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ABSTRACT

Entity resolution (ER), comprising record linkage and deduplication, is the process of merging noisy
databases in the absence of unique identifiers to remove duplicate entities. One major challenge of analysis
with linked data is identifying a representative record among determined matches to pass to an inferential
or predictive task, referred to as the downstream task. Additionally, incorporating uncertainty from ER in the
downstream task is critical to ensure proper inference. To bridge the gap between ER and the downstream
task in an analysis pipeline, we propose five methods to choose a representative (or canonical) record from
linked data, referred to as canonicalization. Our methods are scalable in the number of records, appropriate
in general data scenarios, and provide natural error propagation via a Bayesian canonicalization stage. The
proposed methodology is evaluated on three simulated datasets and one application — determining the
relationship between demographic information and party affiliation in voter registration data from the
North Carolina State Board of Elections. We first perform Bayesian ER and evaluate our proposed methods
for canonicalization before considering the downstream tasks of linear and logistic regression. Bayesian
canonicalization methods are empirically shown to improve downstream inference in both settings through
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prediction and coverage.

1. Introduction

In many practical problems analysts seek to remove duplicate
records across multiple noisy databases, a process known as
entity resolution (ER). This is just one important task in “data
cleaning” or “data integration,” where the outputs are then used
for inferential and predictive analyses in areas of application
such as government statistics, human rights, economics, preci-
sion medicine, and others (Christen 2012; Ilyas and Chu 2019;
Christophides et al. 2020; Binette and Steorts 2021; Papadakis
etal. 2021). This is just one stage of an analysis pipeline, typically
consisting of four data cleaning stages prior to the inferen-
tial task (Christen 2012; Hogan et al. 2013; Herzog, Scheuren,
and Winkler 2007; Abel et al. 2016; Christen 2019; O’Hare,
Jurek-Loughrey, and de Campos 2019; Vidhya and Geetha 2019;
Papadakis et al. 2021),

schema alignment — blocking — ER

— canonicalization — analysis. (1)

Equation (1) shows a potential pipeline, including the cleaning
stages of (a) schema alignment, (b) blocking, (c) ER, and (d)
canonicalization. The first stage, known as “schema alignment,”
entails identifying available information across multiple data
sources for the purpose of joining these together. In the second
stage, “blocking;” the goal is to place similar records together
as a computational tool to speed finding matches. In the third
stage, known as ER, one identifies duplicate records and outputs

clusters of records that belong to the same partition. Similar
records that are considered to represent the same latent entity
are grouped together. The ER result can be represented as links
between records that belong to the same cluster (the linkage
structure) or, equivalently, a partition of records into clusters.
The resulting dataset that is created as a result of ER is generally
referred to as linked data. The fourth stage, canonicalization, is
the subject of this work. Canonicalization is an optional stage,
depending on the inferential goal of an analysis. The partition of
records that is the output of ER is used to create a representative
record for each cluster. This process creates a representative
dataset, which is used as a set of inputs for the inferential
analysis.

While removing duplicate entities through ER and canoni-
calization is worthy as a stand-alone data-cleaning goal, most
analyses are primarily motivated by the performance of inferen-
tial or predictive analyses on the linked data (e.g., regression or
classification). Going forward, we will denote any such postlink-
age analysis as the downstream task. In an ideal scenario, all
records would be correctly clustered by the linkage structure
that results from an ER model. In practice, however, ER error
is a common occurrence and methods to propagate this error
throughout subsequent analysis stages are essential. The pri-
mary contribution of this work is the development of a scalable,
multi-stage approach, where the ER error is propagated through
the downstream task via a stage that we refer to as posterior
canonicalization.
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Our multi-stage approach handles the ER and canonicaliza-
tion stages separately from the downstream task and involves
using the resulting clusters from the ER model to construct a
dataset (without duplicate information) comprised of the most
representative or canonical set of records. Undoubtedly, the
quality of the linkage directly affects the canonicalization step
and subsequent downstream tasks. Therefore, the construction
of this canonical dataset plays a key role in performing infer-
ential downstream tasks—such as regression analysis—with the
linked data.

1.1. Motivating Example

Our work is motivated by voter registration data published
by the North Carolina State Board of Elections (NCSBE). The
NCSBE provides regular updates of their database, releasing
snapshots of their registration database for archival purposes
(North Carolina State Board of Elections 2019). Each snapshot
contains identifying information about voters such as first name,
middle name, last name, full address, city, state, date of birth,
state of birth, and phone number. Unlike curated versions of
this data (Christen 2014), the NCSBE snapshots contain voter
party registration status, which can be useful for inferential
or predictive tasks. In addition, given the updating snapshot
structure of the NCSBE, individuals are duplicated between (and
potentially within) each dataset. For example, an individual can
be duplicated when they move or when they perform a name
change. We consider five snapshots taken between 2018 and
2019, and refer to this collection as the North Carolina Voter
Data (NCVD).

