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∗Department of Electrical Engineering, Stanford University, Email: {resh,aozgur}@stanford.edu
†Department of Electrical and Computer Engineering, University of Delaware, Email: {bai,xwu}@udel.edu

Abstract—Generative Adversarial Networks (GANs) are a
popular method for learning distributions from data by modeling
the target distribution as a function of a known distribution.
The function, often referred to as the generator, is optimized
to minimize a chosen distance measure between the generated
and target distributions. One commonly used measure for this
purpose is the Wasserstein distance. However, Wasserstein dis-
tance is hard to compute and optimize, and in practice entropic
regularization techniques are used to facilitate its computation
and improve numerical convergence. The influence of regu-
larization on the learned solution, however, remains not well-
understood. In this paper, we study how several popular en-
tropic regularizations of Wasserstein distance impact the solution
learned by a Wasserstein GAN in a simple benchmark setting
where the generator is linear and the target distribution is high-
dimensional Gaussian. We show that entropy regularization of
Wasserstein distance promotes sparsification of the solution, while
replacing the Wasserstein distance with the Sinkhorn divergence
recovers the unregularized solution. The significant benefit of
both regularization techniques is that they remove the curse of
dimensionality suffered by Wasserstein distance. We show that
in both cases the optimal generator can be learned to accuracy
ε with O(1/ε2) samples from the target distribution without
requiring to constrain the discriminator. We thus conclude that
these regularization techniques can improve the quality of the
generator learned from empirical data in a way that is applicable
for a large class of distributions.

I. INTRODUCTION

Generative Adversarial Networks (GANs) have become a
popular framework for learning data distributions and sam-
pling as they have achieved impressive results in various
domains [1], [2], [3], [4]. As opposed to traditional methods
of fitting a parametric distribution, GANs’ objective is to find
a mapping from a known distribution to the unknown data
distribution or its empirical approximation. The mapping is
set to a minimizer of a chosen distance measure between the
generated and target distribution.

In the original GAN framework, the distance measure is
the Jensen-Shannon divergence [5]. This measure was later re-
placed by the Wasserstein distance in [6] and follow-up work,
which showed that Wasserstein GANs can help resolve several
issues related to the original formulation, such as the lack of
continuity, mode collapse [6] and vanishing gradients [7].

Despite these advantages, minimizing the Wasserstein dis-
tance between the target (data) and the generated distribution
is a computationally challenging task. Indeed, computing
the Wasserstein distance between two empirical distributions
involves the resolution of a linear program whose cost can
quickly become prohibitive whenever the size of the support
of these measures or the number of samples exceeds several
hundreds. A popular approach to facilitate computation of

Wasserstein distance is to regularize it with an entropic term
which makes the problem strongly convex and hence solvable
by matrix scaling algorithms [8], [9]. More recent results have
shown that this also results in faster convergence and stability
of the first-order methods used for optimizing Wasserstein
GANs [10].

However, the impact of these regularization methods on the
generator learned by the Wasserstein GAN remains poorly
understood. This is partly due to the fact that GANs are pri-
marily evaluated on real data, typically images, and although
clearly valuable, such evaluations are often subjective due
to lack of clear baselines for benchmarking. In this paper,
we follow the philosophy advocated in [11] and focus on a
simple benchmark setting where solutions can be explicitly
characterized and compared. Following their work, we assume
that the generator is linear and the target distribution is
high-dimensional Gaussian. [11] characterizes the population
solution for the Wasserstein GAN in this setup, and show
that, even in this simple setting the problem suffers from
the curse of dimensionality. The empirical solution learned
on n samples of the target distribution converges to the
population solution as Ω(n−2/d), where d is the dimension
of the target distribution support. To resolve this sample
complexity problem, [11] proposes to restrict the discriminator
to be quadratic, however this insight comes from knowing that
the sought target distribution is Gaussian and hence does not
generalize beyond the considered linear/Gaussian setting.

