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A Bayesian statistical model to simultaneously characterize two or more social networks 
defined over a common set of actors is proposed. The key feature of the model is a 
hierarchical prior distribution that allows the user to represent the entire system jointly, 
achieving a compromise between dependent and independent networks. Among others 
things, such a specification provides an easy way to visualize multilayer network data 
in a low-dimensional Euclidean space, generate a weighted network that reflects the 
consensus affinity between actors, establish a measure of correlation between networks, 
assess cognitive judgments that subjects form about the relationships among actors, and 
perform clustering tasks at different social instances. The model’s capabilities are illustrated 
using real-world and synthetic datasets, taking into account different types of actors, sizes, 
and relations.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

The study of information that emerges from the interconnectedness among autonomous elements in a system (and the 
elements themselves) is extremely important in the understanding of many phenomena. Structures formed by these ele-
ments (individuals or actors) and their interactions (ties or connections), commonly known as networks, are popular in 
many research areas such as finance (studying alliances and conflicts among countries as part of the global economy), social 
science (studying interpersonal social relationships and social schemes of collaboration such as legislative cosponsorship 
networks), biology (studying arrangements of interacting genes, proteins or organisms), epidemiology (studying the spread 
of a infectious disease), and computer science (studying the Internet, the World Wide Web, and also communication net-
works), just to mention a few examples, primarily because interactions typically arise under several contexts or points of 
view.

Relational structures consisting of J types of interactions (layers or views) established over a common set of I actors are 
regularly referred to as either multilayer or multiview network data, which results in a sequence of J adjacency matrices 
Y1, . . . , Y J , with Y j = [yi,i′, j]i,i′=1,...,I,i �=i′ for j = 1, . . . , J , each having structural zeros along the main diagonal (note that 
yi,i′, j ≡ yi′,i, j for undirected relations). This type of data is very frequent nowadays. For instance, the interactions that 
employees have with others according to their roles in work are not necessarily the same as the interpersonal relationships 
they build among them; however, the corresponding social structures defined by these two types of relationships may have 
some characteristics in common. Thus, given the richness of information provided in Y = {Y j}, our main goal consists of 
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modeling dependencies both within and between layers in order to formally test features about the social dynamics in the 
system.

A very popular statistical model in the literature for a single network is the latent position model given in Hoff et 
al. (2002). According to this model, interaction probabilities marginally depend on how close or far apart actors are on a 
latent “social space” (a K -dimensional vector space, typically RK , in which each individual occupies a fixed position). This 
formulation is appealing because latent structures based on distances naturally induce transitivity and homophily, which 
are typical features found in many social networks. Other meaningful advances in latent space models for networks can be 
found in Nowicki and Snijders (2001), Schweinberger and Snijders (2003), Hoff (2005, 2008, 2009), Handcock et al. (2007), 
Linkletter (2007), Krivitsky and Handcock (2008), Krivitsky et al. (2009), and Li et al. (2011).

Here, we extend Hoff’s latent position model in order to describe the generative process of cross-sectional multilayer 
network data. The key feature of our model is a hierarchical prior distribution that allows us to characterize the entire sys-
tem jointly. Such a prior specification is very convenient for multiple reasons. First, the model provides a direct description 
of actors’ roles within and across networks at global and specific levels. Second, it provides the tools for representing several 
network features effortlessly at any instance. Finally, the proposed framework accounts for dependence structures between 
layers which is key to perform formal tests about actor and network characteristics.

Perhaps the closest in spirit to our modeling strategy is the work given in Gollini and Murphy (2016) and Salter-
Townshend and McCormick (2017). Unlike our approach, Gollini and Murphy (2016) introduce a latent space model 
assuming that the interaction probabilities in each network view are explained by a unique latent variable. Later, Salter-
Townshend and McCormick (2017) consider the same assumption but in the context of a multivariate Bernoulli likelihood, 
which leads to a clear estimate of interview dependence. Our proposal builds on the latent configuration of these mod-
els, by considering a full hierarchical prior specification that provides a parsimonious characterization of actors from many 
perspectives.

Aside from the previous work, other alternatives for studying multilayer network data have emerged during the last two 
years from the latent space modeling perspective. In brain connectomics, Durante and Dunson (2018) present a Bayesian 
nonparametric approach via mixture modeling, which reduces dimensionality and efficiently incorporates network informa-
tion within each mixture component by leveraging latent space representations. More recently, Wang et al. (2019) propose 
a method to estimate a common structure and low-dimensional individual-specific deviations from replicated networks, 
based on a logistic regression mapping combined with a hierarchical singular value decomposition. In turn, D’Angelo and 
collaborators extend latent space models in other contexts, by considering node-specific effects (D’Angelo et al., 2020a), 
network-specific parameters and edge-specific covariates (D’Angelo et al., 2019), and finally, a clustering structure in the 
framework of an infinite mixture distribution (D’Angelo et al., 2020b). Finally, in the field of neuroscience and also under a 
frequentist paradigm, Wilson et al. (2020) develop a hierarchical latent space model accounting for multiple predictors and 
specific effects for both individuals and layers. Other important advances from a frequentist point of view are available in 
Zhang (2020).

Additional work related to cross-sectional multilayer network data includes community detection (e.g., Han et al. (2015), 
Reyes and Rodriguez (2016), Paul and Chen (2016), Gao et al. (2019), Paez et al. (2019), Chen et al. (2020), Paul et al. (2020a), 
and Paul et al. (2020b)), and the perception assessment in cognitive social structures (e.g., Swartz et al. (2015), Sewell (2019), 
and Sosa and Rodriguez (2021)). Finally, from the dynamic point of view, there is a large variety of approaches to modeling 
network evolution over time (e.g., Durante and Dunson (2014), Hoff (2015), Sewell and Chen (2015, 2016, 2017), Gupta et 
al. (2018), Kim et al. (2018), Turnbull (2020), Betancourt et al. (2020)).

Our contribution has many folds. In Section 2, we present our proposal for modeling multiple layer network data, in-
cluding prior elicitation. In Section 3, we discuss the topics of identifiability and model selection for our approach. Next, in 
Section 4, we provide two illustrations using popular data sets in the literature, for which we develop formal tests involving 
network correlation and perceptual agreement, as well as a full analysis of the social dynamics. In Section 5, we carry out a 
cross-validation study on additional datasets in order to test the predictive capabilities of our proposed model. Then, in Sec-
tion 6, we perform an extensive simulation study in order to investigate the capabilities of our proposal. Finally, concluding 
remarks and directions for future work are provided in Section 7.

2. Latent space models

Since the foundational work of Hoff et al. (2002), generalized linear mixed models became a popular alternative to 
model networks. In particular, consider an undirected binary network Y = [yi,i′ ] in which the yi,i′ s, i, i′ = 1, . . . , I , i < i′ , are 
assumed to be conditionally independent with interaction probabilities ϑi,i′ ≡ Pr

(

yi,i′ = 1 | ζ,γi,i′
)

= �(ζ +γi,i′), where �(·)
denotes the cumulative distribution function of the standard Gaussian distribution (other link functions can be considered), 
ζ is a fixed effect representing the global propensity of observing an edge between actors i and i′ , and γi,i′ is an unobserved 
dyad-specific random effect representing any additional patterns unrelated to those captured by ζ . Following results in 
Hoover (1982) and Aldous (1985) (see also Hoff (2008)), it can be shown that if the matrix of random effects [γi,i′ ] is jointly 
exchangeable, there exists a symmetric function α(·, ·) and a sequence of independent random variables (vectors) u1, . . . , u I

such that γi,i′ = α(ui, ui′ ). It is mainly through α(·, ·) that we are able to capture relevant features of the network. A 
number of potential formulations for α(·, ·) have been explored in the literature to date; see Minhas et al. (2019) and Sosa 
and Buitrago (2021) for a review.
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Fig. 1. DAG representation of the LPM for a single network. Circles represent either random variables or random vectors, and the edges convey conditional 
independence. Squares represent fixed quantities (constants).

