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In database management, record linkage aims to identify multiple records that correspond 
to the same individual. Record linkage can be treated as a clustering problem in which 
one or more noisy database records are associated with a unique latent entity. In contrast 
to traditional clustering applications, a large number of clusters with a few observations 
per cluster is expected in this context. Hence, a new class of prior distributions based on 
allelic partitions is proposed for the small cluster setting of record linkage. The proposed 
prior facilitates the introduction of information about the cluster size distribution at 
different scales, and naturally enforces sublinear growth of the maximum cluster size – 
known as the microclustering property. In addition, a set of novel microclustering conditions 
are introduced in order to impose further constraints on the cluster sizes a priori. The 
performance of the proposed class of priors is evaluated using simulated data and three 
official statistics data sets. Moreover, different loss functions for optimal point estimation of 
the partitions are compared using decision-theoretical based approaches recently proposed 
in the literature.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

With the current stream of data, collection and integration of information from multiple sources has become imperative. 
The process of merging databases and/or removing duplicate records is known as record linkage (RL) (Christen, 2012). This 
is a challenging problem considering that databases often contain corrupted data and lack common unique identifiers across 
files. Areas of application where RL tasks are prevalent, include public health (Gutman et al., 2013; Hof et al., 2017), human 
rights (Sadinle, 2014, 2017, 2018), official statistics (Winkler, 2014; Kaplan et al., 2018; Wortman, 2019), and fraud detection 
and national security (Vatsalan et al., 2017).

The seminal work of Fellegi and Sunter (1969) is the classical reference for a probabilistic approach to identifying links 
between two files, with a recent extension to three files introduced in Sadinle and Fienberg (2013). In particular, these 
approaches rely on record pair similarity weights to determine sets of matches and non-matches. Other work involving the 
merge of two files includes Belin and Rubin (1995), Fienberg et al. (1997), Larsen and Rubin (2001), Tancredi and Liseo 
(2011) and Gutman et al. (2013). A known caveat of these techniques is that they do not easily generalize to either multiple 
files or duplicate detection within files. In order to deal with more general scenarios, the RL problem can be viewed as 
a clustering task in which one or more noisy database records that possibly represent the same latent entity are grouped 
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together. From this point of view, an important feature of RL applications is that, generally, a large number of clusters with 
a few observations per cluster is expected. From a model-based perspective, popular choices for clustering include finite 
mixture models and Dirichlet/Pitman-Yor process mixture models (Müller and Rodriguez, 2013; Casella et al., 2014; Miller 
and Harrison, 2018). Although these models have been used in all sorts of applications, including RL (Bhattacharya and 
Getoor, 2006), they are not well suited for problems with small clusters. Unlike models exhibiting infinitely exchangeable 
clustering features, models specifically conceived for RL need to generate clusters with a small number of records, even 
as the size of the data increases (Miller et al., 2015). Within the Bayesian framework, recent advances in latent variable 
modeling and clustering methods for RL include those of Sadinle (2014), Steorts et al. (2015, 2016). These approaches, 
however, have the limitation of assuming a uniform prior on the linkage structure which requires strong parameter tuning 
to achieve sensible RL results.

In order to formulate more appropriate priors for the small cluster setting of RL, Miller et al. (2015) introduce the concept 
of microclustering, in which the size of the largest cluster of the partition is required to grow sublinearly with the number 
of records. Zanella et al. (2016) extended the work of Miller et al. (2015) by introducing a class of Kolchin partition priors 
(KPPs) for the linkage structure (or cluster assignments) as a way to enforce the microclustering property. However, this 
formulation is limited by issues of interpretability and identifiability, and also lacks a full characterization of its asymptotic 
properties. More recently, Betancourt et al. (2020) improved on the weaknesses of the KPP models by proposing a class of 
prior distributions on random partitions that displays the microclustering property and other desirable characteristics, while 
preserving computational tractability.

In this paper, we expand on the existing work of microclustering by proposing a new prior distribution based on allelic 
partitions. This approach is inspired by the structure of the Ewens’s sampling formula (Crane et al., 2016), which in turn 
has strong connections with modern Bayesian nonparametric methods. Specifically, allelic partitions are an equivalent rep-
resentation of partitions which summarizes the number of clusters of each size. In contrast to the previous microclustering 
approaches, the most appealing feature of this framework for RL applications is being able to handle directly the distribution 
of the cluster sizes in a natural fashion. Our proposed class of priors is general, however, and can be adapted and used in 
other microclustering problems (Bloem-Reddy et al., 2018; Klami and Jitta, 2016).

The remainder of the paper is organized as follows: Section 2 introduces notation and frames RL as a clustering problem. 
Section 3 discusses in detail the concept of microclustering, introduces two new microclustering properties that require 
stronger conditions, and presents a more detailed review of previous work. Section 4 discusses our approach based on 
allelic partitions including inference details. Then, Sections 5 and 6 explore the performance of our approach compared to 
the ESC models on five simulated data scenarios and three RL applications, respectively. For the applications, we also explore 
alternatives for optimal point estimation of the partitions. Finally, we discuss our findings and future work directions in 
Section 7.

2. Record linkage as a clustering task

In this section, we introduce some notation and describe RL from a clustering perspective using a bipartite graph rep-
resentation of the problem (Steorts et al., 2016). Consider a collection of J ≥ 2 files. Let xi, j = (xi, j,1, . . . , xi, j,L) be the 
attribute data associated with the i-th record in file j, and let X j = [xi, j,ℓ] be the corresponding n j × L array for every j. 
For simplicity, we assume that every record contains L fields in common, field ℓ having Dℓ levels. Attribute data of this sort 
may be considered as either categorical or string-valued but here we focus on a model for categorical data. Let us say, for 
instance, that data about gender, state of residency, and race regarding n j individuals in file j are available; in this scenario, 
xi, j is a categorical vector with dimension L = 3 whose entries have D1 = 2 (male and female), D2 = 51 (there are 51 states 
in the United States including DC), and D3 = 6 (White, Black or African-American, American Indian or Alaska Native, Asian, 
Native Hawaiian or Other Pacific Islander, and some other race) levels, respectively. Hence, we can think of records as L
dimensional vectors storing attribute information (L fields), while the j-th file is composed of n j records.

Now, let yk = (yk,1, . . . , yk,L) be the vector of “true” attribute values for the k-th latent individual, k = 1, . . . , K , where 
K is the total number of unique individuals in the J files (K could be as small as 1 if every record in every file refers 
to the same entity or as large as n =

∑

j n j if files do not share records at all). Hence, Y = [yk,ℓ] is an unobserved K × L

attribute matrix whose k-th row stores the attribute data associated with the k-th latent individual. Next, we define the 
linkage structure ξ = (ξ1, . . . , ξ J ), where ξ j = (ξ1, j, . . . , ξn j , j). Here, ξi, j is an integer from 1 to K indicating which latent 
individual the i-th record in file j refers to, which means that xi, j is a possibly-distorted measurement of yξi, j

. Such 
structure unequivocally defines a partition Cξ on {1, . . . , n}. To see this, notice that by definition, two records (i, j) and 
(i∗, j∗) correspond to the same individual if and only if ξi, j = ξi∗, j∗ . Therefore, Cξ is nothing more than a set composed of 
K disjoint non-empty subsets {C1, . . . , CK } such that ∪kCk = {1, . . . , n}, where each Ck is defined as the set of all records 
pointing to latent individual k. Hence, the total number of latent individuals K = K (ξ) is a function of the linkage structure; 
specifically, K = max{ξi, j}, since without loss of generality we label the cluster assignments with consecutive integers from 
1 to K . Cluster assignments ξi, j play a fundamental roll in our approach since they define a linkage structure between files.

