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ABSTRACT: Ultraviolet (UV)-curable thermoset shape memory polymers (TSMPs) with high recovery stress but mild glass
transition temperature (T,) are highly desired for 3D/4D printing lightweight load-bearing structures and devices. However, a
bottleneck is that high recovery stress usually means high T,. For a few TSMPs with high recovery stress, their T, values are close to
the decomposition temperature, and thus, the shape memory effect cannot be triggered safely and effectively. While machine
learning (ML) has served as a useful tool to discover new materials and drugs, the grand challenge of using ML to discover new
TSMPs persists in the very limited data available. Here, we report an enhanced ML approach by combining the transfer learning—
variational autoencoder with a weighted-vector combination method. By learning a large data set with drug molecules in a
pretraining process, we were able to effectively map the TSMPs to a hidden space that is much closer to a Gaussian distribution.
Through this approach, we created a large compositional space and were able to discover five new types of UV-curable TSMPs with
desired properties, one of which was validated by the experiments. Our contribution includes (1) representing the features of TSMPs
by drug molecules to overcome the barrier of a limited training data set and (2) developing a ML framework that is able to overcome
the barrier of mapping the molar ratio information. It is shown that this approach can effectively learn TSMP features by utilizing the
relatedness between the data-scarce (and biased) TSMP target and data-abundant drug source, and the result is much more accurate
and more robust than the benchmark set by the support vector machine method using direct label encoding and Morgan encoding.
Therefore, it is believed that this framework is a state-of-the-art study in the TSMP field. This study opens new opportunities for
discovering not only new TSMPs but also other thermoset polymers.

KEYWORDS: machine learning, variational autoencoder, transfer learning, shape memory polymer, material discovery, drug molecules,
4D printing

1. INTRODUCTION PDBbind™ provides the receptor—ligand binding data for
resolved protein structures, Pubchem®' supplies a wide range
of chemical information involving physical—chemical proper-
ties and biomolecular interaction, Uniprot22 involves a large

In the past decade, with the development of hardware' and
new algorithms,”™* machine learning (ML) has become
capable of learning more hidden features from targets and
hence has been becoming a more and more popular tool in
many research fields.’™® In the field of materials science, as
indicated by Yan et al,” ML bears three prominent advantages,
that is, (a) it overcomes the time-consuming trial-and-error
approach in traditional methods,'*~"* (b) it is at least tens or

amount of data for protein sequence homology and protein ID
retrieving, RCSB PDB*’ provides information for the protein
3D structure, and so forth, wherein tens of millions of
molecules can be found. By utilizing these databases,
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hundreds of times faster than the traditional molecular or Received: October 29, 2021
atomistic computational models,"”'* and (c) it bears a Accepted: November 18, 2021
universality as compared with the traditional solid mechanics Published: December 8, 2021

models.””~"? As such, ML has also been widely adopted for a
variety of materials, especially for drugs. Researchers have
established more than 10 databases for drugs. For example,
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investigators have already achieved a lot of success. For
example, through Pubchem, Butkiewicz et al. assembled
multiple data sets to establish a new benchmark platform for
drug target proteins;** Zhang et al. implemented data points
from PDBbind to train a new deep neural network model,
which is able to predict the binding affinity of a protein—ligand
complex;”> and based on PubMed and ClinicalTrials.gov
databases, Ong et al. leveraged Vaxign and the newly
developed ML-based Vaxign—ML reverse vaccinology tools
to predict COVID-19 vaccine candidates.*®

Meanwhile, in the past decades, due to the 3D printability,
good mechanical properties, and an excellent shape memory
effect (SME), ultraviolet (UV)-curable thermoset shape
memory polymers (TSMPs) have found wide applications in
actuators,”” proppants,”® flame retardancy,” sealants,™ self-
healing,’** and many more.”> By using UV-curable TSMPs
and 3D printing’* via digital light processing or direct ink
writing, structures with complex shapes and functionalities can
be manufactured such as deployable structures® and soft
robotics.”® For these applications, they usually require higher
recovery stress, for example, using the UV-curable TSMP for
manufacturin§ a multifunctional lightweight load-carrying
architecture.”> However, most UV-curable TSMPs with high
strength, high stiffness, and high recovery stress also have high
T,. Taking T; as an example, as shown in Figure 1, the
maximum recovery stress for SMPs is proportional to T,.
Sometimes, very high T, is a barrier because the UV-curable
TSMP must be heated up significantly to trigger the SME,
which may hinder the applications because the high trigger
temperature may be close to the decomposition temperature of
the polymer. Therefore, designing new TSMPs with high
recovery stress but moderate T, is highly desired. However,
due to the conflict requirement between moderate T, which
prefers softer UV-curable TSMPs with mobile molecular
segments, and high recovery stress, which prefers a stiffer
network with less mobile molecular segments, it is a grand
challenge for human intelligence to balance this conflict
requirement; ML may be a useful tool.