In particular, consider the latent position model (LPM) given in Hoff et al. (2002). This model assumes that each ac-
tor i has an unknown position ui in a social space of latent characteristics, typically ui = (ui,1, . . . , ui,K ) ∈ RK , where 
K is assumed to be known, and that the probability of an edge between two actors may decrease as the latent char-
acteristics of the individuals become farther apart of each other. In this spirit, the latent effects can be specified as 
γi,i′ = −eθ‖ ui − ui′‖, where eθ serves as a weighting factor that regulates the contribution attributed to the latent effects, 

and therefore, yi,i′ | ζ, θ, ui, ui′
ind∼ Ber

(

�
(

ζ − eθ‖ui − ui′‖
))

. In order to perform a fully Bayesian analysis, we must specify a 
prior distribution on the model parameters; a standard choice that works well in practice consists in setting mutually inde-

pendent prior distributions, ζ ∼ N1(0, τ 2
ζ ), θ ∼ N1(0, τ 2

θ ), and ui
iid∼ NK (0, σ 2 I), for constants τ 2

ζ , τ 2
θ , σ 2 > 0, although other 

similar formulations are available (e.g., Rastelli et al. (2019)). Thus, the entire model has I K + 2 unknown parameters to 
estimate, namely, ζ, θ, u1, . . . , u I , associated with the hyperparameters τ 2

ζ , τ 2
θ , and σ 2 , which need to be picked sensibly to 

ensure appropriate model performance. In our experience, letting τ 2
ζ = τ 2

θ = 3 and σ 2 = 1/9 is a reasonable choice; how-
ever, other heuristics are possible (e.g., Krivitsky et al. (2009)). Fig. 1 provides a directed acyclic graph (DAG) representation 
of the LPM for a single network. In the following section we present an extension of this model that is suited for multilayer 
networks.

2.1. Extension to multilayer networks

Here, we present our approach to simultaneously model a set of J ≥ 2 undirected binary networks Y1, . . . , Y J , defined 
over a common set of I actors, with Y j = [yi,i′, j] for j = 1, . . . , J . Since each network contains relevant information about 
a determined aspect of the social dynamics, instead of just fitting independent LPMs to each network, the main idea be-
hind our approach consists of borrowing information across networks by means of a hierarchical prior specification on the 
interaction probabilities ϑi,i′, j .

Our model is an unequivocal hierarchical extension of the LPM for a single network that accommodates relevant features 
associated with multilayer network data. Here, we still assume that observations are conditionally independent, yi,i′, j |
ϑi,i′, j

ind∼ Ber
(

ϑi,i′, j
)

, and construct a hierarchical prior on the array [ϑi,i′, j], by letting

ϑi,i′, j = �
(

ζ j − eθ j‖ui, j − ui′, j‖
)

, (1)

where the additional index j makes explicit the reference to network j, i.e., ζ j is the global propensity of observing an 
edge between actors i and i′ in network j, eθ j is a weighting factor that regulates the contribution attributed to the latent 
effects in network j, and ui, j = (ui, j,1, . . . , ui, j,K ) is the latent position of actor i in network j. In this context, note that the 
interpretation of the latent structure remains unchanged: if ui, j and ui′, j “move away” from each other in the social space, 
then ‖ui, j − ui′, j‖ increases, and therefore, the probability of observing an edge between actors i and i′ in network j may 
decrease depending on the regularization provided by eθ j . Here, we explicitly acknowledge that considering latent positions 
embedded in a communal social space for modeling interactions in a multilayer setting does not constitute a novel feature 
by itself and it is actually quite reminiscent of previous approaches in the literature (e.g., Gollini and Murphy (2016), Salter-
Townshend and McCormick (2017), and D’Angelo et al. (2019)). However, our formulation deviates from others in terms 
of the form and structure of the sampling distribution as well as the prior specification (see Section 7 for some specific 
differences). Lastly, since our latent positions are subject-layer specific (again not a new structural modeling feature) as 
opposed to subject specific, we propose a two-stage hierarchical prior distribution as shown below.

In addition, unlike Gollini and Murphy (2016), Salter-Townshend and McCormick (2017), D’Angelo et al. (2019), and 
many others, we employ a probit link instead of a logit one, in the specification of the interaction probabilities given in 
(1). In our experience as well as that of others (e.g., Lofland et al. (2017) and Sosa and Rodriguez (2021)), both probit and 
logit link functions provide essentially similar results, which in general seems to be the case for univariate binary response 
models like ours (see Hahn and Soyer (2005) and references therein). Interestingly, based on Hahn and Soyer’s analysis, the 
probit link tends to improve both in-sample and out-of-sample model performance, particularly when multivariate binary 
response models with random effects are fitted to moderate size datasets; by contrast, the logit link seems preferable for 
multivariate link models when there are extreme independent variable levels. Nonetheless, adapting our approach to handle 
a logit link functions is straightforward.

3



J. Sosa and B. Betancourt Computational Statistics and Data Analysis 169 (2022) 107432

Fig. 2. DAG representation of the MNLPM for multilayer network data.

If mutually independent prior distributions were assigned to each set of ζ j s, θ j s, and ui, j s, then such a formulation 
would be equivalent to fitting independently a LPM to each network. Instead, we consider a hierarchical prior distribu-
tion that characterizes the heterogeneity of the model parameters across networks. Our approach parsimoniously places 
conditionally independent Gaussian priors as follows:

ζ j | μζ ,τ 2
ζ

iid∼ N1

(

μζ ,τ 2
ζ

)

, θ j | μθ ,τ
2
θ

iid∼ N1

(

μθ ,τ
2
θ

)

, ui, j | ηi,σ
2 ind∼ NK

(

ηi,σ
2I

)

. (2)

On the one hand, (μζ , τ 2
ζ ) and (μθ , τ 2

θ ) parameterize the sampling distributions that describe the heterogeneity across 
networks in terms of fixed effects ζ1, . . . , ζ J and weighting log-factors θ1, . . . , θ J , respectively. On the other hand, the mean 
ηi = (ηi,1, . . . , ηi,K ) can be conveniently interpreted as the average “global” position of actor i in relation to the dynamics 
that define social interactions in the system. Now, we can capture similarities among the observed networks and borrow 
information across them, mainly by placing a common prior distribution on η1, . . . , η I . Thus, we let

ηi | ν,κ2 iid∼ NK

(

ν,κ2I
)

, σ 2 ∼ IG (aσ ,bσ ) , (3)

in order to characterize between-actor mean sampling variability in a straightforward fashion. Furthermore, note that the 
sampling variability of the latent positions σ 2 is assumed to be constant across actors and networks. We believe this is a 
sensible choice because inferences on the latent positions seem to be invariant when we eliminate such an assumption.

Finally, the model is completed by specifying prior distributions in a conjugate fashion on the remaining model parame-
ters:

μζ ∼ N1

(

mζ , v
2
ζ

)

, μθ ∼ N1

(

mθ , v
2
θ

)

, ν ∼ NK (mν ,Vν ) ,

τ 2
ζ ∼ IG

(

aζ ,bζ

)

, τ 2
θ ∼ IG (aθ ,bθ ) , κ2 ∼ IG (aκ ,bκ ) , (4)

where aσ , bσ , aζ , bζ , aθ , bθ , aκ , bκ , mζ , vζ , mθ , vθ , mν , Vν are fixed hyperparameters. Therefore, the full set of model param-
eters is

ϒ ≡ ϒI, J ,K =
(

ζ1, . . . , ζ J , θ1, . . . , θ J ,u1,1, . . . ,u I, J ,η1, . . . ,η I ,σ ,μζ ,τζ ,μθ ,τθ ,ν,κ
)

,

which includes I K ( J +1) +2 J + K +6 unknown quantities to estimate. Fig. 2 shows a DAG representation of our Multilayer 
Network Latent Position Model (MNLPM) given in (1), (2), (3), and (4). Note the clear hierarchical structure in the model.

This model for multilayer network data is such that the resulting marginal distribution of the data is fully jointly ex-
changeable, which means that the joint distribution of {yi,i′, j} is the same as the distribution of {yπ1(i),π2(i′),π3( j)} only if 
π1 = π2 , where π1 and π2 are permutations of [I], and π3 is a permutation of [ J ]. Full joint exchangeability (rather than a 
weaker form of exchangeability) is particularly attractive in this setting because all indexes i, i′ (and potentially j) refer to 
the same set of actors (Sosa and Rodriguez, 2021).

