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Abstract

We consider parameter estimation in distributed networks, where each sensor in the network
observes an independent sample from an underlying distribution and has k bits to communicate
its sample to a centralized processor which computes an estimate of a desired parameter. We
develop lower bounds for the minimax risk of estimating the underlying parameter for a large
class of losses and distributions. Our results show that under mild regularity conditions, the
communication constraint reduces the effective sample size by a factor of d when k is small,
where d is the dimension of the estimated parameter. Furthermore, this penalty reduces at
most exponentially with increasing k, which is the case for some models, e.g., estimating high-
dimensional distributions. For other models however, we show that the sample size reduction is
re-mediated only linearly with increasing k, e.g. when some sub-Gaussian structure is available.
We apply our results to the distributed setting with product Bernoulli model, multinomial
model, Gaussian location models, and logistic regression which recover or strengthen existing
results.

Our approach significantly deviates from existing approaches for developing information-
theoretic lower bounds for communication-efficient estimation. We circumvent the need for
strong data processing inequalities used in prior work and develop a geometric approach which
builds on a new representation of the communication constraint. This approach allows us to
strengthen and generalize existing results with simpler and more transparent proofs.
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1 Introduction

Statistical estimation in distributed settings has gained increasing popularity motivated by the fact
that modern data sets are often distributed across multiple machines and processors, and bandwidth
and energy limitations in networks and within multiprocessor systems often impose significant
bottlenecks on the performance of algorithms. There are also an increasing number of applications
in which data is generated in a distributed manner and it (or features of it) are communicated over
bandwidth-limited links to central processors [BPC+11,BBFM12,DIPSV12,DPSV12,DGBSX12].
A notable example is the federated learning [MMR+17], where multiple entities collaborate in
solving a machine learning problem under the coordination of a central server, and communication
could be a primary bottleneck since wireless links and other end-user internet connections typically
operate at low rates and can be potentially expensive and unreliable; see [KMA+19] for an overview.

In this paper, we consider general distributed statistical estimation problems under communi-
cation constraints, and focus on the impact of a finite-communication budget per sample on the
final estimation accuracy. More formally, consider the following parameter estimation problem

X1,X2, · · · ,Xn
i.i.d.∼ Pθ

where we would like to estimate θ ∈ Θ ⊆ R
d under some general loss function L such as the ℓ1 or

ℓ22 loss. Unlike the traditional setting where X1, · · · ,Xn are directly available to the estimator, we
consider a distributed setting where each observation Xi is available at a different sensor and has
to be communicated to a central estimator by using a communication budget of k bits. We con-
sider a general interactive communication model known as the blackboard communication protocol
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ΠBB [KN97]: all sensors communicate via a publicly shown blackboard while the total number of
bits each sensor can write in the final transcript Y is limited by k. Note that when one sensor
writes a message (bit) on the blackboard, all other sensors can see the content of the message.
We assume that public randomness is available in the blackboard communication protocol. The
main motivation for considering a blackboard communication protocol is that it models arbitrary
interaction between the nodes. Impossibility results proven under this assumption provide insights
about whether communication protocols that make (better) use of interaction can potentially lead
to better performance than those achieved by simple schemes, e.g. simultaneous protocols. We note
that impossibility results are strongest when proven under this most flexible communication model.
We also consider a weaker family of protocols called the simultaneous message passing protocols
(denoted by ΠSMP), where each sensor independently sends k bits to the centralized processor.

Under both models, the central sensor needs to produce an estimate θ̂ of the underlying param-
eter θ from the the k-bit observations Y n it collects at the end of the communication. Our goal is
to jointly design a communication protocol in Π (which is either ΠBB or ΠSMP) and the estimator
θ̂(·) so as to minimize the worst case risk, i.e. to characterize the following distributed minimax
risk

R⋆(n, k,Θ,Π) , inf
Π

inf
θ̂
sup
θ∈Θ

Eθ[L(θ, θ̂)].

In this paper, lower bounds of the distributed minimax risk will typically be shown under the
stronger blackboard communication protocol, while upper bounds of the same order will be attain-
able under the weaker simultaneous message passing protocol.

The main contributions of our paper are as follows:

1. For a large class of statistical models, we develop a novel geometric approach that builds on a
new representation of the communication constraint to establish information-theoretic lower
bounds for distributed parameter estimation problems. Our approach circumvents the need
for strong data processing inequalities, and relate the experimental design problem directly
to an explicit optimization problem in high-dimensional geometry.

2. Based on our new approach, we show that the communication constraint reduces the effective
sample size from n to n/d for k = 1 under mild regularity conditions, where d is the dimension
of the parameter to be estimated. Moreover, for general communication budget k, our new
approach enables us to show that the penalty is at most exponential in k.

3. Our new approach also reveals that the tight dependence of the distributed minimax risk on
k is determined by different geometric inequalities in different statistical models. Our result
recovers the linear dependence on k when some sub-Gaussian structure is available, e.g., in the
Gaussian location model. However, in models with heavier tails such as the high-dimensional
distribution estimation model, we show that the exponential dependence on k becomes tight.

1.1 Related Work

Distributed parameter estimation and learning, under communication or privacy constraints, have
been considered in many recent works. Early work [ZDJW13,Sha14,GMN14,BGM+16,XR17] es-
tablished strong data-processing inequalities to prove tight lower bounds of distributed minimax risk
under communication constraints. In particular, they showed that for communication-constrained
Gaussian mean estimation, the distributed minimax risk depends linearly on k under the black-
board communication protocol. Similar approaches were also used to obtain minimax risks under
privacy constraints [DJW13,KBR16,DJW18].
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Due to the nature of strong data-processing inequalities, the above procedure typically leads
to lower bounds linear in k (or the squared privacy parameter). However, for certain statisti-
cal estimation problems such as the high-dimensional distribution estimation, this dependence
may not be tight. For example, a tight exponential dependence on the privacy parameter was
established in [YB18] for discrete distribution estimation, and [DGL+17] established the tight to-
tal communication budget for this problem under the communication constraint1. A complete
characterization of the distributed minimax risk for discrete distributione estimation and general
(n, k) was obtained in [HMÖW18] under the simultaneous message passing protocol, with a tight
exponential dependence on k. Generalization of [HMÖW18] to general statistical models with
varying dependence on k was studied in an earlier version of this work [HÖW18], but both pa-
pers require the usage of the simultaneous message passing procotol (and there was a technical
mistake in handling the blackboard communication protocol). All the above work modeled the
communication/privacy constraint directly and did not use the strong data-processing inequality;
along this direction, a flourishing line of recent research has studied different distributed estima-
tion [ASZ19, AS19, ACT20b,ACT20c, CKO20] and testing [ACT20b,ACT20c, ACF+21, ACH+20]
problems for the discrete distribution model under the simultaneous message passing protocol. A
similar Gaussian identity testing problem was also studied in [ACT20a].

However, although it is relatively easy to extend the strong data-processing inequality based
approach to blackboard communication protocols, it is more difficult to extend the approach based
on direct modeling to interactive protocols ΠBB. We review some recent work which dealt with in-
teractive communication protocols. Duchi and Rogers [DR19] established lower bounds for general
interactive communication protocols based on machinery in the communication complexity litera-
ture, given a total privacy constraint. Barnes et al. [BHÖ20] studied a quantized Fisher information
under blackboard communication protocols and proved a Bayesian lower bound using a continuous
prior and the van Trees inequality, which typically requires the usage of the ℓ22 loss. This Fisher
information based approach has been extended to distributed estimation under local differential
privacy constraints in [BCÖ20] recovering the results of [DR19] in the case of the ℓ22 loss. For the
identity testing, there are three recent papers Amin et al. [AJM20], Berrett and Butucea [BB20],
and Acharya et al. [ACL+20] which established the sharp statistical rates under interactive commu-
nication protocols, where they focused on the discrete distribution estimation model and sequential
interactive protocols. Sequential communication protocols are stronger than ΠSMP but weaker than
ΠBB, as samples are encoded in a sequential fashion and the encoding of the sample i can decode on
the messages transmitted by sensors 1, . . . , i− 1. In this paper, we extend the results of [HÖW18]
to blackboard communication protocols ΠBB (fixing the mistake in [HMÖW18] and [HÖW18]) via
a generalization of the idea in [ACL+20], and therefore extending the approach of [ACL+20] to a
broader family of statistical models and the blackboard communication protocol.

We also compare with a recent paper [ACT21] which appears after our submission. Both papers
build upon the framework presented for the discrete setting in [ACL+20], and have similar assump-
tions and results on the high-dimensional estimation problem with communication constraints. We
also point out some differences. In terms of scope, [ACT21] also studied the privacy constraints,
and its latest version analyzed sparse estimation models in more detail. In terms of assumptions, an
exact orthogonality assumption of likelihood ratios is required in [ACT21], whereas our likelihood
ratio condition could be viewed as an approximate version which enables us to study the logistic
regression model as well. Finally, in terms of the communication protocol, our blackboard commu-
nication protocol is more general than the sequential communication protocol studied in [ACT21],
requiring additional effort in handling the tree-based communication protocol.