Table 1 illustrates an individual who is believed to be dupli-
cated in the NCVD five times. One goal of the analysis is
to predict political affiliation using demographic information,
such as race, sex and age. Unfortunately, it's not clear which
record in Table 1 most accurately reflects voter “Mark Baker”
We will attempt to overcome this issue using canonicalization.
The process of canonicalization involves finding the “best” rep-
resentation of this voter’s data fields in order to predict party
affiliation. Multiple definitions of “best” lead to multiple meth-
ods for performing canonicalization and we detail some of these
choices in Section 2.

Given that the NCSBE does not release the details of the
process by which they remove duplicates or how they choose
the most representative record of an individual, this application
motivates our methodology. We will return to this example in
Section 4.

1.2. Related Work

The most common approach for ER is the Fellegi-Sunter model
based upon pairwise comparisons of common data fields that
are used to estimate conditional probabilities of matches and
nonmatches (Fellegi and Sunter 1969; Sadinle and Fienberg
2013). A drawback of these and other related probabilistic
approaches (e.g., Larsen and Rubin 2001; Hof, Ravelli, and
To 2017) is the lack of natural uncertainty quantification in
the linkage structure, limiting natural error propagation to the
downstream task. This particular limitation has led to many

recent developments of Bayesian ER approaches (Tancredi and
Liseo 2011; Zhao et al. 2012; Gutman, Afendulis, and Zaslavsky
2013; Sadinle 2014; Steorts 2015; Steorts, Hall, and Fienberg
2016; Zanella et al. 2016; Sadinle 2017; McVeigh, Spahn, and
Murray 2020; Marchant et al. 2021).

While the canonicalization methods that we explore in this
work are not tied to a particular ER model, we employ the
approach of Marchant et al. (2021) to obtain posterior samples
of the linkage structure (see Sections 3 and 4). In this model, ER
is framed as a bipartite matching problem that links records to
(unknown) latent entities. Although most Bayesian ER methods
are flexible and can propagate error, they are known to suffer
from scalability issues in realistically sized databases (n > 10*
records). Scalability has been addressed previously by splitting
the data using a variable thought to be relatively clean (blocking,
see Christen 2012; Steorts et al. 2014) and applying a Bayesian
ER model to each subset separately (Tancredi and Liseo 2011;
Murray 2015; Steorts, Hall, and Fienberg 2016; Sadinle 2014,
2017). However, since the blocking and ER task are not modeled
jointly, the error cannot be quantified exactly. These limitations
are addressed in Marchant et al. (2021), which is a scalable
model that propagates uncertainty from blocking and ER simul-
taneously.

The earliest proposals of canonicalization were determinis-
tic, rule-based methods, which were application-specific and
fast to implement (Cohen and Sagiv 2005). Other existing lit-
erature involving probabilistic approaches commonly assumes
the availability of training data in order to select the canonical
dataset. This assumption has lead to several optimization and
semisupervised methods for finding the most representative or
canonical records (Yan and Ozsu 1999; Bohannon et al. 2005;
Culotta et al. 2007). Compared to the existing literature, the
canonicalization methods that we explore in this work do not
rely on any training data (which can be expensive or difficult to
obtain), making them fully unsupervised. Additionally, one of
our proposed methods fully exploits the uncertainty quantifica-
tion properties of the Bayesian framework to propagate the ER
error to the downstream task (see Section 2). For a review of
canonicalization and data fusion techniques, see Bleiholder and
Naumann (2009).

Recent work on the relationship between ER and down-
stream tasks commonly makes assumptions that remove the
need for canonicalization. In fact, some downstream tasks have
no need for a canonicalization stage because they use only func-
tions of the linkage structure, for example, population size esti-
mation (Tancredi and Liseo 2011; Tancredi, Steorts, and Liseo
2020). For those downstream tasks that do require the linked
data, the literature can be classified into two main frameworks—
single- and two-stage approaches.

Single-stage approaches build one joint model for the ER and
the downstream task, while two-stage approaches treat each
model separately. Single-stage approaches for regression and
classification have been limited mainly to linking two databases
and do not easily generalize beyond this framework (Gutman,
Afendulis, and Zaslavsky 2013; Hof, Ravelli, and To 2017;
Dalzell and Reiter 2018; Steorts, Tancredi, and Liseo 2018).
Moreover, they require knowledge of the model specification
up front such that if an additional downstream task is required
(after the single-stage joint approach has been fitted), the linkage



would need to be repeated in a new joint model for valid
inference. Because ER is the most computationally costly piece
of the joint model, this can be an argument against using a
single-stage approach.