2.2. Prior elicitation

Once again, careful elicitation of the hyperparameters is key to ensure appropriate model performance since the model 
is sensitive to this choice. In our experience, the following heuristic procedure produces adequate results for a wide variety 
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Table 1

Expected value and standard deviation of the prior latent distance di,i′, j = ‖ui, j − ui′, j‖, rate hyperparameters, and variance 
components for the prior distributions on the variance parameters for K = 1, . . . , 6.

K E
(

di,i′, j
)

SD
(

di,i′, j
)

bζ bθ bσ bκ vζ vθ vν

1 0.377 0.286 1.508 2.448 0.074 0.074 0.868 1.106 0.192
2 0.592 0.308 2.367 1.546 0.074 0.074 1.088 0.879 0.192
3 0.752 0.317 3.009 1.066 0.074 0.074 1.227 0.730 0.192
4 0.885 0.321 3.541 0.740 0.074 0.074 1.331 0.608 0.192
5 1.003 0.323 4.010 0.491 0.074 0.074 1.416 0.496 0.192
6 1.109 0.327 4.434 0.290 0.074 0.074 1.489 0.381 0.192

of multilayer network datasets. In the absence of prior information, we set mθ =mζ = 0 and mν = 0 and Vν = v2ν I in order 
to center the model, roughly speaking, around an Erdös-Rényi model Erdös and Rényi (1959), and also ensure that the prior 
distributions are invariant to rotations of the latent space (see also Section 3.1).

Now, we establish some constraints that allow us to appropriately contrast models constructed with different values of 
K . Thus, for the prior distributions on the variance parameters, we naturally let aζ = aθ = aσ = aκ = 3, which leads to a 
proper prior with finite moments and a coefficient of variation equal to 1. Under this set up, it can be shown that marginally

Var
(

ζ j

)

= bζ

2
+ v2ζ , Var

(

θ j

)

= bθ

2
+ v2θ , Var

(

ui, j,k

)

= bσ

2
+ bκ

2
+ v2ν ,

each of which we split equally among all terms. First, resembling a regular LPM, we set Var
(

ui, j,k

)

= 1/9 a priori, such that 
bσ = bκ = 2/27 and v2ν = 1/27. Then, from a naive application of the delta method we obtain that

Var
(

θ j

)

≈ 2 log

(

− �−1(ϑ0)

E
(

‖ui, j − ui′, j‖
)

)

,

where ϑ0 is the prior probability of observing an edge between any two actors (which can be tuned to reflect prior infor-
mation), and ui, j − ui′, j ∼ NK (0, 29 I) as long as Var

(

ui, j,k

)

= Var
(

ηi,k

)

= 1/9. In our experiments, we set bθ = Var
(

θ j

)

and 

v2θ = Var
(

θ j

)

/2 with ϑ0 = 0.1. Finally, we set bζ = Var
(

ζ j

)

and v2ζ = Var
(

ζ j

)

/2 with Var
(

ζ j

)

= 4E
(

‖ui, j − ui′, j‖
)

, which 
allow a wide range of values of ζ j .

Table 1 displays specific hyperparameter values for K = 1, . . . , 6. In addition, Fig. 3 shows histograms of 10,000 indepen-
dent realizations from the induced marginal prior distribution of the interaction probabilities, ϑi,i′, j , for several values of K . 
Note that these distributions are quite similar, exhibiting a mode at ϑi,i′, j = 0.1 (as expected) and then a somewhat uniform 
behavior with a slight peak towards ϑi,i′, j = 1.

3. Computation

For a given latent dimension K , the posterior distribution p(ϒ | Y) is explored using Markov chain Monte Carlo methods 
(MCMC; e.g., Gamerman and Lopes (2006)). The computational algorithm entails a combination of Gibbs sampling and 
Metropolis-Hastings steps (e.g., Haario et al. (2001)). Details about the MCMC algorithm can be found in the Appendix A. 
In the following sections we discuss the issues of identifiability and model selection which are common in the latent space 
modeling framework.

3.1. Identifiability

Our proposed MNLPM inherits the property of invariance to rotations and reflections of the social space from the simple 
latent space model of Hoff et al. (2002). Indeed, for any K × K orthogonal matrix Q, the likelihood associated with the 
reparameterization ũi, j = Qui, j is independent of Q since ‖ ui, j − ui′, j ‖ = ‖ ũi, j − ũi′, j ‖. This lack of identifiability does not 
affect our ability to make inferences on the interaction probabilities ϑi,i′, j s (which are identifiable). However, it does hinder 
our ability to provide posterior estimates of latent-position based measures (e.g., network correlation), including the latent 
positions themselves.

We address this invariance issue using a common parameter expansion used by Hoff et al. (2002) and many others. In 
particular, the problem of identifiability is addressed through a post-processing step in which the B posterior samples are 
rotated/reflected to a shared coordinate system. For each sample ϒ(b) , for b = 1, . . . , B , an orthogonal transformation matrix 
Q(b) is obtained by minimizing the Procrustes distance,

Q̃(b) = argmin
Q∈SK

tr

{

(

E(1) − E(b)Q
)T (

E(1) − E(b)Q
)

}

, (5)

where SK denotes the set of K × K orthogonal matrices and E(b) is the I × K matrix whose I rows correspond to the 
transpose of η(b)

1 , . . . , η(b)
I . The minimization problem in (5) can be easily solved using singular value decompositions (e.g., 
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Fig. 3. Marginal prior distribution of the interaction probabilities ϑi,i′, j for K = 1, . . . ,6.

see Borg and Groenen (2005)). Indeed, Q̃(b) = R(b)L(b)T , where L(b)D(b)R(b)T is the singular value decomposition of E(1)TE(b) . 
Once the matrices Q̃(1), . . . , Q̃(B) have been obtained, posterior inference for the latent positions of our model is based on 
the transformed coordinates ũ(b)

i, j = Q̃(b)
u

(b)
i, j and η̃(b)

i = Q̃(b)η
(b)
i .

3.2. Model selection

In general, setting K = 2 for the dimension of the latent space is a sensible choice, as it simplifies the visualization and 
description of social relationships. However, our objective goes beyond a mere description of multilayer network data, and 
in consequence the value of K plays a critical role in the results.

The network literature has largely focused on the Bayesian Information Criterion (BIC; e.g., Hoff (2005), Handcock et al. 
(2007), Airoldi et al. (2009)). However, the BIC is often inappropriate for hierarchical models since the hierarchical structure 
implies that the effective number of parameters will be typically less than the actual number of parameters in the likelihood. 
An alternative to the BIC is the Watanabe-Akaike Information Criterion (WAIC; Watanabe (2010), Watanabe (2013), Gelman 
et al. (2014)),

WAIC (K ) = −2
∑

j

∑

i,i′:i<i′
logE

[

p
(

yi,i′, j | ϒ
)]

+ 2pWAIC ,

where

pWAIC = 2
∑

j

∑

i,i′:i<i′

(

logE
[

p
(

yi,i′, j | ϒ
)]

− E
[

log p
(

yi,i′, j | ϒ
)])

,

is the model complexity (effective number of parameters), and ϒ is the set of model parameters assuming that the di-
mension of the social space is K . The expected values in these expressions are calculated with respect to the posterior 
distribution p(ϒ | Y), and can be approximated by averaging over the MCMC samples ϒ(1), . . . , ϒ(B) .

4. Illustrations

In this section, we illustrate and evaluate the performance of our MNLPM using two benchmark data sets: The bank 
wiring room data of Roethlisberger and Dickson (2003) and the friendship cognitive social structure of Krackhardt (1987). 
The main contributions involving the characterization of the social dynamics with our MNLPM are formal approaches to 
measure network correlation and perceptual agreement, which are respectively illustrated with each data set.
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Fig. 4. Visualization of the bank wiring room data. Inspectors are shown in blue, solderers in yellow, and wiremen or assemblers in red. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. WAIC values to select the latent dimension K of the social space for the Bayesian analysis of the bank wiring room data using our MNLPM, and 
log-likelihood chain associated with the value of K optimizes the WAIC (K = 3).