1However, no full version of [DGL+17] with complete proofs is available online at the time of writing.
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1.2 Notation

For a finite set A, let |A| denote its cardinality; [n] , {1, 2, · · · , n}; for a measure µ, let µ⊗n

denote its n-fold product measure; lattice operations ∧,∨ are defined as a ∧ b = min{a, b}, a ∨
b = max{a, b}; throughout the paper, logarithms log(·) are in the natural base; ‖P − Q‖TV and
DKL(P‖Q) denote the total variation (TV) distance and Kullback–Leibler (KL) divergence between
probability measures P and Q, respectively; Multi(n;P ) denotes the multinomial model which
observes n independent samples from P ; for a matrix A ∈ Rm×n, ‖A‖op = maxx∈Rn:‖x‖2=1 ‖Ax‖2
denotes the operator norm; for non-negative sequences {an} and {bn}, the notation an . bn (or
bn & an, an = O(bn), bn = Ω(an)) means lim supn→∞

an
bn

< ∞, and an ≪ bn (bn ≫ an, an =
o(bn), bn = ω(an)) means lim supn→∞

an
bn

= 0, and an ≍ bn (or an = Θ(bn)) is equivalent to both
an . bn and bn . an.

1.3 Organization

The rest of the paper is organized as follows. Section 2 presents our assumptions on the statistical
model and two main lower bounds on the distributed minimax risk, which lead to new results or
recover existing results in distributed estimation. In Section 3 we introduce the tree representation
of the blackboard communication protocol, and sketch the lower bound proof based on this rep-
resentation. Section 4 is devoted to the proof of Theorems 1 and 2, where the key steps are two
geometric inequalities. Further discussions are in Section 5, and auxiliary lemmas and the proof of
main lemmas are in the appendices.

2 Main Results

2.1 Assumptions

To derive meaningful results in the general minimax formulation, proper assumptions are necessary
for the statistical model (Pθ)θ∈Θ⊆Rd and the loss function L. To this end, we begin with the
standard regularity condition on (Pθ)θ∈Θ.

Assumption 1. The statistical model (Pθ)θ∈Θ is differentiable in quadratic mean at every θ ∈ Θ,
with the score function Sθ and the Fisher information matrix Iθ.

Note that Assumption 1 is a mild condition commonly used in classical asymptotic statistics
[IH13], which leads to the asymptotically tight Cramér–Rao lower bound for centralized estimation.
However, to obtain finite-sample results we need additional assumptions requiring the following
notations. For a binary vector u ∈ {±1}m and j ∈ [m], let u⊕j be the vector after flipping the j-th
coordinate of u. Also, for two binary vectors u, u′ ∈ {±1}m, let dHam(u, u

′) =
∑m

j=1 1(uj 6= u′j)

be their Hamming distance. In addition, let X ⊆ R
d be the common support of all probability

measures (Pθ)θ∈Θ, and A be a generic action space in which the estimator θ̂ takes value. Finally, by
a loss function L we mean a generic non-negative (measurable) function L : Θ×A → R+. The next
assumption is a refinement of Assumption 1 which concerns the finite-sample property of (Pθ)θ∈Θ
and L.

Assumption 2. There exist 1 ≤ d0 ≤ d and a subset of parameters (θu)u∈{±1}d0 ⊆ Θ such that
the following conditions hold:

1. Regular grid condition: For each u ∈ {±1}d0 , the d×d0 matrix Mu with columns θu⊕j −θu
ranging over j ∈ [d0] has an operator norm at most 2δ.
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2. Separation condition: for any u, u′ ∈ {±1}d0 , it holds that

inf
a∈A

[L(θu, a) + L(θu′ , a)] ≥ κ · dHam(u, u
′). (1)

3. Likelihood ratio condition: for any u ∈ {±1}d0 and j ∈ [d0], it holds that

EX∼Pθu

[∣∣∣∣
dPθ

u⊕j

dPθu
(X) − 1− (θu⊕j − θu)

⊤Sθu(X)

∣∣∣∣
2
]
≤ ε2. (2)

In addition, it holds that dPθ
u⊕j

/dPθu(x) ≥ 1/2 for all x ∈ X .

If all above conditions hold, we call this statistical estimation problem (d, d0, δ, κ, ε)-regular.

Assumption 2 will be best understood via an important special case. Consider d0 = d, and for
each u ∈ {±1}d, let θu = θ0 + δu be a local perturbation of some θ0 ∈ Θ. Then the regularity grid
condition clearly holds as the matrix Mu is diagonal with diagonal entries being ±2δ. Therefore,
this condition essentially says that the parameters (θu)u∈{±1}d0 look like the vertices of a cube with
side length δ. The separation condition is standard in applying Assouad or Fano-type arguments
to a cube-like hypothesis class [Yu97], and is fulfilled for many natural loss functions with κ = κ(δ)
a function of δ. For example, κ(δ) = 2δp when L = ℓpp, with important special cases including the
ℓ1 loss when p = 1, and the mean squared error when p = 2. The last likelihood ratio condition is
motivated by the local expansion

dPθ+t·h
dPθ

(x) = exp

(
t · h⊤Sθ(x)−

t2

2
· h⊤Iθh+ oPθ

(t2)

)
, ∀h ∈ R

d

and ex = 1 + x+ x2/2 + o(x2), as well as the identity EX∼Pθ
[Sθ(X)Sθ(X)⊤] = Iθ. In other words,

(2) is a quantitative way to approximate the local likelihood ratio by score functions, with the
approximation error ε = ε(δ) typically growing with δ. This quantitative condition will help us
to show the indistinguishability among the locally perturbed statistical models. We also remark
that the likelihood ratio is computed only between two neighboring vertices and often not growing
with the dimensionality d, thus the lower bound assumption on the local likelihood ratio is not
restrictive in high dimensions. Finally, to show that Assumption 2 holds for a certain statistical
model, typically we first choose a suitable perturbation distance δ and then work out the parameters
κ and ε as functions of δ.

While the first two conditions of Assumption 2 are relatively easier to hold, the last condition
may fail for statistical models with an unbounded support (e.g. X = R

d). To mitigate this draw-
back, we propose a slightly weaker assumption which requires that the likelihood ratio condition
holds with a high probability.

Assumption 3. Assume the same conditions in Assumption 2, except that in the likelihood ratio
condition, there exists some X0 ⊆ X such that

EX∼Pθu

[∣∣∣∣
dPθ

u⊕j

dPθu
(X)− 1− (θu⊕j − θu)

⊤Sθu(X)

∣∣∣∣
2

· 1(X ∈ X0)

]
≤ ε2, (3)

and dPθ
u⊕j

/dPθu(x) ≥ 1/2 for all x ∈ X0. Moreover, we require that Pθu(X0) ≥ 1 − α for all

u ∈ {±1}d0 . If the above condition holds, we call this statistical estimation problem (d, d0, δ, κ, ε, α)-
approximately-regular.
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In all the models considered in this paper, we always have α = o(n−1), so the likelihood ratio
condition is only violated with a tiny probability, which suffices for our main Theorems 1 and 2.
The next proposition shows that many common statistical models are regular or approximately
regular.

Proposition 1. For L = ℓpp with p ∈ [1,∞), the following statements hold:

• The product Bernoulli model Pθ =
∏d
j=1Bern(θj) with Θ = [0, 1]d is (d, d, δ, κ, ε)-regular with

any δ ∈ (0, 1/6), and κ(δ) = 2δp, ε(δ) ≡ 0.

• The product Bernoulli model Pθ =
∏d
j=1Bern(θj) or the Multinomial model Pθ = Multi(1; θ)

with Θ = {(θ1, · · · , θd) :
∑d

j=1 θj = 1} is (d, d/2, δ, κ, ε)-regular with any δ ∈ (0, 1/(2d)), and

κ(δ) = 22−pδp, ε(δ) ≡ 0.

• The Gaussian location model Pθ = N (θ, σ2Id) with Θ = R
d is (d, d, δ, κ, ε, α)-approximately-

regular with any δ ∈ (0, cσ/
√

log(nd)) for some small constant c > 0, and κ(δ) = 2δp,
ε(δ) = O(δ2/σ2), α = o(n−1).

• Consider the following logistic regression model Pθ with random design: the observation vector
is X = (z, y), with feature z ∼ N (0, Id) and label y ∼ Bern(1/(1 + exp(−θ⊤z))) given z.
This model with Θ = {θ ∈ R

d : ‖θ‖2 ≤ 1} is (d, d, δ, κ, ε, α)-approximately-regular with any
δ ∈ (0, 1/

√
d), and κ(δ) = 2δp, ε(δ) = O(δ2), α = o(n−1).

2.2 Main Theorems

Although the previous assumptions give that the local likelihood ratio could be approximated by
a linear form of the score function, they do not impose any assumption on the score function
itself. As we recall from the classical asymptotic theory that the score function and the Fisher
information play central roles in the estimation error, additional properties on the score function
will be required to state the minimax lower bound. Our first and general lower bound states that,
if the score function has a finite variance along any direction, then the estimation error in the
distributed case decays at most exponentially with k.

Theorem 1 (General lower bound I). Let the statistical problem be (d, d0, δ, κ, ε, α)-approximately-
regular with

I0 , max
u∈{±1}d0

max
v∈Rd:‖v‖2=1

Eθu [(v
⊤Sθu(X))2] <∞.

Then it holds that

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ[L(θ, θ̂)] ≥ cκd0

[
exp

(
−Cn

(
2k ∧ d
d0

· I0δ2 + ε2
))

− 4nα

]
,

where the infimum is taken over all possible estimators θ̂ = θ̂(Y n) and blackboard protocols with k-bit
communication constraint, and c, C > 0 are absolute constants independent of (n, d, k, I0, d0, δ, κ, ε, α).

We first show how Theorem 1 could be used to give a meaningful lower bound. Since κ = κ(δ)
and ε = ε(δ) are typically increasing in δ, as δ increases, the leading coefficient will be larger while
the exponential term will be smaller. To handle this tradeoff, we will choose the largest δ > 0 such
that the statistical problem remains to be (approximately-)regular, and δ2 = O(d0/(nI0(2

k ∧ d))).
Meanwhile, for this choice of δ, we expect that ε = ε(δ) is at most O(n−1/2), which holds in many
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examples in the next subsection. Finally, for this choice of δ, we conclude that the minimax risk is
lower bounded by Ω(d0κ(δ)).