Performing ER and the downstream task in a two-stage
approach allows for specification of downstream models post-
linkage, which can expand the computational feasibility of the
methods at the cost of no longer having the downstream model
inform the linkage. Most of the two-stage literature joins two
databases and often assumes that the error from the ER task
occurs only in the response variable (Lahiri and Larsen 2005;
Kim and Chambers 2012; Goldstein, Harron, and Wade 2012;
Hof and Zwinderman 2012; Chambers et al. 2019). In a more
general setting where more than two databases are considered
or where duplication and linkage errors can affect both response
or explanatory variables, there is a dearth of literature. Our
proposed work on canonicalization is intended to bridge the
gap between ER and the downstream task in this more general
setting.

Our Contributions: The main contribution of this work is
to provide a practical approach to downstream inference with
linked data while maintaining principled error propagation
under mild conditions. We propose a scalable, multi-stage
approach, where the ER error is propagated to the downstream
task via a Bayesian canonicalization stage. A central advantage
of the proposed methodology for canonicalization is its
generality—it is applicable in the most general data scenario,
one in which we have any number of databases to link
and duplication can occur in all downstream variables. Our
proposed canonicalization methods can be used following any
ER method that produces a partition of the records, and prior to
any downstream task. With this work, our goal is to make a step
toward the formalization of a process that historically has been
an ad hoc procedure. We aim to provide guidance for analysts
and statisticians who are currently working with linked data on
how they can achieve appropriate inference when working with
less than perfect and noisy datasets.

The remainder of the article is structured as follows. Section 2
defines a canonical record and canonical dataset, proposes five
unsupervised methods of canonicalization, and describes the
computational cost of our recommended method. Section 3
and 4 illustrate the proposed multi-stage approach on simulated
data and the NCVD, respectively. Section 5 provides a discus-
sion, including advice for practitioners and directions for future
work. We provide further details and a reproducible code base
in the supplementary materials.

2. Canonicalization

We provide general definitions of a canonical record and canon-
ical dataset before detailing five methods for canonicalization.

2.1. Notation

Consider a collection of T databases indexed by i, each with
n; records (rows) indexed by j, and p fields (columns) indexed
by £. For instance, the NCVD data is a collection of T = 5
databases where each record is comprised of data fields such
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Table 1. Five records that represent the same voter in the NCVR dataset.

Last First Race Sex Age Party
BAKER MARK WHITE MALE 42 REP
BAKER MARK WHITE MALE 41 DEM
BAKER MARK WHITE MALE 41 REP
BAKER MARK WHITE MALE 40 DEM
BAKER MARK WHITE MALE 40 REP

as first and last name, race, sex, age and political party (see
Table 1). Marchant et al. (2021) assumes each record (i, j) links
to a single entity, denoted by A;;, from a fixed population of
entities indexed by e € {1,.. ., E}. For example, the five records
in Table 1 presumably link to the same individual voter. Denote
the value of the £-th field for record (i, j) by x;;¢ and the collection
of all field values for all records to be linked is then denoted
X = {x,‘][ i =1....,T;j = 1,...,n3¢ = 1,...,p}
We assume that the fields £ can be split into those that are
used for ER, x* = {xj¢ : i = 1L,...,T5j = 1,...,n3¢ €
1,...,psuch that field £ is aligned in all databases}, and those
that are used for the downstream task, x%. Thus, x = {x%, x%}.
In the NCVD application (see Section 4), x* corresponds to the
fields of first and last name, sex, and race, while x* comprises
age, ethnicity, and party affiliation.

The observations of the aligned fields x?, are assumed to be
noisy observations of the true field value z; ;¢ of the linked entity.
The linkage structure is defined as A = {A;; : i = 1...T;j =
1...n;}, where A;; = e means that record (i, j) is linked to the
e latent entity. If two records (i,) and (7,j') refer to the same
entity, then A; = Ay must hold. Under this framework, the
linkage structure A induces a partition of the data into clusters
where the number of clusters in the partition corresponds to the
number of unique values of e observed in the linkage structure.
Let C = C(A) be the set of clusters of records resulting from the
linkage structure A, assumed to fully partition the data x. For
simplicity of notation we will often drop the functional notation
for C.

Note that when ER is performed with all the variables used
for the downstream task, the latent values, z;, 6> can beusedasa
representation of the truth in a downstream task. This requires
all variables used in the downstream task (e.g., explanatory and
response variables x9) to be also used as linkage variables (i.e.,
be included in x%), otherwise the latent values, 206> would not
be available for those variables. However, it is a fundamental
assumption in ER models that all fields in the linkage model
are independent, which is not the case for the downstream
variables. The effect of breaking this independence assumption
has not been investigated in the literature. Furthermore, it may
not be advisable to use downstream variables as linkage variables
due to known noisiness or unreliability in the data (e.g., age
or party affiliation in Table 1). Additionally, since the use of
canonicalization does not require all downstream variables to be
known prior to the linkage, the ability to perform exploratory
analyses is not limited (Tukey 1977). Thus, canonicalization
remains a necessary step in many analysis pipelines.

