2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS) | 978-1-6654-4935-9/21/$31.00 ©2021 IEEE | DOI: 10.1109/MASS52906.2021.00022

2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

Minimizing Delay in Network Function Visualization with Quantum Computing

Wenlu Xuan®, Zhongqi Zhao!, Lei Fan? and Zhu Han!
Dept. of Electrical and Computer Engineering' and Dept. of Engineering Technology?
University of Houston
wxuan@uh.edu, zzhao27 @uh.edu, lfan8@uh.edu, zhan2 @uh.edu

Abstract—Network function virtualization (NFV) is a crucial
technology for the 5G network development because it can
improve the flexibility of employing hardware and reduce the
construction of base stations. There are vast service chains in
NFYV to meet users’ requests, which are composed of a sequence
of network functions. These virtual network functions (VNFs)
are implemented in virtual machines by software and virtual
environment. How to deploy VMs to process VNFs of the ser-
vice chains as soon as possible when users’ requests are received
is very challenging to solve by traditional algorithms on a large
scale. Compared with traditional algorithms, quantum comput-
ing has better computational performance because of quantum
parallelism. We build an integer linear programming model of
the VNF scheduling problem with the objective of minimizing
delays, and transfer it into the quadratic unconstrained binary
optimization (QUBO) model. Our proposed heuristic algorithm
employs a quantum annealer to solve the model. Finally, we
evaluate the computational results and explore the feasibility
of leveraging quantum computing to solve the VNF scheduling
problem.

Keywords-network function virtualization; virtual network
functions; quantum computing; scheduling problem; delay;

1. INTRODUCTION

In recent years, network function virtualization (NFV) has
attracted more attention in the revolution of wireless network
technology because it can reduce the cost of deploying
hardware and improve network flexibility. For traditional
network function technology, specific hardware can only
process particular functions, which raises many challenges
for machine manufacturing and maintenance, and causes
waste while adjusting network functions. For NFV technol-
ogy, virtual network functions (VNFs) are implemented at
universal standard servers, which solves the issues mentioned
above. The standard server integrates many types of equip-
ment. Every virtual machine (VM) is allocated on standard
commercial servers. Each VM realizes one or more VNFs
of the network by software or virtual environments [1], [2].
VNFs, which will be split, can adopt in more than one
VM with parallel running to reduce the processing delay.
Briefly speaking, the implementation of different VNFs is
based on various software instead of specific hardware.
Thus, NFV reduces the difficulty of hardware configuration
and ameliorates the compatibility of a network. For the
realization of NFV, physical machines (PMs) like standard
servers are virtualized as one or more VMs, which attaches
much importance to how to allocate VMs at PMs under the

consideration of efficiency and costs. This kind of problem
is called the VM embedding problem [3]. Another important
problem is how to deploy VMs to process VNFs when users’
request is received. In this paper, we propose an integer
linear programming (ILP) model with delay minimization as
the objective function to solve the VNF scheduling problem.

In the NFV network system, VMs are usually located at
data centers, and VMs interconnect with others by virtual
links. Each VM is configurated with specific computing
resources. If the user’s request needs to process oversized
data packages, the processing delay at VMs cannot be ig-
nored. The transmission delay between two VMs, especially
in the same data center, can be neglected because the
transmission rate is high. For most users and network service
providers, the total delay is a crucial aspect of evaluating the
performance of a network, which is identified in the service
level agreement. A request of users can be realized by the
cooperation of several VNFs, and we introduce a service
chain to correspond to the request in the NFV-enabled
network [4]. A service chain is a sequence of ordered VNFs.
The network processes data via VNFs, definitely following
the order in the service chain. Consequently, the total delay
of processing the request is the whole period that data goes
through the corresponding service chain. In this paper, our
model aims to optimize the total processing delay of all
service chains in the network.

In the real world, the network always receives significant
numbers of requests, and it needs to complete the process
as soon as possible, and so the desperate need for network
operators is an efficient solver that can optimize large-
scale resource allocation. Traditional algorithms cannot meet
such a requirement, and so we pin the hope on quantum
computing. The superiority of quantum computing is based
on quantum parallelism, which means a quantum computer
searches for possible outcomes simultaneously. As a result,
the computation speed of quantum computers is much faster
than that of classical computers. It has been proved the
speedup of quantum computing in solving certain problems
[S]-(8].

Quantum computing takes advantage of quantum proper-
ties, such as quantum superposition and quantum entangle-
ment. The first milestone in quantum computation is the no-
cloning theorem, which shows the impossibility of copying
an unknown quantum state [9]. This is one of the fundaments

978-1-6654-4935-9/21/$31.00 ©2021 IEEE 108
DOI 10.1109/MASS52906.2021.00022

Authorized licensed use limited to: University of Houston. Downloaded on March 23,2022 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

of quantum computing and quantum information. In 1980,
Benioff brought up a method of simulating quantum systems
by Turing machines [10]. In 1982, Feynman introduced the
conception of quantum computation, and following brought
up the idea that universal quantum computing can be realized
through quantum systems following quantum mechanics
[11]. In 1985, David Deutsch first proposed a computing
paradigm based on quantum mechanics, which is the frame-
work of the modern quantum computer [12]. Many powerful
quantum algorithms were proposed by prominent scientists
in the past several decades, such as the Deutch-Jozsa Al-
gorithm [13], Grover’s Algorithm [14], Shor’s Algorithm
[15], and Quantum Approximate Optimization Algorithm
[16]. These algorithms demonstrate the great potential of
quantum computing in many fields.