Unfortunately, very few ML models are available for
discovering new TSMPs”* due to three main difficulties,
that is, a complex polymer network, the lack of a public TSMP
database, and multifactor-dependent experimental results. To
our knowledge, the first and only ML framework for new
TSMP discovery was presented by Yan et al,” wherein they
established a dual-convolutional neural network (CNN) that is
able to perform a forward design by predicting the T, and
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recovery stress. Although this model can discover some new
TSMPs with higher recovery stress than the known data
available by then, it bears three limitations. First, the accuracy
of the model needs to be improved. To be specific, the mean
average percentage error (MAPE) of the models can just hit
28% and hence leaves a large room for improvement. Second,
the data set in that study is small, which could lead to
overfitting. As indicated by Yan et al,’ only about 100 data sets
were collected for the training, which could make the neural
network difficult to fit the appropriate values for a large
number of parameters (weights) in the CNN layers. This is
partially proved by the gap of the loss between the training
data and test data, which is more than 20%, thus empirically an
overfitting may exist there. Last but not the least, the model
did not take the molar ratio into consideration. In that study,
they leveraged BigSMILES*" for fingerprinting the polymers,
which deals with the bond connectivity but is not able to
provide the information for the molar ratio. This makes the
ML model ignore an essential feature of SMPs. This is because
the molar ratio determines how much of each reagent is
actually involved in the reaction and what is the final topology
of the network and thus plays a critical role in polymer
properties. For instance, for the SMP material synthesized by
di(ethylene glycol)dimethacrylate (DEGDMA) and tert-butyl
acrylate, Yakacki et al.** changed the molar amount of
DEGDMA from 0.025 to 0.134 mol, which then significantly
improves the rubbery modulus (E,) by 6.67 times (from 1.5 to
11.51 MPa); in another SMP network, Barszczewska-Rybarek
et al.** changed the molar ratio between methyl methacrylate
and triethylene glycol dimethacrylate from 0.01:0.99 to
0.20:0.80 and found that the rubbery modulus was increased
by about 14-fold (from 2.08 to 30.89 MPa).

For the first and second difficulties, we can attribute them to
the inadequate training data and the use of an unadvanced ML
approach. In fact, there exists a big gap between the need for
TSMP data and the actual available TSMP data. On one hand,
the features of TSMP networks are various and sophisticated,
that is, the complete information on the multiple length scale
structures of the cross-linked TSMP networks encompasses
atomistic, topological, and morphological structures, and hence
make an ML model extremely hungry for data. On the other
hand, TSMPs belongs to a new branch of smart material, and
thus, not enough data can be found in the literature. For
example, only 6198 papers can be found in the largest
accessible citation database “Web of Science” involving the
keyword “shape memory polymer”, which implies that, at most,
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Figure 2. Comparison between (a) drug molecule and (b) TSMP monomer or cross-linker.

only thousands of SMP data can be collected from this
database. If one further narrows the search to “TSMP”, the
search engine can only return about 200 papers at the time of
this paper submission. As for “UV-curable shape memory
polymer”, only 22 articles can be returned. On the contrary, as
indicated above, it is not difficult to find the public databases
for drug molecules. From the aspect of chemistry, both the
drug molecule and TSMP monomers belong to small
molecules, which share many similarities in the chemical
structures (see Figure 2). Therefore, we propose a new
advanced ML approach “transfer learning—variational autoen-
coder (TL-VAE)” to tackle this problem. Specifically, we first
let the ML model learn some common characteristics from a
good amount of drug molecules, which allows us to create a
pretrained model or a raw model. After that, by continuously
learning the characteristics in a small TSMP data set, the
model can be fine-tuned and is able to excellently capture the
detailed features of TSMP monomers. Meanwhile, because
more data are used in the learning process, overfitting can be
alleviated to some extent. Additionally, on one hand, according
to Lee et al,*® the premise to establish a good ML model is
that the output loss (the difference between the prediction
outcome and ground truth) should be Gaussian random
distribution, which sets a high standard for the data size. On
the other hand, it is worth noting that all the reported results
are inevitably biased and do not meet the Gaussian random
distribution. This is because although the experimental results
are supposed to yield a Gaussian distribution, all research
studies tend to report selected results, which suggests that only
some particular SMPs were reported; for example, only the
SMPs with large recovery stress were reported but the major
part (the SMPs with moderate recovery stress) were
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involuntarily ignored. Therefore, through the introduction of
a large number of small molecules in the database, which can
form a Gaussian random distribution with a great probability,
this issue can be solved in TL-VAE. Last but not the least, our
approach also overcomes the intrinsic limitation of the VAE
itself. To be specific, the VAE is more data-hungry than the
general ML model. In order to make the VAE perform
properly, at least thousands of data points are required. For
example, Lee et al. collected 5473 alloy entries to establish a
modified VAE;** Gémez-Bombarelli et al. adopted 250,000
drug-like molecules to train their VAE."” Apparently, the
number of data points for the VAE has significantly exceeded
the available TSMP data. Fortunately, the application of
transfer learning enables the VAE to learn features from a large
drug data set and hence put it into practice. In a nutshell, by
applying TL-VAE, our approach solved the problems facing
TSMP—the lack of a training data set, Gaussian distribution,
and normal operation of the VAE.

Regarding the third difficulty, that is, the absence of the
molar ratio, it has been a common limitation in the previous
studies involving the ML for polymers. For example, Miccio
and Schwartz adopted a CNN to predict T, for polymers, but
wherein only the polymers that composed of a single monomer
were taken into consideration.”® Wu et al. developed a ML
framework that is able to predict the thermal conductivity of
polymers by using Bayes’ theorem, but wherein they only dealt
with the homopolymer and circumvented the issue of the
molar ratio.*” In these previous studies, all the polymers were
homopolymers, hence one monomer can represent the whole
polymer network and there is no need to introduce the molar
ratio. However, most TSMPs belong to copolymers; thus, the
molar ratio becomes an unavoidable issue. Meanwhile, from
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Figure 3. Pipeline of the new TSMP design. (a) TL-VAE model establishment process, (b) TSMP properties model establishment process (A and
B represent the respective molar percentages in the TSMP network), and (c) new TSMP discovery.

