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Abstract—We propose schemes for minimax statistical es-
timation of sparse parameter or observation vectors over a
Gaussian multiple-access channel (MAC) under squared error
loss, using techniques from statistics, compressed sensing and
wireless communication. These “analog” schemes exploit the
superposition inherent in the Gaussian MAC, using compressed
sensing to reduce the number of channel uses needed. For the
sparse Gaussian location and sparse product Bernoulli models,
we derive expressions for risk in terms of the numbers of nodes,
parameters, channel uses and nonzero entries (sparsity). We
show that they offer exponential improvements over existing
lower bounds for risk in “digital” schemes that assume nodes to
transmit bits errorlessly at the Shannon capacity. This shows that
analog schemes that design estimation and communication jointly
can efficiently exploit the inherent sparsity in high-dimensional
models and observations, and provide drastic improvements over
digital schemes that separate source and channel coding in this
context.

I. INTRODUCTION

Consider the problem of estimating the parameters \ ∈ R3
of a distribution ?\ from samples drawn from it. This fun-

damental problem is well studied in statistics, going back to

the early 1800s [1], [2]. Yet two recent trends in data science

bring new challenges to this framework.

The first trend is that data are increasingly being generated

“at the edge”, by many different users or sensors, who must

send their observations to a central server. This has spawned

burgeoning topics such as edge computing and federated

learning, which aim to aggregate data from many nodes for

learning, inference and estimation. This decentralization would

be inconsequential to the estimation problem if the samples

could be relayed to the server as they are, but as wireless

engineers know well, communication is resource-constrained

and costly. This makes communication a new and important

bottleneck in the quest to better design these systems.

The second trend is that modern machine learning data

and models are becoming increasingly high-dimensional. For

example, the number of parameters 3 in popularly used neural

network models has been growing into the millions.

The combination of these trends can pose prohibitive costs

on communication resources. Consider a federated learning

setting, in which a central machine learning model is trained

from data split among a large number of mobile clients. This

is typically done by running distributed stochastic gradient

descent (SGD), a flavor of SGD where, in each iteration of

the algorithm, clients compute gradients with respect to their

local data and communicate them to the central server for

aggregation. The dimension of these gradients scales with

the number of model parameters, and when that is in the

millions, communicating the gradients becomes impractical.

Fortunately, some recent works [3], [4] have observed that

these gradients can in practice be treated as sparse vectors. In

many problems with large ambient dimension, such sparsity

presents an opportunity to develop cost-efficient solutions.

To study these trends, we can examine the impact of com-

munication constraints and dimensionality 3 on the estimation

error of the parameter \ ∈ R3 . Recent works [5]–[10] have

modeled this by imposing a digital data rate constraint: each

node is assumed to have some finite number of bits to represent

its sample *8 , which are communicated errorlessly to the

server. In this abstraction, the questions of communication and

estimation are in effect separated—physical constraints in the

channel impose themselves on the estimation strategy only as

a bit limit. These works provided schemes and information-

theoretic lower bounds on estimation error in terms of such

“digital” constraints, including for sparse regimes [4]–[7].

However, we have recently shown [11], [12] that, in the

Gaussian MAC, “analog” schemes can drastically outperform

such digital schemes. In the schemes we proposed for the

Gaussian location and product Bernoulli models, nodes sim-

ply transmit a scaled uncoded version of the samples. The

superposition in the MAC in effect carries out the averaging

that would, in classical statistics, be used to estimate the mean.

This scheme jointly designs the estimation and communication

protocols, so would be preempted by the aforementioned

digital abstraction. That preemption has a hefty price: judged

by worst-case risk under squared error loss for the same

physical resources, our analog schemes yielded an exponential

improvement even over the digital lower bounds in [10].