In recent years, tech giants, like IBM, Google, Microsoft,
and D-wave, took the lead in developing quantum computers.
D-wave company employs quantum annealing techniques to
construct the quantum annealer. Quantum annealing assists
a quantum system in reaching the lowest energy state.
Compared with other quantum computing models, e.g. the
analog quantum model and universal quantum gate model,
quantum annealing technique provides more quantum bits in
current industry practice, which means the quantum anneal-
ing hardware has more powerful computational performance.
The quantum annealer can efficiently solve the quadratic
unconstrained binary optimization (QUBO) problem by us-
ing the Ising model, which describes the energy state with
coupling qubits interaction and externally applied fields [17].
Therefore, the QUBO model can leverage a qubit system
via embedding methods to get an optimal solution. It has
been proved that many combinatorial optimization problems
can be rewritten in the QUBO form, and it facilitates the
application of quantum annealing machines [18].

This paper formulates the VNF scheduling problem as
an ILP model with the optimization of delay, which is not
easy to be solved by classical algorithms. We transfer the
ILP model into the QUBO form and propose a heuristic
algorithm to solve it using the D-Wave hybrid solver. We
study several cases with different parameters and different
scales to evaluate the performance of the D-Wave hybrid
solver in solving our model. Our key contributions are as
follows:

e We propose an ILP model for the NVF scheduling
problem, and then we reformulate the model as the
QUBO model, which can be solved by the quantum
annealing machine.

We propose a heuristic algorithm to quickly find a
feasible solution, which can help strengthen our QUBO
model. We also demonstrate the efficiency of our algo-
rithm in multiple experiments.

We employ quantum computing to solve the VNF
scheduling problem. Our work shows the possibility of
using quantum computing to allocate resources in NFV.

109

The rest of this paper is organized as follows. Section
II introduces related work about VNF scheduling problems
and quantum computing applications. Section III illustrates
the NFV system. In Section IV, we describe the ILP model
of the VNF scheduling problem and reformulates the ILP
model as the QUBO model, and we propose a heuristic
algorithm to embed the QUBO onto quantum annealing
hardware. Section V shows the case study results of this
problem using quantum computing. Finally, Section VI is
the conclusion of the whole paper.

II. RELATED WORK
A. VNF Scheduling Problem

Because of the importance of the user request processing
time, many researchers study the optimal processing delays
in the VNF scheduling problem [19]-[21]. In [19], Diez
et al. implemented NFV into cloud radio access networks,
essential in 5G. They took split selection and scheduling
into consideration while minimizing traffic delay globally
and partially. The results showed that partial optimization
is close to the exact optimal solution. Geared et al. [20]
formulated a complex VNF chaining and placement model
considering queuing delay in virtual links and edge clouds.
They also analyzed different queuing models in the same
situation. Their proposed schemes satisfied the stringent
quality of service and meet service-level agreement require-
ments for both horizontal scaling and vertical scaling. In
[21], researchers studied a VNF scheduling problem with
minimizing the total delay, including processing delay and
transmission delay. They also considered the dynamic virtual
link bandwidth while formulating the model. A genetic-
algorithm-based method was proposed to get the optimal
solution due to the high complexity of the model.

To improve the practicality of proposed models, many
researchers tend to study VNF scheduling problems from
multiple aspects including minimizing delay, maximizing
throughput, optimizing cost, and improving reliability [22]-
[24]. [22] presented an integer nonlinear programming
model to illustrate the VNF scheduling problem. They devel-
oped a heuristic algorithm to achieve the minimum delay in
different scenarios. The resiliency of NFV was also studied
by constructing a more reliable virtual network. Luizelli et
al. [23] leveraged the ILP method to formulate the VNF
placement and chaining problem. The ILP was designed to
minimize delays while guaranteeing the utilization efficiency
of resources. In [24], Ren et al. presented a delay-sensitive
NFV-enabled multicasting problem in mobile edge clouds.
They aimed to minimize the implementation cost of the
request and to maximize the system throughput. A heuristic
algorithm was developed to solve the complex model.

B. Quantum Computing

Benefited from the technology development of controlling
quantum particles and constructing quantum hardware, quan-
tum computation has attracted more attention in recent years.

Authorized licensed use limited to: University of Houston. Downloaded on March 23,2022 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

Some scientists attempted to use quantum computation to
solve optimization problems in wireless networks [25]-[27].
Researchers [25] employed quantum computing to solve
sizeable multiple-input multiple-output (MIMO) problems in
centralized radio networks. They analyzed the performance
under different modulations, which demonstrated that quan-
tum computing is generally valuable in these cases. In the
binary phase shift keying (BPSK) communication system,
quantum annealers can assist the network in serving 48
users with an extremely low bit error rate. Alanis et al. [26]
developed a non-dominated quantum optimization (NDQO)
algorithm for multi-objective routing problems. NDQO illus-
trated an approximate optimal performance compared with
the state-of-the-art evolutionary algorithms. However, they
found that the NDQO algorithm was infeasible to search for
an available solution with the number of nodes increasing
and the number of routes increasing exponentially. Conse-
quently, they proposed a non-dominated quantum iterative
optimization (NDQIO) algorithm in [27]. The NDIQO al-
gorithm run on the quantum hardware parallelization frame-
work. It had a good performance of serving routing in
wireless multihop networks despite the complexity reduction
compared with the NDQO algorithm.