Fig. 1 shows the linkage structure ξ as a bipartite graph in which each edge links a record to a latent individual. For 
instance, this figure shows that the sets of records x3,1 , x4,2 , x5,2 and x1,3 correspond to the same individual (y4). This 
toy example makes clear that linking records to a hypothesized latent entity is at its core a clustering problem where 
the main goal is to make inferences about the cluster assignments ξ . In contrast to other clustering tasks, however, we 
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Fig. 1. Bipartite graph representation of RL as a clustering task including records xi, j , latent true attributes yk , and the linkage structure (edges) ξ .

aim to develop an approach that lets the number of records in each cluster be small even for large data sets – known 
as microclusters, which is characteristic of RL applications (Miller et al., 2015; Zanella et al., 2016). Note that the bipartite 
graph representation allows for duplicates across and within databases. In practical terms this implies that multiple files 
can be combined into a single file of size n =

∑

j n j , and we can treat the problem as one of deduplication. Hence, for the 
remainder of the paper, we drop the file subindex in the notation and simply refer to the attribute data associated with 
record i as xi , and the linkage structure as ξ = (ξ1, . . . , ξn).

As far as the linkage structure ξ is concerned, previous approaches have assumed a uniform prior on ξ conditional on 
the size of the latent population which is always unknown (Steorts et al., 2016). The uniform prior on ξ induces a prior 
distribution over partitions where any two partitions with the same number of latent entities are equally likely a priori. 
Although this prior is convenient because it greatly simplifies computation of the posterior, it requires strong tuning of the 
latent population size which in turn results in a highly informative prior. For this reason, we devote Sections 3.1 and 4
(the latter introduces our proposal) to characterize prior distributions on partitions that can be used as default priors and 
intrinsically induce the microclustering behavior desired for RL tasks.

3. Microclustering

Finite mixture models and Dirichlet/Pitman-Yor process mixture models are widely used in many clustering applications 
(Miller and Harrison, 2018). These models, however, display a sublinear growth of the number of clusters with respect to 
the number of records. Such a property is unappealing in the context of RL problems because we need to generate a large 
number of clusters, each with a negligible number of records. In order to formulate more realistic models for de-duplication, 
Miller et al. (2015) introduce the microclustering property. Formally, the definition states the following:

Definition 1. A random partition Cξ of n elements is said to satisfy the microclustering property if Mn
n

p
−→ 0 as n → ∞, 

where Mn = max
{

|C | : C ∈ Cξ

}

represents the size of the largest element in Cξ .

That is, the size of the largest cluster in the partition grows sublinearly with n, which in turn implies that the number 
of clusters grows linearly. Miller et al. (2015) and Zanella et al. (2016) argue that no model on partitions can exhibit the 
microclustering property, unless its parameters are allowed to vary with n. In addition, the authors show that in order to 
obtain nontrivial models exhibiting the microclustering property, we must sacrifice either finite exchangeability or projec-
tivity. In the context of random partitions, projectivity means that the distribution of a partition of n elements is the same 
as the distribution of a partition of m elements restricted to n, for 1 ≤ n <m. In Section 4, we follow Zanella et al. (2016) by 
sacrificing projectivity, which is less restrictive in the RL context where records are naturally exchangeable. A model for mi-

croclustering that sacrifices exchangeability in the context of data with a temporal component is presented in Di Benedetto 
et al. (2017).

Note, however, that Definition 1 does not necessarily imply that the size of the largest cluster is finite. Indeed, if for 
example E [Mn] ∼O(logn), a simple application of Markov’s inequality shows that

lim
n→∞

Pr

[

Mn

n
> ǫ

]

≤ lim
n→∞

1

ǫ

E [Mn]

n
=

1

ǫ
lim
n→∞

logn

n
= 0,

i.e., the microclustering property as initially defined in Miller et al. (2015) is satisfied even though the size of the clus-
ters is allowed to grow unboundedly (both a priori and a posteriori). Hence, in the sequel we refer to this as the weak 
microclustering property.

In order to impose further constraints on the cluster sizes a priori, we define the strong microclustering property as follows:

Definition 2. A random partition Cξ is said to satisfy the strong microclustering property if for any ǫ > 0, there exists finite 
M, N > 0 such that Pr [Mn > M] < ǫ for all n > N , where Mn represents the size of the largest element in Cξ .
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Evidently, the strong microclustering property implies the weak microclustering property (again, by a simple application
of Markov’s inequality), but not viceversa. However, one shortcoming of this definition is that controlling the size of the 
largest cluster a priori does not necessarily imply that we have controlled its size a posteriori. In RL applications, where we 
may have prior information about the size of the clusters, we might want to employ priors that impose stronger constraints. 
Therefore, we introduce the bounded microclustering property:

Definition 3. A random partition Cξ of n elements is said to satisfy the bounded microclustering property if, for some 
constant M∗ , Pr [Mn > M∗] = 0, for all n, where Mn represents the size of the largest element in Cξ .

By definition, 0 < Mn ≤ M∗ almost surely for all n, such that the bounded microclustering property implies both the 
strong and weak microclustering properties, and ensures that the same behavior holds a posteriori i.e. Pr [Mn > M∗ | X] = 0. 
This definition is related to the notion of size-constrained microclustering for finite mixtures discussed in Klami and Jitta 
(2016), which also assumes that the clusters sizes are bounded in a deterministic fashion. In the remainder of the paper we 
focus on defining priors that satisfy the bounded microclustering property.

3.1. Existing models for microclustering

The work of Zanella et al. (2016) introduced the idea of Kolchin partition priors (KPPs) as a way to enforce the weak 
microclustering property (Kolchin, 1971). This approach consists of placing a prior on the number of clusters, K ∼ κ , and 

then, given K , the cluster sizes S1, . . . , SK with Sk = |Ck| are modeled directly as S1, . . . , SK | K
iid
∼ µ. Here κ = (κs)

∞
s=1

and µ = (μs)
∞
s=1 are probability distributions over N = {1, 2, . . .}. In particular, the authors proposed two models: (a) the 

NBNB model where both κ and µ belong to the Negative-Binomial family, and a more flexible specification (b) the NBD 
model where κ belongs to the Negative-Binomial family and µ is modeled as a random probability vector with a Dirichlet 
distribution prior. Conditional on n =

∑K
k=1 Sk , it is straightforward to generate a set of cluster assignments ξ = (ξ1, . . . , ξn), 

which in turn induces a random partition Cξ = {C1, . . . , CK }.

One potential issue with this formulation is that the conditioning on n drastically effects the interpretability of κ and µ, 
making the elicitation process difficult when information is available a priori. Additional caveats of the KPPs also include a 
lack of identifiability and of a clear characterization of their asymptotic properties. In order to overcome these limitations, 
Betancourt et al. (2020) assumes an Exchangeable Sequence of Clusters (ESC) rather than an exchangeable sequence of data 
points. Under this construction, the prior distribution on a random partition Cξ only depends on µ = (μs)

∞
s=1 by implicitly 

conditioning the sequence of exchangeable clusters on the following event

En =

⎧

⎨

⎩

there exists k ∈ N such that

k
∑

j=1

S j = n

⎫

⎬

⎭

. (1)

Conditional on the occurrence of the event En , the random variable K is a function of (S1, S2, . . . ) defined as the unique 
positive integer such that 

∑K
j=1 S j = n. In this case, in contrast to the KPPs, the interpretation of µ as the distribution of the 

size of a randomly chosen cluster is not distorted by the direct conditioning on n =
∑K

k=1 Sk . However, generating samples 
a priori from the ESC models requires the use of a rejection sampler as described in Betancourt et al. (2020, Section 3.3.3). 
The authors specify two versions of the ESC models similar to those of Zanella et al. (2016): (a) the ESCNB model where 
µ = NegBin(a, q); and (b) the ESCD model where µ ∼ Dir(α, µ(0)), for α fixed and µ(0) = NegBin(a, q). The ESCD is inherently 
more flexible as it models µ as a random probability vector with a Dirichlet distribution prior. In both cases, the parameters 
a > 0 and q ∈ (0, 1) are assigned Gamma and Beta priors, respectively.