In this paper, by focusing on the linear generator and
Gaussian distribution setting of [11], we explore how regu-
larization impacts what generator is learnt and how it leads
to better generalization. We study two slightly different ways
of regularizing: entropic regularization [8] and Sinkhorn di-
vergence [12]. We show that the former introduces bias to the
solution by constraining nuclear norm of the covariance matrix
of generator’s output distribution, while Sinkhorn divergence
results in the same solution as the unregularized Wasserstein
GAN in [11]. We then show, in the more general case of
sub-gaussian distributions and Lipschitz generators, that these
regularizations result in sample complexity of Od(1/

√
n), thus

overcoming the curse of dimensionality in [11] without explicit
constraints on the discriminator. This indicates that adding
regularization implicitly constrains the discriminator in a way
suitable for a large class of distributions.

II. PRELIMINARIES

In this section, we provide some background on optimal
transport and optimal transport GANs.



Let P(X ) be the set of all probability measures with support
X and finite second moments. For PZ ∈ P(Z) and PY ∈
P(Y), denote by Π(PZ , PY ) the set of all couplings of PZ
and PY , i.e. all joint probability measures from P(Z×Y) with
marginal distributions being PZ and PY . Squared Wasserstein
distance between PZ , PY ∈ P(Rd) under `2 metric, or simply
the squared 2-Wasserstein distance, is defined as

W 2
2 (PZ , PY ) = inf

π∈Π(PZ ,PY )
Eπ
[
‖Z − Y ‖2

]
. (1)

Using 2-Wasserstein distance to measure the dissimilarity
between the generated and target distributions leads to the
following learning problem of GAN, referred to as W2GAN:

min
G∈G

W 2
2

(
PG(X), PY

)
. (2)

Here X is a latent random variable, G(·) is a generator that
comes from a set of functions G ⊆ {G : X → Y}, and PY is
the target probability measure, which could be, e.g., either the
true distribution of Y in the population case, or the empirical
distribution of Y when one has access to only a finite sample
{Yi}ni=1. A remarkable feature of the Wasserstein distance
is that strong duality holds [13], [14] for (1). Thus (1) is
equivalent to maximizing a concave objective over a set of
functions, discriminators, instead of optimizing over couplings
as in the primal form (1). This naturally leads to the min-
max game formulation of GAN, where the generator seeks
to generate samples that are close to the real data training
samples, and it competes with a discriminator that seeks to
distinguish between real and generated samples.

In practice, the Wasserstein distance is often regularized to
facilitate its computation leading to the entropy regularized
2-Wasserstein distance [8]:

W 2
2,λ(PZ , PY ) = inf

π∈Π(PZ ,PY )
Eπ
[
‖Z − Y ‖2

]
+ λIπ(Z;Y ) (3)

where the regularization term is the mutual information
Iπ(Z;Y ) calculated according to the the joint distribution π.
The corresponding entropic W2GAN is defined as

min
G∈G

W 2
2,λ

(
PG(X), PY

)
. (4)

While the entropic Wasserstein distance allows for faster
computation, note that it can be strictly larger than zero
even if the generated distribution is exactly the same as the
target distribution, i.e. W 2

2,λ(PY , PY ) 6= 0. This issue can be
resolved by adding corrective terms to (3) [12], which leads
to the Sinkhorn divergence:

Sλ(PG(X), PY ) = W 2
2,λ(PG(X), PY )

−
(
W 2

2,λ(PG(X), PG(X)) +W 2
2,λ(PY , PY )

)
/2. (5)

One can easily check that Sλ(PY , PY ) = 0 for any PY . The
corresponding Sinkhorn W2GAN is given by:

min
G∈G

Sλ(PG(X), PY ). (6)

We would like to emphasize that strong duality holds for
(3) and (5), and they can be reformulated as maximizing a
strongly concave objective over a set of functions from Y to
R (discriminators) [15].