the point of view of chemistry, for certain monomers and
cross-linkers, a network with the highest cross-linking density
can be formed if the molar ratio accords with the
stoichiometric ratio. Moreover, if the molar ratio does not
accord with the stoichiometric ratio but consecutively changes
around the stoichiometric ratio, the cross-linking density
would gradually increase or decrease, resulting in a
continuously varying domain of the polymer properties,*”>
which can be partly explained by the previous thermomechan-
ical models. As suggested by the thermomechanical model of
the Vogel—Fulcher—Tamman law based on entropy,”’ for a
polymer chain with only one bond type and constant length,
the stiffness of the polymer chain is inversely proportional to
the number of polymer molecules. In other words, the greater
the number of the SMP molecules present in a chain is, the
softer the chain is. Hence, different molar ratios lead to
different numbers of molecules in a polymer chain and further
induce distinct moduli. These continuous property changes
should be captured by the ML model.

In this study, we applied a combination of the VAE and
weighted-vector combination method (WVCM) to capture the
TSMP property changes that are caused by the molar ratio
change between the monomer and cross-linker. Meanwhile,
the VAE provides a probabilistic approach for describing the
observation in a latent space; based on the VAE, we further
developed a new fingerprinting method to encode the TSMP
network, that is, the WVCM. It will be demonstrated later that
the continuous property changes with the molar ratio are
reasonably represented by this method. The advantage of this
method is that it can fingerprint the TSMP network into a
continuous vector, which can reasonably embody the

continuous changes of the TSMP network with different
molar ratios.

The aim of this study is to develop an enhanced ML
framework that is able to discover new TSMPs or improve the
performance for the known TSMPs. The paper is organized as
follows. In Section 2, a VAE model is built by converting the
TSMP monomer chemical structures into multiple-dimen-
sional vectors in a two-step training process. Next, by
combining the multiple-dimensional vectors and WVCM,
prediction models for TSMP properties (T, and rubbery
modulus E,) are established. We then validate them by
experiments. Furthermore, in Section 3, five new types of
TSMPs with desired properties are discovered with further
experimental validation. Finally, in Section 4, some important
conclusions are drawn.

2. METHODS

In this section, we present three main procedures in the framework,
that is, the establishment of the two-step VAE model, establishment of
the TSMP properties model, and establishment of the TSMP forward
design model. The pipeline for discovering new TSMPs with the
assistance of ML is shown in Figure 3. The detailed procedures are
described as follows:

(1) Establishment of the TL-VAE model.

(i) The VAE model is first trained by 420,000 drug
molecules, and an intermediate hidden space is
obtained in (al).

(ii) The VAE model is fine-tuned by 109 monomers, and
then, the final hidden space is obtained in (a2).
(2) Establishment of the TSMP properties model.

(i) According to the monomers (b2) that constitute a
TSMP network (bl), the TSMP monomers can be

https://doi.org/10.1021/acsami.1c20947
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of the dense layer represents the output of the latent space).

fingerprinted into the corresponding high-dimension
vectors in the hidden space by the VAE (b3).

(ii) According to the molar ratio, the high-dimension
vectors for the monomers produce a weighted high-
dimension vector for the TSMP network according to
the WVCM in (b4).

(iii) Combining the high-dimension vectors and the
corresponding properties data for the TSMP networks
(Tg and E,), two models can be further established in
(b7), that is, the glass transition temperature model Mr,

and the rubbery modulus model Mg. The established

models are validated by the experimental test (b8).
(3) Establishment of the TSMP forward design model.

(i) Collecting all monomers and cross-linkers in the
training data set (cl), which are used to generate
random arrangements and then produce new TSMP
networks (c2).

(ii) The new possible TSMP networks (c2) can be
fingerprinted into high-dimension vectors by the hidden
space and different molar ratios.

(iii) The T, and E, for the new TSMP networks (c5) can be
predicted by My, and My in (c4).

(iv) Two screening procedures are conducted, that is, the
samples (cS) can be screened by the benchmark (c6)
and the chemical expertise (c7) in succession.

(v) The screened results are validated by experiments (c8),
and finally, we can obtain the desired TSMPs (c9).

2.1. VAE Model. The VAE model is a type of recently developed
autoencoder-like architecture, which provides a probabilistic under-
lying causal relation between the input and latent space. The causal

relation has the potential for generalizability. It was first defined by
Kingma and Welling in 2013 and since then has found wide
applications in many research fields.**'”**** In the field of new
material discovery, the VAE also came into use in some studies. For
example, by combining the VAE and nondominated sorting genetic
algorithm, Lee et al. pinpointed several novel thermomechanically
controlled and processed steel alloys, and the predictions agree with
the rule-based thermodynamic calculation tool*® Samanta et al.
proposed a novel VAE for molecular graphs, wherein the encoder and
decoder were optimized by several technical innovations, and the
decoder was able to generate the molecules with the spatial
coordinates of the atoms in it.**