Some researchers also tried to use quantum annealers
to solve classical NP-hard problems [28], [29]. In [28],
the minimum multicut (MMC) problems were transformed
into QUBO formulations using two different methods. They
studied a particular case of the MMC problem on the family
of random connected trees. The QUBO model of this case
was processed at the D-Wave machine to get an optimal
solution. Venturelli et al. [29] built a simple model for
the job-shop scheduling problem with the makespan min-
imization. They formulated this model in the QUBO form
and embedded it on D-Wave chips. Some strategies of fine-
tuning parameters and graph-embedding were also presented
in this paper. Their results showed that pre-processing using
classical algorithms is efficient in this situation.

III. System MoDEL

In our system model, the network offers K types of VNFs
to satisfy user’s requirements. F' = { f1, f2, .., f¥, .. ¥}
denotes the set of VNFs and f* denotes the k' type
of functions. Any VM can serve one or more than one
function, and any function f* can be configured on any
VM. VMs can be divided into several groups, and for each
group, these VMs serve the same VNFs and have the same
computing capacity. According to the users’ requirement,
these functions compose a service chain i to process data.
Thus, we distinguish different VNF instances of the same
network functions by denoting them as i’;, which means
the j** function in service chain i belongs to the k'"
type of functions. We assume that each VM can serve one
function at a time. There is only one virtual link between
any two VMs in the network, and we denote the virtual link

110

UL

UL e (SYATR)
(a)
™M ||
VM1 fl f3
l
M2 | f3 re f?
VM3 fz f4 f2 f4
| | 1 |
Time Slot 1 2 3 4 5 6 7 8 9 10

SCL (1= [f*)

SC2 (3= = 1)

5C3 (f= f5— f%)
(b)

Figure 1. Example of NFV system (a) a simple NFV system (b)
a possible arrangement of service chains.

between VM m to VM n as l(y,). In our NFV network, all
VMs are embedded in PMs located in data centers, and the
transmission between any two VMs is high-speed, and so
the transmission delay can be neglected. We only consider
the minimum total processing delay to scheduling VNFs of
service chains.

Workload W;;, corresponding to the data package required
processing, will be processed on VM m, m € V/; The
computing capability of VM m is denoted by C,,. Thus, the
processing time t;,,, is given by W;; /C,,. We set the system
model as a discrete-time model, and so the controller’s
working time will be divided into several time slots with the
length of AT Tj;y, is the minimum integer that is equal to
or larger than ¢;;,,/AT. It can be said that the number of
time slots occupied by ;5 is Tjjm,.

Fig. 1 is an example of how the controller schedules the
VMs to satisfy the request requirements from the users.
Suppose that there are three virtual machines, VM1, VM2,
and VM3. VMI can process the functions f!, f2, and f3.
VM2 can process the functions f!, f3, and f°. VM3 can
process the functions f2, f%, and f°. According to the
requests from users, the network receives service chains, SC1
(ff — f2 — Y with 4M B, SC2 (f2 — f* — f?)
with 0.8 M B, and SC3 (f? — f° — f3) with 2M B. In
this example, the data size of packages won’t change after
processed by any VNFs. Every time slot has a length of 1s.
We assume that VM1 can process 1.5M B per second, and
the computation rate of VM1 is 1.5 times that of VM2 and
VM3. The controller arranges VMI to process f! of SCI,
and the processing delay is 3 time slots. In SC1, the second

Authorized licensed use limited to: University of Houston. Downloaded on March 23,2022 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

function that needs to be processed is f3. Fortunately, VM1
can also process f2, and so the controller arranges VM1
to process f3 because VM1 processes data faster than the
other two VMs. The processing delay of f3 is also 3 time
slots. After that, the results of f3 are transferred to VM3 via
the link between VM1 and VM3, and then, the processing
delay of f4 is 4 time slots at VM3. The total delay of SC1
is 10 time slots. The first function of SC2, f3, is processed
at VM2, which costs 1 time slot. The only VM that can
process f* is VM3, so the results of f3 are transmitted to
VM3. However, VM3 is occupied by SC3, so SC2 needs to
wait until VM3 finishes processing f2 of SC3. After 1 time
slot, VM3 starts to process f* of SC2, and the processing
time is 0.8s, which means 1 time slot is occupied. After
that, the controller arranges VM3 to process f2 of SC2,
and the process occupies 1 time slot. Even though f* and
f? of SC2 are processed at VM3 successively, the whole
process is not continuous. At the end of the time slot of
serving f4 of SC2, the controller will determine whether the
processing finishes or not, and then arrange other functions
to be processed at VM3. The total delay of SC2 is 4 time
slots. The first function of SC3 is f2, and it is processed
at VM3, which costs 2 time slots. After that, the results are
sent to VM2 through the link between VM2 and VM3. The
second function of SC3 is f°, which is processed at VM2 for
2 time slots, and then the third function f2 is also processed
for 2 time slots at VM2. The total delay of SC3 is 6 time
slots. The processing delay of all three service chains is
20 time slots, which means 20s. Finally, the controller will
evaluate this arrangement and determine whether the total
delay of all service chains arrives at the minimum. If not,
the controller will rearrange VMs to process these functions.

IV. PROBLEM FORMULATION AND ALGORITHM
A. ILP Formulation

We develop an ILP model to describe the NVF scheduling
problem. This model aims to minimize the total delay of all
service chains in the network, and we use the finish time
of the last function as the total delay of the corresponding
service chain. All notations used in the model and their
descriptions are listed in Table I. For the ILP model, the
objective function, constraints, and their explanations are
listed below.