We provide several intuitive implications of Theorem 1. Assume for simplicity that L = ℓ22,
d0 = d, κ = κ(δ) = 2δ2 and ε = ε(δ) ≡ 0, then the choice of δ2 ≍ d/(nI0(2

k ∧ d)) in Theorem 1
leads to the lower bound Ω(d2/(nI0(2

k ∧ d))). In the centralized case without any communication
constraints, we have k = ∞ and therefore the lower bound Ω(d/(nI0)) for the mean squared error.
Since the Fisher information matrix Iθ satisfies Iθ = Eθ[Sθ(X)Sθ(X)⊤], an equivalent expression of
I0 is

I0 = max
u∈{±1}d0

λmax(Iθu),

where λmax denotes the largest eigenvalue. As a comparison, the standard Cramér–Rao lower bound
for the mean squared error is Ω(trace(I−1

θ )/n) for any θ ∈ Θ [Háj72]. Consequently, Theorem 1
reduces to a weaker but non-asymptotic version of the Cramér–Rao lower bound in the centralized
case, which often remains rate-optimal when Pθ is of a product structure.

Now what happens when there are communication constraints? Using the above result, in the
most communication-starved case k = 1, we have an effective sample size reduction from n to n/d.
This bound is intuitively achievable by a simple grouping idea: the sensors are splitted into n/d
groups, and all d sensors in one group “simulate” a full d-dimensional observation with each sensor
working on one coordinate (see, e.g. Proposition 3). Therefore, we expect that the dependence on
n, d of our lower bound to be tight for k = 1. When k > 1, the lower bound Ω(d2/(nI0(2

k ∧ d)))
shows that the dependence of the squared ℓ2 risk on k cannot be faster than 2−k, i.e., the penalty
incurred by the distributed setting reduces at most exponentially in k. In the next subsection we
will see examples where this exponential reduction is indeed tight.

A natural question is that whether or not the exponential dependence on k is always tight. The
answer turns out to be negative: the above penalty will reduce at most linearly in k when the score
function has a sub-Gaussian tail along any direction. Recall that the ψ2-norm of a random variable
X is defined by

‖X‖ψ2(P ) = inf

{
t > 0 : EP

[
exp

(
X2

t2

)]
≤ 2

}
,

which is the Orlicz norm of X associated with the Orlicz function ψ2(x) = exp(x2) − 1 [BO31].
There are some equivalent definitions of the ψ2-norm, and ‖X‖ψ2(P ) ≤ σ if and only if X is sub-
Gaussian under P with parameter Θ(σ) [Ver10]. The following theorem shows another lower bound
when the score function has a finite ψ2-norm along any direction.

Theorem 2 (Lower bound with sub-Gaussian structure). Let the statistical problem be (d, d0, δ, κ, ε, α)-
approximately-regular with

Σ0 , max
u∈{±1}d0

max
v∈Rd:‖v‖2=1

‖v⊤Sθu(X)‖2ψ2(Pθu )
<∞.

Then it holds that

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ[L(θ, θ̂)] ≥ cκd0

[
exp

(
−Cn

(
k ∧ d
d0

· Σ0δ
2 + ε2

))
− 4nα

]
,

where the infimum is taken over all possible estimators θ̂ = θ̂(Y n) and blackboard protocols with k-bit
communication constraint, and c, C > 0 are absolute constants independent of (n, d, k,Σ0, d0, δ, κ, ε, α).
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Using the similar intuitive analysis, Theorem 2 roughly shows a lower bound Ω(d2/(nΣ0(k∧d)))
for the mean squared error. When the coordinates of the score function Sθ(X) are independent
(which holds when Pθ is a product distribution), the quantity Σ0 is essentially the maximum ψ2

norm for each coordinate. Compared with the lower bound Ω(d2/(nI0(2
k ∧ d))) in Theorem 1, the

new lower bound has a better dependence on k when the score function not only admits a finite
variance but also behaves like a Gaussian random variable. However, neither of these bounds is
better than the other in general, for it is possible that I0 ≪ Σ0; the next subsection will provide
examples where each of these bounds is tight. We also remark that the different dependence on
k in Theorems 1 and 2 is due to the nature of different geometric inequalities (cf. Lemma 3 and
Lemma 4) satisfied by general probability distributions and sub-Gaussian distributions.

2.3 Applications

Next we apply Theorems 1 and 2 to some concrete statistical estimation examples. The first
corollary concerns the discrete distribution estimation model.

Corollary 1 (Discrete distribution estimation). Let Pθ = Multi(1; θ) with Θ being the probability
simplex over d elements. For k ∈ N, p ∈ [1,∞), and n ≥ d2/(2k ∧ d), we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖pp ≥ Cp ·
d

(n(2k ∧ d))p/2 ,

where Cp > 0 is an absolute constant independent of n, k, d.

Using the construction of θu’s in Proposition 1, after some algebra one could verify that I0 =
O(d) in Theorem 1. Consequently, choosing δ = c/

√
n(2k ∧ d) for a small enough constant c > 0

ensures that δ < 1/(2d) (which is required in Proposition 1), with κ ≍ δp and ε = 0, giving the result
of Corollary 1. For p ∈ {1, 2}, there is a matching upper bound in [HMÖW18], showing the tightness
of this minimax lower bound. This result also improves over the total communication budget
in [DGL+17]. Under the sequential communication protocol, the recent paper [ACT21] established
the same lower bound for n ≥ d2/(2k ∧ d), as well as a different lower bound Ω((n(2k ∧ d))−(p−1)/2)
for n < d2/(2k ∧ d), the tightness of which is currently unclear (this lower bound also follows from
Corollary 1 via replacing d by a smaller quantity dmin =

√
n(2k ∧ d) such that n ≥ d2min/(2

k∧dmin)).
Note that in this case, the tight dependence of the minimax risk on k is exponential.

The next corollary characterizes the distributed minimax risk of mean estimation in the Gaus-
sian location model.

Corollary 2 (Gaussian location model). Let Pθ = N (θ, σ2Id) with Θ = R
d. For k ∈ N, p ∈ [1,∞)

and n ≥ d2/(k ∧ d)2 + d log d/(k ∧ d), we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖pp ≥ Cp · d
(

dσ2

n(d ∧ k)

) p

2

,

where Cp > 0 is an absolute constant independent of n, k, d, σ2.

For the Gaussian location model, the score function is Sθ(x) = (x − θ)/σ2, and therefore the
assumption of Theorem 2 is fulfilled with Σ0 = O(1/σ2). Consequently, in Theorem 2 we may
choose δ ≍ σ

√
d/(n(d ∧ k)) (which satisfies the constraint of Proposition 1 by the choice of n) with

κ ≍ δp and ε ≍ δ2/σ2 = O(n−1/2) to derive Corollary 2. Note that for p = 2, Corollary 2 recover
the results in [ZDJW13,GMN14], without logarithmic factors in the risk. Also, in this model, the
tight dependence of the minimax risk on k is linear.
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The above two models have different tight dependence on k: in Corollary 1, when 2k < d, we
see an effective sample size reduction from n to n2k/d; in Corollary 2, when k < d, we see an
effective sample size reduction from n to nk/d. This phenomenon may be better illustrated using
the following example:

Corollary 3 (Product Bernoulli model). Let Pθ =
∏d
i=1 Bern(θi). If Θ = [0, 1]d and n ≥ d

d∧k , we
have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≍
d2

nk
∨ d

n
.

If Θ , {(θ1, · · · , θd) ⊆ [0, 1]d :
∑d

i=1 θi = 1} and n ≥ d2

d∧2k
, we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≍
d

n2k
∨ 1

n
.

The first lower bound follows from Theorem 2, and it was also obtained in [ZDJW13] under the
independent protocol with a matching upper bound. The same lower bound was also obtained in
recent papers [ACL+20,ACT21]. The second lower bound follows from Theorem 1, and the upper
bound could be obtained using the “simulate-and-infer” procedure in [ACT20c]. Note that the
dependence of the squared ℓ2 risk on k is significantly different under these two scenarios, even if
both of them are product Bernoulli models: the dependence is linear in k when Θ = [0, 1]d, while it
is exponential in k when Θ is the probability simplex. We remark that this is due to the different
behaviors of the score function: in the first case, we have I0 ≍ Σ0 = Θ(1); in the second case, we
have I0 ≍ d ≪ d2 ≍ Σ0. Hence, Theorem 2 utilizes the sub-Gaussian nature and gives a better
lower bound in the first case, and Theorem 1 becomes better in the second case where the tail of
the score function is essentially not sub-Gaussian.

In addition to mean estimation, our main theorems also provide the following lower bound for
parameter estimation in logistic regression.

Corollary 4 (Logistic regression). Consider the logistic regression model with random design for-
mulated in Proposition 1. For k ∈ N, p ∈ [1,∞) and n ≥ d2/(d ∧ k), we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖pp ≥ Cp · d
(

d

n(d ∧ k)

) p

2

,

where Cp > 0 is an absolute constant independent of n, k, d.