In a similar fashion to truncated implementations of traditional Dirichet/Pitman-Yor process mixtures, posterior com-

putations with the ESC models are carried out by generating only the first M components of µ i.e. µ = (μs)
M
s=1 , for M

large. Hence, from a practical perspective, the ESC priors have a similar flavor to the allelic partition priors that we in-
troduce next. Moreover, it is important to note that even though the ESC models were introduced under the scope of the 
weak microclustering property, they also satisfy the strong microclustering property when the expectation of µ is finite (i.e. 
∑∞

s=1 sμs < ∞). Our proposal, however, satisfies the bounded microclustering property provided in Definition 3 which is 
more desirable in practical applications.

In addition to these previous approaches constructed under the microclustering setting, the work of Aleshin-Guendel 
and Sadinle (2021) recently proposed a Bayesian model for the general setting of multifile record linkage and duplicate 
detection by constructing a structured prior for partitions that incorporates file information. This prior satisfies the bounded 
microclustering property but, unfortunately, direct interpretation of the prior on partitions is difficult because the construc-
tion is done conditional on the sizes of the data files. In this work, we evaluate the performance of our proposed prior for 
microclustering, introduced in Section 4, and compare it to the ESC models using both simulated and real data scenarios 
(see Sections 5 and 6). We limit our comparisons to the ESC models because, similar to our prior proposal, they belong to 
the class of defaults priors for partitions with microclustering properties.
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4. Allelic partition prior

In this section, we introduce a new class of prior distributions on the cluster assignments ξ based on allelic partitions. 
Let Cξ = {C1, . . . , CK } be the partition implicitly represented by ξ and let r = (r1, . . . , rn) be the allelic partition induced 
by Cξ , where ri denotes the number of clusters of size i in Cξ . For example, the set {1, 2, 3} yields five possible partitions: 
{{1, 2, 3}}, {{1}, {2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2}, {3}}; which correspond to three possible allelic partitions: (0, 0, 1), 
(1, 1, 0), (3, 0, 0). This example makes evident that, in general, each partition Cξ corresponds uniquely to an allelic partition 
r, but the converse is not true. Therefore, allelic partitions define equivalence classes on the space of partitions. The notion 
of allelic partitions will allow us to construct a flexible model for microclustering by assigning appropriate prior distributions 
on ri . The most appealing feature of this framework for RL applications is being able to explicitly calibrate the maximum 
cluster size and control the distribution of the cluster sizes.

Note that, from the definition of allelic partition, it follows directly that 
∑n

i=1 i ri = n and 
∑n

i=1 ri = K . Similarly to 
the KPP models (Zanella et al., 2016), the construction of the model based on allelic partitions entails conditioning of 
n. However, the limitations that arose in that case from this conditioning are overcome in this context by allowing the 
parameters of the prior distribution on ri to vary with n in a natural fashion (see Section 4.1). To further illustrate the 
concept of allelic partition, consider the Ewens-Pitman Prior (EPP, McCullagh and Yang, 2006), which is intrinsically related 
to the Dirichlet process. The probability mass function for the EPP is given by

p(ξ | θ) =
Ŵ(θ)

Ŵ(n + θ)
θ K

K
∏

k=1

Ŵ(Sk), (2)

where θ is an unknown positive parameter. Note that this prior can be factorized as

p(ξ | θ) = p(ξ | r) p(r | θ), (3)

where p(ξ | r) = 1
n!

∏n
i=1 i!

ri ri ! is the uniform distribution on all partitions that belong to the equivalence class represented 
by r, and

p(r | θ) =
n!

θ(θ + 1) · · · (θ + n − 1)

n
∏

i=1

θ ri

iri ri !
,

has support on all possible allelic partitions of the set {1, . . . , n}. This representation of the EPP directly motivates the 
structure of our allelic priors for microclustering. In particular we preserve the same structure for p(ξ | r) (which ensures 
that the prior is finitely exchangeable for any n), and replace p(r) with a distribution that places its probability on the kind 
of allelic partitions that are consistent with microclustering applications.

In particular, in the sequel we focus on the bounded microclustering property. Let M∗ = max {i ∈ [n] : rt = 0, for all t > i}, 
M∗ ≪ n, be the size of the largest cluster in Cξ , i.e., let M∗ represent the maximum number of times any one unique record 
can be repeated in the data set. Our strategy consists in fixing M∗ to a reasonable value, and then, placing a distribution on 
r that reflects our prior believes, such that Pr [rt = 0] = 1 for all t > M∗ . It should be clear that, by fixing M∗ , this approach 
satisfies the bounded microclustering property, and consequently the strong and weak properties as well. This type of hard 
constraint could be of particular practical use in RL scenarios where, due to the data collection mechanism, it is known a 
priori that there are no duplicates within databases. In that case, the maximum cluster size is expected to be restricted to 
the number of databases available for deduplication. In cases where there is no strong prior information about the size of 
the clusters or one wishes to be less restrictive a priori, the value of M∗ can be chosen to be relatively large to allow for 
more flexibility (see section 6 for illustrations). Moreover, the number of singletons and the number of latent individuals 
are easy to calibrate, which is very appealing for RL settings where prior information is available at such a scale.

4.1. Beta binomial allelic prior (BBAP)

In this section, we describe one possible specification of the distribution of the allelic partition for bounded microclus-

tering. In order to specify p(r), we first factorize the joint distribution as

p(r) = p(rM∗) p(rM∗−1 | rM∗) p(rM∗−2 | rM∗−1, rM∗) . . . p(r1 | r2, . . . , rM∗).

Moreover, we assume conditional Binomial distributions for the cluster sizes,

rM∗ ∼ Bin(⌊n/M∗⌋, θM∗) and rt | rt+1, . . . , rM∗ ∼ Bin(Q t(rt+1, . . . , rM∗), θt),

where the number of trials follow the recursive specification

Q t(rt+1, . . . , rM∗) =

⎢

⎢

⎢

⎣

⎛

⎝n −

M∗
∑

i=t+1

i ri

⎞

⎠

/

t

⎥

⎥

⎥

⎦ ,
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for t = 2, . . . , M∗ − 1. Finally, r1 = n −
∑M∗

i=2 i ri which means that r1 | r2, . . . , rM∗ ∼ δQ 1 . It is important to note that this 
particular specification yields cluster size distributions that are consistent with the definitions 

∑n
i=1 i ri = n and 

∑n
i=1 ri = K . 

For instance, for M∗ = 2, we can at most observe ⌊n/2⌋ clusters of size two in a data set of size n.
In addition, the parameters θt control the proportion of clusters of size t that we expect to observe in the partition. 

Because the parameters θ2, . . . , θM∗ play such a critical role in the model, we increase the versatility of the prior by letting 
θt ∼ Beta(at , bt), allowing greater control on both the prior mean and the prior variance of each rt . We refer to this prior 
formulation as the Beta Binomial Allelic Prior (BBAP).

As an example, consider the case of M∗ = 2. Here, it is straightforward to see that the corresponding allelic partition 
becomes r = (n − 2r2, r2, 0, 0, . . . , 0), which allow us to formulate a hierarchical prior for ξ only in terms of the number of 
clusters of size two (r2). Thus, if M∗ = 2 and we denote a2 = a and b2 = b, we have that

pBB AP (ξ | a,b) =
(n − 2r2)!2

r2 r2!

n!

Ŵ(⌊n/2⌋ + 1)

Ŵ(r2 + 1)Ŵ(⌊n/2⌋ − r2 + 1)

Ŵ(r2 + a)Ŵ(⌊n/2⌋ − r2 + b)

Ŵ(⌊n/2⌋ + a + b)

Ŵ(a + b)

Ŵ(a)Ŵ(b)
, (4)

where Ŵ(·) represents the gamma function. In this case, the expected number of singletons a priori is

E [r1] = n − 2
⌊n

2

⌋ a

a + b
≈

bn

a + b
,

with variance

Var [r1] = 4
⌊n

2

⌋(

a + b +
⌊n

2

⌋) ab

(a + b)2(a + b + 1)
.