The main advantage of the VAE is that it is able to learn a smooth
latent state representation or vector through the input data and hence
has a potential to form a generative model. As shown in Figure 3a, we
first adopted canonicalized simplified molecular input line-entry
system (SMILES) linear notions to represent the chemical structures,
which were then transformed to the binary 204 X S5 matrices by a
one-hot process (see the details in Figure 3 in ref 9.), wherein 204 and
SS represent the maximum length of the SMILES and the dictionary
length, respectively. The generated binary matrices can be viewed as
gray images. Since it can be treated an image, it is reasonable for us to
leverage the CNN. This combination has been commonly adopted by
other researchers.***>™>7 Next, the matrices were input into the VAE
model. Our VAE consists of two neural networks, that is, an encoder
and a decoder. Among them, the encoder aims to convert the matrices
to the representative vectors with 256 dimensions, and the decoder
aims to restore the representative vectors into the original 204 X 55
matrices. It should be mentioned that the encoder and decoder can be
the same or have different architectures; for example, an encoder
composed of fully connected layers and a decoder composed of fully
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connected layers,*® an encoder consisting of a CNN layer and dense
layers and another decoder consisting of a CNN layer and dense
layers,” an encoder consisting of a CNN layer and dense layers and a
decoder consisting of a recurrent neural network (RNN) layer and
dense layers,*” and so on. In this study, the VAE model comprises an
encoder consisting of a CNN layer and dense layers and a decoder
consisting of a long short-term memory (LSTM) neural network layer
and dense layers. The basic pipeline structure of the network is shown
in Figure 4. In this model, the CNN is able to learn the features of the
images*®™ and then capture the characteristics from the input
matrices; the LSTM is able to learn the order dependence of the
sequences’ ™% and then reconstruct the initial matrices. We choose
the LSTM layer as the core part of the decoder. The reason is that it
has a longer memory to the sequence than the common RNN and
hence can learn the correct syntax for the long SMILES with higher
possibility. It should be mentioned that we leveraged the “stateful”
LSTM in the training, which can learn the relevance of letters in a
SMILES.

As indicated above, the chemical structures of TSMPs are relatively
complex, but we only collected 109 unique monomers (from 245
TSMPs), which hardly makes the VAE learn the syntax of the
SMILES, not to mention the particular atomistic orders for the
SMILES of the TSMP monomers. Therefore, we employed a two-step
training approach. First, we collected 420,000 small molecules from
an open database ChREMBL®* (a biological database with small drug
molecules). With the huge amount of data in it, the VAE can learn not
only the syntaxes of SMILES and the basic chemical structures of
small drug molecules but also the particular atomistic orders of the
small drug molecules with similar chemical structures to TSMP
monomers. Second, we fine-tuned the models and further enabled
them to be familiar with TSMP monomers. Considering only 109
unique TSMP monomers were present in this small data set, we
applied data augmentation. Specifically, an open-source cheminfor-
matics software RDKit was used to exhaustively provide all possible
SMILES linear notions for a concatenated SMILES, which expanded
our TSMP monomers to 137,945 different linear notions. It should be
mentioned that the different notions for the same chemical structure
could only be slightly different. For example, a chemical structure with
the concatenated SMILES “C=C(C)C(=0)-
OCCOCCOCCOCCOCCOCCOCCOCCOC(=0)C(=C)C” can
also be written as the nonconcatenated SMILES linear notions,
including “C(COCCOCCOCCOCCOCCOCCOC(=0)C(C)=
C)OCCOC(=0)C(=C)C”, “C(OCCOCCOC(=0)C(C)=C)-
CcoCCOCCcOcCCcOoCcCcOoCccoC(=0)c(=cC)c”, “C-
(0CCOCCOCCOCCOCCOCCOCCOCCOC(C(=C)C)=
0)(=0)C(=C)C”, and so forth. In addition, in the second-step
training, we only trained the weights and biases for the last two layers
and froze other layers, that is, the LSTM layer and the last dense layer.
It should be noted that the VAE can be used for optimization. In this
study, we did not utilize this function of the VAE. The detailed
reasons can be found in Supporting Information 1. However, we show
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some possible VAE-generated new chemical structures in Supporting
Information 2.

In order to prove the necessity of our two-step training, we mapped
the chemical structures of the TSMP monomer to 2D vectors using
the VAE and principal component analysis (PCA). In this study, the
mapped high-dimension vector is important because the subsequent
1D CNN is based on the VAE results. We hope that the VAE model
can map some really important features into the latent space, which
will be beneficial for the later ID CNN prediction. As indicated by
Asperti,” the sparsity can “force the model to focus on the really
important features, highly reducing the risk of overfitting”; thus, it is
important to use the VAE. A similar scenario can be found in our
study; see Figure S. Specifically, we compared three PCA mappings by
adopting different training data sets, that is, (1) 109 monomer
SMILES, (2) 137,945 monomer SMILES (by exhaustively writing all
possible 109 monomers), and (3) the combination of 420,000 drug
molecules and 137,945 monomer SMILES (by exhaustively writing all
possible 109 monomers). It can be found that a larger data set indeed
can be mapped into a sparse space; thus, we believe that our strategy,
similar to that of Asperti,®® has captured more important features
from monomers (or cross-linkers) and is successful. Furthermore,
through the prediction comparison for the three training data sets, we
found that our strategy is the best in all the three models (see Table
S1 in Supporting Information 3).

The loss function used here is “categorical cross-entropy”, which
reads as follows

N
1
LG, y) = =2, ylog + (1 = y)log(1 — 3)]
NZ 1 1 1 1 (1)
where j and y; are the prediction outcome and ground truth,
respectively, and N is the number of the training data. The

hyperparameters used in the VAE model are listed in Table 1. The
parameter optimization is shown in Supporting Information 4.