The proof of Corollary 4 follows from Proposition 1 and Theorem 2. Specifically, in logistic
regression, the score function at x = (z, y) is given by

Sθ(x) = Sθ(y, z) =

(
y − 1

e−θ⊤z + 1

)
z,

which satisfies the sub-Gaussian condition of Theorem 2 with Σ0 = O(1) as the scalar parameter
of z always lies in [−1, 1]. Consequently, choosing δ ≍

√
d/(n(d ∧ k)), as well as the quantities

κ(δ) = 2δp, ε(δ) = O(δ2) = O(n−1/2), and α = o(n−1) given by Proposition 1, in Theorem 2
proves Corollary 4. Note that the above argument only requires the random feature vector z to be
sub-Gaussian. For p = 2, the same result was also proved in [BO19] using the van Trees inequality,
with a matching upper bound when z ∼ Unif({±1}d). A similar lower bound for logistic regression
under privacy constraint was obtained in [DR19, Corollary 4]: although they studied the excess
risk instead of the ℓ22 loss, in the proof they essentially lower bounded the excess risk by the ℓ22 loss.
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For p = 2, their overhead compared with the centralized case is d/(ε ∧ ε2) with average privacy
budget ε, while ours is d/(d ∧ k). Also, while the lower bound under the privacy constraint could
be attained using private gradient updates (see [BDF+18, Corollary 3.2]), it is unknown whether a
similar approach works under the communication constraint.

Finally we look at the distributed mean estimation problem for sparse Gaussian location models.

Theorem 3 (Sparse Gaussian location model). Let Pθ = N (θ, σ2Id) with Θ = {θ ∈ R
d : ‖θ0‖ ≤ s}

with s ≤ d/2. For k ∈ N and n ≥ sd2 log(d/s)/(k ∧ d)2, we have

inf
ΠSMP

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥ C ·
(
sd log(d/s)

nk
∨ s log(d/s)

n

)
σ2

where C > 0 is an absolute constant independent of n, d, s, k, σ2, and ΠSMP represents the family
of simultaneous message passing protocols.

Under a different notion of communication cost, [BGM+16] proved a lower bound Ω(sdσ2/(nk)),
without the logarithmic factor log(d/s), under blackboard communication protocols. Moreover, un-
der the above notion of communication and ΠSMP, an upper bound O(sdσ2 log d/(nk)), with the
logarithmic factor, was obtained in [GMN14]. Interestingly, the recent paper [ACT21] showed that
an upper bound of O(sdσ2/(nk)), without the logarithmic factor, is indeed achievable under the
sequential communication protocol. Therefore, Theorem 3 shows that the logarithmic factor is
unavoidable under the non-interactive communication protocols, so there is a strict separation be-
tween the interactive and non-interactive protocols. The existence/non-existence of the logarithmic
factor in constrained sparse estimation is an interesting research topic, and has drawn several recent
attentions such as [AKLS20,CKÖ21].

Ignoring the issues on the logarithmic factor, we see that as opposed to the logarithmic de-
pendence on the ambient dimension d in the centralized setting, the number of nodes required to
achieve a vanishing error in the distributed setting must scale with d. Hence, the sparse mean
estimation problem becomes much harder in the distributed case, and the dimension involved in
the effective sample size reduction (from n to nk/d) is the ambient dimension d instead of the
effective dimension s.

3 Representations of Blackboard Communication Protocol

The centralized lower bounds without communication constraints simply follows from the classical
asymptotics [Háj70,Háj72], thus we devote our analysis to the communication constraints. In this
section, we establish an equivalent tree representation of the blackboard communication protocol,
and prove the statistical lower bound based on this representation.

3.1 Tree representation of blackboard communication protocol

Assume first that there is no public/private randomness, which will be revisited in the next subsec-
tion, and thus the protocol is deterministic. In this case, the blackboard communication protocol
ΠBB can be viewed as a binary tree [KN97], where each internal node v of the tree is assigned
a deterministic label lv ∈ [n] indicating the identity of the sensor to write the next bit on the
blackboard if the protocol reaches node v; the left and right edges departing from v correspond to
the two possible values of this bit and are labeled by 0 and 1 respectively. Because all bits written
on the blackboard up to the current time are observed by all nodes, the sensors can keep track of
the progress of the protocol in the binary tree. The value of the bit written by node lv (when the
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protocol is at node v) can depend on the sample Xlv observed by this node (and implicitly on all
bits previously written on the blackboard encoded in the position of the node v in the binary tree).
Therefore, this bit can be represented by a binary function av(x) ∈ {0, 1}, which we associate with
the node v; sensor lv evaluates this function on its sample Xlv to determine the value of its bit.

Note that the k-bit communication constraint for each node can be viewed as a labeling con-
straint for the binary tree; for each i ∈ [n], each possible path from the root node to a leaf node
can visit exactly k internal nodes with label i. In particular, the depth of the binary tree is nk and
there is one-to-one correspondance between all possible transcripts y ∈ {0, 1}nk and paths in the
tree. Note that a proper labeling of the binary tree together with the collection of functions {av(·)}
(where v ranges over all internal nodes) completely characterizes all possible (deterministic) com-
munication strategies for the sensors. Under this protocol model, the distribution of the transcript
Y is

PX1,··· ,Xn∼P (Y = y) = EX1,··· ,Xn∼P

∏

v∈τ(y)

bv,y(Xlv )

where v ∈ τ(y) ranges over all internal nodes in the path τ(y) corresponding to y ∈ {0, 1}nk ,
and bv,y(x) = av(x) if the path τ(y) goes through the right child of v and bv,y(x) = 1 − av(x)
otherwise. Due to the independence of X1, · · · ,Xn, we have the following lemma which is similar
to the “cut-paste” property [BYJKS04] for the blackboard communication protocol:

Lemma 1. The distribution of the transcript Y can be written as follows: for any y ∈ {0, 1}nk, we
have

PX1,··· ,Xn∼P (Y = y) =

n∏

i=1

EP [pi,y(Xi)]

where pi,y(x) ,
∏
v∈τ(y),lv=i

bv,y(x).

The k-bit communication constraint results in the following important property:

Lemma 2. For each i ∈ [n] and {xj}nj=1 ∈ X n, the following equalities hold:

∑

y∈{0,1}nk

n∏

j=1

pj,y(xj) = 1,
∑

y∈{0,1}nk

∏

j 6=i

pj,y(xj) = 2k.

3.2 Minimax lower bound

This subsection is devoted to setting up the proof of the minimax lower bound in Theorems 1 and
2. To this end, we apply the standard testing argument with the Assouad’s lemma [Ass83] to the
cube-like distribution family (Pθu)u∈{±1}d0 in Assumptions 2 and 3, and arrive at a target quantity
to be upper bounded in Section 4. This subsection is devoted exclusively to (d, d0, δ, κ, ε)-regular
problems to reflect the main ideas, while the modification to handle approximately regular problems
is postponed to the next subsection.

Let U ∼ Unif({±1}d0), and write Pu as a shorthand of Pθu throughout this section. Given the
i.i.d. observations X1, · · · ,Xn ∼ Pu and a communication protocol Π, let Qu be the probability
distribution of the final transcript Y ∈ {0, 1}nk . As the final estimator θ̂ = θ̂(Y ) is a function of Y ,
the standard separation condition (1) with the Assouad’s lemma [Ass83] (see also [Han19, Theorem
5]) gives that

EUEQU
[L(θU , θ̂(Y ))] ≥ d0κ

2


1− 1

d0

d0∑

j=1

EU‖QU −QU⊕j‖TV


 . (4)
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As [Tsy08, Lemma 2.6] shows that ‖P −Q‖TV ≤ 1− exp(−DKL(P‖Q))/2, the above inequality (4)
together with the convexity of x 7→ exp(−x) implies that

EUEQU
[L(θU , θ̂(Y ))] ≥ d0κ

2
· 1

2d0

d0∑

j=1

EU exp (−DKL(QU‖QU⊕j ))

≥ d0κ

4
· exp


−EU


 1

d0

d0∑

j=1

DKL(QU‖QU⊕j)




 . (5)

The usage of (a slightly different form of) the inequality (5) is motivated by [ACL+20], which
studies discrete distribution estimation models under the sequential communication protocol. In
the sequel, we extend this approach to generic statistical models and fully interactive (blackboard)
communication protocols.

Next we upper bound the average KL divergence in (5) for each given U ∈ {±1}d0 . To this end,
first we note that it suffices to assume no private/public randomness due to the data-processing
property of the KL divergence DKL(P‖Q) ≤ ER[DKL(P|R‖Q|R)]. Then by Lemma 1, we have

QU (y) =

n∏

i=1

EXi∼PU
[pi,y(Xi)]

for each transcript y ∈ {0, 1}nk . Consequently, for each j ∈ [d0],

DKL(QU‖QU⊕j ) =

n∑

i=1

∑

y∈{0,1}nk

(
n∏

s=1

EXs∼PU
[ps,y(Xs)]

)
· log EXi∼PU

[pi,y(Xi)]

EXi∼PU⊕j
[pi,y(Xi)]

(a)

≤
n∑

i=1

∑

y∈{0,1}nk

(
n∏

s=1

EXs∼PU
[ps,y(Xs)]

)
·
(

EXi∼PU
[pi,y(Xi)]

EXi∼PU⊕j
[pi,y(Xi)]

− 1

)

(b)
=

n∑

i=1

∑

y∈{0,1}nk


∏

s 6=i

EXs∼PU
[ps,y(Xs)]


 ·

(
(EXi∼PU

[pi,y(Xi)]− EXi∼PU⊕j
[pi,y(Xi)])

2

EXi∼PU⊕j
[pi,y(Xi)]

)

(c)

≤ 2
n∑

i=1

∑

y∈{0,1}nk


∏

s 6=i

EXs∼PU
[ps,y(Xs)]


 ·

(
(EXi∼PU

[pi,y(Xi)]− EXi∼PU⊕j
[pi,y(Xi)])

2

EXi∼PU
[pi,y(Xi)]

)

(d)
= 2

n∑

i=1

∑

y∈{0,1}nk


∏

s 6=i

EXs∼PU
[ps,y(Xs)]


 · (EXi∼PU

[pi,y(Xi)(1 − dPU⊕j/dPU (Xi))])
2

EXi∼PU
[pi,y(Xi)]

where (a) is due to the inequality log x ≤ x− 1, (b) follows from the identity

∑

y∈{0,1}nk

n∏

s=1

EXs∼PU
[ps,y(Xs)] =

∑

y∈{0,1}nk

EXi∼PU⊕j
[pi,y(Xi)] ·

∏

s 6=i

EXs∼PU
[ps,y(Xs)] = 1

given by Lemma 2, (c) follows from the likelihood ratio condition in Assumption 2, and (d) is due
to a simple change of measure. Consequently, for each realization of U we have

1

d0

d0∑

j=1

DKL(QU‖QU⊕j ) ≤ 2

d0

n∑

i=1

∑

y∈{0,1}nk


∏

s 6=i

EXs∼PU
[ps,y(Xs)]


 · ‖EXi∼PU

[pi,y(Xi)sU (Xi)]‖22
EXi∼PU

[pi,y(Xi)]
,

(6)
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where sU(x) is a d0-dimensional vector of likelihood ratios:

sU (x) ,

(
1− dPU⊕1

dPU
(x), · · · , 1− dPU⊕d0

dPU
(x)

)
.