As we discussed before, the number of singletons is one of the quantities for which there is often strong prior information 
in RL problems. Therefore, these expressions are key for prior calibration. In fact, more generally

E [rM∗ ] =
aM∗

aM∗ + bM∗

⌊ n

M∗

⌋

and

E [rt] =
at

at + bt

Q t+1
∑

st+1=0

· · ·

QM∗
∑

sM∗=0

Q tq (st+1, . . . , sM∗) ,

where

q (st+1, . . . , sM∗) = BetaBin(sM∗ | ⌊n/M∗⌋,aM∗ ,bM∗)

M∗−1
∏

k=t+1

BetaBin(sk | Q k,ak,bk), (5)

for Q k ≡ Q k(sk+1, . . . , sM∗ ) and t = 2, . . . , M∗ − 1. These expressions are too convoluted to be of real practical utility but 
could be easily computed via simulations. In the following section, we provide some practical guidelines to calibrate the 
hyperparameters of the model to prior knowledge in a simple manner.

4.2. BBAP calibration

In general, for RL applications where the percentage of duplication is low, we would like θt to decrease fast with t to 
reflect the fact that we expect most items to be singletons. On the other hand, when attempting to combine J files in 
which we expect substantial overlap, we would typically pick M∗ ≥ J and use relatively large values of θ J . For example, in 
the case M∗ = 2, given a prior probability of duplication π (often less than 0.3 in many deduplication settings) along with 
a corresponding coefficient of variation γ (e.g., γ = 0.5 for vague levels of precision), it is straightforward to see that by 
letting

a2 =
1− π(1− γ 2)

γ 2
and b2 = a2

(1− π)

π
,

we obtain the desired prior calibration. For M∗ > 2, a similar procedure can be implemented using numerical computations 
that leverage the recursive nature of the prior. More specifically, after providing a vector of prior probabilities for the cluster 
sizes π = (π2, . . . , πM∗ ) based on prior knowledge, the elicitation of the hyperparameters at and bt can be done recursively 
according to the coefficient of variation chosen by the practitioner. See Appendix A for details.

Considering that many RL applications display a distribution of cluster sizes with a ‘geometric like’ decay i.e. a large 
number of singleton clusters is expected (Sadinle, 2014, 2017; Steorts et al., 2016), we explore a default calibration of the 
BBAP that exhibits this behavior. The prior is calibrated assuming values for the prior probabilities of the clusters of each size 
from a truncated Geometric distribution, π = Geom(p). We also consider a truncated Negative Binomial, π = NegBin(r, p)
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with the purpose of assessing the sensitivity of the results to the prior calibration. Furthermore, in cases where the data 
collection mechanism naturally informs the maximum cluster size, for example merging J databases known to have no 
duplication within, we can choose M∗ = J to obtain sensible RL results. Note, however, that records within the same file 
can still be assigned to the same cluster. In particular, for the case of M∗ = 2 with no duplicates within, Sadinle (2017)
proposes a bipartite matching which imposes a one-to-one correspondence of records across the two files and eliminates 
the possibility of duplicates within files a priori. Because of the latter, the approach of Sadinle (2017) is more appropriate 
for this setting. Otherwise, for the multifile case when there is no strong prior information about the size of the clusters 
or one wishes to be less restrictive a priori, the value of M∗ can be chosen to be relatively large to allow the maximum 
cluster size to be estimated from the data without risk of truncation a priori. The choice of M∗ is important but its effect on 
posterior results also depends on the prior calibration. Sections 5 and 6 include illustrations of different prior calibrations 
and their effects on posterior inference. Refer to Appendix B for comparisons of the BBAP model to the approach of Sadinle 
(2017) and a detailed description of sensitivity of posterior results to values of M∗ for different prior calibrations.

4.3. Posterior inference for BBAP model

In order to obtain samples from the BBAP model a posteriori, we derive the probability distribution of a record being 
assigned to an existing or new cluster conditional on the current partition of the data and the prior parameters. This type 
of assignment rule has been widely used in the context of Dirichlet/Pitman-Yor processes and it is especially useful for 
computational tractability in sampling of random partitions. For non-projective models like the BBAP model, we refer to 
these cluster assignment probabilities as reallocation probabilities. Given the conditional EPPF in equation (3) and that

p(ξi | ξ−i, r) =
p(ξ | r)

p(ξ−i | r−i)

p(r)

p(r−i)
,

the reallocation probabilities for the BBAP model are given by

p(ξi = k | ξ−i, r−i) ∝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(|k| + 1)
r−i,|k|+1 + 1

r−i,|k|

p(r)

p(r−i)
if k = 1, . . . , K−i,

(r−i,1 + 1)
p(r)

p(r−i)
if k = K−i + 1 ,

(6)

where |k| = 1, . . . , M∗ − 1 is the size of cluster k, and r−i,|k| and K−i are the number of clusters of size |k| and the to-
tal number of clusters in Cξ \ i, respectively. While the term p(r)/p(r−i) cannot be readily simplified, its evaluation is 
straightforward and has a low computational cost.

Posterior inference using the BBAP is performed by introducing the corresponding likelihood terms of the RL model in 
the reallocation probabilities. Given that standard Gibbs sampling algorithms are too slow for large data sets with many 
small clusters, we utilize a modified version of the Chaperones Algorithm initially proposed in Miller et al. (2015) to obtain 
samples from the full conditional distribution of ξ . The Chaperones algorithm is similar in spirit to existing split–merge 
Markov chain sampling algorithms (Jain and Neal, 2004) but exhibits better mixing properties in microclustering settings. 
The modified version that we implement accelerates the convergence of the algorithm by using a non-uniform proposal 
to select the ‘chaperone records’ that favors records with common field values while still assigning probabilities greater 
than zero to all possible record pairs (Betancourt et al., 2020). In the following section, we describe a specific RL model 
formulation used to illustrate our prior proposal. Note, however, that our allelic partition approach is general and can be 
used with other RL models or adapted to other microclustering applications beyond RL.

4.3.1. Record linkage model

For the simulations and applications presented in the remainder of the paper, we follow the RL model proposed by 
Steorts et al. (2016). Here, each field is modeled depending on whether it is distorted or not. If xi,ℓ is not distorted, that 
particular field is left intact by giving it a point mass distribution at the true value; otherwise, a categorical (multinomial) 
distribution is placed over all the categories of that particular field. In summary, assuming that the attribute data xi,ℓ are 
conditionally independent given the cluster assignments ξi and the true population attributes yn,ℓ , we have that:

xi,ℓ | yξi ,ℓ, w i,ℓ,ϑℓ
ind
∼

{

δyξi ,ℓ
, w i,ℓ = 0;

Cat (ϑℓ) , w i,ℓ = 1,
(7)

where δa is the distribution of a point mass at a, w i,ℓ are distortion indicators, and ϑℓ is a Dℓ-dimensional vector of 

multinomial probabilities. We simply let w i,ℓ | ψℓ
ind
∼ Ber(ψℓ) where ψℓ represents the distortion probabilities of the fields, 

and fix ϑℓ at the empirical distribution of the data. By integrating w i,ℓ out, the likelihood in equation (7) is now:

xi,ℓ | yξi ,ℓ,ψℓ,ϑℓ
ind
∼ (1− ψℓ)δyξi ,ℓ

+ ψℓϑℓ. (8)
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Fig. 2. True allelic partitions for five simulated scenarios with K = 200 and n = 500,385,490,460,435, respectively.

In order to complete the model specification, we let yk,ℓ | ϑℓ
ind
∼ Cat(ϑℓ) and assign independent priors for the distortion 

probabilities of the fields, ψℓ
ind
∼ Beta(cℓ, dℓ). Finally, we utilize the ESC and BBAP microclustering priors for the linkage 

structure ξ . The distortion parameters ψℓ capture the noise of the data and their values are expected to remain small 
(usually below 10%) to obtain sensible RL results.