Even so, a major drawback of the schemes in [11] is

that they require at least as many channel uses as there

are parameters. With the trend towards having millions of

parameters, this would be prohibitive in many applications,

including distributed SGD, a mainstay of federated and dis-

tributed learning. At the same time, digital schemes have been

shown to be able to efficiently exploit sparse model structure to

reduce communication requirements [5], [6]. This left a gap: If

we’re starved of the ability to dedicate at least one channel use

per parameter, is it still possible to exploit the additive nature

of the Gaussian MAC and the structure of sparse models to

conduct parameter estimation? Can such analog schemes still

trounce their digital counterparts?
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In this paper, we answer these questions in the affirmative.

In distributed SGD, local gradients can often be sparsified

using a number of techniques, such as communicating only the

top : gradients [3], [4]. We leverage this observation to treat

samples as coming from distributions with high-dimensional

but :-sparse parameters or observations. This allows us to use

the compressed sensing framework of [13], [14] to reduce the

dimension of the transmitted vector, while still harnessing the

over-the-air superposition in the Gaussian MAC. We propose

schemes for the sparse Gaussian location and sparse product

Bernoulli models, and show that they offer drastically lower

estimation error than the digital lower bounds for the same

models in [4], [7].

Our results provide a theoretical basis for a growing

body of literature suggesting that analog, joint estimation-

communication schemes can be markedly advantageous over

digital schemes that separate source and channel coding. These

include studies in source coding for sensor networks [15]–

[17], experimental comparisons of analog and digital versions

of distributed SGD [18], [19] and transmission of model

parameters [20], as well as our own findings in [11], [12].

Other authors have progressed analog over-the-air computation

methods [21], [22]. Note that in the dense models of [11], [12],

the superposition in the Gaussian MAC can be easily harnessed

by uncoded transmission, while the current paper develops

more sophisticated encoding techniques, based on compressed

sensing, that simultaneously make use of the additive nature

of the channel and the sparsity of the model.

The rest of this paper is structured as follows. In Section II,

we describe our models of interest. In Section III, we sum-

marize relevant concepts from compressed sensing. Our main

results come in Sections IV and V, and a discussion on their

significance follows in Section VI. Proofs are in Section VII.

II. PROBLEM FORMULATION

Consider the Gaussian multiple-access channel (MAC) de-

picted in Fig. 1. In each of B channel uses, indexed C = 1, . . . , B,

the = senders each transmit a symbol -8C ∈ R to a single

receiver, which observes a noisy superposition

.C = -1C + -2C + · · · + -=C + /C , (1)

where /C ∼ N(0, f2
n ) is the noise in the Cth channel use. We

set aside questions of phase synchronization, power control

and fading to focus on the additive nature of MACs.

Our system seeks to estimate a parameter vector \, which

belongs to a parameter space Θ ⊆ R3 and determines the dis-

tribution ?\ from which each sender 8 = 1, . . . , = draws a sam-

ple *8 . Each sender thus chooses a vector -8 = (-81, . . . , -8B)
to transmit over the B channel uses, which is a function of its

sample *8 . We similarly denote the concatenation of received

symbols as . = (.1, . . . , .B), and the receiver’s estimate \̂ must

be a function of . . We study worst-case risk under squared

error loss, sup\ ∈Θ E\ [‖\̂ (. ) − \‖2
2
], where E\ [·] denotes the

expectation under ?\ .

The senders must abide by a power constraint, and since the

distribution ?\ is not known, they must obey it for the entire

parameter space. That is, we require that

1

B
E\

[
‖-8 ‖2

2

]
≤ %, for all 8 ∈ {1, . . . , =}, \ ∈ Θ. (2)

In our earlier works [11], [12] we considered the case where

B ≥ 3. In this paper, we turn our attention to the case where

there are fewer channel uses than parameters, B < 3, and we

focus on the sparse analogs of the models we considered in

[11], [12]. In particular, we focus on two different models that

allow us to investigate the impact of sparsity in the parameter

space and the sample space respectively.

