifies the power constraint. We omit the
proof, but discuss it briefly in Section VII-B.

Proposition 2. If we choose « as in (16), then X; satisfies the
power constraint (2).
B. Main result on squared error risk

We have now completed the preparations to present our
second main result.

Theorem 3. For any vector 6 € Ogg, the estimate 0 provided
by the scheme proposed in Section V-A satisfies

. k 2
Bo[I0 - 013] < ~ (CZZ—; + 2) +2d (e—°~38"k + e—°‘153) ,

(20)
where C, is an absolute (explicit) constant that does not
depend on the problem parameters.

We omit the proof, but discuss it briefly in Section VII-B.
We again note that the second term in (20) decays exponen-
tially in nk and s, so at large k and n, the error will be dictated
by the first term. We discuss further in the next section.

VI. COMPARISON TO DIGITAL LOWER BOUNDS

Having characterized the performance of analog estimation
schemes for the sparse Gaussian and Bernoulli models, we
now compare their performance to digital approaches for
sparse models that have recently been studied in related
literature.

In digital schemes, rather than specify the physical-layer
channel as we did in Section II, we simply assume that each
sender can errorlessly transmit a message of up to m bits
to the receiver. Recent work [4]-[10], [23] has used this
idea to study the impact of communication constraints on
distributed parameter estimation. This allows those works to
abstract away the physical layer and focus effectively on the
trade-off between available channel capacity and estimation
error. However, this abstraction enforces a separation between
source and channel coding. Owing to this, our analog schemes,
which instead design estimation and communication jointly,
beat even these digital lower bounds when controlling for
physical resources (transmission power and number of channel
uses).

To compute digital lower bounds, we draw on the results
of [7] and [4], which provided information-theoretic lower
bounds on estimation error for digital schemes under our two
models of interest. In applying them, we assume that senders
can transmit at the Shannon capacity of the Gaussian MAC.
If the MAC is used s times, with rates allocated equally
among senders, this would allow each sender to errorlessly
communicate
S

o 21

P
m= - log, (1 + ”—2) bits
0-1’1
to the receiver. Note that this assumption is arguably unduly
optimistic about the digital schemes—at finite block lengths,

senders cannot actually reach the Shannon capacity.

Proposition 3. For the sparse Gaussian location model, for
all protocols in which nodes independently send bits to the
server at the Shannon capacity for s channel uses, if k < %

and min{;? 10g2(1+":€), n} > \/klog % the risk must satisfy
dk log(%)
slog, (1 + ’;—?)

where Cs is a constant independent of problem parameters.

sup Egll6 - GII% > C302
0€0Bsig

(22)

Proof. Apply Theorem 7 of [7], using (21). m}

Compare this to (15) of Theorem 2. A summary focusing
on the asymptotic scaling of d,n and k is in the first row of
Table I. As required by (10), we choose s « k log % in both the
analog case (Theorem 2) and the digital case (Proposition 3) to
allow a clean comparison. Here, we find that the risk of any



TABLE I
COMPARISON FOR GAUSSIAN LOCATION MODEL

‘ analog achievability ‘ digital lower bound

sparse model dlos 4
] o) [ e
s klogd n logn
2
dense model [11] o d o d
s>d n slogn

TABLE 11
COMPARISON FOR PRODUCT BERNOULLI MODEL

‘ analog achievability ‘ digital lower bound

sparse model k k
— Q
socklog% O(n logn
) 2
dense model [11] o ﬁ Q d
s>d n slogn

digital scheme can decrease at best with Q(d/logn), while
our proposed analog scheme decreases with O(dlog(%) /n).
This implies that, controlling for physical resources, analog
schemes can bring about exponentially smaller estimation er-
ror than digital schemes while using only s o« k log% channel
uses to communicate d-dimensional observation vectors with
s < d. In the second row of the table, we recall our results
for dense models from [11] for comparison.
We find similarly for the sparse product Bernoulli model.

Proposition 4. For the sparse product Bernoulli model, for all
protocols in which nodes independently send bits to the server
at the Shannon capacity for s channel uses, if 5 10g2(1+”;€) >

d log% and k < ‘—zl then the risk must satisfy

2100 &

k= log %
slog, (1 + %?)

where Cy4 is a constant independent of problem parameters.

sup Eqlld - 0113 > C4
0€Bgp

) (23)

Proof. Apply Theorem 2 of [4], using (21). O

A comparison summary is in Table II. The first row com-
pares Theorem 3 and Proposition 4 asymptotically in d,n and
k, again choosing s o k log% from (10). Note that, differently
from the sparse Gaussian model, in Table II the estimation
error is governed by the sparsity parameter k in place of the
ambient dimension d in the numerator. The contrast between
the analog and digital schemes appears in n: digital schemes
can at best improve with Q(k/logn), while our proposed
analog scheme improves with O(k/n). This is similar to our
result for the dense model (second row), and again shows
an exponential advantage of analog schemes over any digital
scheme.