III. POPULATION SOLUTION FOR THE LINEAR/GAUSSIAN
SETTING

In this section, we focus on the benchmark setting con-
sidered in [11], where the generator is linear and the target
distribution is Gaussian, in which case we can rewrite the
general formulation of (2) as:

min
G∈Rd×r

W 2
2 (PGX , PY ) ,

where the latent random variable X ∈ Rr follows the standard
Gaussian distribution N (0, Ir), the underlying distribution of
data Y ∈ Rd is N (0,KY ), and the optimization is over
all matrices G ∈ Rd×r with d ≥ r so that the generated
distribution is PGX . The population solution to the above
W2GAN problem has been characterized in [11] as the r-PCA
solution of Y , i.e. the covariance matrix KG∗X for PG∗X is
a rank-r matrix whose top r eigenvalues and eigenvectors are
the same as those of KY .

We next show that adding entropic regularization to the
W2GAN objective changes this solution to a soft-thresholded
r-PCA solution of Y as shown by the following theorem.

Theorem 1: Let Y ∼ N (0,KY ) and X ∼ N (0, Ir) where
r ≤ d. The population solution PG∗X to the entropic W2GAN
problem is given by a soft-thresholded r-PCA solution of Y ,
i.e., the covariance matrix KG∗X for PG∗X is a rank-r matrix
whose top r eigenvectors are the same as those of KY and the
top r eigenvalues are σ2

i = (λi(KY )− λ/2)+ for i ∈ [1 : r],
where (x)+ := max{x, 0} and {λi(KY )}ri=1 are the top r
eigenvalues of KY .

This theorem connects entropic W2GAN to a version of
PCA with soft thresholding of singular values, which is the
solution for the matrix completion problem [16, Theorem 2.1]:

min
G∈Rd×r

‖KZ −KY ‖2F + λ‖KZ‖∗,

where KZ = GGT corresponds to the covariance matrix of the
generated distribution PGX in the GAN problem, and ‖ · ‖∗ is
the nuclear norm, i.e. the sum of all singular values of a matrix.
Thus, entropic regularization promotes sparsity in the singular
values of the covariance matrix of the generated distribution.

Note that the population solution for the entropic W2GAN
is not the same as that for the unregularized W2GAN, which
is not surprising as they optimize two different objective
functions. Nevertheless, Theorem 1 reveals that in the lin-
ear/Gaussian case, there is a natural relationship between
the two solutions as the former turns out to be a soft-
thresholded version of the latter. We next investigate the
population solution for the Sinkhorn W2GAN and show that,
while it is not the case in general, when restricted to the
linear/Gaussian benchmark, surprisingly Sinkhorn W2GAN
does recover the regular PCA solution as shown in the
following theorem. We remark that this is not ensured by
the property Sλ(PY , PY ) = 0 for any PY of the Sinkhorn
divergence, as in the current setting the Sinkhorn divergence
between the optimal generated and target distributions is non-
zero. However, it does suggest that the Sinkhorn divergence
can lead to solutions closer to the target distribution, while also



possessing other favorable qualities like unbiasedness and the
one described in the following section.

Theorem 2: Let Y ∼ N (0,KY ) and X ∼ N (0, Ir) where
r ≤ d. The population solution PG∗X to the Sinkhorn W2GAN
problem is given by the r-PCA solution of Y .

A. Proofs of Theorems 1 and 2

Proof of Theorem 1: Let Z = GX , where G ∈ Rd×r.
Since X ∼ N (0, Ir), PZ is a d-dimensional Gaussian dis-
tribution whose covariance matrix KZ has rank less than or
equal to r. For any such PZ , denote by SZ the r-dimensional
subspace that contains the support of Z. For any Y ∈ Rd, let
YSZ and YS⊥Z be respectively the projections of Y onto SZ
and its orthogonal complement S⊥Z so that Y = YSZ + YS⊥Z .
The entropy regularized 2-Wasserstein distance is then

W 2
2,λ(PY , PZ) = min

π∈Π(PY ,PZ)
Eπ
[
‖Z − Y ‖2

]
+ λIπ(Z;Y )

= min
π∈Π(PY ,PZ)

Eπ
[
‖(Z − YSZ )− YS⊥Z ‖

2
]