2.2. Definitions

The definitions of a canonical record and canonical dataset are
presented below.
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Definition 1. For each cluster ¢ € C, the canonical record r, is
defined as a function of the cluster and some known parameters
0, r. = Yg(c,xc), where x; = {xj0 : (i,j) € £ = 1,...,p}
denotes the record values in cluster c.

Definition 2. A canonical dataset r, is obtained by applying the
canonicalization function g over each cluster that results from
A, thatisr = {r.: c € C}.

Definitions 1 and 2 include the record selection canonical-
ization methods proposed by Culotta et al. (2007) for the case
where /g is the minimum average edit distance between strings
as a function of fixed or learned costs. However, our definition
is more general as it includes categorical, ordinal and numerical
fields, as well as unsupervised functions g.

2.3. Point-Estimate Canonicalization

In this section, we assume that an ER task has been performed
as to provide a point estimate A of the linkage structure A. In
practice, the point estimate could result from any ER model that
results in a partitioning of records. We propose three unsuper-
vised methods for performing canonicalization based on A.

First, we define random canonicalization, which will serve as
a baseline for comparison. For each cluster ¢ € C, choose the
canonical record r. randomly,

re = {xc : k ~ Categorical({(i,§) € c},0)},

where x4 denotes the kth record in x. and 0 represents the
vector of selection probabilities for the records (i,j) in cluster
c.

Composite canonicalization is defined as an aggregate record
that includes information from each linked record in the cluster,

re={r:L=1,...,p}, re=f,(xje: Gj) €c},

where f, is a an aggregation function for each column, ¢ =
1,...,p. The form of aggregation depends on the column type
and can be weighted by some prior knowledge of the data
sources when available. Composite canonicalization alters the
original data values for records with duplicates (unless they are
exact duplicates), which can heavily affect inference results for
some downstream tasks.

Minimax canonicalization is a point-estimate canonicaliza-
tion method designed to choose a canonical record that “most
closely captures” the underlying true unknown (latent) entity.
We propose selecting the record whose farthest neighbor within
the cluster is closest, where “closeness” is measured by a pair-
wise record distance function, denoted by d(, -). We define the
canonical record as the record r, within each cluster ¢ such that

re = arg min max d(x;xy7), cé€C. (2)

(ij)ec (i',f)ec
The result is a set of representative records, one for each latent
entity, that is central to the other records in each cluster. Many
distance functions can be used depending on the context of the
problem and have a critical role in determining the resulting
canonical dataset. One potential distance function is provided in
Appendix A.1 in the supplementary materials. Ties in maximum

record distance within the cluster can be handled multiple ways,
depending on the computational constraints and anticipated
number of ties. One option is to select the record that has
the closest farthest neighbor (minimax record distance) when
compared to all other records in the dataset (not within the
cluster) that match on categorical variable levels. Another is to
simply break the tie randomly. If tied records are identical, we
select the record with the lowest index.

We note that Bayesian models for ER are commonly sensitive
to choice of hyperparameters, indicating a need for knowl-
edge of the data collection process (Steorts 2015; Steorts, Hall,
and Fienberg 2016; Sadinle 2017; Aleshin-Guendel and Sadinle
2021) and the choice of distance function in the minimax canon-
icalization method is similarly critical to its success.

2.4. Posterior Canonicalization

We now propose two alternative approaches that use the
marginal posterior distribution of the linkage structure, P(A|x),
to inform canonicalization using the probability that each
record in the data is canonical, P((i,j) € r|x). To estimate
this probability, let C'™ represent the partition of the data into
clusters for iteration m € {1, ..., M} of the Markov chain Monte
Carlo (MCMC) samples from P(A|x). We apply the following
procedure,

1. For each m and ¢ € C™), find the canonical records, rﬁ”“)

based on minimax canonicalization defined in Equation (2).

2. Compute the posterior canonicalization (PC) weights that
approximate the posterior probability of each record (i)
being selected as a canonical record,

M

1
7 2 WG e ")y~ P(Gj) e rlv), ()

m=1

pij

where, ™ = {rﬁ”’) cceC™om=1,...,M).

Note that the linkage uncertainty is captured by the (possibly)
different partitions, C™ | obtained from the MCMC samples
of P(A|x). The PC weights described in Equation (3) provide
a vehicle through which to pass linkage uncertainty to the
downstream task.