4.1. Bank wiring room data

These are the observational data on I = 14 Western Electric (Hawthorne Plant) employees from the bank wiring room 
presented in Roethlisberger and Dickson (2003). The employees worked in a single room and include two inspectors (actors 
1 and 2), three solderers (actors 12, 13, and 14), and nine wiremen or assemblers (actors 3 to 11). The authors gathered 
data about J = 4 symmetric interaction categories including: participation in horseplay (Horseplay, network 1), participation 
in arguments about open windows (Arguments, network 2), friendship (Friendship, network 3), and antagonistic behavior
(Antagonism, network 4). This dataset is considered nowadays as a standard referent to test models for multilayer network 
data (e.g., Bartz-Beielstein et al. (2014), Liu (2020), and Abdollahpouri et al. (2020)). Fig. 4 displays a visualization of all the 
relational layers.

We implement our MNLPM for the bank wiring room data following the computational approach described in Section 3. 
The results presented below are based on B = 10, 000 samples of the posterior distribution obtained after thinning the 
original Markov chains every 10 observations and a burn-in period of 100,000 iterations. All chains mix reasonably well. 
Left panel of Fig. 5 shows the WAIC computed for several MNLPMs fitted using a range of latent dimensions of the social 
space. This criterion clearly supports K = 3 (WAIC = 197.1) as an optimal choice, which is the latent dimension we use in all 
our analyses henceforth. The effective sample sizes of the model parameters following the MCMC algorithm discussed above 
range from 4,081 to 10,000. Right panel of Fig. 5 displays the log-likelihood chain associated with the latent dimension that 
optimizes the WAIC, which shows no signs of lack of convergence.

4.1.1. Consensus network

Unlike other models for multilayer network data (e.g., Salter-Townshend and McCormick (2017)), our approach (as well 
as those by Gollini and Murphy (2016) and D’Angelo et al. (2019), for instance, as a direct consequence of the social 
space underlying multidimensional relations) provides a straightforward mechanism to construct a “consensus network”. 
Indeed, the average positions η1, . . . , η I can be used to induce a weighted network, given by υi,i′ = � 

(

μζ − eμθ ‖ηi − ηi′‖
)

, 
that “collapses” all the relational layers in a single network by weighting them according to the mean parameters of the 
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Fig. 6. Consensus network estimates for the bank wiring room data. The left panel provides the posterior mean under our MNLPM, and the right panel 
shows the proportion of observed links across networks.

hierarchical prior distribution. The consensus network can be very useful when an overall summary of the social dynamics 
is required.

An alternative way to obtain a consensus network involves computing an estimate of the interaction probabilities by 
modeling an aggregation of the data with a LPM. However, in many situations this approach is not the best course of 
action. First, such an strategy requires the definition of an aggregate adjacency matrix, say Ỹ = [ ỹi,i′ ], defined as ỹi,i′ = 1

if 1
J

∑ J
j=1 yi,i′, j > δ0 , and ỹi,i′ = 0 otherwise, where δ0 is a fixed (but arbitrary) threshold (see Krackhardt (1987) for more 

aggregations). Any choice of δ0 may be misleading because it can hide away (highlight) relevant (irrelevant) relationships 
(e.g., we would face a loss of useful information if 1

J

∑ J
j=1 yi,i′, j is slightly less than δ0). On the other hand, fitting a LPM 

using aggregated data may fail to capture fundamental features of consensus social roles due to the lack of means to account 
for variability within and between layers. In this spirit, our approach depends on specific parameters for that purpose 
after differentially modeling each layer and borrowing information across them (hence the pertinence of our hierarchical 
formulation), which lead us to the direct interpretation of υi,i′ as the global “affinity” or “social distance” between actors 
i and i′ in social space, operationalizing the notion of social roles (for this last interpretation, see Hoff (2005) and Hoff 
(2009)).

Fig. 6 displays heat-maps for the matrix of posterior means given by υ̂i,i′ = E
(

υi,i′ | Y
)

and the proportion of observed 

links across networks, mi,i′ = 1
J

∑I
j=1 yi,i′, j . Although the estimate provided by our model is “denser” than the empirical 

proportion (probably due to shrinkage), note that the estimates are similar. As a matter of fact, the absolute distance 
between the two matrices, which is bounded by I(I − 1)/2 = 91, is 

∑

i:i<i′ |υ̂i,i′ −mi,i′ | = 17.77. This also suggests that the 
model correctly characterizes the data generating process.

4.1.2. Projections in social space
Actor-specific latent positions u1,1, . . . , u I, J provide a powerful tool for describing social interactions. Fig. 7 shows 

Procrustes-transformed latent position estimates E
(

ũi, j | Y
)

along the two dimensions with the highest variability for each 
layer of the system. Even though the social behavior is similar across layers, there are important particularities. First, note 
that the social dynamics of Horseplay and Friendship are quite similar, except that in Horseplay latent positions seem to 
be more clustered together. Furthermore, many social patterns are evident. For instance, actors who have close positions in 
Horseplay and Friendship, typically have distant positions in Antagonism; such an effect is particularly clear among actors 
3 and 6, and actors 10 and 14. Lastly, complementing the insights provided by the consensus network, average positions 
η1, . . . , η I can be also very useful to perform an “global” visualization of the social dynamics.

As pointed out above, latent positions allow us to distinguish groups of actors that fulfill similar social roles. In order 
to identify such clusters, we can either apply some unsupervised clustering technique (e.g., hierarchical clustering, k-means 
clustering) or include directly into the model a set of parameters that assign actors to groups. The latter is quite preferable 
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Fig. 7. Posterior means of Procrustes-transformed latent positions E
(

ũi, j | Y
)

along the two dimensions with the highest variability, for the bank wiring 
room data. Inspectors are shown in blue, solderers in yellow, and wiremen or assemblers in red.

since the uncertainty related to the clustering task can be directly quantified along with its relationship to other model 
parameters (see Section 7 for more details).

4.1.3. Network correlation
Another key feature of the MNLPM is that it implicitly allows us to obtain correlation measures between layers as a 

direct by-product of the model parameterization. Before getting into details, we highlight that, unlike our proposal, the 
model in Salter-Townshend and McCormick (2017) allows the user to measure network correlation explicitly through specific 
correlation parameters given in the multivariate Bernoulli distribution. Unfortunately, our sampling distribution lacks such 
parameters. Therefore, we simply employ a well-defined function of our parameter space, by exploiting the arrangement 
of subject-layer specific latent positions (which are embedded in a hierarchical framework as opposed to be generated 
independently from each network) to define a measure of network correlation, relying on the premise that networks with 
matching latent configurations over a shared coordinate system can be regarded as similar. Thus, we define the correlation 
between layers j and j′ , for j, j′ = 1, . . . , J , as

ρ j, j′ = cor(u∗
1, j, . . . ,u

∗
I, j;u∗

1, j′ , . . . ,u
∗
I, j′) ,

where u∗
i, j is the maximum Procrustes-transformed latent characteristic across latent dimensions of actor i in layer j, i.e., 

u∗
i, j = max{ũi, j,1, . . . , ̃ui, j,K } (alternative definitions for ρ j, j′ are possible; e.g., by considering the median instead of the 

maximum). Moreover, similar arguments can be made using latent distances instead of latent positions alone (see also 
Salter-Townshend and McCormick (2017) for a brief discussion), and therefore, the correlation between layers j and j′ can 
also be alternatively specified as

ρ j, j′ = cor(d1,2, j, . . . ,dI−1,I, j;d1,2, j′ , . . . ,dI−1,I, j′) , (6)

where di,i′, j = ‖ ui, j − ui′, j‖ is the latent distance between actors i and i′ in network j. After extensive experimentation, we 
found that this alternative is preferable because it relies on identifiable quantities (see Section 3.1), and most importantly, it 
provides more accurate estimates with narrower credible intervals than its counterpart. Almost identical results are found if 
latent distances in (6) are replaced by either linear predictors or interaction probabilities. Finally, notice that either way, our 
approach represents the network correlation after accounting jointly for social structure encoded within each layer, thanks 
to the MNLPM’s hierarchical specification.