+ λIπ(Z;Y )

= min
π∈Π(PY ,PZ)

Eπ
[
‖Z − YSZ‖2

]
+ E

[
YS⊥Z ‖

2
]

+ λIπ(Z;Y ) (7)

= min
π∈Π(PY ,PZ)

Eπ
[
‖Z − YSZ‖2

]
+ E

[
YS⊥Z ‖

2
]

+ λIπ(Z;YSZ) (8)

The last equality above holds because the optimal coupling
should make Z − YSZ − YS⊥Z a Markov chain, in which case
Iπ(Z;Y ) = Iπ(Z;YSZ , YS⊥Z ) = Iπ(Z;YSZ ); indeed, for any
coupling π, one can construct π′ such that π′(Z, YSZ , YS⊥Z ) =
π(Z, YSZ )π(YS⊥Z |YSZ ), and π′ preserves the values of the first
two terms in (7) while decreasing the value of the third term.

Consider the optimization problem in the entropic W2GAN,
i.e. minPZ∈Nd,r

W 2
2,λ(PY , PZ), where the optimization is over

the set Nd,r of all d-dimensional Gaussian distributions with
rank not exceeding r. In light of (8), the above is

min
S∈Sd:dim(S)≤r
PZ∈Nd,r:Z∈S
π∈Π(PY ,PZ)

Eπ[‖Z − YS‖2] + E[‖YS⊥‖2] + λIπ(Z;YS), (9)

where Sd is the set of all subspaces of Rd. To solve (9) we
first fix S. If columns of U ∈ Rd×r form an orthonormal basis
of S, i.e. S = ImU and UTU = Ir, we replace Z and YS in
(9) by UTZ and UTY respectively. To find optimal π, PZ for
S we then solve

min
PZ∈Nd,r:Z∈Im(U)
π∈Π(PZ ,PY )

Eπ[‖UTZ − UTY ‖2] + λIπ(UTZ;UTY )

− E[‖UTY ‖2] + E[‖Y ‖2] (10)

Let Z̄ = UTZ and Ȳ = UTY, and let Nr,r be the set of all
r-dimensional Gaussian distributions. Then Problem (10) is

min
PZ̄∈Nr,r

min
π∈Π(PZ̄ ,PȲ )

Eπ[‖Z̄ − Ȳ ‖2] + λIπ(Z̄; Ȳ ) (11)

For fixed PZ̄ , PȲ and cross-covariance matrix KZ̄Ȳ the first
term in (12) is fixed and the mutual information term is
minimized when the π is jointly Gaussian. Therefore, (11)

is simply a rate distortion problem with source distribution
PȲ being Gaussian, i.e.

min
π∈N (PZ̄ ,PȲ )

Eπ[‖Z̄ − Ȳ ‖2] + λIπ(Z̄; Ȳ ) (12)

WLOG, we can assume Ȳ has diagonal covariance matrix
KȲ = diag(Λ1, . . . ,Λr), where the diagonal elements are
in decreasing order. The solution for this problem is given
by reverse waterfilling [17], under which the optimal PZ̄
has covariance matrix KZ̄ = diag(σ2

1 , . . . , σ
2
r) where σ2

i =
(Λi − λ

2 )+, and the optimal value is given by
r∑
i=1

(
λ

2
ln

max{Λi, λ/2}
λ/2

−max

{
Λi,

λ

2

})
+
rλ

2
+ E[‖Ȳ ‖2]

The entropic W2GAN optimization problem (9) is then
equivalent to:

min
U∈Rd×r

r∑
i=1

(
λ

2
ln

max{Λi, λ/2}
λ/2

−max{Λi, λ/2}
)

where the optimization is over all U ∈ Rd×r such that UTU =
Ir and UTKY U = diag(Λi, . . . ,Λr). We now let

f(Λi) = (λ/2) ln (max{Λi, λ/2}/ (λ/2))−max{Λi, λ/2},

and complete the proof by showing

[λ1(KY ), . . . , λr(KY )] = arg min
[Λ1,...,Λr]

r∑
i=1

f(Λi) (13)