Table 1. Hyperparameters Used for the VAE Model

hyperparameters names value or item

batch size for step 1-2 1843, 2457
learning rate 0.005
number of filters 1—3 8,8 8
kernel size 1-3 3,33

Since our subsequent 1D CNN is based on the VAE model, the
converted high-dimensional vector is vital to the prediction. As is well-
known, if the VAE is well-trained, it is able to map the input into the

same output, namely,
D(E(x)) = x ()

where

https://doi.org/10.1021/acsami.1c20947
ACS Appl. Mater. Interfaces 2021, 13, 60508—60521


https://pubs.acs.org/doi/suppl/10.1021/acsami.1c20947/suppl_file/am1c20947_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c20947/suppl_file/am1c20947_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c20947/suppl_file/am1c20947_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c20947/suppl_file/am1c20947_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.1c20947/suppl_file/am1c20947_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.1c20947?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c20947?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c20947?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c20947?fig=fig5&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.1c20947?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Materials & Interfaces

Research Article

www.acsami.org

E=q(zx), D = q(xlz) (©)

in which E and D are the mappings of the encoder and decoder,
respectively; x and z are the input and output; and g denotes
mapping. Therefore, the similarity between the input SMILES and
output SMILES should be considered as a key index to evaluate the
performance of the VAE. Here, we introduce the average cosine
similarity as

Zl’l

=1 Vi |1 Vo

Vinp Vout

sim,_ =
avy
& n

(4)
where v,,, and v, represent the binary matrices corresponding to the
input SMILES and output SMILES, respectively.

It should be mentioned that all the matrices have been reshaped to
the vectors. To validate that our choice for training data is reasonable,
we employed three different training data sets for comparison. As

given in Table 2, by adopting the two-step training, the average

Table 2. Average Cosine Similarity for Three Different
Training Data Sets

average

similarity
training data set (%)
109 monomer (or cross-linker) SMILES 8.80
137,945 monomer SMILES (by exhaustively writing all 76.84
possible 109 monomers)
420,000 drug molecules + 137,945 monomer SMILES (by 92.39

exhaustively writing all possible 109 monomers)

similarity can reach 92.39%, which is chosen as our training data set
for the VAE. It proves the superiority of our strategy. After the
training, we input 109 unique TSMP monomers to test the
performance of the VAE model and found about 80% of outputs
can fully accord with the SMILES syntax. It makes sense because part
of the information is lost in the encoding process and cannot be
completely restored in the decoding processes. For the remaining 20%
TSMP monomers, although the VAE cannot fully output the perfect
SMILES linear notions, some important features of the chemical
structure still remain. In order to justify it, we compared two initial
SMILES to the decoder outputs with the wrong syntax in Table 3. It
can be seen that if we make a slight modification for the decoder
output (only one letter is changed), the linear notation can accord
with the standard SMILES syntax. Upon taking a closer look at the
chemical structures represented by the modified SMILES syntax, we
find that some features of the original chemical structure still hold.

2.2. TSMP Properties Model. Because the VAE model is
established, we can further obtain the fingerprints of the TSMP
network. The method is created by us and is named as the “weighted-
vector combination method”. It can be divided into two procedures:

(i) Calculate the representative vectors {m,, m,, ms, ..m,} for the
TSMP monomers in a TSMP network via the VAE.

(ii) Obtain a new high-dimensional resultant vector by combining
the monomers’ respective molar ratio and vectors, that is,

S =my-a, + mya, + mya; +.m a

©)

where a; (i = 1, 2, ..n) represents the molar percentage in the whole
TSMP network. Based on the WVCM, every TSMP network can be
converted into a vector with 256 dimensions. It accords with the
chemical mechanism, that is, no matter how many monomers and
cross-linkers participate in the reaction, only one SMP network can be
finally produced.

Based on this, the TSMP properties prediction models can be
further built for 245 SMP data. To increase the robustness, two ML
methods are used here, that is, CNN learning and support vector
machine (SVM) learning.

2.2.1. CNN Learning. As shown in Figure 6, we adopted multiple
convolution 1D layers to learn two mappings, that is, ¥: § — T,, the
mapping between the representative vector S and Ty, and ®: § — E,
the mapping between the representative vector S and rubbery
modulus E,. The hyperparameters for the TSMP properties model are
given in Table 4. The parameter optimization is shown in Supporting
Information 4.

The loss function used is the “MAPE”, which can be written as

>

i=1

% =7

Y

MAPE = L
n

(6)
where j and y; are prediction outcome and ground truth, respectively,
and # is the sample number of the training data.

2.2.2. SVM Learning. SVM is a set of supervised ML method,
which is one of the most robust prediction methods based on

statistical leaning. The goal of SVM is to obtain the hyperplane that
satisfies the condition

T
W X —

7)

where w is the normal vector to the hyperplane, x is a p-dimensional
vector, and b is a bias term. The aim of SVM is to minimize

b=0

lz max(0,1 — );(wai -b)|+ A |lw|l*

i=1

(8)

Table 3. Comparison between Original SMILES and the Decoder Output with the Wrong Syntax

Original SMILES and chemical | Decoder output with | Slightly modified
No.
structures wrong syntax decoder output
c3cc(N(CC1CO1)CC2CO | cle(CC)(O)e2ec(OCCO | cle(CC)(O)e2ecc(OCCO
SMILES | 2)cce3Ccbecc(N(CC4CO | CC3CO3)cec2c1CCCHC | CC3CO3)ccc2c1CCCHC
1 4)CC5CO5)cc6 )CC#HC CC#HC
Chemical SRS o [ on h
7Y NA Wﬁ ,,©>
structure ¢
Nec2cee(Celece(N)ecl)ee | Ne2eee(C)ee2)cle(C)eee | Ne2eee(C)ec2Cele(C)ec
SMILES
2 cl cel
2
Chemical O O
e A oo
structure | C ’ >
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Figure 6. Basic structure for the neural network of the TSMP properties prediction model.