I
n 5=, |
rglJn S ;s J (1)
M Thaax
si7= 3. > pime- (E—1)-AT, Vi, (2
m=1 t=1

Eq. (1) is the objective function. Eq. (2) shows how to
calculate the finish time of any service chain. If p; 34 is
equal to 1, it means that the service chain 1 finishes to be
processed at the beginning of the 4‘" time slot on VM 3, and
so the processing delay of service chain 1 is 3 time slots.

In addition, we have the following constraints.

111

> wigm =1, Vi,j. 3)
mEVf;
Trmax
Tijm = Zijmt, Vi, J,m. “4)
t=1
Constraint (3) indicates that any function 113 can be

processed on only one VM. Notice that in (3) only the
VM in the set VZ’; can be selected. Constraint (4) shows
the relationship between x;;,, and 2. If and only if fy
is allocated to VM m, this VM can start processing ffj at
some point.

I J
Zzyij’mt S 17 Vm,t

i=1 j=1

Constraint (5) shosz that each VM can process at most one
function in one time slot. For example, if y1234 = 1, which
means that VM 3 processes the second function of service
chain 1 in the 4t time slot, VM 3 cannot processes other
functions in this time slot.

&)

(6)

Constraint (6) indicates the relationship between z;;, and
Yijme. 1f at time ¢, VM m needs to handle function jfj,
which means y;jm,: = 1, then x5, = 1.

Yijmt < Tijm, Vi,7,m,t.

Trmax
- k
Z Yijmt = Lijm - Tigm, Vi,j; m € V.
t=1
Constraint (7) ensures that required total time Tjj,, for
processing function 113 must be satisfied. Notice that in (7)
only the VM in the set Vllj can be selected because if and
only if VM m can process function f{;-, T;jm exists.

@)

®)
®

Constraint (8) makes sure that z;;,,; and p;;,,; cannot be
equal to 1 at the same time, according to the definition of
Zijm¢ and p; jm¢. Constraint (9) shows the logical relationship
between y;jm¢, Zijme and p;jm¢. For example, suppose that
y1111 = 0 and y1112 = 1. Eq. (9) constrains that 21112
must equal 1 and p;112 must equal 0. For another example,
suppose that y131; = 1 and y1112 = 0. Eq. (9) constrains
that z1112 must equal 0 and p;112 must equal 1.

Zijmt +pijmt < 1: Vivja m7t~

Yijm(t—1) — Yijmt + Zijme — Pijme = 0, Vi, j,m,t.

Tijm
Z Zijm(t—a41) < Yijmes Vi, Gt meVE. (10)
a=1
Trmaz
Z Z Dijm(t—B+1) = Zi(j+1)m'ts
mevy: =1 (11)
., k'
Vi, g, t; m' € Vijj .

Constraint (10) guarantees that once the VM starts process-
ing the function fi’;, the VM must process it for required
time. Constraint (11) means that the next function of the

Authorized licensed use limited to: University of Houston. Downloaded on March 23,2022 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

Table 1.

LisT oF NOTATIONS

i(j+1) i(j+1)

Notation Description
1,4 index of service chain; 4,7’ € {1,2,--- ,I}
7,3 index of the sequence of function in service chain; 5,5’ € {1,2,---,J}
1k the k" type of functions, k € {1,2,--- , K}
F the set of all f*
fl"; the j¢* function in service 4 belongs to the k*" type of functions
fl.’“(;+1> the (j + 1) function in service i belongs to the (k’)!" type of functions; k&’ € {1,2,--- ,K};j € {1,2,--- ,(J — 1)}
m, m’ index of VM; m € {1,2,--- , M}
n index of VM; n € {1,2,--- ,M}
VZ’; the set of VMs which can serve fikj
vk the set of VMs which can serve f k!

Um,n) the virtual link between VM m and VM n;

AT the length of each time slot;

t the t*" time slot; ¢t € {1,2,- -+ , Trmax }

Wi the workload of processing fik]-

Cijm the computing capability of VM m which can serve f 1’3

tijm the time length of processing ka] on VM m

Tijm the number of time slots occupied by processing kaJ on VM m

SiJ the finish time of processing the last function of service chain ¢

Tijm equals to 1, if VM m is used to process ffj; otherwise, equals to 0
Yijmt equals to 1, if VM m is used to process flkj in the time slot ¢; otherwise, equals to 0
Zijmt equals to 1, if VM m starts to process fikj at the beginning of the time slot ¢; otherwise, equals to 0
Dijmt equals to 1, if VM m finishes processing fzkj at the beginning of the time slot ¢; otherwise, equals to 0

service chain must be processed after the processing of the
one before it.

Tijm = Yijmt = Zijmt = Dijmt = 0,

. (12)
Vi, jt; m¢ Vi
Traz Trmax
D D dmi= Y, D Pumi=1 Vi (13)
’"LEV/E- t=1 'rrLEV;);i t=1

Constraint (12) shows that i, Yijmt» Zijme> and Psjme
must be equal to 0 if the VM cannot process the function
2’3 Constraint (12) ensures that for any function fj}, only
one Zjjm¢, and one p;jn,: can be equal to 1 because the

function f;; can be only processed for one time.