Our first model of interest is the sparse Gaussian location

model, in which \ is the :-sparse mean of a Gaussian

distribution of known variance f2. That is, ?\ = N(\, f2�3)
and \ belongs to the parameter space

ΘSG ,
{
\ ∈ [−�, �]3 : ‖\‖0 ≤ :

}
(3)

for some known � > 0, and some integer 0 < : < 3

representing the sparsity level. Here ‖\‖0 denotes the number

of nonzero elements in \. We say that a vector \ is :-sparse if

it contains at most : nonzero elements, i.e., if ‖\‖0 ≤ : . Note

that this corresponds to a model where the parameter vector

\ is sparse but the observed samples *8 ∼ ?\ are dense.

Our second model of interest is the sparse product

Bernoulli model, in which the elements of \ are parameters

of independent Bernoulli variables, ?\ =
∏3

9=1 Bernoulli(\ 9 ),
and \ belongs to

ΘSB ,
{
\ ∈ [0, 1]3 : ‖\‖1 ≤ :

}
. (4)

Note that \ here is not itself sparse, but rather, its elements

sum to : < 3, so the samples *8 ∼ ?\ will be on average

:-sparse. This models the scenario where observations rather

than parameters of the model have a sparse structure. Note,

however, that the sparsity is subtle: observation vectors are

only sparse on average, and the assumed sparsity structure

does not directly reduce the dimensionality of the problem

from 3 to : .

III. COMPRESSED SENSING: PRELIMINARIES

The schemes we propose use a method from compressed

sensing to reduce the number of channel uses needed to com-

municate the samples. The problem of interest in compressed



sensing is as follows. We wish to recover a :-sparse signal

G ∈ R3 from only B ≪ 3 measurements

HC = 〈G, 0C 〉, C = 1, . . . , B, or H = �G,

for a known, and possibly designed, � ∈ RB×3 . A series of

works in the 2000s [13] showed that, under a certain condition

on �, G can be recovered exactly by solving the convex

program

minimize ‖G̃‖1 subject to �G̃ = H. (5)

The condition that � must satisfy is called a restricted isometry

hypothesis, and is defined as follows. Let �K ,K ⊆ {1, . . . , 3}
be the = × |K| submatrix of � whose columns are extracted

from � according to the indices in K. The :-restricted

isometry constant X: of � is the smallest value such that,

for all index subsets K with |K | ≤ : , for all vectors D ∈ R |K |

(1 − X: )‖D‖2
2 ≤ ‖�KD‖2

2 ≤ (1 + X: )‖D‖2
2. (6)

Intuitively, when X: is small, (6) requires that submatrices

of � with up to : columns behave approximately like an

orthonormal system. A restricted isometry hypothesis is then

a condition imposing an upper bound on a linear combination

of restricted isometry constants of �, for example,

X: + X2: + X3: < 1. (7)

The work [13] showed that if � satisfies (7), then solving (5)

recovers any G that is :-sparse.

Subsequent work studied perturbed sparse measurements,

where H = �G + 4 for some perturbation 4. Here, [14] showed

that under another restricted isometry hypothesis, the signal

can be recovered with error linear in the perturbation. We

recite the main result therein below.

Theorem 1 (Theorem 1 of [14]). Let � ∈ RB×3 have restricted

isometry constants satisfying X3: + 3X4: < 2, and for some

perturbation level Y, let G♯ be the solution to the convex

program

minimize ‖G̃‖1 subject to ‖�G̃ − H‖2 ≤ Y. (8)

Then for any :-sparse signal G and any perturbation 4 with

‖4‖2 ≤ Y, G♯ obeys

‖G♯ − G‖2 ≤ �: · Y, (9)

where the constant �: may only depend on X4: .

It can be shown that if X4: ≤ 0.4 then �: ≤ 26 in the above

theorem. (This also implies X3: +3X4: < 2, as X: is increasing

in : .) A number of ways to generate matrices that satisfy this

condition are well known in the compressed sensing literature.

The most notable is that if the entries of � ∈ RB×3 are i.i.d.

Gaussian with zero mean and variance 1/B, then � satisfies

the condition with high probability when

B ≥ � · : log
3

:
, (10)

for a sufficiently large constant �. We refer the reader to [13,

Sec. III] for details. In our schemes, for any : and 3, this

assures us of the existence of matrices � ∈ RB×3 , with B chosen

as in (10), that satisfy (6) with X: < 0.4 and Theorem 1 with

�: ≤ 26.