Table 4. Hyperparameters Adopted in the Training of the
TSMP Properties Model

value or item

80/20 (random_state=7)

hyperparameter name

ratio between the training data and test data

batch size 256
learning rate 0.01
number of filters 1—2 64, 64
kernel size 1-2 3,3

neuron number in hidden layers 256, 64, 64, 64, 32, 32

where A is a parameter that determines the trade-off between
increasing the margin size and ensuring that x; is located on the right
side of the margin and # is the number of vectors.

Besides the MAPE, we also introduced the “percentage of correct
point” (PCP) as another evaluation criterion. It should be noted that
“correct” means that the difference between the prediction and the
ground truth is within a reasonable margin. Because the order of
magnitude covered by T, and E, are totally different, that is, the T, of
TSMP ranges from 20 to 280 °C and only 1 order of magnitude is
covered, and the rubbery modulus of TSMP varies from 0.38 to 280

MPa and almost covers 3 orders of magnitude, we applied two distinct
criteria, that is, the percentage error for T, within 15% is considered as
“correct” and we let the percentage error for E, within 30% to be
considered as “correct”.

In order to demonstrate the superiority of our strategy, we
introduced a benchmark for comparison. Specifically, we directly
leveraged label encoding to generate vectors for monomers and cross-
linkers (and the others follow the same methods) and then adopted
SVM for prediction. It can be seen in Table S that our new model
exhibits a lower MAPE and a higher PCP in all the eight comparisons
for SVM prediction. Meanwhile, we also list the results of our
previous model as an indirect comparison. Although the databases for
these two studies are not completely the same, the corresponding
linear notations (one is SMILES and the other is BigSMILES) and
predicted targets are similar. At the same time, we provided a circular
topological fingerprint as another baseline model, that is, Morgan
fingerprinting or extended-connectivity fingerprinting.® In this
fingerprinting, all the molecular structures of monomers or cross-
linkers are converted into binary vectors according to their structures,
and then, TSMPs can be converted into vectors with the same
dimension through the WVCM. Here, without losing generality, we
adopt the circular radius of R = 2 and three different dimensions, that

Table 5. Comparison of the Prediction Discrepancies for the VAE + CNN, VAE + SVM, Label Encoding + SVM, Morgan
Encoding + SVM, and the CNN Model in Our Previous Study’ (Here, Label Encoding Uses the Same Dictionary as That of
Our New Model, and B and R Represent the Dimension of the Vector and Circular Radius in Morgan Encoding, Respectively)

model

types of models ML method output
our new model VAE + CNN My,
Mg,
VAE + SVM My,
Mg,
direct label encoding vector encoding + SVM My,
M,
Morgan encoding Morgan M,
(B=256,R=2) encoding + SVM M,
Morgan encoding Morgan My
(B=1024,R=2) encoding + SVM M,
Morgan encoding Morgan M,y
(B=2048, R=2) encoding + SVM M,
Morgan encoding Morgan My,
(B'=2048, R = 4) encoding + SVM My,
old model’ CNN My,

M

MAPE in training data  PCP in training ~ MAPE in test data ~ PCP in test
(%) (%) (%) (%)
7.38 91.33 1391 71.43
15.64 89.80 27.1S 71.43
1991 86.74 17.50 75.51
3421 71.94 36.42 44.90
31.87 64.29 24.82 63.26
50.01 55.10 52.09 30.61
20.86 73.46 21.76 65.30
34.02 67.85 61.06 42.86
20.08 73.47 21.1S 69.38
33.11 68.88 62.39 44.90
19.60 73.98 19.83 69.39
33.08 68.37 60.05 40.82
1845 75.51 19.34 73.47
31.49 69.90 56.16 44.898

3.12 28.33

9.81 2741
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Table 6. Comparison between Experimental Results and ML Model Predictions

epoxy network number molar ratio (EPON862:4-APD:PEI)  approach to obtain data T, (°C)  discrepancy (%) E, (MPa)  discrepancy (%)
1 0.64:0.04:0.32 experiment 159.85 17.32 14.54 30.66
ML model 187.54 19.00
2 0.69:0.07:0.24 experiment 151.49 23.77 21.25 20.00
ML model 187.50 16.99
3 0.74:0.10:0.16 experiment 147.78 19.02 21.85 36.45
ML model 175.89 13.89
4 0.83:0.17:0 experiment 135.7 10.56 36.57 11.41
ML model 121.37 32.40
average discrepancy value 17.68% 24.64%
is, B = 256, 1024, and 2048. Meanwhile, considering that TSMP Erspmg (12)