5. Simulation study

In this section, we explore the behavior of the proposed BBAP models, compared to the ESC models, in five different 
simulation scenarios. These scenarios are chosen to explore the flexibility of the microclustering priors and their ability to 
recover the true partition beyond the conventional ‘geometric like’ behavior assumed in many RL applications. In order to 
evaluate the sensitivity of the results to prior calibration, we use a default Geometric calibration, π = Geom(p) with p = 0.5

– denoted as BBAPG, as well as a truncated Negative-Binomial specification, π = NegBin(r, p) with r = 4 and p = 0.5 – 
denoted as BBAPNB. The parameter values of the Negative-Binomial specification reflect a prior mode for the distribution of 
cluster sizes between 2 and 3. In both cases, we use a coefficient of variation of γ = 0.25 to reflect relatively vague levels of 
precision in the calibrations (recall the discussion in Section 4.2). For the ESC models, we set α = 1, a ∼ Gamma (1,1), and 
q ∼ Beta (2,2). These values have been previously suggested as defaults and shown to work well (Betancourt et al., 2020). 
We also assume a Beta prior distribution with mean 0.01 and standard deviation of 0.01 for the distortion probabilities of 
the fields, ψℓ . For computational and comparison purposes, we work with a truncated version of the ESC models in which 
only the first M∗ components of µ are generated.

For the simulation, we generate ten data sets obtained from the combination of five different partitions of K = 200

clusters and two fixed values of the distortion probabilities of the fields – ψℓ = 0.01 and 0.05. The RL task is expected to 
become more challenging for higher levels of distortion of the fields. Fig. 2 displays the five partitions which yield datasets 
of sizes n = 500, 385, 490, 460, 435, respectively. All the data sets contain five fields of information with ten categories each 
generated uniformly at random.

For all the prior distributions, we set M∗ to be one and a half times the true maximum cluster size to generate the prior 
samples. Fig. 3 displays the true data partitions and prior samples from the two BBAP and ESC models for the data sets 
simulated with ψℓ = 0.05 (similar behavior is observed for ψℓ = 0.01). As Fig. 3 shows, scenarios (rows) 1 and 2 display 
uniform and geometric behavior of the partition, respectively, while scenarios 3 and 4 are more unconventional in that 
the proportion of singleton clusters is low compared to other cluster sizes. Finally, the cluster size distribution of the last 
scenario can be thought of as a mixture of the previous ones. The behavior of ESCNB and BBAPG in terms of the number of 
clusters of each size is quite similar, although the rate of decay for BBAPG seems to be faster. Furthermore, the behavior of 
the ESCD prior is quite different from that of the alternatives. In particular, ESCD induces very skewed marginal priors for 
the proportion of clusters of any given size, and favors configurations in which the most frequent cluster size is between 3 
and 4. Finally, BBAPNB distributes the proportion of clusters of any given size more evenly but favors cluster sizes between 
2 and 3 as expected from the parameter values used for the calibration.

Fig. 4 displays the posterior distribution over allelic partitions for each prior and simulated scenario, compared to the 
true cluster size distributions, for a distortion probability value of ψℓ = 0.05. Results for ψℓ = 0.01 are shown in Appendix E. 
In addition, Table 2 displays the posterior average Jensen-Shannon (JS) distance between the MCMC samples of the partitions 
and the true partition, as well as more traditional RL classification error rates, namely, False Negative Rate (FNR) and False 
Discovery Rate (FDR). The JS distance metric is based on a symmetrization of the Kullback–Leibler divergence, and allows us 
to evaluate how well the different models recover the true distribution of the allelic partition (Lin, 1991). This is in contrast 
to the FNR and FDR values, which focus exclusively on pairwise classification. The JS distance values range between 0 and 
1, so that values closer to zero are preferred. See Appendix C for more details.

From Table 1, we observe that for the lowest level of distortion of the fields (ψℓ = 0.01) all the models perform relatively 
well with FNR and FDR values between 0.1% and 5.5% in all cases. For ψℓ = 0.05, where the RL task is expected to be more 
challenging, the error rates range between 4.6% and 13.8% for all simulated scenarios. Overall, ESCNB is the model with the 
worst performance across all three metrics, specially for simulated scenarios 3 to 5 which have less conventional cluster 
size distributions. Focusing on the results for ψℓ = 0.01, where the clustering signal is stronger, we observe that ESCD 
seems to have the best performance in terms of the JS distance for all scenarios with very similar results from BBAPNB 
for scenarios 1 and 3. The performance in terms of FNR and FDR of the two BBAP calibrations is very similar to the ESCD 
for scenarios 1 and 3, while ESCD performs slightly better for the other scenarios. As the noise increases (ψℓ = 0.05), the 
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Fig. 3. Prior distribution of the allelic partition (boxplots) for ESC and BBAP models, and true data partition (red dots) for five simulated scenarios with 
K = 200 clusters and distortion probability of the fields ψℓ = 0.05 (rows). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Table 1

Posterior average Jensen-Shannon (JS) distance, FNR and FDR (in percentages) for ESC and BBAP models for five scenarios simulated with distortion levels 
ψℓ = 0.01 and 0.05.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Prior JS FNR FDR JS FNR FDR JS FNR FDR JS FNR FDR JS FNR FDR

ψ
ℓ
=

0
.0
1 ESCNB 0.026 2.6 1.1 0.037 3.6 3.5 0.043 2.9 0.1 0.056 4.4 1.4 0.063 5.5 2.1

ESCD 0.019 2.0 1.3 0.019 3.3 2.8 0.016 1.4 0.1 0.013 1.8 0.8 0.024 3.3 0.8

BBAPG 0.023 2.3 1.2 0.037 3.3 3.7 0.018 1.5 0.1 0.029 2.2 1.1 0.041 4.0 1.4

BBAPNB 0.020 2.0 1.3 0.039 2.9 4.2 0.015 1.1 0.2 0.026 1.8 1.2 0.040 3.2 1.5

ψ
ℓ
=

0
.0
5 ESCNB 0.087 12.1 5.4 0.045 13.8 9.4 0.115 9.8 8.6 0.122 12.5 7.3 0.141 9.8 8.6

ESCD 0.050 9.5 4.6 0.040 13.2 9.5 0.053 7.8 8.5 0.041 8.1 5.9 0.080 7.8 8.5

BBAPG 0.068 10.7 4.8 0.045 12.9 9.7 0.062 8.1 8.1 0.073 8.9 6.8 0.101 8.1 8.1

BBAPNB 0.059 9.3 5.4 0.048 11.4 11.0 0.051 6.7 9.3 0.068 8.0 7.4 0.090 6.7 9.3

performance of ESCD and the two BBAP models becomes more similar. Overall, we found that posterior results are robust 
to prior specifications of ψℓ . Note that all the models fail to capture the true maximum cluster size for all scenarios. In 
particular, the overall lower values of the JS distance for ESCD can be in part explained by its more accurate recovery of 
the true maximum cluster size compared to the other models (see Fig. 4). Motivated by this and the natural data collection 
mechanisms of real applications, we explore the performance of a BBAP calibration that incorporates the maximum cluster 
size as prior information in section 6. Finally, when compared to each other, the results for BBAPG and BBAPNB display 
a trade-off between FNR and FDR. Although BBAPNB has a slight edge over BBAPG in terms of the JS distance, there is 
no clear outperforming model across all scenarios. This behavior highlights robustness of the results to different BBAP 
calibrations.

9
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Fig. 4. Posterior distribution of the allelic partition (boxplots) for ESC and BBAP models, and true data partition (red dots) for five simulated scenarios (rows) 
with K = 200 clusters and distortion probability of the fields ψℓ = 0.05.

6. Applications

In this section, we illustrate the behavior and performance of the BBAP and ESC models using the following three official 
statistics data sets.