To incorporate the ER uncertainty in a downstream task via
the PC weights p = {p; : i = 1,...,T;j = 1,...,n},
we take advantage of the multitude of methods available for
incorporating survey weights into downstream analyses (e.g.,
Little 1991; Pfeffermann 1993). For illustration, assume the
downstream task is a linear model of the form

Y|8,%,,X ~ MVN(X'B,5,), (4)

where the response variable is represented as Y and explanatory
variables X. The PC weighted method incorporates the uncer-
tainty from both entity resolution and canonicalization as the
weights in weighted linear regression, where

= Q},O'z and

1 .
Q = diag(Wits .- > Wings -« > WTLs - - > WTng )

and w;; = f)l] defined to be the PC weight for record (i, j) from
Equation (3). Note this is not a formal canonicalization method



as defined in Definition 2 given that all the original records are
passed to the downstream task along with their respective PC
weights, but it does allow for proper accounting of uncertainty.

To construct a canonical dataset based on the PC weights, we
use thresholding. The PC threshold canonicalization method can
be implemented similarly for the downstream task described in
Equation (4), where now

wi = I{p;j = tpc)

for each record (i, ). A value of tpc = 0.5 is a natural choice
because it results in canonical records having posterior proba-
bility greater than 0.5 of being representative. We describe one
way to validate the choice of threshold tpc in Section 4. Note
that the PC threshold method can result in multiple (or zero)
records being selected as canonical for a cluster.

2.5. Computational Complexity

The posterior canonicalization approach allows us to deliver a
method that is still feasible even for large datasets. To see this,
let |¢| denote the size of each cluster ¢ € C™ form=1,....M
where M is the number of posterior samples of the linkage
structure available and C™ is the resulting cluster from A ™ ~
P(A|x). ER has been shown to exhibit the properties of micro-
clustering, where the cluster sizes grow sub-linearly as the size
of the data increases (Zanella et al. 2016; Betancourt, Zanella,
and Steorts 2020). Given the expected sub-linear growth of the
cluster sizes, it is common to assume that

1
— max |c] = 0asn — oo, (5)

n cectm
1<m<M

forn = Y"1 | n;, the total number of records in all T databases.
Thus, the computational complexity of our proposed posterior
canonicalization methodology (with randomly broken ties) is
(maxc,, |¢])’, subquadratic with respect to n. For proof of this
assertion, see Appendix A.2 in the supplementary materials.
We make no statement about the computational feasibility of
other methods, rather we simply note that the computational
complexity of the posterior canonicalization method is not pro-
hibitive of larger analyses.

3. Simulation Study

Given that the true underlying relationship between variables is
not available in any real data application, we construct simulated
datasets that contain this information as well as the true records.
The aim of this simulation study is to provide an overview
of the performance of different canonicalization methods and
their effect in a downstream task. We frame the simulation
study to perform the downstream task of linear regression. The
simulated datasets are generated using the GeCO tool (Tran,
Vatsalan, and Christen 2013) and three different levels of noise
in the relationship between predictors and response variables
through Gaussian noise, where 0 = 1,2,5. Each of the three
datasets contain a total of 500 records, 30% duplication, and the
maximum number of duplicates of each record is 5. Each dataset
contains the following fields: first name, last name, birth date,
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sex, education level, income (in 1000%), and blood pressure (bp).
The bp variable was generated with a known (noisy) relationship
to sex and income, and our goal is to assess how the fitted model
is altered based on the canonical dataset passed after the ER
task. Additionally, we generated three sets of test records, of 500
records each, following the same data generation mechanism.
We consider two data scenarios—the most general case, in
which all variables in the downstream task are subject to ER
error and a more common case in the existing literature, where
only the explanatory variables are subject to this error. For full
details on the data generation process, refer to Section B.1 in the
supplemental materials.

First, we perform ER on the GeCO datasets using the
Bayesian ER model of Marchant et al. (2021). In this simulated
dataset, we have a true known unique identifier, and thus,
we are able to ascertain the true performance of the ER
task. To evaluate ER performance we compute the pairwise
precision and recall (Christen 2012), which correspond to
the proportion of predicted links that are correctly estimated
and the proportion of true links that are correctly estimated,
respectively. In this case, the pairwise precision and recall for
the point-wise linkage are 0.97 and 0.88, respectively.! To obtain
a point estimate for the linkage structure, we use the shared
most probable maximal matching set (SMPMMS) from Steorts
(2015). Alternative point estimates were considered, including
decision theoretical approaches for optimal Bayesian estimation
based on multiple loss functions (Binder’s, the Normalized
Information Distance, and the Variation of Information) for the
space of partitions (Lau and Green 2007; Wade and Ghahramani
2018; Rastelli and Friel 2018; Rastelli 2021). The adjusted Rand
indices when compared to the SMPMMS were all greater than
0.9722, indicating robustness.