Our strategies for our two models of interest, explained

in the next two sections, are to think of sampling variance

and/or channel noise as “perturbations” in the sense defined

in Theorem 1.

IV. GAUSSIAN LOCATION MODEL

A. Estimation scheme

For the sparse Gaussian location model, we propose the

following scheme. Take any matrix � ∈ RB×3 satisfying the

restricted isometry hypothesis with X4: ≤ 0.4. As discussed

above, this requires B to satisfy (10); we will choose it to be

satisfied with equality. Each sender 8 transmits -8 , U�*8

over the Gaussian MAC, where U is a scaling factor chosen

as

U ,
1

1 + X:

√
B%

3 (�2 + f2)
· 1

⌈3/:⌉ . (11)

The receiver observes the noisy superposition . , given by (1).

The receiver computes its estimate \̂ as follows:

1) Compute \♯ as the solution to the convex program

minimize
o

‖o‖1 subject to





�o − 1

U=
.






2

2

≤ Y2, (12)

where Y2 is chosen such that

Y2
,

2Bf2

=
(1 + X: )2

⌈
3

:

⌉ [
1 + f2

n

=%

3

B

(
1 + �2

f2

)]
, (13)

2) Compute \̂ to be \♯ moved into [−�, �]3 by clamping

wayward entries,

\̂ 9 =





\
♯
9 , if

���\♯9
��� ≤ �,

−�, if \
♯
9 < −�,

�, if \
♯
9 > �,

9 = 1, . . . , 3, (14)

where \̂ 9 is the \th entry of \̂, and similarly for \
♯
9 .

We verify in Proposition 1 that with the choice of U in (11),

we satisfy the power constraint. The proof is in Section VII-A.

Proposition 1. If we choose U as in (11), then -8 satisfies the

power constraint (2).

B. Main result on squared error risk

We are now in a position to present our first main result,

an upper bound on worst-case risk for sparse estimation under

the scheme proposed in Section IV-A.

Theorem 2. For any :-sparse vector \ ∈ ΘSG, the estimate \̂

provided by the scheme proposed in Section IV-A satisfies

E\

[
‖\̂ − \‖2

2

]
≤ �1f

2 3

=
log

(
3

:

) [
1 + f2

n

=%

3

B

(
1 + �2

f2

)]

+ 4�23 · 4−0.15B , (15)



where �1 is an absolute (explicit) constant that does not

depend on the problem parameters.

The proof is in Section VII-A. Note that the second term

in (15) decays exponentially in B so when : and 3 are large

the error will be dictated by the first term. We further discuss

the implications of this result in Section VI.

V. PRODUCT BERNOULLI MODEL

A. Estimation scheme

For the sparse product Bernoulli model, we will work with

a matrix that satisfies the restricted isometry hypothesis for

sparsity level 2=: instead of : , i.e., � ∈ RB×3 with X8=: < 0.4.

As discussed in Section III, such a matrix exists if

B ≥ � · =: log

(
3

=:

)
.

Each sender 8 transmits -8 , U�*8 , where U is chosen as

U ,

√
B%

(1 + X: )
√

4: + 1
, (16)

The receiver observes . as in (1) and computes \̂ as follows:

1) Compute \♯ as the solution to the convex program

minimize ‖o‖1 subject to





�o − 1

U=
.






2

2

≤ Y2, (17)

where Y2 is chosen as

Y2
,

2Bf2
n

U2=2
. (18)

2) Compute \̂ to be \♯ moved into [0, 1]3 by clamping

wayward entries,

\̂ 9 =





\
♯
9 , if 0 ≤ \

♯
9 ≤ 1,

0, if \
♯
9 < 0,

1, if \
♯
9 > 1,

9 = 1, . . . , 3, (19)

where \̂ 9 is the \th entry of \̂, and similarly for \
♯
9 .

Proposition 2 verifies the power constraint. We omit the

proof, but discuss it briefly in Section VII-B.