Durham: The North Carolina State Board of Elections (NCSBE) provides snapshots of demographic information of voters 
which are available to the public (https://ncsbe .gov). Using a snapshot from January of 2019, we consider a data set of 2,714 
records of K = 2, 000 unique registered voters from Durham county. Duplicate records in this data commonly arise from 
individuals registering to vote after moving from a different county (Kaplan et al., 2018; Wortman, 2019). Ground truth 
about the partition is available through the NC Voter ID provided by the NCSBE. In order to perform record linkage we 
employ the following six fields of information: age, sex, race, birth place, and first and last name initials.

SDS: The Social Diagnosis Survey (SDS) is a panel research project that studies indicators of quality of life in households 
in Poland (http://www.diagnoza .com /index -en .html). We consider a data set of K = 2, 000 unique individual members of 
households that participated in the survey in at least one of the years 2011, 2013, and 2015. Duplicate records occur 
longitudinally across the three waves but not within a specific year for a total of 3,574 records in the data. The data is 
available in horizontal format providing ground truth for the partition. We use six fields of information for RL: sex, date of 
birth (day, month and year), province of residence, and education level.

SIPP: The Survey of Income and Program Participation (SIPP) is a longitudinal survey that collects information about 
the income and participation in federal, state, and local programs of individuals and households in the United States (U.S. 
Census Bureau, 2009). The data is publicly available through the Inter-university Consortium for Political and Social Research 
(ICPSR) (https://www.icpsr.umich .edu). We consider a data set of K = 1, 000 unique individuals interviewed over five waves 
of the survey performed between 2005 and 2006. The data contains a total of 4,116 records from individuals that are only 
duplicated across waves (not within). We use five fields of information for RL: sex, year and month of birth, race, and state 
of residence.

In contrast to the Durham data, the SDS and SIPP datasets intrinsically provide prior information about the expected 
maximum cluster size in the partition due to their panel structure. Indeed, given the number of waves in each survey we 
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Fig. 5. Prior distribution of the allelic partition (boxplots) and true data partition (red dots) for ESC and BBAP models for Durham, SDS and SIPP data sets.

expect the size of the largest clusters to be three and five for SDS and SIPP, respectively. Although these illustrations do not 
necessarily reflect the conditions of real data applications where ground truth might not be available, we use these data 
sets to display the adaptability of the BBAP model to prior knowledge at different scales. For this purpose, we consider two 
different calibrations of the BBAP model for all datasets. First, the default Geometric specification with π = Geom(0.5) using 
M∗ = 15 – denoted as BBAPG. Second, an informed specification where π reflects the true data partition and M∗ is fixed at 
the true maximum cluster size – denoted as BBAPM. To perform the elicitation of the hyperparameters, we use coefficients 
of variation of 25% and 5% for BBAPG and BBAPM, respectively.

For the ESC models, similar to the simulation studies, we set α = 1, a ∼ Gamma (1,1), and q ∼ Beta (2,2) and work 
with a truncated version of the ESC models with M∗ = 100. Finally, we assume a Beta prior distribution with mean 0.01 
and standard deviation of 0.01 for the distortion probabilities of the fields, ψℓ , for all the models (see Section 4.3.1). Fig. 5
displays samples from all the prior distributions against the true allelic partition for each dataset (ESC results are shown 
up to M∗ = 15 for visibility). Durham data displays the more traditional geometric-like behavior of the true allelic partition, 
while the SDS and SIPP partitions are less conventional. Evidently, the prior belief for the SIPP data is extremely misspec-

ified under all the non-informed prior models i.e. excluding the BBAPM calibration. Consistent with what we observed in 
section 5, ESCNB and BBAPG behave similarly (BBAPG has a faster rate of decay), while the ESCD prior behavior is quite 
different and in this case favors configurations in which the most frequent cluster size is between 5 and 6. On the other 
hand, the BBAPM calibration is designed to match the true allelic partition quite closely.

All results presented below are based on 20,000 samples from the combination of two chains of 10,000 iterations, 
obtained after a burn-in period of 10,000 samples for each chain. Traceplots used for convergence diagnostics for the BBAPG 
model are included in Appendix D.

6.1. Results

Fig. 6 shows the posterior distribution of the number of clusters (i.e., the number of unique individuals in the dataset) 
under each prior and dataset. Note that the models fail to capture the true number of clusters by consistently overestimating 
it in all cases. However, BBAPG seems to have a slightly more accurate performance in the Durham and SDS datasets. 
Interestingly, it is the ESCNB prior that provides the most accurate estimate of the number of unique individuals for the 
SIPP dataset. This seems to be due to an overestimation in the number of clusters of size 5 (see Fig. 7 and the explanation 
below).

Fig. 7 displays the posterior distribution over allelic partitions for each prior and data set, and compares them against 
the truth. In addition, Table 2 displays the posterior average JS distance, FNR and FDR. From Table 2, we observe that the 
FNR values for the Durham data are the highest for all the datasets (above 13%), compared to values below 5.2% for the 
SDS and SIPP applications. On the other hand, the FDR values are below 4.4% for all models and data sets. The largest JS 
distances are observed for the SIPP dataset, while the lowest ones are seen in SDS.

All priors perform similarly for the Durham dataset, which has the more traditional allelic partition distribution. In 
spite of the very similar performance, BBAPG seems to have a slight edge over ESCNB and ESCD in terms of the mean JS 
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Fig. 6. Posterior distribution of the number of clusters (K ) for ESC and BBAP models for Durham, SDS and SIPP data sets. The vertical line represents the 
true number of clusters in each application.

Fig. 7. Posterior distribution of allelic partition (boxplots) and true data partition (red dots) for ESC and BBAP models for Durham, SDS and SIPP data sets.

distance and FNR, at the price of a slightly higher FDR. The reason seems to be that BBAPG is more aggressive in terms 
of encouraging the creation of non-singleton clusters (see Fig. 5). Note that this result is consistent with our previous 
observation that BBAPG seems to perform slightly better in terms of estimating the number of unique individuals in the 
sample for this dataset. BBAPM (the “informed” prior) has a very similar performance to BBAPG in the Durham dataset. On 
the other hand, in the SDS and SIPP datasets, ESCNB tends to underperform across all three metrics. Among the other two 
“uninformed” models, ESCD seems to have the best performance in terms of the JS distance and FDR, but the behavior in 
terms of the FNR is very similar to that of BBAPG. Finally, the behavior of BBAPM is very similar to that ESCD in these two 
datasets, although BBAPM seems to exhibit a slightly better FNR and FDR than ESCD for the SIPP dataset. Consistently with 
the simulation study, we find that overall our proposed prior performs better than ESCNB and displays competitive results 
compared to ESCD. See Appendix D for posterior estimates of the distortion probabilities of the fields under the BBAPG 
model.

6.2. Point estimation

As in other clustering applications, finding a unique optimal partition of the data is of interest for RL problems. In many 
cases, in addition to estimation of the number of unique entities, RL is also a required preprocessing step for subsequent 
statistical analysis with the linked data (Gutman et al., 2013; Sadinle, 2014, 2018; Hof et al., 2017; Kaplan et al., 2018). 
In the microlustering context, summarizing the information provided by a sample of partitions into an optimal partition is 
specially challenging. The large number of small clusters expected in the posterior samples of the partition and the high-
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Table 2

Posterior average Jensen-Shannon (JS) distance, FNR and FDR (in percentages) for ESC and 
BBAP models for the Durham, SDS and SIPP data sets.