To assess the performance of canonicalization, we evaluate
the distributional closeness of the canonical dataset generated
from canonicalization to the true records using an empirical
Kullback-Leibler (KL) divergence metric (Wang, Kulkarni,
and Verdd 2005; Silva and Narayanan 2007). Values closer
to zero indicate closer distributions. These results are based
on simulating 100 datasets. As expected, the empirical KL
divergence values are slightly higher for the scenario where
all the downstream variables are susceptible to linkage error
([0.0036, 0.0085]) compared to the error-free response setting
([0.0036, 0.00711]). For all levels of noise in the two error scenar-
ios, the closest distributions to the truth are achieved through
the minimax method ([0.0036,0.0045]) with PC threshold
method ([0.0038,0.0047]) and PC weighted ([0.0041,0.0049])
very close behind. We expect the composite method to perform
poorly in terms of distributional closeness since this method
will alter all records with a duplicate, and this is indeed the case
([0.0057,0.0085]).

Finally, we examine the performance of the canonicalization
methods through the downstream task of linear regression via
three metrics: (a) bias in the fitted coeflicients, (b) coverage
of the credible intervals, and (c) mean square error (MSE) for

"Note that while there are three GeCO datasets, they only differ in the noise
level for the relationship between explanatory and response variables.
Thus, the noise differences do not affect the record linkage, which is per-
formed just once with the linkage variables.
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test records from each of the models fitted with the canonical
datasets. We fit the models with a Bayesian specification in
stan (Stan Development Team 2016, 2020), with Gaussian
prior distributions for the parameters (Gelman et al. 2008, 2013)
and parameters centered and scaled to be weakly informative.
See Appendix B.3 in the supplementary materials for more
detail.
The linear regression model is specified as

ind

YilB,o,X; ~ N(XTB,0?)

ind

Bjlbj ~ N(0, b))

o |a ~ Exponential(a).

(6)

In this simulation, we are interested in assessing the effect
of canonicalization method on inference in the relationship
between blood pressure and sex and income. Due to the focus
on effect of canonicalization method, rather than the effect of
model misspecification in the downstream task, we have gener-
ated the data from a known (and correctly specified) model for
the purposes of being able to evaluate bias and coverage after
linkage for each of the proposed canonicalization methods.

Table 2 displays the MSE, bias, and coverage of the 90% credi-
ble interval of the regression coefficient for the income variable.
See Tables 3-5 in Appendix B in the supplementary materials
for results of the other model coefficients. The MSE, bias, and
coverage results are promising for minimax, PC Threshold,
and PC Weighted. However, PC Weighted is consistently the
optimal choice (or close to it) in all three metrics, with the best
predictive performance when compared to the other canoni-
calization methods. The coverage and bias behavior of the PC
weighted method is consistent for the other model terms, again
see Tables 3-5 in Appendix B in the supplementary materials
for evidence. The inferential and predictive results highlight the
advantage of error propagation from the ER phase of the PC
weighted method for downstream tasks.

4. Application to NCVD

We now return to the motivational example of the NCVD from
Section 1.1. Due to the size of the NCSBE snapshot dataset
(each snapshot contains between 8 million and 29 million voter
registration records, resulting in more than 500 million total
records), we limit our investigation to five snapshot datasets
recorded on April 30, 2019, January 1, 2019, November 6, 2018,
May 8, 2018, and January 1, 2018. Specifically, we consider
Caswell County, which is located in North Central North Car-
olina and has nearly even membership among Democrats and
Republicans, as well as a diverse population in terms of gender,
age, and race (North Carolina State Board of Elections 2020).
This results in 54,716 records to be linked. For further detail
on how we curated the NCVD dataset, see Appendix C.1 in the
supplementary materials.

Discrepancies with respect to the NCSBE voter identifiers
have been previously noted, leading others to question whether
the assignment of voter identifiers in each snapshot correspond
to the same individual voter (Wortman 2019). Due to the sus-
pected issues with the state-assigned voter identities, it is impos-
sible to assess the accuracy of our ER or canonicalization pro-
cedures. We first perform ER using the model of Marchant
et al. (2021) and apply our proposed canonicalization methods
before investigating how well we can predict party affiliation in
a downstream classification task.

We provide the pairwise precision and recall, 0.979 and 0.787,
respectively, for the point-estimate A of the linkage structure
when compared to the NCSBE voter identifiers (which may
or may not themselves be accurate). This indicates that our
method of de-duplication is linking more entities than the NCS-
BEs procedure. Appendix C.3 in the supplementary materials
provides trace-plots and hyperparameter values. The resulting
95% credible interval for the number of unique voters in the
dataset is [14,394, 14,590] and the point estimate is # = 14,484.

Table 2. Mean and standard deviation (in parenthesis) for MSE, bias, and coverage of the 90% credible interval for income for regression based on five canonicalization

methods and the true dataset for levels of noiseo = 1,2, 5.