These results demonstrate that, in the sparse model esti-
mation, leveraging the physical layer in a joint estimation-
communication protocol can be drastically advantageous over

digital schemes separating source and channel coding. In the
present case, this advantage comes about because we leverage
the additive nature of the Gaussian MAC. This corroborates
our findings for the dense analogs of these models [11], as
well as other works comparing analog and digital approaches
that also take advantage of sparsity [18], [19].

VII. PROOFS

In all proofs, we use E[-] in place of Egy[-] for brevity.

A. Sparse Gaussian location model

Proof of Proposition 1. The samples themselves satisfy
E[IIU:13] = E[l16 + WilI3] = 116115 + do* < d(B* + o). (24)
Then the power of the transmitted symbols is at most

E[1X:13] = E[lleAU 3]

< E[(1+60)?[d/KIU5]  (Lemma 1)
< @*(1+63)°[d/k1d(B* +?).  (by (24))
Hence (11) guarantees that %E [||Xi||§] <P. O

Proof of Theorem 2. We begin by defining the perturbation

1 1
R2—[AY Wi+-2Z
Hammed

so that =Y = A@+R. Note that R, being a linear combination

an
of zero-mean Gaussian vectors, is a zero-mean Gaussian

vector, and its variance is

, (25)

o2

2
o
= —AAT + 2.
n a’n?

1 1
A Wi+ -7
n Z a
We decompose the mean squared error as
E[116 - 6113] = E[116 - 6I3]IR]l> < &] Pr{|IR]|> < &}

+E[116 - 6I3|IRIl> > ] Pr{lIRIl> > &}
<E[I9-6I3|IRIl> < €] +4B*d - Pr{||R|> > &}, (27)

Tg £ var (26)

where in the last step we used the fact that all ¢, €
[-B,B]4, ||9 — ¢'|l» < 2BVd (and that Pr{||R]|» < &} < ).

To control the first term, representing the error under small
perturbations, first note that from the definition of 0 in (14)
and because § € [—B, B]4, we have |6 — 0], < ||6% — 6])».
Then by Theorem 1, the solution to (12) satisfies

B[116% - 013 IRI < ] < CZ - &2, (28)

As for the second term, the contribution from large pertur-
bations, we find Pr{||R||, > &} using the tail bound on ||R]|>
from Lemma 2. Let A« (+) denote the largest eigenvalue of
its argument. Then by Weyl’s inequality applied to (26),

0.2 0.2
Amax (ER) < — Amax (AAT) + 1. (29)
n an
Now, by Lemma 1,
Ax||? d
Amax (AAT) = max I x'l <1 +5,<)ZH. (30)
X lxll k



Substituting @ from (11), and (30), into (29) yields a choice
of &2 (compare to (13))

2 2
bsa (1+6)° d 1+O-—“é 1+
n k nP s

bsAmax (ZR) <

Now, ||R|? > &2 = ||R||§ > bsAmax (ZR), so from Lemma 2,

Pr{||R|l» > &} < Pr{[IRI} > bsdmu(Zr)} < (be'?)3.
(31
Substituting (28) and (31) into (27) we have

E[I10 - 0|13] < C} - &* +4B%d(be'™)3. (32)

Finally, choosing s = C - k log% to satisfy (10) with equality,
and choosing b = 2, yields the result (15). O

Remark. The second term vanishes exponentially in s, leaving
just the first term as significant. If we wanted to the second
term to vanish in n, we could instead choose b = 2clogn +1,
and it would vanish with (n€/+/2clogn + 1)7%, at the cost of
a logn factor in the &2 term.

B. Sparse product Bernoulli model

We omit the proofs of Proposition 2 and Theorem 3 for
space constraints. They roughly mirror the analogous proofs
for the sparse Gaussian location model (Proposition 1 and
Theorem 2 respectively), with a couple of key differences.

In Proposition 2, since U; is typically sparse, it is possible
to divide the expectation E[IlAU;llg] into cases corresponding
to k-, 2k-, 3k-sparsity and so on, and apply Lemma 1 to each
case separately. The expectation over these cases then allows
E[||AU1~||§] to be linear in k, rather than depend on d.

In Theorem 3, the main difference from the Gaussian
model is that 6 is not sparse, so does not permit a direct
application of Theorem 1. Instead, we use the “classical”
estimate O £ %Z?:l U;, which is typically 2nk-sparse (with
the probability of failure in this mode bounded by the Chernoff
bound for the new e~0-33"% term). We apply Theorem 1 to
E[||6% - Oall?] instead, and we bound E[||dq — 6]|3] using
classical techniques.

C. Auxiliary lemmas

We omit the proof of these two auxiliary lemmas for brevity.
The first lemma is used to compute the scaling factor a in
both the sparse Gaussian location and sparse product Bernoulli
models.

Lemma 1. If A € R has restricted isometry constant 5y,
and the vector x € RY has at most k nonzero entries, then

lAx]l2 < (1+6x)VI&/kT - lix]l2. (33)
In particular, all vectors x € R satisfy (33) with « = d.

This next lemma provides a tail bound on a correlated
Gaussian random vector, using of the Chernoff bound.

Lemma 2. Let X ~ N (0, X) where X is a positive semidefinite
nXxXn matrix, and let Amax be the largest eigenvalue of Z. Then

Pr{lIX|3 > bndma} < (be'™)%.
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