To deal with sU (x), we use the likelihood ratio condition in Assumption 2 to write that

sU (x) = −M⊤
u SθU (x) + ε(x),

where Mu is the matrix appearing in the regular grid condition in Assumption 2, and ε(x) is some
remainder term satisfying that E[‖ε(X)‖22] ≤ d0ε

2 for all X ∼ PU . Consequently, for the remainder
term we have

∑

y∈{0,1}nk


∏

s 6=i

EXs∼PU
[ps,y(Xs)]


 · ‖EXi∼PU

[pi,y(Xi)ε(Xi)]‖22
EXi∼PU

[pi,y(Xi)]

(a)

≤
∑

y∈{0,1}nk


∏

s 6=i

EXs∼PU
[ps,y(Xs)]


 · EXi∼PU

[pi,y(Xi)‖ε(Xi)‖22]

(b)
= EX1,··· ,Xn∼PU


 ∑

y∈{0,1}nk

(
n∏

s=1

ps,y(Xs)

)
· ‖ε(Xi)‖22




(c)
= EXi∼PU

[‖ε(Xi)‖22] ≤ d0ε
2,

where (a) is due to Cauchy–Schwarz, (b) swaps the expectation and sum, and (c) is due to the first
identity of Lemma 2. As for the main term, since ‖Ax‖2 ≤ ‖A‖op‖x‖2, the regular grid assumption
in Assumption 2 gives

‖EXi∼PU
[pi,y(Xi) ·M⊤

u SθU (Xi)]‖22
EXi∼PU

[pi,y(Xi)]
≤ 4δ2 · ‖EXi∼PU

[pi,y(Xi)SθU (Xi)]‖22
EXi∼PU

[pi,y(Xi)]
.

Consequently, by the triangle inequality ‖x + y‖22 ≤ 2(‖x‖22 + ‖y‖22) and Lemma 2, the above
inequalities together with (5) and (6) imply that

EUEQU
[L(θU , θ̂(Y ))] ≥ d0κ

4
· exp

(
−16nS

d0
· δ2 − 4nε2

)
, (7)

where

S , max
u∈{±1}d0

max
i∈[n]

∑

y∈{0,1}nk



∏

s 6=i

EXs∼Pu[ps,y(Xs)]


 · ‖EXi∼Pu[pi,y(Xi)Sθu(Xi)]‖22

EXi∼Pu [pi,y(Xi)]
. (8)

Hence, to obtain the final minimax lower bound, it suffices to provide upper bounds of the quantity
S in (8). This is the main focus of Section 4.

3.3 Approximately regular problems

In this subsection we show how to modify the above arguments to work for approximately regular
problems. Note that when α = ω(n−1), the lower bounds in Theorems 1 and 2 are negative and
thus trivial; in the sequel we always assume that α = O(n−1) = o(1). For each u ∈ {±1}d0 , let
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P̃u(·) = Pu(· | X0) be the restriction of Pu to the set X0, and Q̃u be the distribution of the transcript
Y under X1, · · · ,Xn ∼ P̃u. Then by the property of X0 in Assumption 3, we have

max
u∈{±1}d0

‖Q̃u −Qu‖TV ≤ max
u∈{±1}d0

‖P̃⊗n
u − P⊗n

u ‖TV

≤ n · max
u∈{±1}d0

‖P̃u − Pu‖TV

= n · max
u∈{±1}d0

Pu(X c
0 )

≤ nα.

Consequently, applying the triangle inequality to the TV distance in (4) gives that

EUEQU
[L(θU , θ̂(Y ))] ≥ d0κ

2


1− 1

d0

d0∑

j=1

EU‖Q̃U − Q̃U⊕j‖TV − 2nα


 .

Hence, if we could show that the new statistical model (P̃u)u∈{±1}d0 is regular with essentially the
same parameters in Assumption 2, and that the quantities I0 and Σ0 in Theorems 1 and 2 does
not change much as we move from Pu to P̃u, we could repeat the same analysis in the previous
subsection with (PU , QU ) replaced by (P̃U , Q̃U ) and arrive at the same results.

To verify Assumption 2, note that the regular grid assumption and separation condition do not
depend on the statistical model and thus hold under P̃u as well. For the likelihood ratio condition,
note that for all x ∈ X0, we have

dP̃u⊕j

dP̃u
(x) =

dPu⊕j

dPu
(x) · Pu(X0)

Pu⊕j (X0)
.

Therefore, the lower bound on the likelihood ratio could be replaced by (1 − α)/2, only slightly
smaller than 1/2. Moreover, as dPu⊕j/dPu(x) ≤ 2 for all x ∈ X0, by triangle inequality

E
X∼P̃u



∣∣∣∣∣
dP̃θ

u⊕j

dP̃θu
(X) − 1− (θu⊕j − θu)

⊤Sθu(X)

∣∣∣∣∣

2



≤ 2

1− α
EX∼Pu

[∣∣∣∣
dPθ

u⊕j

dPθu
(X)− 1− (θu⊕j − θu)

⊤Sθu(X)

∣∣∣∣
2

· 1(X ∈ X0)

]
+ 2 ·

(
2α

1− α

)2

,

therefore the condition (3) implies that the parameter ε in (2) could simply be replaced by
O(ε/

√
1− α + α). As α = o(1), the new statistical model becomes regular with essentially the

same parameters.
To compute the new I0 and Σ0 under new models, note that for any non-negative function f ,

it holds that

E
P̃u
[f(X)] ≤ 1

Pu(X0)
· EPu[f(X)] ≤ 1

1− α
· EPu[f(X)].

Consequently, the quantities I0 and Σ0 in Theorems 1 and 2 for regular problems could be replaced
by slightly larger quantities I0/(1 − α) and Σ0/(1− α), respectively.

Combining the above points, the minimax lower bounds for approximately regular problems
could be argued in an entirely similar manner as regular problems.
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4 Lower Bounds via Geometric Inequalities

In this section, we upper bound the quantity S in (8) using two different geometric inequalities,
and complete the proof of main Theorems 1 and 2.

4.1 Proof of Theorem 1 via Geometric Inequality I

Note that under a deterministic protocol, each function pi,y only takes value in {0, 1}. Therefore,
if we write Xi,y = {x ∈ X : pi,y(x) = 1}, then

‖EXi∼Pu [pi,y(Xi)Sθu(Xi)]‖22
EXi∼Pu[pi,y(Xi)]

= Pu(Xi,y) · ‖EPu[Sθu(X) | Xi,y]‖22.

Therefore, a quantity of interest is the ℓ2-norm of the conditional mean of a random vector Sθu(X)
restricted to some set Xi,y. This motivates us to ask the following general question:

Question 1. For a random vector X ∼ P and a target probability P (A) = t ∈ (0, 1), which subset
A ⊆ X maximizes the ℓ2 norm of the vector E[X | A]? What is the corresponding maximum ℓ2
norm?

The following lemma presents an answer to Question 1 under the assumption that X has a
finite second moment along any direction.

Lemma 3 (Geometric Inequality I). Assume that E[(u⊤X)2] ≤ I0 for all unit vector u ∈ R
d. Then

for any set A ⊆ X , the following inequality holds:

‖E[X | A]‖22 ≤ I0 ·
1

P (A)
.

Moreover, the RHS could be improved to I0 · (1− P (A))/P (A) if E[X] = 0.

Note that Lemma 3 is a dimension-free result: the LHS depends on the dimensionality d, while
the RHS does not. For a comparison, if we trivially use ‖E[X | A]‖22 ≤ E[‖X‖22 | A], there would
be an additional factor of d on the RHS. The key observation in the dimensionality reduction is
that the “independence” between coordinates of X is implied by the condition and needs to be
exploited.

Now we have all necessary tools for the proof of Theorem 1. Applying Lemma 3 to the score
function Sθu(x) in Theorem 1, we have

‖EXi∼Pu[pi,y(Xi)Sθu(Xi)]‖22
EXi∼Pu [pi,y(Xi)]

≤ I0.