Errors in all downstream variables

Errors in explanatory variables only

Method MSE Bias Coverage MSE Bias Coverage
o=1
Random 37.55(10.67) 0.0862(0.06) 0.31 38.72(12.02) 0.08262(0.06) 0.28
Composite 24.95(8.67) 0.04961(0.04) 0.51 23.93(8.19) 0.05907(0.05) 0.39
Minimax 7.28(3.14) 0.00083(0.01) 0.97 6.44 (2.65) —0.00256 (0.01) 0.98
PC weighted 7.16 (2.17) 0.00971(0.01) 0.92 6.54(2.00) 0.00663(0.01) 097
PC threshold 7.27(3.08) 0.00021 (0.01) 0.97 6.47(2.60) —0.00259(0.01) 0.98
True 2.23(0.08) 0.00086(0.01) 0.92 2.24(0.08) —4e-05(0.01) 0.91
o=2
Random 45.51(10.26) 0.08976(0.05) 0.23 43.95(11.10) 0.08272(0.05) 0.31
Composite 31.74(8.98) 0.0552(0.05) 0.48 32.12(9.16) 0.06139(0.05) 0.5
Minimax 12.6(3.04) —0.00315(0.02) 0.92 13.25(2.94) 0.00121(0.01) 0.95
PC weighted 11.83 (2.09) 0.00746(0.02) 09 12.11(2.14) 0.01101(0.02) 0.87
PC threshold 12.52(3.05) —0.00269 (0.01) 0.95 13.1(2.86) 0.00076 (0.02) 0.92
True 8.36(0.35) 0.00048(0.01) 0.9 8.34(0.31) 0.00106(0.01) 0.92
o=5
Random 89.32(11.75) 0.09106(0.06) 0.4 89.81(12.74) 0.09(0.07) 0.38
Composite 74.82(9.57) 0.0536(0.06) 0.67 74.12(9.52) 0.05039(0.05) 0.64
Minimax 55.61(3.80) —0.004 (0.03) 0.91 55.61(3.62) —0.00336 (0.03) 0.95
PC weighted 47.64 (2.63) 0.00443(0.03) 0.87 47.61(2.64) 0.0053(0.03) 0.86
PC threshold 55.67(3.88) —0.00468(0.03) 0.9 55.44(3.64) —0.00361(0.03) 09
True 51.09(2.19) —0.00233(0.03) 0.92 51(1.85) —0.00324(0.03) 0.93

NOTE: Results are based on 100 simulated datasets. Best performing method for each data scenario and metric are bolded.
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Figure 1. (Top) Distribution of PC weights for Caswell NCVD. (Bottom) Distribution of PC weights using a distance function that includes time-stamps.

According to the NCSBE, there are 14,740 registered voters in
Caswell County, which is in agreement with the comparative
overlinking evidenced in the precision and recall.

Next, we perform canonicalization using all methods in Sec-
tion 2. The top of Figure 1 displays the distribution of the
resulting posterior canonicalization weights. Due to the large
size of the data, we have broken ties randomly. Many records
have weights around 0.2, suggesting the presence of many ties,
which may lead to the exclusion of voters from the canonical
dataset. In fact, the choice of tpc = 0.5 results in only 4919
canonical records using the PC threshold method, which is far
less than the point estimate of the number of unique individuals
in the data (14,484).

We overcome this issue by using time-stamps in the distance
function, which are available in this dataset. This choice reflects
our belief that the most recent record is likely the most accurate
for this application. The bottom of Figure 1 displays the distri-
bution of PC weights for a distance function that includes time-
stamp information. Many records have PC weights close to 0
or 1, making the decision of excluding or including records in
the canonical dataset straightforward. Incorporating the time-
stamp data in the distance function has eliminated the need for
a robust tie-breaking procedure, allowing us to use the more
computationally efficient version of posterior canonicalization.
The choice of tpc = 0.5 results in 11,217 canonical records
using the PC threshold method, which is closer to the point
estimate of the number of unique individuals in the dataset
(14,484).

We compute the empirical KL divergence between the canon-
ical datasets of each of the proposed methods to the only notion
of truth that we have—the dataset released for Caswell county
by the NCSBE. KL values close to zero indicate distributional
closeness between datasets. We reiterate that it is not known how
the NCSBE performs ER or canonicalization, and thus, the qual-
ity of this dataset is near impossible to ascertain. We find that
the PC threshold Time-stamp (TS) method shows the lowest
empirical KL divergence (0.03) when compared to the records
released by the NCSBE. The PC weighted T'S also provides a very
low empirical KL divergence (0.04). On the other hand, the PC
threshold method without temporal information provides the
highest value (0.1). Certainly, the chosen value of tpc affects the

Table 3. Five records that represent the same voter with their respective PC
weights both with and without time-stamp information.