In order to obtain a credible interval for ρ j, j′ , we simply compute the corresponding percentiles of ρ(1)
j, j′ , . . . , ρ

(B)

j, j′ , which 
are a straightforward byproduct of B samples drawn from the posterior distribution using MCMC methods (recall our dis-
cussion in Section 3). On the other hand, notice that a credible interval for ρ j, j′ can be used as a formal way to test for 
statistical significance about the correlation between layers j and j′ . As a matter of fact, if such an interval does not include 
zero, then we would have enough evidence to declare a significant result, since the most plausible values for ρ j, j′ indicate 
that the correlation could be either lower or higher compared to zero.

Left panel in Fig. 8 shows credible intervals along with point estimates for all pairwise network correlations computed 
using expression (6). We see that all pair of layers are positively correlated, except for horseplay and antagonistic behavior
(networks 1 and 4) as well as friendship and antagonistic behavior (networks 3 and 4). Furthermore, a positive correlation 
is particularly evident between Horseplay and Friendship (networks 1 and 3). Such findings are quite consistent with the 
social dynamics described above.

Lastly, we test our correlation approach by considering a set of independent networks with no underlying structure. To 
do so, we independently generate J = 4 Erdös-Rényi networks with I = 14 actors and interaction probability 0.1, and then fit 
the MNLPM in order to obtain the pairwise network correlations. Right panel in Fig. 8 present the corresponding inference 
for these quantities. We see that the correlation between every pair of layers is negligible since the credible intervals are 
centered at zero, which is the expected behavior for data with no correlation structure.
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Fig. 8. 95% credible intervals and posterior means for all pairwise network correlations ρ j, j′ . Left panel: Bank wiring room data (participation in horseplay, 
network 1; participation in arguments about open windows, network 2; friendship, network 3; and antagonistic behavior, network 4). Right panel: Synthetic 
data.

Fig. 9. Multilayer network data yi,i′, j and probability of interaction posterior means E
(

ϑi,i′, j | Y
)

, for the bank wiring room data.

4.1.4. Model fit
We assess our MNLPM fit using both in-sample and out-of-sample metrics. Our in-sample assessment relies on two 

approaches. First, we compare the observed data yi,i′, j against the corresponding probability of interaction posterior means 
E

(

ϑi,i′, j | Y
)

. We see in Fig. 9 that point estimates concur with the raw data, which clearly suggests that the model fits the 
data well in terms of reproducibility.

Now, following Gelman et al. (2013), we further explore the in-sample fit of each model by replicating pseudo-data from 
the fitted model and calculating a variety of summary statistics for each sample, whose distributions are then compared 
against their values in the original sample. Fig. 10 shows credible intervals along with point estimates for a set of relevant 
network measures, including the density, assortativity, and clustering coefficient, among others (see Kolaczyk and Csárdi 
(2014) for details about these structural summaries). Note that the model appropriately captures these structural features 
(perhaps with the exception of the assortativity in Antagonism), since observed values belong to the corresponding credible 
intervals; even most of the estimates virtually coincide with the observed values. Thus, pseudo-data generation also provides 
evidence of proper in-sample properties in favor of our model. Finally, the out-of-sample predictive performance of the 
model is presented in Section 5.
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Fig. 10. 95% credible intervals, posterior means (black circle), and observed values (red square) associated with the empirical distribution of a battery of 
summary statistics, based on 10,000 replicas of the bank wiring room dataset (participation in horseplay, network 1; participation in arguments about open 
windows, network 2; friendship, network 3; and antagonistic behavior, network 4).

4.2. Friendship data

In this section we develop a formal test to assess the level of “agreement” (as opposed to “accuracy”, which requires the 
definition of an external “gold standard”), between an actor’s self perception of their own position in a social environment 
and that of other actors embedded in the same system (e.g., Swartz et al. (2015), Sewell (2019), Sosa and Rodriguez (2021)). 
Our approach relies on the hierarchical structure of the MNLPM, which allows us to define a measure of cognitive agreement. 
The posterior distribution of such a measure makes possible to identify those individuals whose position in the social space 
agrees with the judgments of other actors.

A cognitive social structure (CSS) is defined by a set of cognitive judgments that subjects form about the relationships 
among actors (themselves as well as others) who are embedded in a common environment. Hence, each subject reports 
a full description of the social network structure. We consider a CSS reported by Krackhardt (1987) in which I = 21 man-
agement personnel in a high-tech machine manufacturing organization were observed in order to evaluate the effects of 
a recent management intervention program. Each person was asked to fill out a questionnaire indicating not only who 
he/she believes his/hers friends are, but also his/her perception of others friendships. Thus, we have a collection composed 
of J = 21 undirected binary networks Y1, . . . , YI , with Y j = [yi,i′, j], defined over a common set of I = 21 actors, such that 
yi,i′, j = 1 if i and i′ are friends of each other, and yi,i′, j = 0 otherwise. Some attribute information about each executive was 
also available, including corporate level (president, vice-president, or general manager), and department membership (there 
are four departments labeled from 1 to 4; the CEO is not in any department). Such information can potentially be included 
in the analysis (see Section 7 for details).

Part of these multilayer network data along with the “consensus” network are represented in Fig. 11. In this context, 
there is a link present between two actors according to the consensus if at least half of the personnel have reported 
that link. Note that even though the variability on the perceptions is not negligible, there are some commonalities across 
networks. For instance, more than half of the management personnel believes that actors 2 and 18 (both vice-presidents), 
actors 21 (vice-president) and 17 (manager) both in department 2, and actors 14 (vice-president) and 3 (manager) both 
in department 3, are friends. Furthermore, managers 3, 8, 9, and 20 only report less than six relations each, and manager 
9, who only recognizes four friendships, is the only executive that considers himself with no friends. Senior executives 
(president and vice-presidents) report networks with more than 20 connections each.

Now, we describe the “popularity” of each executive in terms of how connected they are. Top panel in Fig. 12 summarizes 
the degree distribution of actors across networks. In general, we see that all the executives perceive themselves as more 
popular than what they actually are according to the general opinion, with the exception of actors 8 and 9. On the other 
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Fig. 11. Visualization of some networks in the friendship CSS data corresponding to actors 7, 14, and 17, along with the consensus network. Vertex shape 
indicates the executive’s level in the company (star: president, actor 7; square: vice-presidents, actors 2, 14, 18, 21; and circles: managers), whereas vertex 
color indicates the executive’s department in the company (the president does not belong to any department).

Fig. 12. Top panel: Normalized degree distribution across networks. The i-th boxplot summarizes the distribution of the degree for all reporters except i, 
while the self-perceived degree is represented by a triangle (△) and the respective degree in the consensus network by a cross (×). Bottom panel: 95% 
credible intervals and posterior means for the distribution of the personal assessment parameters δi . Thicker lines correspond to credible intervals that do 
not contain zero. The normalized degree centrality is defined as the degree divided by the maximum possible degree.

hand, actors 1, 2, 19, and 21 are perceived by the personnel as the executives with most connections. We also highlight the 
case of actors 10 and 17 who are highly egocentric in comparison with the consensus; in particular, actor 10 is perceived 
with no friends at all, but this actor believes just the opposite.
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Fig. 13. Posterior means of procrustes-transformed latent positions along the two dimensions with highest variance for actor 17 (circled). Left panel: As 
perceived by actor 17, E

(

ũi,17 | Y
)

. Right panel: As perceived by all actors, E
(

ũ17,i | Y
)

.

Table 2

Multilayer network datasets for which a series of cross-validation experiments are 
performed using independently fitted LPMs (baseline) and our MNLPM. Note that
wiring and tech are widely analyzed in Section 4. Also, micro corresponds to the net-
work data of village number 10.

Acronym Reference Actors Layers Edges

wiring Roethlisberger and Dickson (2003) 14 4 79
tech Krackhardt (1987) 21 21 550
seven Vickers and Chan (1981) 29 3 222
girls Steglich et al. (2006) 50 3 119
aarhus Magnani et al. (2013) 61 5 620
micro Banerjee et al. (2013) 77 6 903

4.2.1. Perception assessment

We consider the agreement question in which we ask whether an individual’s perception of their relationships is the 
same as the perception that others hold. To answer this question, we define the assessment parameter δi , for i = 1, . . . , I , 
as the difference between subject i’s self-assessment and the mean assessment of subject i by others, i.e.,

δi =
∥

∥

∥
ũi,i

∥

∥

∥
−

∥

∥

∥

1

I − 1

∑

j �=i

ũi, j

∥

∥

∥
,

where ũi, j is the Procrustes-transformed version of ui, j . This quantity is an effort to parametrize the accuracy of self-
assessment in perceiving ties.