B. QUBO Formulation
D-Wave quantum annealers can only solve the optimiza-
tion problem in the QUBO formulation. To leverage quantum

annealers, we need to transform the ILP model into the
QUBO formulation. The definition of QUBO is as follows:

f(z) = 2" Qx,

where x is the vector of binary variables, and @ is an
upper-diagonal matrix or symmetric matrix. As the defini-
tion shows above, there is only an objective function and
no constraints in the QUBO formulation. All constraints in

min (14)

112

Table II. List oF CONSTRAINT-PENALTY PAIRS

Constraint Equivalent Penalty

1tz =1 P(x1+x2—1)2

1 +x2+23<1

P(z1z2 4+ 2123 + 273)
P+ 22 — x5+ 3, aimy)?
P(z1 + x2 — b)2

1 +x2 < 23

1 +x2=0>

our model must be reformulated into quadratic penalties, and
then be added to the original objective function. We choose
the value of penalty coefficients according to the influence of
original constraints in searching for the optimal solution. The
principles of transforming classical constraints as equivalent
penalties are listed in Table II, where x1,x2 and z3 are
binary variables. r; is a binary slack variable. a; and b
are constants. P is the penalty coefficient. The transformed
results of (1)-(13) are listed in Appendix appendix A.

C. Proposed Algorithm

We propose a heuristic algorithm to employ the D-Wave
solver to solve our model. Due to the limitation of qubits
on the D-Wave QPU server, cases with too many variables
cannot be solved. On the one hand, to let the solver handles
as many variables as possible, we turn to the D-Wave
hybrid solver, which employs classical computation to assist

Authorized licensed use limited to: University of Houston. Downloaded on March 23,2022 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

quantum annealing and can accept at least one thousand
variables for this optimization problem. On the other hand,
since the value of Tj,,, has an effect on the number of
variables, we could reduce the range of ¢, which means find a
feasible T}y, to reduce the number of variables for solving
more complex cases by the hybrid solver. In our system
model, the range of ¢ is the working time of the NFV system
controller, which means that 7},,,, is sufficiently large, and
the controller has the freedom to determine how to schedule
VNFs. However, the objective of our model is to minimize
delays of service chains, and we don’t need to provide such
a long time tolerance for the solver to schedule VNFs. If
we set a big value to T}, it will bring a lot of variables
to our model, and then we need much more qubits to help
solve our QUBO model. Therefore, we leverage a greedy
algorithm to assist us in finding a reasonable 7,,,,. For
the proposed greedy algorithm, we rearrange all VNFs in
service chains to a service chain, and every function i’;
will be allocated to VM m, which processes this function
for the shortest time. We set the total processing delay
by this greedy algorithm to 7)., and then the QUBO
model is embedded in the quantum annealing hardware by
an algorithm. The penalty coefficients of the QUBO model
play an important role for the hybrid solver in searching
for optimal solutions. Since the penalty coefficient needs
to be sufficiently large compared with other values in the
QUBO model, before setting up the penalty, we evaluate
the maximum value that the objective function can reach.
In all case studies, the penalty coeflicients are set to about
100 times the value of the maximum objective value. After
the penalty pre-processing, the penalty could be fine-tuned
according to the output, and so we can reach a more suitable
penalty set. Finally, we use a D-Wave hybrid solver through
the proposed algorithm to solve the QUBO model. The
whole proposed algorithm is presented in Algorithm 1.

Algorithm 1

Input: parameters, I, J, M; the functions in service chain
i Z-’}; the set of VMs which can process fj, Vi’;-; the
NFV network;

Output: 3, Tijm, Yijmts Zigmts> Dijmts

1: Set the value of T,,,,: run the proposed greedy algo-
rithm to get a feasible T',44;

. Set the value of penalty coefficients;

3: Egs. (15)-(26): transform from (1)-(13);

4: The QUBO model: add all terms in (15)-(26) to the right

hand side of (15);

: Embedding the QUBO model onto the quantum

annleaing hardware;

: return S, Tijm, Yijmis Zijmts Pijmts

V. EXPERIMENT

We study the cases with different parameters I, J, and M,
and different service chains, and analyze the performance of

113

the quantum annealer under different cases. AT is equal to
1s in all cases. If the hybrid solver cannot output a solution,
we will increase the value of T),,, until the hybrid solver
can provide a feasible solution. All results are listed in Table
III. In Table III, the third column shows the results of the
proposed greedy algorithm, which are feasible solutions of
our model and can be used to evaluate the outputs of the D-
Wave hybrid solver. The fourth column lists the solutions
given by the D-Wave hybrid solver, which are the total
processing delays of all service chains. The fifth column
presents the processing delays of the most time-consuming
service chain in each case given by the D-Wave hybrid
solver. The sixth column shows the average processing
time of each VM, which impacts the costs of resources.
The longer the average processing time, the more cost of
electricity. The seventh column is the sizes of matrix @
denoted in the QUBO formulation definition in (14). As the
matrix () size increases, the solver needs to employ more
qubits, and the difficulty of solving the problem increases.
In Table III, we can find that for case 10 and case 12, the
longest delay given by the D-Wave hybrid solver is longer
than the delay given by the proposed greedy algorithm. It
means that the solution given by the hybrid solver cannot be
the optimal solution, which shows the hybrid solver cannot
solve our model on such a large scale.

Fig. 2 and Fig. 3 are the probability distribution of the
results for running 50 times for each case. For all cases,
AT is equal to 1s. Fig. 2 shows the most time-consuming
service chain processing delays, and Fig. 3 shows the total
processing delays of all service chains. In Fig. 2, we can find
a higher probability of achieving optimal solutions when the
matrix @ size is small. With the increase of matrix @) size,
the highest probability of the longest delay moves to T'q4-
It means that the difficulty of finding the optimal solution
increases as the matrix () size increases. In Fig. 3, we can
find that for case a, it is effortless to find the optimal solution
by the hybrid solver. For the case a and case b, the sizes of
matrix () are small, and solutions are concentrated. For other
cases, the sizes of matrix () are larger, and solutions are more
dispersed. Table IV shows the hybrid solver running time
and the QPU working time for each case. The hybrid solver
spends a much longer time on finding a feasible solution for
case f. Unfortunately, the solver only has the success rate
of 4% to solve case f, which means if you use the hybrid
solver to study case f 100 times, you can only get a feasible
solution 4 times. In other words, it is difficult for the hybrid
solver to solve this case due to such a large matrix @ size,
which corresponds to the results in Fig. 2 and Fig. 3.