Indeed, for each U we have
∑r′

i=1 Λi ≤
∑r′

i=1 λi,∀r′ ≤ r (all
the sequences are in decreasing order). Using the majorizing
inequality (see, e.g., Lemma 2.2 of [18]) and the fact that f is
concave non-increasing function, we have

∑r
i=1 f(λi(KY )) ≤∑r

i=1 f(Λi). Therefore, columns of the optimal U are the top
r eigenvectors of KY , and the optimal PZ has covariance ma-
trix given by KZ = U [diag(σ2

1 , . . . , σ
2
r)|0r×(d−r)]U

T where
σ2
i = (λi(KY )− λ/2)+.

Proof of Theorem 2: From (8) in the proof of Theorem 1,
we have for given Z = GX and S = ImG,

W 2
2,λ(PZ , PY )− E[‖YS⊥‖2]

= min
π∈Π(PZ ,PYS )

E[‖Z − YS‖2] + λI(Z;YS) = W 2
2,λ(PZ , PYS ),

and therefore for the Sinkhorn divergence,

Sλ(PZ , PY )− E‖YS⊥‖22
= W 2

2,λ(PZ , PYS )−
(
W 2

2,λ(PZ , PZ) +W 2
2,λ(PY , PY )

)
/2

=Sλ(PZ , PYS )+
(
W 2

2,λ(PYS , PYS )−W 2
2,λ(PY , PY )

)
/2 (14)

Consider the optimization problem in the Sinkhorn diver-
gence GAN, i.e. minPZ

Sλ(PZ , PY ). In light of (14), given
Z ∈ S the optimal PZ should be PYS , which makes the first
term in (14) zero. Therefore, it only remains to optimize over
S, and in particular, the problem reduces to

min
S∈Sd:dim(S)≤r

W 2
2,λ(PYS , PYS )/2 + E‖YS⊥‖22.

Using the formula [19, Theorem 1] for entropy regularized 2-



Wasserstein distance between two Gaussian distributions, the
objective function in the above problem becomes

W 2
2,λ(PYS , PYS )/2 + E‖YS⊥‖22
= TrKYS⊥

+ TrKYS − Tr
(
(4K2

YS + λ2I/4)1/2
)
/2

+ λ log det
((

4K2
YS + λ2I/4

)1/2
+ λI/2

)
/4 + C

=

r∑
i=1

(
λ

4
log

(√
4Λ2

i +
λ2

4
+
λ

2

)
− 1

2

√
4Λ2

i +
λ2

4

)
+C ′

where Λi is the ith eigenvalue of UTKYSU for some U ∈
Rd×r such that ImU = S and UTU = Ir, C is a constant
and C ′ = TrK + C. The above is minimized when Λi =
λi(KY ) using the similar argument for showing (13), i.e., by
using the majorizing inequality and noting that the function
f(x) =

√
4x2 + λ2/4/2 − λ log(

√
4x2 + λ2/4 + λ/2)/4 is

concave and non-increasing for λ > 0 and x ≥ 0.

IV. GENERALIZATION ERROR OF EMPIRICAL SOLUTION

In this section we discuss the generalization capability of
the empirical solutions for W2GAN, entropic W2GAN and
Sinkhorn W2GAN, respectively. Note that in the population
case, the underlying distribution of data PY was known in
the GAN formulations (2), (4) and (6). In contrast, here we
consider the finite sample case, where empirical distribution
QnY extracted from sample Ŷ = {yi}ni=1 is used in the GAN
objective (2), (4) and (6) to approximate PY . We are interested
in how fast the empirical solution PGn(X) converges to the
population solution PG∗(X).

It was shown in [11] that even in our simple benchmark
when generators are linear and data distribution is high-
dimensional Gaussian, the convergence for W2GAN is slow
in the sense that the generalization error

E
[
W 2

2 (PGn(X), PY )−W 2
2 (PG∗(X), PY )

]
= Ω(n−2/d).