Bottom panel in Fig. 12 provides credible intervals along with point estimates for the personal assessment parameters 
δ1, . . . , δI , based on B = 10, 000 samples of the posterior distribution obtained after thinning the original Markov chains 
every 10 observations and a burn-in period of 100,000 iterations, associated with the value of K that optimizes the WAIC

(K = 6). We see that most actors have a slightly elevated view of themselves in terms of their capacity to befriend others, 
whereas very few have a negative view. On the other hand, actors 10, 15, 17, and 19 have a significant inflated perception of 
their ability to form friendship ties. Note that the results of this test are quite consistent with the exploratory data analysis 
discussed previously.

Finally, in order to exemplify the social behavior for an unskillful actor in perceiving relations, we show in Fig. 13
Procrustes-transformed latent positions estimates along the two dimensions with highest variance for actor 17 (who clearly 
has a misleading view of his/hers surroundings according to the test), as perceived by this actor, E

(

ũi,17 | Y
)

, and as per-
ceived by all actors (including him/herself), E

(

ũ17,i | Y
)

. These plots are consistent with those from Fig. 12. Actor 17 see 
him/herself in quite a “central” position of the friendship relations; however, according with the general opinion, actor 17 
is clearly isolated from the others. This is again consistent with the test showed in Fig. 12.

5. Prediction

As an additional goodness-of-fit assessment, we carry out cross-validation experiments on several multilayer network 
datasets (see Table 2) exhibiting different kinds of actors, sizes, and relations. More specifically, we performed a five-fold 
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Table 3

Mean and SD AUCs corresponding to the prediction of missing links in a series of 
CV experiments to assess the predictive performance of IFLPM, GMLPM, MNLPM, and 
LSJM, using each dataset provided in Table 2.

Dataset Statistic AUC

IFLPM GMLPM MNLPM LSJM

wiring Mean 0.905 0.823 0.895 0.928
SD 0.031 0.031 0.029 0.068

tech Mean 0.804 0.882 0.904 0.814
SD 0.017 0.025 0.022 0.020

seven Mean 0.888 0.957 0.958 0.977
SD 0.006 0.015 0.014 0.016

girls Mean 0.781 0.879 0.882 0.989
SD 0.044 0.046 0.052 0.002

aarhus Mean 0.922 0.926 0.949 0.917
SD 0.021 0.013 0.009 0.015

micro Mean 0.773 0.936 0.932 0.925
SD 0.014 0.012 0.013 0.011

cross-validation (CV) in which five randomly selected subsets of roughly equal size in the dataset are treated as missing and 
then predicted using the rest of the data. Specifically, the relational values are partitioned into five subsets, and the data 
in those subsets are predicted after training the model on each of the complements of those subsets (e.g., Kolaczyk and 
Csárdi (2014)). We carry out such a prediction based on the posterior predictive mean of the missing edges conditional on 
the training data ignoring any sampling pattern, i.e., unobserved values are considered missing at random (MCA; e.g., Hoff 
(2008)). The case where the pattern of unobserved edges depends on the unobserved edges themselves is beyond the scope 
of this paper. Nonetheless, for what it’s worth, all models are compared under the same framework. Under a MCA setting, 
handling missing data is straightforward under any MCMC sampling scheme, since the full conditional distributions for the 
model parameters remain unchanged using both observed data and current missing data values Rubin (1976). Thus, we 
adjust our sampling algorithms by introducing an additional step, in which we draw first missing edges from the sampling 
distribution (given the value of the rest of the parameters at the current iteration), and then, once the missing links have 
been sampled (and therefore the full dataset is complete), the rest of the algorithm proceeds naturally as before (e.g., Sewell 
and Chen (2015)).

We summarize our findings in Table 3, where we report the average area under the receiver operating characteristic 
curve (AUC) for each dataset described in Table 2. Specifically, we report the AUC for the model with the optimal value of 
K according to the WAIC criteria following the model fitting described above. The values correspond to the prediction of 
missing links using independently fitted LPMs (IFLPM), our MNLPM, and also, a variant of MNLPM that is very reminiscent 
of Gollini and Murphy (2016). The latter, referred to as GMLPM, considers unique latent positions with no hierarchical 
structure in such a way that ϑi,i′, j = �(ζ j − eθ j‖ ui − ui′ ‖). Furthermore, we also take into account the “exact” version 
of the latent space joint model (LSJM) by Gollini and Murphy (2016) using the lvm4net package (Gollini, 2019) that 
implements a variational EM algorithm Algorithm in order to estimate all the model parameters (we were very careful in 
tuning both hyperparameters as well as starting values through a comprehensive set of trials, since the algorithm is quite 
sensitive to these choices). In this context, the AUC is a measure of how well a given model is capable of predicting missing 
links (higher AUC values are better). We report the AUC for the models with the optimal value of K according to the WAIC

criteria. As before, our predictions are based on B = 10, 000 samples of the posterior distribution obtained after thinning 
the original Markov chains every 10 observations and a burn-in period of 100,000 iterations.

We see that both LSJM and MNLPM constitute the best alternatives in terms of predictive performance. Specifically, 
the out-of-sample performance of IFLPM and NMLPM is practically the same for wiring, as well as that of GMLPM and 
MNLPM for seven, girls, and micro. For all the other datasets, LSJM and MNLPM have a better predictive behavior than their 
competitors (excluding LSJM in the case of tech). Such an effect is particularly clear when fitting MNLPM as opposed to 
IFLPM, which provides even more evidence about why considering our hierarchical prior as in MNLPM is beneficial. On the 
other hand, not surprisingly. These results strongly suggest that the predictive potential as well as the inner flexibility of 
MNLPM are indeed comparable with or even better than those offered by alternative approaches.

6. Simulation study

6.1. Selection of the latent dimension

When fitting MNLPM, we treat the latent dimension K as known, but in practice, we typically face the model selection 
problem (recall our discussion in Section 3.2). Therefore, it is pertinent to study the performance of the WAIC in choosing 
the optimal value of K as well as the impact of K on model parameter estimation.

To this end, we examine several scenarios. Under the first scenario, 100 synthetic datasets are generated from the sam-
pling distribution given in (1), by letting the number of actors and layers be as in the wiring dataset, and setting the true 
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Table 4

Percentage of times a latent dimension K is chosen according to the WAIC, and mean running times 
(in seconds) using a eight core of an AMD A12-9730P processor, for 100 synthetic datasets indepen-
dently generated from MNLPM, when drawing 10,000 samples of the posterior distribution of MNLPM 
obtained after a burn-in period of 10,000 iterations, under six simulation scenarios.

Scenario Seed data Time True K Latent dimension K

1 2 3 4 5 6 7 8

1 wiring 130.5 3 1 40 41 13 5 0 0 0
2 tech 819.3 6 0 0 0 0 15 64 21 0
3 seven 255.4 7 0 0 1 3 17 25 54 0
4 girls 583.4 4 1 0 34 39 19 5 2 0
5 aarhus 1339.3 6 0 0 0 0 4 56 40 0
6 micro 2561.9 7 0 0 0 0 0 11 83 6

Fig. 14. AMSE empirical distributions for interaction probabilities when fitting MNLPM as described in Table 4, across a range of values of latent dimensions, 
under six simulation scenarios. The dashed, vertical line indicates the true value of K .

interaction probabilities to the corresponding posterior means obtained in our analysis of this seed dataset in Section 4.1
(notice that in doing so, we are implicitly fixing the true value of K to the optimal value suggested by the information 
criteria when the model was originally fitted). Similarly, in scenarios 2 to 6, the data are simulated taking as seeds all those 
datasets provided in Table 2, respectively. Thus, as opposed to assuming that K is known a priori, we use the WAIC to select 
the optimal value of K to fit MNLPM each time (100 times under each scenario). Then, once MNLPM is fitted using such 
latent dimension, we compute the average mean square error (AMSE) for the estimates of the interaction probabilities.