Consequently, by Lemma 2, it holds that

S ≤ I0 · max
u∈{±1}d0

max
i∈[n]

∑

y∈{0,1}nk


∏

s 6=i

EXs∼Pu[ps,y(Xs)]


 = I0 · 2k,

and plugging this upper bound of S into the minimax lower bound (7) completes the proof of one
lower bound of Theorem 1. For the other lower bound independent of k, an alternative upper
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bound of S could be used:

S
(a)

≤ max
u∈{±1}d0

max
i∈[n]

∑

y∈{0,1}nk


∏

s 6=i

EXs∼Pu [ps,y(Xs)]


 · EXi∼Pu[pi,y(Xi) · ‖Sθu(Xi)‖22]

(b)
= max

u∈{±1}d0
max
i∈[n]

E


 ∑

y∈{0,1}nk

(
n∏

s=1

ps,y(Xs)

)
· ‖Sθu(Xi)‖22




(c)
= max

u∈{±1}d0
max
i∈[n]

EXi∼Pu[‖Sθu(Xi)‖22]
(d)

≤ dI0,

where (a) is due to Cauchy–Schwarz, (b) follows from swapping the expectation and the sum with
the expectation taken over i.i.d. X1, · · · ,Xn ∼ Pu, (c) is due to Lemma 2, and (d) follows from
choosing u = e1, · · · , ed, the canonical vectors, in the assumption of Theorem 1.

4.2 Proof of Theorem 2 via Geometric Inequality II

In this section, we provide another upper bound on ‖E[X | A]‖22 when X is a sub-Gaussian random
variable along any direction.

Lemma 4 (Geometric Inequality II). Assume that ‖u⊤X‖2ψ2
≤ Σ0 for all unit vector u ∈ R

d. Then
for any set A ⊆ X , the following inequality holds:

‖E[X | A]‖22 ≤ Σ0 · log
2

P (A)
.

Note that lemma 4 presents a dimension-free upper bound again. Compared with Lemma 3,
Lemma 4 improves the upper bound from O(Σ0) to O(Σ0t log

1
t ) for sub-Gaussian random vector X,

where t = P (A) is the volume of the set A and Σ0 is the sub-Gaussian parameter. Lemma 4 could be
derived from standard arguments of the Talagrand’s transportation-cost inequality [Led05, Chapter
6], but for completeness we provide two proofs of Lemma 4 in the appendix. The first proof directly
reduces the problem to one dimension and then makes use of the Orlicz norm condition. The
second proof is more geometric when X is exactly Gaussian, where tight constants are obtained
for X ∼ Unif({±1}d) via information-theoretic inequalities, and then the “tensor power trick” is
applied to prove the Gaussian case.

To move from Lemma 4 to an upper bound of the quantity S and therefore Theorem 2, note
that the assumption of Theorem 2 and Lemma 4 show that

‖EXi∼Pu [pi,y(Xi)Sθu(Xi)]‖22
EXi∼Pu [pi,y(Xi)]

≤ Σ0 · EXi∼Pu [pi,y(Xi)] log
2

EXi∼Pu [pi,y(Xi)]
.

Therefore,

S ≤ Σ0 · max
u∈{±1}d0

max
i∈[n]

∑

y∈{0,1}nk

(
n∏

s=1

EXs∼Pu[ps,y(Xs)]

)
log

2

EXi∼Pu[pi,y(Xi)]

(a)

≤ Σ0 · max
u∈{±1}d0

max
i∈[n]

log


 ∑

y∈{0,1}nk

(
n∏

s=1

EXs∼Pu [ps,y(Xs)]

)
· 2

EXi∼Pu [pi,y(Xi)]




(b)
= Σ0 · max

u∈{±1}d0
max
i∈[n]

log(2k+1) = (k + 1)Σ0 log 2,
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where (a) is due to the first identity of Lemma 2 as well as the concavity of x 7→ log x, and (b) is due
to the second identity of Lemma 2. Plugging this upper bound into the minimax lower bound (7)
completes the proof of Theorem 2 (the other independent-of-k upper bound of S could be obtained
analogously to the last section).

5 Discussions

5.1 Some Applications of Geometric Inequalities

The inequalities in Lemmas 3 and 4 have some other combinatorial applications related to geometry.
We consider the following combinatorial problem on the binary Hamming cube Ω = {±1}d:

1. Suppose we pick half of the vectors in Ω and compute the mean v̄ ∈ R
d, i.e., v̄ = |A|−1

∑
v∈A v

for some A ⊆ Ω, |A| = 2d−1, what is the maximum possible ℓ2 norm ‖v̄‖2?
2. Suppose we pick 2dR vectors in Ω and compute the mean v̄ ∈ R

d, where R ∈ (0, 1), what is
the dependence of the maximum possible ℓ2 norm ‖v̄‖2 on d and R?

This geometric problem is closely related to the optimal data compression in multiterminal statis-
tical inference [Ama11]. We prove the following proposition:

Proposition 2. Under the previous setting, we have

max
A⊆Ω:|A|=2d−1

∥∥∥∥∥
1

|A|
∑

v∈A

v

∥∥∥∥∥
2

= 1,

max
A⊆Ω:|A|=2dR

∥∥∥∥∥
1

|A|
∑

v∈A

v

∥∥∥∥∥
2

=
√
d(1− 2h−1

2 (R)) · (1 + od(1)),

where h2(·) is the binary entropy function defined in Lemma 6.

Proposition 2 gives the exact maximum ℓ2 norm when |A| = 2d−1 and its asymptotic behavior
on d and R as d → ∞ when |A| = 2dR. We see that for |A| = 2d−1, the maximum ℓ2 norm is
attained when A is the half space (or the d− 1 dimensional sub-cube), i.e., A = {x ∈ Ω : x1 = 1}.
However, for relatively small |A| = 2dR, the maximum ℓ2 norm is nearly attained at spherical caps,
i.e., A = {x ∈ Ω : dHam(x, x0) ≤ t} for any fixed x0 ∈ Ω and a proper radius t such that |A| = 2dR.
Hence, there are different behaviors for dense and sparse sets A.

5.2 Comparison with Strong Data Processing Inequalities (SDPI)

We compare our techniques with existing ones in establishing the lower bound for distributed
parameter estimation problem. By Fano’s inequality, the key step is to upper bound the mutual
information I(U ;Y ) under the Markov chain U −X − Y , where the link U −X is dictated by the
statistical model, and the link X − Y is subject to the communication constraint I(X;Y ) ≤ k.
While trivially I(U ;Y ) ≤ I(U ;X) and I(U ;Y ) ≤ I(X;Y ), neither of these two inequalities are
typically sufficient to obtain a good lower bound. A strong data processing inequality (SDPI)

I(U ;Y ) ≤ γ∗(U,X)I(X;Y ), ∀pY |X (9)

with γ∗(U,X) < 1 can be desirable. The SDPI may take different forms (e.g., for f -divergences),
and it is applied in most works on distributed estimation, e.g., [ZDJW13,BGM+16,XR17]. The
SDPI-based approach turns out to be tight in certain models (e.g., the Gaussian model [ZDJW13,
BGM+16]), while it is also subject to some drawbacks:
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1. The tight constant γ∗(U,X) is hard to obtain in general;

2. The linearity of (9) in I(X;Y ) can only give a linear dependence of I(U ;Y ) on k, which may
not be tight. For example, in Corollary 1 the optimal dependence on k is exponential;

3. The conditional distribution pY ∗|X achieving the equality in (9) typically leads to I(X;Y ∗) →
0, and (9) may be loose for I(X;Y ) = k;

4. The operational meaning of (9) is not clear, which may not result in a valid encoding scheme
from X to Y .

In contrast to the linear dependence on k using SDPI, our technique implies that the dependence
on k is closely related to the tail of the score function. It would be an interesting future direction
to explore other dependence on k (instead of linear or exponential) in other statistical models.
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A Auxiliary Lemmas

Lemma 5. [MU05] For X ∼ Poi(λ) or X ∼ B(n, λn) and any δ > 0, we have

P(X ≥ (1 + δ)λ) ≤
(

eδ

(1 + δ)1+δ

)λ
≤ exp

(
−(δ2 ∧ δ)λ

3

)
,

P(X ≤ (1− δ)λ) ≤
(

e−δ

(1− δ)1−δ

)λ
≤ exp

(
−δ

2λ

2

)
.

Lemma 6. [Wyn73] For the binary entropy function h2(x) , −x log2 x − (1 − x) log2(1 − x) on
[0, 12 ], let h

−1
2 (y) be its inverse for y ∈ [0, 1]. Then the function

f(y) = (1− 2h−1
2 (y))2

is a decreasing concave function, with f(y) ≤ 2 log 2 · (1− y) for all y ∈ [0, 1].

B Proof of Main Lemmas

B.1 Proof of Lemma 2

We prove a stronger result: for any strategy {av(·)}, if each path from the root to any leaf node
visits exactly ki internal nodes with label i for each i ∈ [n], then

∑

y∈{0,1}
∑n

i=1
ki

∏

v∈τ(y),lv 6=i

bv,y(xlv ) = 2ki (10)
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for any {xj}j 6=i. Clearly (10) implies the lemma (i.e., with ki = 0 and ki = k, respectively).
We prove (10) by induction on the depth D =

∑n
i=1 ki of the binary tree. The base case D = 0

is obvious. To move from D to D+1, distinguish into two cases and apply the induction hypothesis
to the left/right tree of the root:

1. If the root node is labeled as i, then (10) follows from 2ki = 2ki−1 + 2ki−1;

2. If the root node is not labeled as i, then (10) follows from 2ki = 2kiaroot(xi)+2ki(1−aroot(xi)).

B.2 Proof of Lemma 3

As ‖x‖2 = maxu:‖u‖2=1 u
⊤x, it suffices to prove the same upper bounds of E[u⊤X | A]2 for any unit

vector u ∈ R
d. First, by the Cauchy–Schwarz inequality, we have

E[u⊤X | A]2 ≤ E[(u⊤X)2 | A] ≤ E[(u⊤X)2]

P (A)
≤ I0
P (A)

,

establishing the first inequality. The improved inequality when E[X] = 0 is due to

I0 ≥ E[(u⊤X)2]

= E[(u⊤X)21(X ∈ A)] + E[(u⊤X)21(X ∈ Ac)]

(a)

≥ E
2[(u⊤X)1(X ∈ A)]

P (A)
+

E
2[(u⊤X)1(X ∈ Ac)]

1− P (A)

(b)
=

E
2[(u⊤X)1(X ∈ A)]

P (A)
+

E
2[(u⊤X)1(X ∈ A)]

1− P (A)

=
P (A)

1− P (A)
· E[u⊤X | A]2,

where (a) is due to Cauchy–Schwarz, and (b) follows from the assumption E[X] = 0.