That is to decrease the generalization error by a constant
factor the number of samples has to be increased by a factor of
eΩ(d), and hence the generalization capability of W2GAN suf-
fers from the curse of dimensionality. To overcome this, [11]
proposed to constrain the set of discriminators for W2GAN
to quadratic. This was motivated by the observation that
constraining the discriminator to be quadratic will not affect
the population solution because the optimal discriminator for
W2GAN is indeed quadratic in the Gaussian setting. On the
other hand, it was shown that this constraint will lead to fast
convergence of order Od(n−1/2) and hence resolve the issue
of curse of dimensionality.

While constraining the discriminator to be quadratic as done
in [10] is conceptually appealing and works for the setup
of linear generators and Gaussian data, this insight does not
generalize to other distributions, i.e. for non-Gaussian data
the generator obtained under a quadratic discriminator is not
necessarily the one minimizing the 2-Wasserstein distance
between the generated and the target distributions. Theorems 3
and 4 below show that under mild conditions on the underlying
distribution of data, the latent random variable and the set of

generators, similar convergence can be achieved for entropic
W2GAN and Sinkhorn W2GAN without the need to constrain
the discriminator.

To formally state the results, let us first recall some def-
initions. A distribution PX is σ2 sub-gaussian for σ ≥ 0
if E exp

(
‖X‖2/(2rσ2)

)
≤ 2. Let σ2(X) = min{σ ≥

0
∣∣E exp(‖X‖2/(2rσ2)) ≤ 2}, and let σ2

Ŷ(Z) = min{σ ≥
0
∣∣EŶ exp(‖Z‖2/(2rσ2)) ≤ 2} be the sub-gaussian parameter

of the distribution of Z conditioned on the sample, where EŶ [·]
denotes the expectation conditioned on the sample. A set of
generators G is said to be star-shaped with a center at 0 if a
line segment between 0 and G ∈ G also lies in G, i.e.

G ∈ G ⇒ αG ∈ G,∀α ∈ [0, 1]. (15)

Note that this includes the set of all linear generators consid-
ered in the last section as a trivial case, as well as the set of
linear functions with a bounded norm or a fixed dimension.

Theorem 3: Let P
K
−1/2
X X

and PY be sub-gaussian and
the generator set G be a set of linear function satisfying
condition (15). Then the generalization error for entropic
W2GAN can be bounded by
E
[
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PG∗(X), PY )

]
≤ Kdλn

−1/2
(
1 + (2τ2/λ)d5d/4e+3

)
,

where τ2 = max{σ2(K
−1/2
X X)σ2(Y ), σ2(Y )} and Kd is a

dimension dependent constant.
Theorem 3 essentially says that under certain mild conditions,
the generalization error for entropic W2GAN converges to
zero at speed Od(1/

√
n). This improved sample complexity

suggests that the set of possible discriminators may be implic-
itly constrained due to the entropic regularization term used in
the primal form of entropy regularized 2-Wasserstein distance.
Similar results also hold for the set of Lipschitz functions and
extend to the Sinkhorn distance W2GAN.

Theorem 4: Let PX and PY be sub-Gaussian and the set of
generators G consist of L-Lipschitz functions, i.e. ‖G(X1)−
G(X2)‖ ≤ L‖X1 − X2‖ for any X1, X2 in the support of
PX and let G satisfy (15). Then the generalization error for
entropic W2GAN

E
[
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PG∗(X), PY )

]
and that for Sinkhorn W2GAN

E
[
Sλ(PGn(X), PY )− Sλ(PG∗(X), PY )

]
can be both upper bounded by

Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
(16)

with τ2 = max{L2σ2(X), σ2(Y )}.
It is worth mentioning that a similar result was proved in [20],
however it requires significantly stronger conditions for the set
of generator functions G. In particular, it does not apply to G
being the set of all linear functions.
A. Proofs

Due to page limit, we only provide the proof of Theorem
3. The proof of Theorem 4 follows along the similar line and
is delegated to the long version of the paper. In particular, the



proof of Theorem 3 builds on a result that appears as Corollary
1 of [21] and several lemmas that we summarize below.