VI. CoNcLusION

In this paper, we formulate the VNF scheduling problem
as an ILP model with the optimization of delay and transfer
the ILP model into the QUBO form, which can be solved
by the quantum annealing machine. We propose a heuristic

Authorized licensed use limited to: University of Houston. Downloaded on March 23,2022 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

Table III.

SimuLATION RESULTS

Case Parameters Result of the Objective The Longest Average Processing Time | Matrx @ Size
greedy algorithm (s) Solution (s) Delay (s) for Each VM (s)

1 I=2,J=2M=2 7 8 5 4.0 (280, 280)
2 I1=2,J=2M=2 9 11 6 5.5 (338, 338)
3 I1=2J=2M=2 5 6 4 3.0 (200, 200)
4 1=2,J=3M=2 12 16 9 8.0 (662, 662)
5 I1=2J=3M=2 12 20 11 10.0 (662, 662)
6 1=2,J=3M=2 19 36 19 18.0 (1012,1012)
7 I1=3,J=2M=2 14 17 11 8.5 (732,732)
8 I1=3,J=2,M=2 10 16 9 8.0 (540, 540)
9 1=3,J=2,M=2 13 22 12 11.0 (684, 684)
10 I1=3,J=3M=2 15 49 18 24.5 (1462, 1462)
11 1=3,J=3M=2 13 29 13 14.5 (1173,1173)
12 I1=3,J=3M=2 14 39 15 19.5 (1266, 1266)

Table IV. TiMeE CONSUMING AND SUCCESS RATE

Case Average QPU Average solver Sucess rate
access time (s) run time (s)

a 0.065 2.993 100%
b 0.065 2.997 64%
c 0.063 2.998 36%
d 0.061 2.994 100%
e 0.064 2.997 58%
f 0.063 3.630 4%

algorithm to solve the QUBO formulation, using the D-wave
hybrid solver. We report and analyze the solutions of several
cases under different settings. Our work shows the possibility
of using a quantum computer to allocate resources in NFV.
From the results of the case study, we can find that the
performance of the hybrid solver is better in cases with fewer
variables. There is less probability to achieve the optimal
solution in cases with more variables.

ACKNOWLEDGMENT

This work is partially supported by US NSF CNS-
2107216, EARS-1839818, EPCN-2045978 and Toyota.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network
function virtualization: challenges and opportunities for in-
novations,” IEEE Commun. Mag., vol. 53, no. 2, pp. 90-97,
Feb. 2015.

[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: state-of-
the-art and research challenges,” IEEE Commun. Surv. Tut.,
vol. 18, no. 1, pp. 236-262, 1st Quart. 2016.

[3] L. Zhang, H. Zhang, L. Yu, H. Xu, L. Song, and Z. Han,
“Virtual resource allocation for mobile edge computing: a
hypergraph matching approach,” in Proc. IEEE GLOBECOM,
Waikoloa, HI, Dec. 2019.

[4] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella,
S. Covaci, and T. Magedanz, “Service function chaining
in next generation networks: state of the art and research
challenges,” IEEE Commun. Mag., vol. 55, no. 2, pp. 216—
223, Oct. 2017.

114

(a) 1=2,]=2.M=2, matrix Q size = 272 (b) I=3,]=2,M=2, matrix Q size = 675

25

it it
L T_max T max
20 = =
2 2"
‘B B
£ 15 -
3 315
Z 2
=10 =
s | 10
a -
= =
o o
a5 05
0.0 004
4 5 6 7 9 10 i 12
s/second s/second
(c) 1=2,]=3,M=2, matrix Q size = 600 {d) I=2,J=2,M=3, matrix Q size = 462
fit fit
L T_max T max
20 = =
z z
wn n
c 15 -
[} a
° o
= £
o 10 8
© ®
o o
g2 2
[o
05
00
] 9 10 bl 5 6 7 8
s/second s/second
(e) I1=3,]=3,M=2, matrix Q size = 1191 (f) 1=3,}=3,M=3, matrix Q size = 1303
fit it
20 ™= T max 2001 w1 max
175
3\ >
- =
2us G 150
[} T
° o 1325
= = 100
e a
© ©
o 8 075
= B
& & os0
025
0.0 0.00
12 13 1 15] 9

sfsecond s/second

Figure 2. Histograms of the most time-consuming service chain
processing delays given by the D-Wave hybrid solver (a) case a
(b) case b (c) case ¢ (d) case d (e) case e (f) case f.

[5] J. Roland and N. J. Cerf, “Quantum search by local adiabatic
evolution,” Phys. Rev. A, vol. 65, no. 4, p. 042308, Mar. 2002.

[6] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann,
and D. A. Spielman, “Exponential algorithmic speedup by
a quantum walk,” in Proc. 35th annu. ACM symp. Theory
comput., San Diego, CA, Jul. 2003.