B.3 Proof of Lemma 4

By the definition of the Orlicz ψ2-norm, for any unit vector u ∈ R
d we have

2 ≥ E

[
exp

(
(u⊤X)2

Σ0

)]

≥ P (A) · E
[
exp

(
(u⊤X)2

Σ0

) ∣∣∣∣A
]

≥ P (A) · exp
(
(u⊤E[X | A])2

Σ0

)
,

where the last inequality follows from the convexity of x 7→ exp(cx2) for any c > 0. Consequently,
we have u⊤E[X | A] ≤ Σ0 log(2/P (A)) for all unit vectors u ∈ R

d, and the result follows.

B.4 Another Proof of Lemma 4 in Gaussian Case

We prove the following lemma:

Lemma 7. For X ∼ N (0, Id) and any measurable A ⊆ R
d, we have

‖E[X | A]‖22 ≤ 2 · log 1

P(A)
.
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We split the proof into two steps: we first consider the uniform distribution on the binary
hypercube, and then use the tensor power trick to reduce to the Gaussian case.

B.4.1 Geometric inequality on binary hypercube

We prove the following lemma:

Lemma 8. For X ∼ Unif({±1}d) and any non-negative function a(·) ∈ [0, 1], we have

∥∥∥∥
E[Xa(X)]

E[a(X)]

∥∥∥∥
2

2

≤ 2 · log 1

E[a(X)]

Moreover, the dimension-free constant 2 cannot be improved.

Proof. Define a new probability measure Q(·) on the binary hypercube {±1}d with Q(y) ∝ a(y),
and let Y ∼ Q. Let pi , P(Yi = 1) for i ∈ [d], then

∥∥∥∥
E[Xa(X)]

E[a(X)]

∥∥∥∥
2

2

= ‖EY ‖22 =
d∑

i=1

(EYi)
2 =

d∑

i=1

(1− 2pi)
2.

Recall the definition of h2(·) in Lemma 6. Define qi , h2(pi), the concavity in Lemma 6 gives

∥∥∥∥
E[Xa(X)]

E[a(X)]

∥∥∥∥
2

2

=

d∑

i=1

(1− 2h−1
2 (qi))

2 ≤ d

(
1− 2h−1

2

(
1

d

d∑

i=1

qi

))2

.

On the other hand, by the subadditivity of Shannon entropy,

d∑

i=1

qi =
1

log 2

d∑

i=1

H(Yi) ≥
H(Y )

log 2
= d− E

[
log2

a(Y )

E[a(X)]

]

≥ d− E

[
log2

1

E[a(X)]

]
= d− log2

1

E[a(X)]
.

Hence, applying the decreasing property and the last inequality in Lemma 6, we have

∥∥∥∥
E[Xa(X)]

E[a(X)]

∥∥∥∥
2

2

≤ d

(
1− 2h−1

2

(
1− 1

d
log2

1

E[a(X)]

))2

≤ d · 2 log 2 · 1
d
log2

1

E[a(X)]

= 2 log
1

E[a(X)]
.

To show that 2 is the best possible constant, pick a(x) = 1B(x) where B is the Hamming ball
with center 1 and radius ǫd. Direct computation gives the constant 2 as d→ ∞ and ǫ→ 0.

B.4.2 Tensor Power Trick

Next we make use of Lemma 8 to prove the Gaussian case. We apply the so-called tensor power trick :
we lift the dimension by making B independent copies, and apply CLT to move to the Gaussian case
as B → ∞. This idea has been widely used in harmonic analysis and high-dimensional geometry,
e.g., to prove the isoperimetric inequality for the Gaussian measure [Led05].

21



Here the trick goes: fix any dimension d and any function a(·) ∈ [0, 1] defined on R
d. By a

suitable approximation we may assume that a(·) is continuous. Now for any B > 0, we define a
new function ã(·) on {±1}dB as follows:

ã(X) = ã({Xi,j}i∈[d],j∈[B]) , a

(∑n
j=1X1,j√
B

, · · · ,
∑n

j=1Xd,j√
B

)
.

By symmetry, we have

‖E[Xã(X)]‖22 =
d∑

i=1

(
E

[∑B
j=1Xi,j√
B

a

(∑n
j=1X1,j√
B

, · · · ,
∑n

j=1Xd,j√
B

)])2

.

Moreover, by Lemma 8, we have

∥∥∥∥
E[Xã(X)]

E[ã(X)]

∥∥∥∥
2

2

≤ 2 · log 1

E[ã(X)]
. (11)

Let Z ∼ N (0, Id), then CLT gives ‖E[Xã(X)]‖22 → ‖E[Za(Z)]‖22 and E[ã(X)] → E[a(Z)] as
B → ∞. Hence, as B → ∞, (11) becomes

∥∥∥∥
E[Za(Z)]

E[a(Z)]

∥∥∥∥
2

2

≤ 2 · log 1

E[a(Z)]
. (12)

Note that (12) holds for all d and a(·), the proof of Lemma 7 is complete by choosing a(·) = 1A(·).

C Proof of Propositions

C.1 Proof of Proposition 1

Product Bernoulli models. We begin with the first product Bernoulli model. For any δ ∈
(0, 1/6), we choose θu = (1/2, · · · , 1/2) + δu ∈ Θ for all u ∈ {±1}d. Clearly the regular grid
condition and the separation condition hold. For the likelihood ratio condition, note that

dPθ
u⊕j

dPθu
(x) =

1− 2δuj
1 + 2δuj

· 1(xj = 1) +
1 + 2δuj
1− 2δuj

· 1(xj = 0) ≥ 1

2

by the choice of δ. Moreover, the j-th component of the score function at θu is

[Sθu(x)]j =
2

1 + 2δuj
· 1(xj = 1)− 2

1− 2δuj
· 1(xj = 0),

therefore (2) is satisfied with ε ≡ 0.

Multinomial models. For d0 = d/2, consider the following construction known as the Paninski’s
construction [Pan08]:

θu =

(
1

d
− δu1

2
,
1

d
+
δu1
2
, · · · , 1

d
− δud0

2
,
1

d
+
δud0
2

)
.

After proper permutation of the rows, it is easy to see that the matrix Mu is δ · [diag(v) diag(v)]⊤
for some v ∈ {±1}d0 . Consequently, the operator norm of this matrix is

√
2δ, which is smaller than
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2δ. Also, after simple algebra, the separation condition (1) is fulfilled with κ(δ) = 22−pδp. For the
likelihood ratio condition, note that

dPθ
u⊕j

dPθu
(x) =

2 + dδuj
2− dδuj

· 1(x = 2j − 1) +
2− dδuj
2 + dδuj

· 1(x = 2j) ≥ 1

2

as δ ∈ (0, 1/(2d)). Moreover, although there is some ambiguity in defining the score function for
the Multinomial model (depending on the choice of free parameters), the inner product (θu⊕j −
θu)

⊤Sθu(x) is well-defined and expressed as

(θu⊕j − θu)
⊤Sθu(x) =

δuj
1/d− δuj/2

· 1(x = 2j − 1)− δuj
1/d + δuj/2

· 1(x = 2j).

Therefore, (2) holds with ε ≡ 0. The product Bernoulli model is handled analogously.

Gaussian location models. Choose θu = δu ∈ R
d for all u ∈ {±1}d, then clearly the regular

grid condition and the separation condition hold. Let X0 = {x ∈ R
d : ‖x‖∞ ≤ (C

√
log(nd) + 1)σ},

then for a large enough constant C > 0, using the Gaussian tail and the union bound gives that
Pθu(X0) ≥ 1− o(n−1) for any u ∈ {±1}d and δ < σ. For the likelihood ratio condition, we have

dPθ
u⊕j

dPθu
(x) = exp

(
−2δujxj

σ2

)
≥ 1

2
, ∀x ∈ X0

as |δ| ≤ cσ/
√

log(nd) for a small enough constant c > 0 and |xj | ≤ (C
√

log(nd) + 1)σ. Moreover,
Sθu(x) = (x− θu)/σ

2, and therefore
∣∣∣∣
dPθ

u⊕j

dPθu
(x)− 1− (θu⊕j − θu)

⊤Sθu(x)

∣∣∣∣ =
∣∣∣∣exp

(
−2δujxj

σ2

)
− 1− 2δuj(δuj − xj)

σ2

∣∣∣∣

=

∣∣∣∣exp
(
−2δ2

σ2
− 2δujzj

σ

)
− 1 +

2δujzj
σ

∣∣∣∣ ,

with xj , σzj + δuj . Note that when x ∼ Pθu , we have zj ∼ N (0, 1), and therefore the above term
has an explicit second moment as

EX∼Pθu

[∣∣∣∣
dPθ

u⊕j

dPθu
(X)− 1− (θu⊕j − θu)

⊤Sθu(X)

∣∣∣∣
2
]
= exp

(
4δ2

σ2

)
− 1− 4δ2

σ2
,

which is ε2 with ε = O(δ2/σ2) as δ = O(σ). Hence, the Gaussian location model is approximately
regular with ε(δ) = O(δ2/σ2).