Durham SDS SIPP

Prior JS FNR FDR JS FNR FDR JS FNR FDR

ESCNB 0.025 13.7 3.5 0.042 4.1 2.7 0.129 5.2 4.4

ESCD 0.028 13.9 3.4 0.011 3.8 1.7 0.067 4.8 1.8

BBAPG 0.023 13.0 4.1 0.025 3.7 2.2 0.084 4.9 2.1

BBAPM 0.024 13.3 3.8 0.011 3.8 1.7 0.066 4.6 1.7

Table 3

Estimated number of clusters (K), JS distance, FNR and FDR for point estimates of the partitions obtained with a greedy EPL 
algorithm for Binder’s (B), Normalized Information Distance (NID), and Variation of Information (VI) loss functions for Durham, 
SDS and SIPP. True number of clusters is K=2,000 for Durham and SDS, and K=1,000 for SIPP.

Durham SDS SIPP

Prior K JS FNR FDR K JS FNR FDR K JS FNR FDR

B

ESCNB 2063 0.025 12.4 1.9 2024 0.042 4.0 2.7 1053 0.104 4.3 2.8

ESCD 2060 0.024 12.1 2.0 2026 0.010 3.4 1.3 1066 0.068 4.6 1.6

BBAPG 2057 0.023 11.5 2.2 2019 0.025 3.0 1.8 1072 0.083 4.7 1.6

BBAPM 2062 0.025 11.7 1.5 2028 0.011 3.4 1.2 1070 0.076 4.4 1.3

NID

ESCNB 2063 0.028 12.7 3.1 2027 0.045 4.2 3.1 1064 0.137 5.0 6.2

ESCD 2062 0.025 12.2 1.7 2033 0.027 3.7 1.9 1070 0.089 4.7 2.6

BBAPG 2057 0.025 11.7 3.3 2023 0.034 3.4 2.6 1081 0.109 4.6 2.9

BBAPM 2062 0.026 11.8 2.0 2031 0.032 3.8 2.0 1077 0.100 4.7 2.8

VI

ESCNB 2031 0.057 12.4 16.0 1908 0.159 4.0 25.2 971 0.200 4.4 20.4

ESCD 2023 0.062 12.1 18.7 1912 0.154 3.4 24.4 982 0.191 4.3 19.3

BBAPG 2016 0.067 11.7 20.7 1892 0.163 3.0 26 982 0.200 4.2 20.2

BBAPM 2030 0.056 11.7 15.6 1932 0.139 3.5 21.6 975 0.194 4.1 20.0

dimensionality of the space in real data scenarios compels the use of scalable algorithms to find the optimal partition. 
Decision theoretical approaches for optimal Bayesian estimation that rely on loss functions functions for the space of par-
titions include those of Lau and Green (2007), Wade and Ghahramani (2018) and Rastelli and Friel (2018). Here, we utilize 
the approach of Rastelli and Friel (2018) who proposes a scalable greedy algorithm to minimize the expected posterior loss 
(EPL) under different loss functions. Table 3 displays the estimated number of clusters (K), the JS distance and the error 
classification rates for the point estimates of the partition obtained with the greedy EPL algorithm for Binder’s (B), the 
Normalized Information Distance (NID), and the Variation of Information (VI) loss functions. Results are based on the last 
2,000 iterations of the posterior samples using the R package GreedyEPL (Rastelli, 2017).

Based on the results for all three data sets and prior distributions, we find that using the VI loss in the microclustering 
context of RL is not advisable. The greedy EPL with VI loss consistently underestimates the number of clusters compared to 
B and NID. Even though this behavior leads VI to an estimated number of clusters that is closer to the truth for Durham 
and SIPP, the overclustering also results in overinflated JS distance and FDR values (above 15% for all datasets and priors). As 
discussed in Rastelli and Friel (2018), the greedy EPL with VI loss is the most suitable for conventional clustering applications 
where the number of clusters is not too large. For microclustering, however, we observe that greedy EPL with Binder’s loss 
yields the best performance in terms of lower JS distance and error rates as it tends to slightly overestimate the number of 
clusters compared to VI. The performance of greedy EPL with NID comes as a close second to Binder’s loss for all data sets 
and priors.

7. Discussion

We have developed a new prior specification for the linkage structure in record linkage problems based on allelic par-
titions and introduced a set of novel microclustering conditions. Our main contribution is proposing a prior distribution 
that satisfies the bounded microclustering property introduced in Definition 3, is computationally tractable and permits 
easy incorporation of prior information. As discussed in Section 3, the ESC models only satisfy the weak microclustering 
property (Definition 1) which allows the size of the largest cluster to grow unboundedly both a priori and a posteriori. Our 
BBAP specification overcomes this limitation and in practical terms, consistently outperforms the ESCNB model and shows 
competitive results compared to the ESCD (with any calibration). In summary, we proposed a prior distribution for random 
partitions that achieves desirable theoretical guarantees for the record linkage setting and performs competitively in terms 
of posterior inference compared to state-of-the-art priors in this context. We also want to point out that exploring the 
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behavior of the models a priori is considerably more difficult for the ESC models. Generating prior samples from the ESC 
models requires the implementation of a rejection sampler (Betancourt et al., 2020, section 3.3.3), while samples from the 
BBAP model are easily obtained by sampling directly from Beta and Binomial distributions. Given that the two models per-
form similarly in practical terms, we leave it to the practitioners to choose between the ESCD and BBAP models depending 
on the desired theoretical guarantees for large n.

Our work opens up several doors for future research. Scalability is still the main challenging aspect of big data applica-
tions of RL involving Bayesian models. Real world data sets, such as the NCSBE voter registration data discussed in Section 6, 
can contain millions of records leading to a high-dimensional space of partitions. A crucial aspect of future work involves 
the development of computational algorithms for efficient posterior inference in the microclustering setting using, for exam-

ple, Metropolis-Hastings (MH) schemes with better properties (Zanella, 2019) or fast computation techniques in the domain 
of variational approaches (Broderick and Steorts, 2014; Blei et al., 2017). The computational limitations also extend to the 
implementation of scalable algorithms for optimal Bayesian estimation of the partitions in such high-dimensional discrete 
spaces.
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Appendix A. BBAP calibration

In order to calibrate the BBAP model for a specific value of n, we need M∗ and a vector of probabilities of the cluster 
sizes π = (π2, . . . , πM∗ ) representing prior knowledge about the partition. Here, π provides information about the duplicate 
percentage expected in the data (π1 is simply 1 −

∑M∗

i=2 πi). When prior information is not available, we propose to use 
a default calibration with a decaying distribution on the cluster sizes. For example, choosing π ∝ Geom(p) for M∗ implies 
that:

πi =
g(i|p)

∑M∗

j=1 g( j|p)
for i = 2, . . . ,M∗,

where g(i|p) is the zero-truncated Geometric density function with parameter p. In order to calibrate the BBAP model to 
this prior information, we assume that the expected proportion of clusters of size i is πi such that the expected number of 
clusters of size i is E [ri] = πiKπ , where Kπ represents the expected number of clusters under π . Since we are calibrating 
the prior conditional on n and 

∑n
i=1 i ri = n, we can roughly estimate the expected number of clusters as Kπ = n

∑M∗

i=1 iπi

.

Now, according to the BBAP definition, we have that rM∗ ∼ Bin(⌊n/M∗⌋, θM∗ ). This implies that the expected number of 
cluster of size M∗ is E [rM∗ ] = ⌊n/M∗⌋θM∗ = πM∗ Kπ . From these expression we estimate θM∗ as πM∗ Kπ/⌊n/M∗⌋. Finally, we 
find values aM∗ and bM∗ of the hyper-parameters of the Beta distribution such that the mean is centered at πM∗ Kπ/⌊n/M∗⌋

with the desired coefficient of variation e.g. γ = 0.25. This same process is repeated for i = M∗ −1, . . . , 2 using the recursive 
formulas of the BBAP model definition. This specific approach for calibration is practical and involves minimal computational 
cost but is not unique or optimal in a formal sense.

We chose Geometric and Negative Binomial default calibrations of the prior for comparison purposes with the ESC 
models, in addition to the decaying behavior on the tail of these distributions which represents a small number of cluster 
of larger sizes. Practitioners can freely specify any other type of behavior through the π values. Naturally, if a practitioner 
believes that clusters of large sizes (compared to n) are expected in their specific application, the microclustering setting 
does not apply and traditional models (Dirichlet/Pitman-Yor process) could be used instead.