monomers could possess more complex structures than common drug
molecules, we also considered a larger circular radius, that is, R = 4.
From Table §, it is found that the performance of the model based on
Morgan fingerprinting improves slightly upon increasing the vector
dimension B and circular radius R. However, even for the model
based on Morgan fingerprinting with the best performance (B = 2048
and R = 4), our new model still takes the lead in six out of the eight
comparisons. As for the other two comparisons, our new model is just
slightly behind. More importantly, by comparing the error differences
for rubbery modulus between the training data and test data of the
models based on Morgan fingerprinting, we found that all the
differences exceed 20%, which indicates significant overfittings (while
it does not happen in our new model). Therefore, the direct
combination of Morgan fingerprinting and the molar ratio could be
inappropriate for the small TSMP data set in this study. As for VAE +
SVM and VAE + CNN models, it is clearly shown that the two
models have similar prediction accuracies for T, and E, but the VAE +
CNN model shows better performance for some parameters; hence,
we used VAE + CNN to design our new TSMP in the following
section. More importantly, the VAE + CNN model in this study
shows significant improvement over our previous model. Specifically,
our new model reduces the MAPE by more than half (13.91 vs
28.33%) for My, thus, the accuracy is enhanced. Meanwhile, for a
bigger data set (the data size increases by 2 times), this new model
has almost the same accuracy as that of the recovery stress model for
My, or M, (27.15 vs 27.41%); thus, the new VAE + CNN model is
robust. In addition, it can be observed that the MAPE differences
between the training data and test data are only 6.53 and 11.51%,
respectively. Both of them are much less than 20%; thus, the
overfitting problem has been significantly alleviated. Furthermore, our
VAE + CNN model prediction is better than the benchmark
prediction using the direct encoding + SVM model, further validating
the advantage of using VAE + CNN in this study.

With the mapping ®: § — E, we can further estimate the
maximum recovery stress for a new TSMP network under a small
deformation. According to Wang and Li,*® the recovery stress can be
understood as the combination of four components, that is, residual
stress 0,.,, memorized stress 0., thermal stress o, and relaxed stress
o,

rel

0, = 0, + ©,

Tes mem + Ot —

Orel (9)

Besides, as indicated by Yan et al,” if the programming strain Eprog
is small (£15%), the residual stress 0, and relaxed stress o, can be
omitted, and the memorized stress can be written as

Erepmg (10)
Combining eq 9 with eq 10, the recovery stress can be estimated as
o = (Er prog) Rﬁx'Rre (11)

where Rg, and R, represent the shape fixity ratio and shape recovery
ratio, respectively. If the TSMP possesses a good SME, that is, R, &~
R,. = 1, the recovery stress can be approximately calculated as the
product between the rubbery modulus E, and programming strain

Eprog:

In other words, a larger rubbery modulus usually means larger
recovery stress. Additionally, another advantage for this method is
that more data can be collected. This is because only a few studies
provide the information for recovery stress, while almost all of them
report the rubbery modulus value.

In addition, in order to realize the application in 3D/4D printing, it
is popular to immerse the SMP matrix into a solvent before printing,
which may significantly influence the T, 6798 Therefore, to improve
this study, we plan to incorporate the solvent effect in our future
studies.

2.3. Experimental Validation. In order to further validate the
new ML model, we synthesized four types of new epoxy networks
(Table 6) with the same three monomers (EPON862, 4-APD, and
PE], see Figure 7) but different molar ratios between the monomers.

(b)
/\/ 2
NH2 f :
%\/ \/\N/\/ N/\/ NH,

N
HQN/\/ \/\NHz
(c)

Figure 7. Chemical structures of the three monomers used in the
synthesis: (a) EPON862, (b) 4-APD, and (c) PEL

The synthetization process is similar to that in our previous work.”
The T, and E, for the four types of TSMPs were measured by a
dynamlc mechanical analyzer (DMA), and the experimental results
are compared with the ML prediction in Table 6. As indicated in
Table 6, both My, and M, show low MAPE values (the MAPE values
for My, and Mg, are 12.78 and 15.79%, respectively), which is
basically in accordance with the errors for the test data and hence
partially validates our model. Of these two properties, My, shows
better prediction again and captures a trend of T, That is, with the
increase in the molar ratio between EPON 862 and 4-APE, the
mobility of the polymer chain gradually reduces, and T, increases,
which is reasonably captured by the model. As for the rubbery
modulus, it increases with the molar ratio when it is close to the ideal
stoichiometric ratio and vice versa. To better learn this strategy, we

https://doi.org/10.1021/acsami.1c20947
ACS Appl. Mater. Interfaces 2021, 13, 60508—60521


https://pubs.acs.org/doi/10.1021/acsami.1c20947?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c20947?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c20947?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c20947?fig=fig7&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.1c20947?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Materials & Interfaces

www.acsami.org

Research Article

Table 7. Chemical Structures, Predicted Glass Transition Temperatures T,, and Rubbery Modulus E, for Five New Promising

TSMPs
E; Te
NO. Combination Chemical structures of monomers
(MPa) | (°C)
Bis. })‘\/\/\/\A)K(
1 344.24 | 246.74
GMA:TAI=0.1:0.9 uV\J\ Py
Z N x
YT
Z ‘\/\J\/\/ N
2 TAL: AEG1=0.9:0.1 01 337.44 | 246.12
" ) \/j@
N 5
Z "\/\J\N/\/’ ~
3 TAI: AEG2=0.9:0.1 = 351.77 |251.32
()i/\ 0 o /\D
/Y)\/\)j\w/\/\r(\
AN
4 TAL: AEG2=0.8:0.2 =_ 340.35 | 247.65
©i/\ ° “ /\;@
¢ 2\?&
5 TAL TMICN=0.7:0.3 . 319.66 | 245.98
\/\n/”\/\ ,,/\/“\rr\/

expect to introduce some new features to reduce the prediction error
in our future studies.