Proposition 1 (Corollary 1 of [21]): If PX and PY are σ2

sub-gaussian, then

E
[∣∣W 2

2,λ(PX , Q
n
Y )−W 2

2,λ(PX , PY )
∣∣]

≤ Kdλn
−1/2

(
1 + (2σ2/λ)d5d/4e+3

)
, (17)

where Kd is a constant depending on the dimension.
To prove the theorem we need the following lemmas.
Lemma 1: Under the conditions of Theorem 3 for any PZ

G∗ = arg minG∈GW
2
2,λ(PG(X), PZ) has E

[
‖G∗(X)‖22

]
≤

TrKZ and σ2(G∗(X)) ≤ rd−1 TrKZσ
2(K

−1/2
X X).

Lemma 2: For a sub-gaussian Z the covariance matrix trace
is bounded as TrKZ ≤ 4dσ2(Z).

Lemma 1 follows from the optimality of G∗, condition (15)
and the fact that mutual information is invariant to scaling
of G. Lemma 2 follows directly from Jensen’s inequality.

Proof of Theorem 3: The proof is based on [21, Theo-
rem 2]. Denote Cd,i constants depending on the dimension d
as we are not aiming to find the exact dependence of the bound
from the dimension. Let λ = 2 and note that the definition of
entropy regularized Wasserstein distance defined in [21] and
in this paper differ by a factor of 1/2, but as all the results are
stated up to a multiplicative constant, this does not influence
the solution. First, we rewrite dλ(G∗, Gn) to fit Theorem 1:

dλ(G∗, Gn) =
(
W 2

2,λ(PG∗(X), Q
n
Y )−W 2

2,λ(PG∗(X), PY )
)

+
(
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PG∗(X), Q

n
Y )
)

≤
(
W 2

2,λ(PG∗(X), Q
n
Y )−W 2

2,λ(PG∗(X), PY )
)

+
(
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PGn(X), Q

n
Y )
)

(18)

Let ν2 = max{4rσ2(K
−1/2
X X)σ2(Y ), σ2(Y )} ≤ 4rτ2. Then

σ2 (G∗(X)) ≤ rd−1 TrKY σ
2
(
K
−1/2
X X

)
≤ 4rσ2

(
K
−1/2
X X

)
σ2(Y ) ≤ ν2,

with the inequalities following from Lemmas 1, 2 and the
definition of ν2. By [21, Theorem 2] applied to the expectation
of the first difference in (18):

E
[∣∣W 2

2,λ(PG∗(X), Q
n
Y )−W 2

2,λ(PG∗(X), PY )
∣∣]

≤ Cd,2n−1/2
(
1 +

(
ν2
)d5d/4e+3)

, (19)

As Gn depends on the sample, the theorem cannot be
applied directly to the second difference. Following [21]
for a set of functions F we write ‖PY − QnY ‖F =
supu(·)∈Fs

∣∣∫ u(y) (dPY (y)− dQnY (y))
∣∣ . By Lemma [21,

Proposition 1] for σ̃2 = max
{
σ2
Ŷ (Gn(X)) , σ2

Ŷ(Ŷ ), σ2(Y )
}

and s = dd/2e+ 1 :

W 2
2,λ(PGn(X), PY )−W 2

2,λ(PGn(X), Q
n
Y )

≤
(
1 + σ̃3s

)
‖PY −QnY ‖Fs , . (20)

where Fs is a set of functions, such that ψ/
(
1 + σ̃3s

)
∈ Fs

for all optimal dual potentials ψ. Fs is a larger set and its
exact definition can be found in [21], but for the purpose of
this proof it is important to note that Fs only depends on s

and not on the sub-gaussian parameters of Y and GX. Taking
expectation over the sample in (20) we get:(