Table 4 shows the percentage of times a latent dimension K is labeled as optimal according to the WAIC. In general, 
we see that the information criteria tend to suggest the right value for K . However, there is a propensity to select a 
latent dimension either one unit smaller or higher than the true value. Either way, given the results presented in Fig. 14, 
we believe that the WAIC constitutes a powerful alternative to select a reasonable latent dimension, since there are no 
apparent differences between the chosen values of K in terms of parameter estimation. Indeed, the values that turned out 
to be favored by the information criteria minimize AMSE across dimensions.
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Table 5

AMSE empirical distribution summaries for interaction probabilities and latent positions, across a 
range of prior interaction probability values, for 100 synthetic datasets independently generated from 
MNLPM under fixed latent dimensions, under the same fitting conditions described in Table 4.

Scenario Seed data Statistic Basal probability ϑ0

0.01 0.05 0.10 0.15 0.20

Interaction probabilities

1 wiring Mean 0.1482 0.1482 0.1479 0.1485 0.1532
SD 0.0135 0.0144 0.0144 0.0140 0.0162

2 tech Mean 0.1065 0.1063 0.1057 0.1055 0.1062
SD 0.0028 0.0027 0.0028 0.0027 0.0028

3 seven Mean 0.1144 0.1141 0.1132 0.1134 0.1139
SD 0.0072 0.0067 0.0069 0.0066 0.0067

4 girls Mean 0.0715 0.0718 0.0717 0.0716 0.0727
SD 0.0040 0.0042 0.0042 0.0039 0.0045

5 aarhus Mean 0.0855 0.0855 0.0854 0.0853 0.0855
SD 0.0027 0.0024 0.0027 0.0024 0.0028

6 micro Mean 0.0614 0.0616 0.0614 0.0613 0.0617
SD 0.0033 0.0033 0.0034 0.0030 0.0029

Latent positions

1 wiring Mean 0.1023 0.1029 0.1083 0.1169 0.1919
SD 0.0238 0.0226 0.0321 0.0473 0.0771

2 tech Mean 0.2263 0.2254 0.2150 0.2117 0.2313
SD 0.0314 0.0311 0.0308 0.0296 0.0339

3 seven Mean 0.6599 0.6502 0.6021 0.6093 0.6314
SD 0.0643 0.0641 0.0677 0.0883 0.0688

4 girls Mean 0.6447 0.7803 0.7722 0.7849 0.9058
SD 0.2458 0.3177 0.3576 0.3020 0.3405

5 aarhus Mean 0.7482 0.7116 0.7554 0.7968 0.7535
SD 0.2309 0.2046 0.2487 0.2617 0.2186

6 micro Mean 0.9695 0.9814 0.9772 0.9726 0.9825
SD 0.0958 0.0996 0.0817 0.0848 0.0893

6.2. Sensitivity analysis

Our protocol for carrying out a sensible choice of hyperparameters heavily relies on the basal probability ϑ0 , the prior 
probability of observing an edge between any two actors (recall our discussion in Section 2.2). Here, we consider the effect 
of varying ϑ0 on the posterior estimates of interaction probabilities {ϑi,i′, j}, latent positions {ui, j,k}, and network correlations 
{ρ j, j′ }.

In what follows, we consider again the simulation strategy implemented in our previous experiment, but fixing the latent 
dimension K to its true value (see column four in Table 4), with the aim of examining a substantial range of ϑ0 values from 
low to high (recall we use a parsimonious value of ϑ0 = 0.10 in all the data analyses provided in Section 4). Therefore, 
under each scenario, we generate 100 synthetic datasets, and then, MNLPM is fitted using ϑ0 ∈ {0.01, 0.05, 0.10, 0.15, 0.20}, 
which allow us to assess the robustness of our model to the choice of ϑ0 . Finally, we complete the assessment by computing 
the AMSE for the quantities of interest.

Note that our strategy provides us with a sense of how well the model behaves in terms of recovering the quantities of 
interest because we have knowledge of the “true” model parameters (otherwise we would not have been able to compute 
the AMSE). Indeed, each of the 1,200 synthetic datasets considered here were generated from setting the model parameters 
to the corresponding posterior means obtained in our analysis of the seed datasets. Therefore, we do have an indication 
about how reliable our model parameter estimates are in comparison with the “truth”, across a range of different prior 
specifications.

Results are shown in Tables 5 and 6. In general, for each set of parameters, we see that estimates tend to be quite 
stable, since both the mean AMSE and SD AMSE remain roughly constant across ϑ0 values. We make this behavior evident 
graphically in Fig. 15, by displaying the AMSE distribution of the interaction probabilities for every value of ϑ0 under each 
scenario. These findings strongly suggest that our approach is quite robust to the choice of ϑ0 , and are also quite comforting, 
since even non-identifiable quantities present relatively low AMSE values.

7. Discussion

This paper presents a novel approach to modeling multilayer network data with a method that encourages the flow of 
information across networks, as opposed to an independent characterization of each of them. Our proposal is based on a 
natural hierarchical extension of a latent space distance model, which provides a direct description of actors’ roles within 
and across networks at global and specific levels. Furthermore, our experiments provide sufficient empirical evidence to 
establish that our approach is highly competitive in terms of prediction and goodness-of-fit.
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Table 6

AMSE empirical distribution summaries for network correlations, across a range of prior interaction 
probability values, for 100 synthetic datasets independently generated from MNLPM under fixed la-
tent dimensions, under the same fitting conditions described in Table 4.

Scenario Seed data Statistic Basal probability ϑ0

0.01 0.05 0.10 0.15 0.20

Network correlations

1 wiring Mean 0.1043 0.1055 0.1037 0.1114 0.1305
SD 0.0497 0.0493 0.0526 0.0549 0.0647

2 tech Mean 0.0850 0.0846 0.0888 0.0937 0.0888
SD 0.0338 0.0325 0.0373 0.0401 0.0352

3 seven Mean 0.0724 0.0659 0.0495 0.0539 0.0612
SD 0.0380 0.0307 0.0294 0.0327 0.0333

4 girls Mean 0.0325 0.0259 0.0305 0.0298 0.0590
SD 0.0716 0.0140 0.0348 0.0391 0.1324

5 aarhus Mean 0.0575 0.0545 0.0599 0.0552 0.0591
SD 0.0507 0.0196 0.0542 0.0211 0.0478

6 micro Mean 0.0208 0.0223 0.0191 0.0181 0.0179
SD 0.0157 0.0215 0.0159 0.0123 0.0128

Fig. 15. AMSE empirical distributions for interaction probabilities when fitting MNLPM as described in Table 5, across a range of prior interaction probability 
values, under six simulation scenarios.

From the literature review presented in Section 1, we highlight that a non-negligible number of hierarchical approaches 
in the context of multilayer network data have been successfully postulated in the past. In particular, our approach may 
resemble some hierarchical ideas proposed first in the prolific work by D’Angelo and collaborators (e.g., D’Angelo et al. 
(2020a), D’Angelo et al. (2019), D’Angelo et al. (2020b)). However, there are certainly substantial differences. For instance, 
in order to make fewer approximation steps in the estimation procedure, Gollini and Murphy (2016) consider the squared 
Euclidean measure in latent space instead of the Euclidean distance used in Hoff et al. (2002) and in our approach. On the 
other hand, we simply consider conditionally independent univariate Bernoulli random draws, as opposed to a multivariate 
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Bernoulli likelihood as in Salter-Townshend and McCormick (2017). Finally, D’Angelo et al. (2019) consider subject-specific 
latent positions, while we regard them as subject-layer-specific and embedded into a two-stage prior distribution; also, 
D’Angelo et al. (2019) employ sender and receiver effects regarding to both nodes and networks (either null, constant or 
variable) in addition to view-specific intercepts, whereas we merely rely on the latter. Thus, we exhort the reader to be 
aware of such differences (and surely many others not mentioned here), and pursue the model that accommodates better 
to the problem at hand.