Last First Race Sex  Age Party PCWeight PCWeightTS
BAKER MARK WHITE MALE 42 REP 0.295 0.793
BAKER MARK WHITE MALE 41  DEM 0.325 0.463
BAKER MARK WHITE MALE 41 REP 0.306 0.326
BAKER MARK WHITE MALE 40 DEM 0.124 0.05
BAKER MARK WHITE MALE 40 REP 0.232 0.053

NOTE: PC weights above tpc = 0.5 are bolded.

result, but this behavior appears to be closely related to the large
presence of record distance ties in this relatively clean dataset.
We emphasize this point, as it further highlights the importance
of choosing a record distance function that has strong discrim-
inatory power to distinguish between records and places the
(believed) truth at the center of a cluster. From this outcome,
we conclude that the PC methods that incorporate time-stamp
information produce results that are most consistent with the
deduplication approach undertaken by the NCSBE.

Returning to the illustrative example of Table 1, we have
appended two columns with the PC weights (both with and
without time-stamp information) for each record in Table 1 in
Table 3. PC weights above tpc = 0.5 are bolded. Based on these
weights, the canonical record that would be selected is the first
entry in Table 3 using the PC threshold TS method. Based on
the PC threshold (no time-stamp information), none of these
records would be selected and this individual would be left out
of future analyses.

We next consider the downstream task on Caswell County,
where our goal is to be able to model the relationship between
party affiliation and the following demographic variables
(fields): sex, age, race, and ethnicity. We consider a logistic
regression model fit using stan (Stan Development Team
2016) with Gaussian prior distributions for the parameters
(Gelman et al. 2008, 2013) and parameters centered and
scaled to be weakly informative (see Appendix C.2 in the
supplementary materials),

ind
Y;|B,X; ~ Bernoulli | ———

exp(X” B} )

ind

Bilb; ~ N(0, b;). (7)
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Figure 2. (Left) Posterior test area under ROC curve for the logistic regression mod-
els fit after performing each type of canonicalization. PC weighted, PC weighted
TS, and PC threshold TS show the best predictive results. (Right) Posterior predicted
Pr(DEM|Male) holding all other features at a typical value in the test dataset. There
is a difference in the inferential relationship between outcome and predictors for
models fit on point-wise canonical datasets versus posterior canonical datasets.

After completing both ER and canonicalization, we assess
the performance of the downstream task by obtaining out-of-
sample predictions of party affiliation from a recent snapshot
of the NCSBE (May 14, 2019) that was not included in either
the ER task or the canonicalization tasks (test dataset). Figure 2
shows two methods for assessing the affect of canonicalization
on the downstream task. On the left, we assess the predictive
performance of the model fit on each canonical dataset using the
posterior test AUC. Based on these distributions, PC weighted,
PC weighted TS, and PC threshold TS show the best predictive
results. On the right of Figure 2 we see the posterior predicted
Pr(DEM|Male), holding all other fields fixed at a typical value
in the test dataset (King, Tomz, and Wittenberg 2000). There
is a clear difference in this relationship for models fit on point-
wise canonical datasets and posterior canonical datasets. This
result in conjunction with the improved inference evidenced in
Section 3, indicates improved inferential performance via the
natural error propagation from the posterior canonicalization
methods.

5. Discussion

In this article, we have presented a practical approach to proper
inference with linked data via canonicalization. This approach
allows error to propagate naturally into downstream analy-
ses, such as prediction of voter affiliation in Caswell County
or regression of blood pressure on sex and income. We have
proposed several methods to find canonical records, including
those based on point estimates and posterior distributions of
linkage. Additionally, we have empirically shown the benefits
of error propagation with posterior canonicalization through an

inferential downstream task in simulated experiments, as well as
a real data example.

In general, we recommend the use of posterior canonical-
ization when two conditions are met—Bayesian record linkage
is used and a discriminatory distance function is available that
places the true records central to their clusters. When Bayesian
record linkage is not used, then we recommend minimax canon-
icalization with a robust tie-breaking procedure and when a
discriminatory distance function is not available we recommend
composite canonicalization. Finally, in the case where there is
no reason to believe that the true records can be placed central
within their clusters, then we are left with only random canoni-
calization. In this case, the use of a very informative distribution
for records within cluster may be helpful. See Appendix D in
the supplementary materials for a potential decision making
process to determine which canonicalization method to use.

The key advantages of our proposed methodology for canon-
icalization are generality and computational efficiency. The
methods are applicable in general data scenarios with multiple
databases where duplication can occur in all downstream vari-
ables at a relatively low computational cost. Canonicalization
can be a crucial step that facilitates the transition between
the ER stage and the subsequent downstream tasks in general
applications with linked data. Future areas of research include
investigating tradeoffs in choice of ER model under simulated
and real data and determining automated methods for choosing
tpc. It is also of interest to consider more downstream tasks,
such as generalized linear models, small area estimation, and
alternative classification methods.

Supplementary Materials

The supplement contains additional details concerning data for the sim-
ulation study and NCVD application, additional results, diagnostics, and
hyperparameters for the fitted models, as well as further advice for practi-
tioners. The R code for reproducing the results is also available.
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