[7] L. Hen, “Period finding with adiabatic quantum computation,”

Authorized licensed use limited to: University of Houston. Downloaded on March 23,2022 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

(a} 1=2,]=2,M=2, QUBO_size = 272 (b) 1=3,]=2,M=2, QUBO_size = 675

fit

fit

-

=
e
=
=

-

9
e
=
¥}

;_‘

o
)
=
=3

e
=1
@

o
=1
&

Probability density
s o
o @

o
2
Probability density
H

e

v}
]
=1
5]

-
12 13

o
=1
]
=1
=1

8 9 10 20 30 5

s/second
(c) 1=2,J=3,M=2, QUBO_size = 600

1 5
s/second

(d) 1=2,]=2,M=3, QUBO size = 462

fit

fit

e
&

o

i+
=
@

i) k7]
=4 2 os
i 010 il
o o
2 ooz o4
3 3
© 0.06 @ 03
£ £
& 004 & 02
0.02 01
o000 0o
8 10 12 14 16 18 20 2 8 9 10 1 12 13 14 15
s/second s/second
(e) I=3J=3.M=2, QUBO_size = 1191 (f) 1=3.J)=3,M=3, QUBO_size = 1303
014
fit fit
007
0.06
> >
= &
£ 005 2
@ @
o ©
004 >
5 5
5 003]
8 8
& 002 =

30

E3
s/second

40

s/second

Figure 3. Histograms of the total processing delays of all service
chains given by the D-Wave hybrid solver (a) case a (b) case b
(c) case ¢ (d) case d (e) case e (f) case f.

EPL, vol. 105, no. 5, p. 50005, Mar. 2014.

R. D. Somma, D. Nagaj, and M. Kieferovd, “Quantum
speedup by quantum annealing,” Phys. Rev. Lett., vol. 109,
no. 5, p. 050501, Jul. 2012.

W. K. Wootters and W. H. Zurek, “A single quantum cannot
be cloned,” Nature, vol. 299, no. 5886, pp. 802-803, Oct.
1982.

P. Benioff, “The computer as a physical system: a microscopic
quantum mechanical hamiltonian model of computers as
represented by turing machines,” J. Stat. Phys., vol. 22, no. 5,
pp. 563-591, May 1980.

R. P. Feynman, “Simulating physics with computers,” Int. J.
Theor. Phys., vol. 21, pp. 467488, Jun. 1982.

D. Deutsch, “Quantum theory, the Church-Turing principle
and the universal quantum computer,” Proc. Royal Soc. Lond.
A, vol. 400, no. 1818, pp. 97-117, Jul. 1985.

D. Deutsch and R. Jozsa, “Rapid solution of problems by
quantum computation,” Proc. Royal Soc. Lond. A, vol. 439,
no. 1907, pp. 553-558, Dec. 1992.

L. K. Grover, “A fast quantum mechanical algorithm for
database search,” in Proc. 28th Annu. ACM Symp. Theory
Comput., Philadelphia, PA, May 1996.

P. W. Shor, “Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer,” SIAM
J. Comput., vol. 26, no. 5, pp. 1484-1509, Oct. 1997.

(8]

[91

(10]

(11]

[12]

(13]

[14]

[15]

115

[16] E. Farhi, J. Goldstone, and S. Gutmann, “A quan-
tum approximate optimization algorithm,” arXiv preprint
arXiv:1411.4028, Nov. 2014.

E. Ising, “Beitrag zur theorie des ferromagnetismus,” Z.
Physik, vol. 31, no. 1, pp. 253-258, Feb. 1925.

F. Glover, G. Kochenberger, and Y. Du, “Quantum bridge
analytics I: a tutorial on formulating and using qubo models,”
40R, vol. 17, no. 4, pp. 335-371, Dec. 2019.

L. Diez, V. Gonzalez, and R. Aguero, “Minimizing delay in
NFV 5G networks by means of flexible split selection and
scheduling,” in IEEE 90th Veh. Technol. Conf., Honolulu, HI,
Sep. 2019.

R. Gouareb, V. Friderikos, and A.-H. Aghvami, “Virtual
network functions routing and placement for edge cloud
latency minimization,” IEEE J Sel. Areas Commun., vol. 36,
no. 10, pp. 2346-2357, Sep. 2018.

L. Qu, C. Assi, and K. Shaban, “Network function virtual-
ization scheduling with transmission delay optimization,” in
IEEE/IFIP Netw. Oper. Manag. Symp., Istanbul, Turkey, Jul.
2016.

S. Yang, F. Li, R. Yahyapour, and X. Fu, “Delay-sensitive
and availability-aware virtual network function scheduling for
NFV,” IEEE Trans. Serv. Comput., pp. 1-14, Jul. 2019.

M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos,
and L. P. Gaspary, “Piecing together the NFV provisioning
puzzle: efficient placement and chaining of virtual network
functions,” in IFIP/IEEE Int. Symp. Integr. Netw. Manag.,
Ottawa, ON, Canada, May 2015.

H. Ren, Z. Xu, W. Liang, Q. Xia, P. Zhou, O. F. Rana,
A. Galis, and G. Wu, “Efficient algorithms for delay-aware
NFV-enabled multicasting in mobile edge clouds with re-
source sharing,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 9, pp. 2050-2066, Mar. 2020.

M. Kim, D. Venturelli, and K. Jamieson, “Leveraging quan-
tum annealing for large MIMO processing in centralized radio
access networks,” in Proc. ACM SIGCOMM, Beijing, China,
Aug. 2019.

D. Alanis, P. Botsinis, S. X. Ng, and L. Hanzo, “Quantum-
assisted routing optimization for self-organizing networks,”
1IEEE Access, vol. 2, pp. 614-632, Jun. 2014.