Our MNLPM is susceptible to many generalizations. First, the model can be extended to represent patterns in the data 
related to known covariates by letting ϑi,i′, j = �(xT

i,i′ζ j − eθ j‖ ui, j − ui′, j‖ ), where xi,i′ = (xi,i′,1, . . . , xi,i′,P ), in addition to 
a global intercept, is a vector of predictors that incorporates known attributes associated with actors i and i′ , and ζ j =
(ζ j,1, . . . , ζ j,P ) is an unknown vector of fixed effects. Furthermore, in order to represent more general combinations of 
structural equivalence and homophily in varying degrees, it is also possible to consider other types of latent effects as in 
a factorial model, by letting ϑi,i′, j = �(ζ j + ui� jui′ ), where � j = diag(λ j,1, . . . , λ j,K ) is a K × K diagonal matrix. Lastly, 
the model can also be modified to handle undirected networks by distinguishing latent “sender” positions, u i, j , and latent 
“receiver” positions, v i, j , which leads to ϑi,i′, j = �(ζ j − eθ j‖ ui, j − v i′, j‖ ).

In the same spirit of Green and Hastie (2009), we can also conceive a trans-dimensional version of the model that treats 
the latent dimension K as a model parameter (as opposed to a fixed pre-specified quantity), which is quite challenging aside 
from the computational complexity, since in a varying-dimension case it is not clear how to provide a meaningful inter-
pretation to the latent dimensions. Moreover, following Guhaniyogi and Rodriguez (2020), a truncation of a non-parametric 
process can be also incorporated into the model, but based on the authors’ experience, results are likely to be quite similar.

Also, note that social positions might exhibit clustering patterns, which can be modeled directly by considering cluster 
assignment parameters ξ1, . . . , ξI into the hierarchical specification of the model through a Categorical-Dirichlet prior (e.g., 
Handcock et al. (2007), Krivitsky and Handcock (2008), Krivitsky et al. (2009)). Specifically, we can assume that all the actors 
in the system are clustered into H groups, each of which occupies a position ϕh in the social space, h = 1 . . . , H . In this 
way, we can think of actor i’s average position ηi as a Normal deviation from the group position to which it belongs, i.e., 

ηi | {ϕh}, κ2, ξi
ind∼ NK

(

ϕξi
,κ2I

)

, where ξi = h means that actor i belongs to cluster h. Nonparametric Bayes approaches in the 
same spirit of Rodriguez (2015) and D’Angelo et al. (2019) are also possible.

Finally, we recommend consider alternative inference methods in order to account for “big networks”, which is currently 
an active research area in computational statistics (e.g., Gollini and Murphy (2016), Ma et al. (2020), Spencer et al. (2020), 
Aliverti and Russo (2020)).
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Appendix A. MCMC algorithm

The posterior distribution is given by:

p(ϒ | Y) =
∏

j,i<i′
Ber

(

yi,i′, j | �
(

ζ j − eθ j ‖ui, j − ui′, j‖
))

×
∏

i, j

NK

(

ui, j | ηi,σ
2I

)

×
∏

j

N1

(

θ j | μθ ,τ
2
θ

)

×
∏

j

N1

(

ζ j | μζ ,τ 2
ζ

)

× NK

(

ηi | ν,κ2I
)

× IG

(

σ 2 | aσ ,bσ

)

× N1

(

μθ |mθ , v
2
θ

)

× IG

(

τ 2
θ | aθ ,bθ

)

× N1

(

μζ |mζ , v
2
ζ

)

× IG

(

τ 2
ζ | aζ ,bζ

)

× N1 (ν | mν ,Vν ) × IG

(

κ2 | aκ ,bκ

)

.

For a given set of fixed hyperparameters, aσ , bσ , aζ , bζ , aθ , bθ , aκ , bκ , mζ , vζ , mθ , vθ , mν , Vν , the algorithm proceeds 
by generating a new state ϒ(b+1) from a current state ϒ(b) , b = 1, . . . , B , as follows:

1. Sample u(b+1)
i, j , i = 1, . . . , I , j = 1, . . . , J , according to an adaptive Metropolis-Hastings algorithm with the full condi-

tional distribution:

p(ui, j | rest) ∝
∏

i′:i<i′
Ber

(

yi,i′, j | �(ζ j − eθ j‖ui, j − ui′, j ‖)
)

×
∏

i′:i>i′
Ber

(

yi′,i, j | �(ζ j − eθ j‖ui′, j − ui, j ‖)
)

× NK (ui, j | ηi,σ
2I) .
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2. Sample η(b+1)
i , i = 1, . . . , I , from:

ηi | rest∼ NK

⎛

⎝

[

1

κ2
+ J

σ 2

]−1
⎡

⎣

1

κ2
ν + 1

σ 2

∑

j

ui, j

⎤

⎦ ,

[

1

κ2
+ J

σ 2

]−1

I

⎞

⎠ .

3. Sample (σ 2)(b+1) from:

σ 2 | rest∼ IG

⎛

⎝aσ + I J K

2
,bσ + 1

2

∑

i, j

(ui, j − ηi)
T(ui, j − ηi)

⎞

⎠ .

4. Sample ν(b+1) from:

ν | rest∼ NK

(

[

V−1
ν + I

κ2
I

]−1
[

V−1
ν mν + 1

κ2

∑

i

ηi

]

,

[

V−1
ν + I

κ2
I

]−1
)

.

5. Sample (κ2)(b+1) from:

κ2 | rest∼ IG

(

aκ + I K

2
,bκ + 1

2

∑

i

(ηi − θ)T(ηi − θ)

)

.

6. Sample θ (b+1)
j , j = 1, . . . , J , according to an adaptive Metropolis-Hastings algorithm with the full conditional distribu-

tion:

p(θ j | rest) ∝
∏

i,i′ :i<i′
Ber

(

�(ζ j − eθ j ‖ui, j − ui′, j ‖)
)

× N1(θ j | μθ ,τ
2
θ ) .

7. Sample μ(b+1)
θ from:

μθ | rest ∼ N1

⎛

⎝

[

1

v2θ
+ J

τ 2
θ

]−1 [

mθ

v2θ
+

∑

j θ j

τ 2
θ

]

,

[

1

v2θ
+ J

τ 2
θ

]−1
⎞

⎠ .

8. Sample (τ 2
θ )(b+1) from:

τ 2
θ | rest ∼ IG

⎛

⎝aθ + J

2
,bθ + 1

2

∑

j

(θ j − μθ )
2

⎞

⎠ .

9. Sample ζ (b+1)
j , j = 1, . . . , J , according to an adaptive Metropolis-Hastings algorithm with the full conditional distribu-

tion:

p(ζ j | rest) ∝
∏

i,i′ :i<i′
Ber

(

�(ζ j − eθ j‖ui, j − ui′, j ‖)
)

× N1(ζ j | μζ ,τ 2
ζ ) .

10. Sample μ(b+1)
ζ from:

μζ | rest ∼ N1

⎛

⎝

[

1

v2ζ
+ J

τ 2
ζ

]−1 [

mζ

v2ζ
+

∑

j ζ j

τ 2
ζ

]

,

[

1

v2ζ
+ J

τ 2
ζ

]−1
⎞

⎠ .

11. Sample (τ 2
ζ )(b+1) from:

τ 2
ζ | rest ∼ IG

⎛

⎝aζ + J

2
,bζ + 1

2

∑

j

(ζ j − μζ )
2

⎞

⎠ .

Appendix B. Notation

The cardinality of a set A is denoted by |A|. If P is a logical proposition, then 1 {P} = 1 if P is true, and 1 {P} = 0 if P is 
false. ⌊x⌋ denotes the floor of x, whereas [n] denotes the set of all integers from 1 to n, i.e., {1, . . . , n}. The Gamma function 
is given by Ŵ(x) =

∫ ∞
0 ux−1 e−u du.

Matrices and vectors with entries consisting of subscripted variables are denoted by a boldfaced version of the letter 
for that variable. For example, x = (x1, . . . , xn) denotes an n × 1 column vector with entries x1, . . . , xn . We use 0 and 1 to 
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denote the column vector with all entries equal to 0 and 1, respectively, and I to denote the identity matrix. A subindex in 
this context refers to the corresponding dimension; for instance, In denotes the n × n identity matrix. The transpose of a 
vector x is denoted by xT; analogously for matrices. Moreover, if X is a square matrix, we use tr(X) to denote its trace and 
X−1 to denote its inverse. The norm of x, given by 

√
x

T
x, is denoted by ‖x‖.
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