3. NEW TSMP DISCOVERY

By leveraging the newly developed ML model, it is possible for
us to discover the desired TSMPs. In our database, the TSMP
with the highest rubbery modulus was synthesized by Feng and
Li,”’ with a value of 350 MPa. However, the limitation is that
its T, is too high, that is, T, = 280 °C, thus limiting the

60518

application when the available trigger temperature is lower. For
example, when the SMP is used for geothermal drilling,69 it is
expected that the recovery stress is high, but the trigger
temperature is limited to about 220 °C so that the smart loss
circulation materials can be driven by the geotherm. Therefore,
we target to screen a new TSMP with a high rubbery modulus
but lower T,. It is noted that this is not a trivial task because
usually, TSMPs with high recovery stress also have high T,.
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Table 8. Comparison of Experimental Results between the New SMP and Previous SMPs with High Recovery Stress

glass transition

programming
temperature (Tg)

temperature (T,)
°C) g

programming

references (°C) strain (g,,) (%)
new SMP 220.1 260 25
Lietal’s 150 150 20
SMP*
EPON-IPD*’ 141 150 45

stress recovery

temperature (T,ec) recovery stress shape recove:

(°C) (6ec) (MPa) ratio (Ry) (% curing type
260 20.6 62 UV-curing
150 13.4 100 UV-curing
170 17 89.6 thermal
curing

We collected 109 TSMP monomers in the data set, which
include 27 C=C monomers, 8 hydroxyl monomers, 7 carboxy
cross-linkers, S thiol cross-linkers, 6 cyanate monomers, 21
epoxy monomers, 29 imine cross-linkers, and 6 other
monomers (see Tables S5—S8 in Supporting Information S).
Among them, four combinations involving different monomers
are chosen: (1) the combination of two C=C monomers, (2)
the combination of one C=C monomer and one hydroxy
cross-linker, (3) the combinations of one C=C monomer and
one carboxy cross-linker, and (4) the combination of one C=
C monomer and one thiol cross-linker. With nine molar ratios,
that is, 0.1:0.9, 0.2:0.8, 0.3:0.7, 0.4:0.6, 0.5:0.5, 0.6:0.4, 0.7:0.3,
0.8:0.2, and 0.9:0.1, for any of the two-component TSMPs, the
size of a new compositional space can reach 8019. Additionally,
considering the prediction discrepancies of the ML models, we

T,-T,
set the benchmarks as T, < 252 °C (——= < 10%) and E, ~

T

350 MPa ((IE, — E, I/E,) < 9%). Finally, five types of new
TSMPs were discovered, and the results are summarized in
Table 7.

In order to further validate the ML model, we synthesized
the No. 1 TSMP in Table 7 as described below. 10 g of tris[2-
(acryloyloxy)ethyl]isocyanurate was heated at 80 °C until it
was melted and was then mixed with 1.35 g of bisphenol A
glycerolate dimethacrylate and 0.35 g of photoinitiator 2-
hydroxy-2-methylpropiophenone by stirring for 20 min. The
obtained mixture was degassed at 80 °C in a vacuum oven. The
uniform mixture was filled into a polytetrafluoroethylene
spacer with a thickness of 1.1 mm and clamped by two
transparent plastic slides. Each side of the sample was cured in
a UV chamber (IntelliRay 600, Uvitron International, USA)
for 30 s under 5S0% irradiation intensity (232 nm, ~45 mW/
cm?). Its E, and T, values were measured by using the DMA,
which were determined to be 383.60 MPa and 220.10 °C,
respectively. The discrepancies between the experimental
results and predictions are 10.26% and 12.10% for E, and T,,
respectively. By comparing the new polymer and the TSMP by
Feng and Li,” the T, is reduced by 60 °C, while the high E, is
still maintained; thus, our initial goal of discovering new
TSMPs with higher E, and lower T, has been achieved.

Next, in order to test the recovery stress for the new TSMP,
a fully constrained stress recovery experiment was carried out.
The experimental results are given in Table 8 and compared
with those of the SMP with the highest recovery stress that has
been discovered before. As shown in Table 8, when the
programming temperature of the purely UV-curable TSMP is
above T, the new TSMP is able to provide recovery stress
much higher than the previous record’ by 57%. It is noted
that Li et al.”* programmed and recovered the TSMP at the
glass transition zone, while our new TSMP was programmed
and recovered in the rubbery state, and thus, our new TSMP
should have even higher recovery stress if we choose
programming and recovery in the glass transition zone. Also,
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the recovery stress of our new TSMP exceeds that of another
thermocured epoxy TSMP (EPON-IPD’”) with high recovery
stress by 21%. More recovery stress comparisons for UV-
curable SMPs can be found in Supporting Information 6. Thus,
this newly designed TSMP is consistent with our expectations
for recovery stress and T, and our final design target is
achieved. Additionally and notably, all the predicted molecules
are reasonable and thermodynamically stable. This indicates
that our ML model has learned some basic chemical principles
about the covalence bond theory, such as the molecular orbital
theory, Pauli’s exclusion principle, and Hund’s rules from the
chemical language. On the basis of this knowledge, the ML
model can voluntarily remove these thermodynamically
unstable molecular structures and thus exhibit good accuracy

and high efficiency of the prediction.

4. CONCLUSIONS

In summary, benefited from the huge database of drug
molecules available, we have presented an enhanced ML
approach based on a VAE model, two-step training, and the
WVCM. Using this approach, we partially solved the two
common existing problems for discovering TSMPs with ML,
that is, lacking molar ratio information and limited training
data. Comparing with our previous work, this approach has
taken a major stride in both accuracy and robustness. By using
this model, we screened five types of new UV-curable TSMPs
and then validated one of them through synthesis and
characterization. The comparison between the ML model
and experimental results also shows good agreement. There-
fore, the approach provides a promising framework to design
and optimize new TSMPs. To our knowledge, the approach is
the state-of-the-art in the TSMP field. It is believed that this
approach is appliable not only to discover new TSMPs but also
to discover other polymeric or nonpolymeric materials.
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