Proposition 2. If we choose U as in (16), then -8 satisfies the

power constraint (2).

B. Main result on squared error risk

We have now completed the preparations to present our

second main result.

Theorem 3. For any vector \ ∈ ΘSB, the estimate \̂ provided

by the scheme proposed in Section V-A satisfies

E\

[
‖\̂ − \‖2

2

]
≤ :

=

(
�2

f2
n

=%
+ 2

)
+ 23

(
4−0.38=: + 4−0.15B

)
,

(20)

where �2 is an absolute (explicit) constant that does not

depend on the problem parameters.

We omit the proof, but discuss it briefly in Section VII-B.

We again note that the second term in (20) decays exponen-

tially in =: and B, so at large : and =, the error will be dictated

by the first term. We discuss further in the next section.

VI. COMPARISON TO DIGITAL LOWER BOUNDS

Having characterized the performance of analog estimation

schemes for the sparse Gaussian and Bernoulli models, we

now compare their performance to digital approaches for

sparse models that have recently been studied in related

literature.

In digital schemes, rather than specify the physical-layer

channel as we did in Section II, we simply assume that each

sender can errorlessly transmit a message of up to < bits

to the receiver. Recent work [4]–[10], [23] has used this

idea to study the impact of communication constraints on

distributed parameter estimation. This allows those works to

abstract away the physical layer and focus effectively on the

trade-off between available channel capacity and estimation

error. However, this abstraction enforces a separation between

source and channel coding. Owing to this, our analog schemes,

which instead design estimation and communication jointly,

beat even these digital lower bounds when controlling for

physical resources (transmission power and number of channel

uses).

To compute digital lower bounds, we draw on the results

of [7] and [4], which provided information-theoretic lower

bounds on estimation error for digital schemes under our two

models of interest. In applying them, we assume that senders

can transmit at the Shannon capacity of the Gaussian MAC.

If the MAC is used B times, with rates allocated equally

among senders, this would allow each sender to errorlessly

communicate

< =
B

2=
log2

(
1 + =%

f2
n

)
bits (21)

to the receiver. Note that this assumption is arguably unduly

optimistic about the digital schemes—at finite block lengths,

senders cannot actually reach the Shannon capacity.

Proposition 3. For the sparse Gaussian location model, for

all protocols in which nodes independently send bits to the

server at the Shannon capacity for B channel uses, if : ≤ 3
2

and min{ B
232 log2 (1+ =%

f2
n
), =} ≥

√
: log 3

: , the risk must satisfy

sup
\ ∈ΘSG

E\ ‖\̂ − \‖2
2 ≥ �3f

2
3: log( 3: )

B log2

(
1 + =%

f2
n

) (22)

where �3 is a constant independent of problem parameters.

Proof. Apply Theorem 7 of [7], using (21). �

Compare this to (15) of Theorem 2. A summary focusing

on the asymptotic scaling of 3, = and : is in the first row of

Table I. As required by (10), we choose B ∝ : log 3
: in both the

analog case (Theorem 2) and the digital case (Proposition 3) to

allow a clean comparison. Here, we find that the risk of any



TABLE I
COMPARISON FOR GAUSSIAN LOCATION MODEL

analog achievability digital lower bound

sparse model
large =

B ∝ : log 3

:

$

(
3 log 3

:

=

)

Ω

(
3

log =

)

dense model [11]
B ≥ 3

$

(
3

=

)
Ω

(
32

B log =

)

TABLE II
COMPARISON FOR PRODUCT BERNOULLI MODEL

analog achievability digital lower bound

sparse model

B ∝ : log 3

:

$

(
:

=

)
Ω

(
:

log =

)

dense model [11]
B ≥ 3

$

(
3

=

)
Ω

(
32

B log =

)

digital scheme can decrease at best with Ω(3/log =), while

our proposed analog scheme decreases with $ (3 log( 3: )/=).
This implies that, controlling for physical resources, analog

schemes can bring about exponentially smaller estimation er-

ror than digital schemes while using only B ∝ : log 3
: channel

uses to communicate 3-dimensional observation vectors with

B ≪ 3. In the second row of the table, we recall our results

for dense models from [11] for comparison.