Appendix B. Comparison with Sadinle (2017) and sensitivity analysis for M∗

In order to illustrate and compare the performance of our BBAP model and the proposal of Sadinle (2017) for J = M∗ = 2

files with no duplicates within, we simulate data with K = 200 clusters (as in our other simulated scenarios in Section 5) 
where 150 clusters have size one and 50 clusters have size two. This results in n = 250 records generated with five fields 
of information with ten categories each and a distortion level ψℓ = 0.01. To implement Sadinle’s approach, we split the 
data into two files of equal sizes (=125 records) such that duplicates are only found across files. In this particular simulated 
scenario, we observed error rates of 5.6% and 1.8% for the BBAP model and 1.7% and 6.8% for Sadinle (2017), respectively for 
FNR and FDR. We also simulated an additional data set with K = 400 with 300 clusters of size one and 100 clusters of size 
two for a total of n = 500 records. We maintained five fields of information with ten categories each and a distortion level 
ψℓ = 0.01. In this case, we obtained error rates of 8.2% and 1.4% for BBAP, and 4.4% and 5.4% for Sadinle (2017). Clearly, 
there is a tradeoff between FNR and FDR between the two approaches but it is no clear that one model will consistently 
outperform the other based on these simulations. Our disadvantage, however, might increase with the number of records in 
the data and the level of noise since we are not reducing the space of possible links a priori.
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Fig. B.8. Prior distribution of the allelic partition (boxplots) for BBAPG (top) and BBAPNB (bottom) models for different values of M∗ = 4, 8, 20 for simulated 
scenario (red dots) with n = 435, K = 200, and true maximum cluster size of 4.

Table B.4

Posterior average FNR and FDR (in percentages) for BBAP models for simulated 
scenario with distortion level ψℓ = 0.01, n = 435, K = 200, and true max cluster 
size of 4.

M∗ = Mn M∗ = 2Mn M∗ = 5Mn

Scenario Prior FNR FDR FNR FDR FNR FDR

1
BBAPG 3.3 2.5 2.8 3.4 2.8 3.4

BBAPNB 2.7 2.6 2.3 3.6 2.3 3.6

2
BBAPG 4.9 3.6 4.5 4.4 4.5 4.5

BBAPNB 4.5 3.8 3.8 4.9 3.8 4.9

3
BBAPG 1.6 0.4 1.7 0.4 1.6 0.4

BBAPNB 1.2 0.5 1.2 0.6 1.2 0.5

4
BBAPG 2.9 0.6 3.0 1.2 3.0 1.2

BBAPNB 2.6 0.6 2.6 1.1 2.7 1.2

5
BBAPG 3.8 0.7 3.7 1.6 3.7 1.6

BBAPNB 3.0 0.7 2.9 1.8 2.9 1.8

For the multifile case, in order to illustrate the effect of the choice of M∗ combined with the prior calibrations, we 
generate prior samples from the BBAP model for scenario 5 in Fig. 2. Note that samples from the prior only depend on 
n = 435 and the choice of M∗ . Fig. B.8, shows prior samples of the BBAP model (boxplots) calibrated with a Geometric 
distribution with parameter p = 0.5 and a Negative Binomial distribution with parameters r = 4 and p = 0.5 (both zero-
truncated) for values of M∗ = 4, 8, 20. These values of M∗ correspond to 1, 2, and 5 times the true maximum cluster size of 
the partition, Mn = 4, specified in scenario 5 (red dots).

In the case of a Geometric calibration with p = 0.5 (top of Fig. B.8), the BBAP assigns a very small probability to clusters 
of sizes greater than eight. Therefore, even when we choose M∗ = 5Mn = 20 the prior probabilities of clusters of sizes 
greater than eight remain small. A similar behavior is observed for the Negative Binomial calibration where the probabilities 
of clusters of sizes greater than twelve are very small. This same pattern also occurs for the other simulated scenarios. 
Table B.4 displays the posterior error rates for five simulated data sets generated with a distortion level ψℓ = 0.01 and the 
respective true partitions in Fig. 2. For the two BBAP calibrations in scenario 3, we observe that the rates remain stable 
for the different values of M∗ . In scenarios 1, 4, and 5, the FNRs remained stable while the FDRs increased about 1% when 
M∗ changed from the true maximum cluster size to twice its size. For scenario 2, we observe a tradeoff between FNR and 
FDR with slightly higher rates for larger M∗ values. Overall, for M∗ = 5Mn the error rates remained unchanged compared 
to the results for M∗ = 2Mn . In conclusion, posterior results are affected by the choice of M∗ in combination with the prior 
calibration but the results are relatively robust to variations of both.

Appendix C. Performance metrics

Given the ground truth about the linkage structure, there are four possible ways of how predictions about pairs of records 
can be classified: correct links (true positives, TP), correct non-links (true negatives, TN), incorrect links (false positives, 
FP), and incorrect non-links (false negatives, FN). In order to summarize the classification error of the microclustering 
approaches, we utilize the false negative rate (FNR) and false discovery rate (FDR) given by
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Fig. D.9. Trace plots of number of clusters (K), false negative rate (FNR) and false discovery rate (FDR) for two chains of 20,000 iterations of the BBAPG 
model for Durham, SDS and SIPP data sets, respectively.

Table D.5

Posterior estimates of the distortion probabilities for Durham, SDS and SIPP data sets 
using the BBAPG prior.

E [ψ1] E [ψ2] E [ψ3] E [ψ4] E [ψ5] E [ψ6]

Durham 0.00302 0.00334 0.04826 0.00484 0.00320 0.00817

SDS 0.00108 0.00054 0.00088 0.01217 0.00592 0.09154

SIPP 0.03819 0.00087 0.00057 0.00279 0.00156 –

F NR =
F N

F N + T P
and F DR =

F P

F P + T P
,

such that the goal is to achieve values as close to zero as possible.
Moreover, to compare the posterior distribution of the partition (P) with the distribution associated with the true linkage 

structure (Q), we use the Jensen-Shannon distance metric (Lin, 1991) based on a symmetrization of the Kullback–Leibler 
divergence, DK L , given by

J S(P || Q ) = 1
2
DK L(P || O ) + 1

2
DK L(Q || O ),

where O  = (P + Q )/2. Values closer to zero indicate that the distribution of the partition induced by a specific microclus-

tering prior is closer to the true data partition compared to larger values of JS.

Appendix D. Convergence diagnostics and distortion probabilities

Fig. D.9 displays the traceplots for K, FNR and FDR for two chains of the BBAPG model for the Durham, SDS and SIPP 
data sets discussed in Section 6. No issues of convergence are observed in either case. However, the mixing of the chains 
for the SIPP data is slower compared to the Durham and SDS data sets.

For the three applications, we assumed independent Beta prior distributions with mean 0.01 and standard deviation 
0.01 for the distortion probabilities of the fields, ψℓ , and obtained posterior estimates of ψℓ that show that the chosen 
prior specification is not dominating the data. Table D.5 displays the posterior estimates of the distortion probabilities for 
Durham, SDS and SIPP data sets under the BBAPG prior. We observe (in bold) that in spite of our prior specification favoring 
small values of ψℓ , one field in each of the applications shows considerably large values of distortion. The fields correspond 
to race (4.8%), education level (9.2%) and sex (3.8%), respectively for Durham, SDS and SIPP.
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Appendix E. Additional simulation results

The following plots (Fig. E.10) display the posterior distributions of the allelic partitions for the five simulated scenarios 
generated with a distortion probability value of 1% for the fields (see Section 5).

Fig. E.10. Posterior distribution of the allelic partition (boxplots) for ESC and BBAP models, and true data partition (red dots) for five simulated scenarios 
with distortion probability ψℓ = 0.01.
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