D. Alanis, P. Botsinis, Z. Babar, S. X. Ng, and L. Hanzo,
“Non-dominated quantum iterative routing optimization for
wireless multihop networks,” IEEE Access, vol. 3, pp. 1704—
1728, Sep. 2015.

W. Cruz-Santos, S. E. Venegas-Andraca, and M. Lanzagorta,
“A QUBO formulation of minimum multicut problem in-
stances in trees for D-wave quantum annealers,” Sci. Rep.,
vol. 9, no. 17216, pp. 1-12, Nov. 2019.

D. Venturelli, D. Marchand, and G. Rojo, “Job shop schedul-
ing solver based on quantum annealing,” in Proceedings of
the 11th Workshop on Constraint Satisfaction Techniques for
Planning and Scheduling, London, UK, Jun. 2016, pp. 25-34.

[17]

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

APPENDIX

For the QUBO formulation, there is only an objective
function. Therefore, all constraints in the ILP model must
be reformulated into quadratic penalties, and then we add
them to the original objective function to form the QUBO
formulation. All penalties and their explanations are listed
below. In all penalty terms, all penalty coefficients, denoted
as P with subscripts, are sufficiently large positive constants.

We combine (1) and (2), and have

Authorized licensed use limited to: University of Houston. Downloaded on March 23,2022 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

M Thae
min 5 = Z Z Pigmt - (E—1)-AT. (15)
Prdme i=1 m=1 t=1
2
Puj | D wigm—1] , Vi (16)
meVE
ij
Tinaz 2
Piijm (Z Zijmt — wy> . Vig,m. (A7)
t=1

Eq. (16) is transformed from (3). We find that constraint
(3) only allows one x;;m,, which m € Vi’;-, is equal to 1.
In (16), if more than one x;;,, is equal to 1, these terms
will add a huge value to the objective function. Thus, the
optimizer will avoid this situation. This is why constraints
(3) can be transformed as (16). Eq. (17) is transformed from
(4). Constraint (4) only allows the situation that z;j,, = 1
and Z?;”{” Zijm¢ = 1 and the situation that z;;,, = 0 and

11® Zigme = 0. Eq. (17) has the same effect on the model.
Therefore, we transform constraint (4) into the terms in (17).
We transform (5) to the following equation.

P vYm,t. (18)

Z (yijmt : yi’j’mt) s
i#i orj#£j’

Constraint (5) shows that either or neither y;;,,; can be equal

to 1. If any two ;¢ are equal to 1 in (18), these terms

will lead the solution away from the minimum. Therefore,

constraint (5) is equivalent to the terms in (18). We transform

(6) to the following equation.

2
Prijme | Yijmt — Tijm + Tujmt) , Vi, j,m,t. (19)

We need to add slack variables to convert the inequalities
in (6) into equalities. We only add one binary slack variable
to constraint (6) because the difference between the right
hand side and the left hand side must be equal to or less
than 1. If y;jm¢ = 1 and x5, = 0, these terms will add
a huge value to the objective function. Thus, the optimizer
will avoid this situation. This is why constraint (6) can be
transformed as the terms in (19). 7145, is a binary slack
variable. We transform (7) to the following equation.

Trax
Poijm g
=1

Constraint (7) ensures that the number of y;;,,; valued 1 is
T;jm when x;;,, = 1. If the number of y;;,: valued 1 is not
equal to Tj;,, when x;;, = 1, the terms in (20) will add
a large value to the objective function. Thus, the optimizer
will avoid this situation. This is why constraint (7) can be
transformed as the terms in (20). We transform (8) to the
following equation.

2
Yijmt — Lijm '%‘jm) Vi, 55m € Vzl; (20)

116

P2ijmt (Zijmt 'pijmt)» Vi,j,m,t. (21)

Constraint (8) precludes the situation that both z;j,,; and
Dijme are equal to 1. All terms in (21) have the same effect
as constraint (8), and so we transform (8) as the terms in
(21). We transform (9) to the following equation.

2
PSijmt (yijm(t—l) — Yijmt T Zijmt — pijmt))

(22)
Vi, 4, m,t.
Tijm 2
Pyijme Z Zijm(t—at1) — Yijmt + T2ijme | 23)
a=1
Vi, jt; me V.
T’nr(l‘t
Pijmt <Zi(j+1)m’t - Z Dim(t—B+1)
k pB=1
mevk B (24)

2
‘H"ijm/t) , Vi,j,t; m' € Vi](“jJrl).

Eq. (23) is equivalent to (10). ;5 is a binary slack vari-
able. Eq. (24) is transformed from (11). We need to add slack
variables to convert the inequalities in (11) into equalities.
We only add one binary slack variable to constraint (11)
because the difference between the right hand side and the
left hand side must be equal to or less than 1. 7., is
a binary slack variable. We transform (12) and (13) to the
following equations.

2 2 2
Psijm « @5 + Psijmt * Yijme T Poigmt = 2 jme
2 T k
+P7ijmt . pijmta Vl,j,t, m ¢ ‘/74

Py (
+P3ij (

To form the QUBO formulation, all terms in (16)-(26) need
to be added to the right hand side of (15).

(25)

Trmaa

k =
mevij t=1

Trmaz

2
Z Z DPijmt — 1> 5 VZ,]

k =
me V“ t=1

Authorized licensed use limited to: University of Houston. Downloaded on March 23,2022 at 21:40:05 UTC from IEEE Xplore. Restrictions apply.