We find similarly for the sparse product Bernoulli model.

Proposition 4. For the sparse product Bernoulli model, for all

protocols in which nodes independently send bits to the server

at the Shannon capacity for B channel uses, if B
2

log2 (1+ =%
f2

n
) ≥

3 log 3
: and : ≤ 3

2
, then the risk must satisfy

sup
\ ∈ΘSB

E\ ‖\̂ − \‖2
2 ≥ �4

:2 log 3
:

B log2

(
1 + =%

f2
n

) , (23)

where �4 is a constant independent of problem parameters.

Proof. Apply Theorem 2 of [4], using (21). �

A comparison summary is in Table II. The first row com-

pares Theorem 3 and Proposition 4 asymptotically in 3, = and

: , again choosing B ∝ : log 3
: from (10). Note that, differently

from the sparse Gaussian model, in Table II the estimation

error is governed by the sparsity parameter : in place of the

ambient dimension 3 in the numerator. The contrast between

the analog and digital schemes appears in =: digital schemes

can at best improve with Ω(:/log =), while our proposed

analog scheme improves with $ (:/=). This is similar to our

result for the dense model (second row), and again shows

an exponential advantage of analog schemes over any digital

scheme.

These results demonstrate that, in the sparse model esti-

mation, leveraging the physical layer in a joint estimation-

communication protocol can be drastically advantageous over

digital schemes separating source and channel coding. In the

present case, this advantage comes about because we leverage

the additive nature of the Gaussian MAC. This corroborates

our findings for the dense analogs of these models [11], as

well as other works comparing analog and digital approaches

that also take advantage of sparsity [18], [19].

VII. PROOFS

In all proofs, we use E[·] in place of E\ [·] for brevity.

A. Sparse Gaussian location model

Proof of Proposition 1. The samples themselves satisfy

E
[
‖*8 ‖2

2

]
= E

[
‖\ +,8 ‖2

2

]
= ‖\‖2

2 + 3f2 ≤ 3 (�2 + f2). (24)

Then the power of the transmitted symbols is at most

E
[
‖-8 ‖2

2

]
= E

[
‖U�*8 ‖2

2

]

≤ U2
E
[
(1 + X: )2⌈3/:⌉‖*8 ‖2

2

]
(Lemma 1)

≤ U2 (1 + X: )2⌈3/:⌉3 (�2 + f2). (by (24))

Hence (11) guarantees that 1
BE

[
‖-8 ‖2

2

]
≤ %. �

Proof of Theorem 2. We begin by defining the perturbation

' ,
1

=

(

�
∑

8

,8 +
1

U
/

)

, (25)

so that 1
U=. = �\+'. Note that ', being a linear combination

of zero-mean Gaussian vectors, is a zero-mean Gaussian

vector, and its variance is

Σ' , var

[
1

=

(

�
∑

8

,8 +
1

U
/

)]

=
f2

=
��T + f2

n

U2=2
�B . (26)

We decompose the mean squared error as

E
[
‖\̂ − \‖2

2

]
= E

[
‖\̂ − \‖2

2

��‖'‖2 ≤ Y
]

Pr{‖'‖2 ≤ Y}
+ E

[
‖\̂ − \‖2

2

��‖'‖2 > Y
]

Pr{‖'‖2 > Y}
≤ E

[
‖\̂ − \‖2

2

��‖'‖2 ≤ Y
]
+ 4�23 · Pr{‖'‖2 > Y}, (27)

where in the last step we used the fact that all o, o′ ∈
[−�, �]3 , ‖o − o′‖2 ≤ 2�

√
3 (and that Pr{‖'‖2 ≤ Y} ≤ 1).

To control the first term, representing the error under small

perturbations, first note that from the definition of \̂ in (14)

and because \ ∈ [−�, �]3 , we have ‖\̂ − \‖2 ≤ ‖\♯ − \‖2.