EŶ
[
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PGn(X), Q

n
Y )
])2

≤ 2EŶ
[
1 + σ̃6s

]
EŶ‖PY −Q

n
Y ‖2Fs (21)

In [21, Proof of Theorem 2] a covering number bound for Fs
is used to establish that
E
[
‖PY −QnY ‖2Fs

]
≤
(
1 + σ2(Y )d+2

)
n−1Cd,3 ≤

(
1 + ν2d+4

)
n−1Cd,3

By Lemma 2 we have TrKŶ ≤ 4dσ2(Ŷ ), so

σ2
Ŷ(Gn(X)) ≤ d−1 TrKŶ rσ

2
(
K
−1/2
X X

)
≤ 4rσ2

(
K
−1/2
X X

)
σ2
Ŷ

(
Ŷ
)
≤ σ2

Ŷ(Ŷ )ν2/σ2(Y ), (22)

where the last is due to Lemma 1. Taking expectation of σ̃6s :

E
[
σ̃6s
]
≤ E

[
max

{
σ2
Ŷ

(
Ŷ
)
, σ2(Y ), σ2

Ŷ (Gn(X))
}3s]

≤ ν6sE
[
max

{
1, σ2
Ŷ

(
Ŷ
)
/σ2(Y )

}3s
]
≤ 2(3s)3sν6s, (23)

where (23) is due [21, Lemma 4]; plugging (23) in (21) gives

E
[
W 2

2,λ(PGn(X), PY )−W 2
2,λ(PGn(X), Q

n
Y )
]

≤
√

2(1 + 2(3s)3sν6s)Cd,3n−1ν6s (1 + νd+2)

≤ Cd,4n−1/2
(
1 +

(
ν2
)d5d/4e+3)

(24)

Combining (24) and (19) we get that for λ = 2 :

E [dλ(G∗, Gn)] ≤ Cd,5n−1/2(1 + (ν2)d5d/4e+3)

≤ Kdn
−1/2(1 + (τ2)d5d/4e+3),

Consider λ 6= 2. Then for any λ > 0 :

W 2
2,2(P

Z
√

2/λ
, P

Y
√

2/λ
)

= inf
π∈Π((PZ ,PY ))

2E
[
‖Z − Y ‖2

]
/λ+ 2I(Z;Y )

= 2W 2
2,λ(PZ , PY )/λ

Thus, noting that for a sub-gaussian Z :

E exp

(
‖Z
√

2/λ‖22
2rσ2

Z2/λ

)
= E exp

(
‖Z‖22
2rσ2

Z

)
≤ 2

we conclude that σ2(Z
√
λ/2) = 2σ2(Z)/λ. Plugging the

result into the bound (24) we get

E [dλ(G∗, Gn)] ≤ Kdλn
−1/2

(
1 + (2τ2/λ)d5d/4e+3

)
/2.

V. CONCLUSION
In this work we provide a comprehensive complexity analy-

sis of entropy regularized GANs and explain their robustness.
Moreover, in a specific simplified setting, the linear generator
and Gaussian distributions, we derive an analytic expression
for the optimal generator. This results motivates further studies
on model-based designing of GANs and GANs stability.

ACKNOWLEDGMENT
This work was partly supported by a Stanford Graduate

Fellowship, NSF award CCF-1704624, and the Center for Sci-
ence of Information (CSoI), an NSF Science and Technology
Center, under grant agreement CCF-0939370.



REFERENCES

[1] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4681–4690, 2017.

[2] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
image translation with conditional adversarial networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 1125–1134, 2017.

[3] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt
Schiele, and Honglak Lee. Generative adversarial text to image syn-
thesis. In International Conference on Machine Learning, pages 1060–
1069. PMLR, 2016.

[4] Abir De, Isabel Valera, Niloy Ganguly, Sourangshu Bhattacharya, and
Manuel Gomez Rodriguez. Learning and forecasting opinion dynamics
in social networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 29, pages 397–405. Curran Associates, Inc., 2016.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 27, pages 2672–2680. Curran
Associates, Inc., 2014.

[6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
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