Then by Theorem 1, the solution to (12) satisfies

E

[
‖\♯ − \‖2

2

���‖'‖2 ≤ Y
]
≤ �2

: · Y2. (28)

As for the second term, the contribution from large pertur-

bations, we find Pr{‖'‖2 > Y} using the tail bound on ‖'‖2

from Lemma 2. Let _max (·) denote the largest eigenvalue of

its argument. Then by Weyl’s inequality applied to (26),

_max (Σ') ≤
f2

=
_max (��T) + f2

n

U2=2
. (29)

Now, by Lemma 1,

_max (��T) = max
G

‖�G‖2

‖G‖2
≤ (1 + X: )2

⌈
3

:

⌉
. (30)



Substituting U from (11), and (30), into (29) yields a choice

of Y2 (compare to (13))

1B_max (Σ') ≤
1Bf2

=
(1 + X: )2

⌈
3

:

⌉ [
1 + f2

n

=%

3

B

(
1 + �2

f2

)]
, Y2.

Now, ‖'‖2
2
≥ Y2 ⇒ ‖'‖2

2
≥ 1B_max (Σ'), so from Lemma 2,

Pr {‖'‖2 > Y} ≤ Pr
{
‖'‖2

2 ≥ 1B_max (Σ')
}
≤ (141−1) B

2 .

(31)

Substituting (28) and (31) into (27) we have

E
[
‖\̂ − \‖2

2

]
≤ �2

: · Y2 + 4�23 (141−1) B

2 . (32)

Finally, choosing B = � · : log 3
: to satisfy (10) with equality,

and choosing 1 = 2, yields the result (15). �

Remark. The second term vanishes exponentially in B, leaving

just the first term as significant. If we wanted to the second

term to vanish in =, we could instead choose 1 = 22 log = + 1,

and it would vanish with (=2/
√

22 log = + 1)−B , at the cost of

a log = factor in the Y2 term.

B. Sparse product Bernoulli model

We omit the proofs of Proposition 2 and Theorem 3 for

space constraints. They roughly mirror the analogous proofs

for the sparse Gaussian location model (Proposition 1 and

Theorem 2 respectively), with a couple of key differences.

In Proposition 2, since *8 is typically sparse, it is possible

to divide the expectation E
[
‖�*8 ‖2

2

]
into cases corresponding

to :-, 2:-, 3:-sparsity and so on, and apply Lemma 1 to each

case separately. The expectation over these cases then allows

E
[
‖�*8 ‖2

2

]
to be linear in : , rather than depend on 3.

In Theorem 3, the main difference from the Gaussian

model is that \ is not sparse, so does not permit a direct

application of Theorem 1. Instead, we use the “classical”

estimate \̂cl ,
1
=

∑=
8=1 *8 , which is typically 2=:-sparse (with

the probability of failure in this mode bounded by the Chernoff

bound for the new 4−0.38=: term). We apply Theorem 1 to

E
[
‖\♯ − \̂cl‖2

2

]
instead, and we bound E

[
‖\̂cl − \‖2

2

]
using

classical techniques.

C. Auxiliary lemmas

We omit the proof of these two auxiliary lemmas for brevity.

The first lemma is used to compute the scaling factor U in

both the sparse Gaussian location and sparse product Bernoulli

models.

Lemma 1. If � ∈ RB×3 has restricted isometry constant X: ,

and the vector G ∈ R3 has at most ^ nonzero entries, then

‖�G‖2 ≤ (1 + X: )
√
⌈^/:⌉ · ‖G‖2. (33)

In particular, all vectors G ∈ R3 satisfy (33) with ^ = 3.

This next lemma provides a tail bound on a correlated

Gaussian random vector, using of the Chernoff bound.

Lemma 2. Let - ∼ N(0,Σ) where Σ is a positive semidefinite

=×= matrix, and let _max be the largest eigenvalue of Σ. Then

Pr
{
‖- ‖2

2 ≥ 1=_max

}
≤ (141−1) =

2 .
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