Logistic regression models with random design. Choose θu = δu ∈ R
d for all u ∈ {±1}d,

then clearly the regular grid condition and the separation condition hold. For the likelihood ratio
condition, we choose

X0 = {(z, y) : ‖z‖∞ ≤ C
√

log(nd), y ∈ {0, 1}},

and for a large enough constant C > 0 we have Pθ(X0) ≥ 1−α with α = o(n−1) for any θ ∈ R
d. We

first show that for any fixed y ∈ {0, 1}, taking only the expectation with respect to z ∼ N (0, Id)
satisfies (3). By symmetry, we shall only consider the case y = 1, where X = (z, 1) and

∣∣∣∣
dPθ

u⊕j

dPθu
(z, 1) − 1− (θu⊕j − θu)

⊤Sθu(z, 1)

∣∣∣∣ =
∣∣∣∣∣

e−θ
⊤z + 1

e−θ⊤z · e2δujzj + 1
− 1 + 2δujzj ·

e−θ
⊤z

e−θ⊤z + 1

∣∣∣∣∣ .

23



We will prove that for any A ≥ 0 and t ∈ [−1/2, 1/2], it holds that
∣∣∣∣
A+ 1

Aet + 1
− 1 +

At

A+ 1

∣∣∣∣ ≤ 2t2. (13)

In fact, if (13) holds, the choice of δ ∈ (0, 1/
√
d) satisfies |2δujzj| ≤ 1/2 for any X = (z, y) ∈ X0

with large d. Now choosing A = e−θ
⊤z and t = 2δujzj ∈ [−1/2, 1/2] in (13) gives the desired

inequality (3) with ε = O(δ2).
Next we prove the inequality (13). After simple algebra, it is equivalent to prove that

A

A+ 1
·
∣∣∣∣
[(t− 1)et + 1]A+ (1 + t− et)

Aet + 1

∣∣∣∣ ≤ 2t2.

Since |t| ≤ 1/2, it is easy to verify that |(t−1)et+1| ≤ t2 and |1+ t−et| ≤ t2, and clearly et ≥ 1/2.
Consequently, the above inequality holds, and so is (13).

Finally, we verify dPθ
u⊕j

/dPθu(x) ≥ 1/2 for all x ∈ X0. Using the above notations A = e−θ
⊤z

and t = 2δujzj ∈ [−1/2, 1/2] again, this quantity is

A+ 1

Aet + 1
≥ min

{
1, e−t

}
≥ 1

2
,

as desired.

C.2 Proof of Proposition 2

Let X follow the uniform distribution on Ω, then v̄ = E[X | A]. As X has independent coordinates
each of which has a unit second moment, the assumption of Lemma 3 is fulfilled with I0 = 1. By
Lemma 3, for |A| = 2d−1 we have

‖E[X | A]‖2 ≤ 1 · P(A)

1− P(A)
= 1,

establishing the first inequality. Similarly, the second inequality follows from Lemma 8 (and its
proof).

D Proof of Theorem 3

As the hypothesis class for sparse Gaussian models is typically not cube-like, we use the following
Fano’s inequality instead of the Assouad’s lemma to establish the lower bound. The present form is
taken from [DW13, Corollary 1]; see also [CGZ16] and [Han19, Theorem 8] for a general statement.

Lemma 9. Let random variables V and V̂ take value in V, V be uniform on some finite alphabet
V, and V −X − V̂ form a Markov chain. Let d be any metric on V, and for t > 0, define

Nmax(t) , max
v∈V

|v′ ∈ V : d(v, v′) ≤ t|,

Nmin(t) , min
v∈V

|v′ ∈ V : d(v, v′) ≤ t|.

If Nmax(t) +Nmin(t) < |V|, the following inequality holds:

P(d(V, V̂ ) > t) ≥ 1− I(V ;X) + log 2

log |V|
Nmax(t)

.
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We construct the following family of hypotheses: let U ∈ R
d be uniformly distributed on the

finite set

U = {θ ∈ {0,±1}d : ‖θ‖0 = s}.

Clearly |U| = 2s
(d
s

)
. For u ∈ U we associate with the Gaussian distribution Pu , N (δu, σ2Id), draw

n i.i.d. observations X = (X1, · · · ,Xn) from Pu, and obtain the transcript Y = (Y1, · · · , Yn) ∈
{0, 1}nk , where Yi ∈ {0, 1}k denotes the transcript from node i under the simultaneous message
passing protocol. Choosing t = s/5 in Lemma 9, we have

∣∣∣
{
u′ ∈ U : dHam(u, u

′) ≤ s

5

}∣∣∣ =
∑

u+v≤ s
5

(
s

u

)(
s− u

v

)(
d− s

v

)
≤
(s
5
+ 1
)2

·
(
s

s/5

)2( d

s/5

)
.

As a result, we have log |U|
Nmax(s/5)

≥ cs log d
s for some constant c > 0, and Lemma 9 gives

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥
sδ2

10

(
1− I(U ;Y ) + log 2

cs log(d/s)

)
. (14)

To lower bound (14), we seek an upper bound of I(U ;Yi) for each i ∈ [n]. Under the simulta-
neous message passing protocol, the communication strategy of node i could be represented by a
family of non-negative functions pi,y(·) with y ∈ {0, 1}k , where

pi,y(x) , P[Yi = y | Xi = x].

Clearly
∑

y∈{0,1}k pi,y(x) = 1 for all x ∈ R
d. Moreover,

P[Yi = y | U = u] = EXi∼Pu [pi,y(Xi)].

Let P0 , N (0, σ2Id), we could upper bound the mutual information as

I(U ;Yi)
(a)

≤ EU [DKL(PYi|U‖PYi|U=0)]

(b)

≤ EU [χ
2(PYi|U‖PYi|U=0)]

(c)
=

∑

y∈{0,1}k

EU

[
E
2
Xi∼P0

[pi,y(Xi)sU (Xi)]

EXi∼P0
[pi,y(Xi)]

]

(d)

≤ 2δ2

σ4

∑

y∈{0,1}k

EU

[
E
2
Xi∼P0

[pi,y(Xi) · U⊤Xi]

EXi∼P0
[pi,y(Xi)]

]
+ 2

∑

y∈{0,1}k

EU

[
E
2
Xi∼P0

[pi,y(Xi)εU (Xi)]

EXi∼P0
[pi,y(Xi)]

]
,

where (a) is due to the variational representation of the mutual information

I(X;Y ) = min
QY

EX [DKL(PY |X‖QY )],

(b) uses the fact that the KL divergence is upper bounded by the χ2 divergence, (c) follows from
simple algebra with

sU (x) ,
dPU
dP0

(x)− 1 = exp

(
δ · U⊤x

σ2
− δ2s

2σ2

)
− 1,
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and (d) uses the triangle inequality (a+ b)2 ≤ 2(a2 + b2) with

εU (x) , exp

(
δ · U⊤x

σ2
− δ2s

2σ2

)
− 1− δ · U⊤x

σ2
.

Next we upper bound each term separately. For the remainder term, in view of the identity

EX∼P0
[εU (X)2] = exp

(
δ2s

σ2

)
− 1− δ2s

σ2
= O

(
δ4s2

σ4

)

as long as δ = O(σ/
√
s), the Cauchy–Schwarz inequality gives

∑

y∈{0,1}k

EU

[
E
2
Xi∼P0

[pi,y(Xi)εU (Xi)]

EXi∼P0
[pi,y(Xi)]

]
≤ EUEXi∼P0


 ∑

y∈{0,1}k

pi,y(Xi)εU (Xi)
2


 = O

(
δ4s2

σ4

)
. (15)

As for the main term, we have

∑

y∈{0,1}k

EU

[
E
2
Xi∼P0

[pi,y(Xi) · U⊤Xi]

EXi∼P0
[pi,y(Xi)]

]
(a)
=
s

d

∑

y∈{0,1}k

‖EXi∼P0
[pi,y(Xi)Xi]‖22

EXi∼P0
[pi,y(Xi)]

(b)

≤ 2sσ2

d

∑

y∈{0,1}k

EXi∼P0
[pi,y(Xi)] log

1

EXi∼P0
[pi,y(Xi)]

(c)

≤ 2sσ2

d
· k, (16)

where (a) follows from E[UU⊤] = (s/d)Id, (b) follows from Lemma 4 (or more precisely, Lemma
7), and (c) uses the concavity of x 7→ log x. Now combining (15) and (16) gives the following upper
bound on the mutual information:

I(U ;Yi) = O

(
skδ2

dσ2
+
s2δ4

σ4

)
.

Without loss of generality we may assume that there is no public randomness (otherwise we use
I(U ;Y ) ≤ I(U ;Y |R) for external randomnessR and repeat the previous arguments). Consequently,
(Y1, · · · , Yn) are conditionally independent given U , and therefore

I(U ;Y ) ≤
n∑

i=1

I(U ;Yi) = O

(
nskδ2

dσ2
+
ns2δ4

σ4

)
. (17)

Finally, choosing δ2 ≍ dσ2 log(d/s)/(nk) in (14) and (17) completes the proof of Theorem 3 for
k ≤ d (also recall our choice of n). The case k > d simply follows from the centralized minimax
risk and is thus omitted.
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in sparse distribution estimation under communication constraints. arXiv preprint
arXiv:2106.08597, 2021.

[DGBSX12] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal dis-
tributed online prediction using mini-batches. Journal of Machine Learning Research,
13(Jan):165–202, 2012.

[DGL+17] Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan, Krzysztof Onak,
and Ludwig Schmidt. Communication-efficient distributed learning of discrete distri-
butions. In Advances in Neural Information Processing Systems, pages 6394–6404,
2017.

28



[DIPSV12] Hal Daume III, Jeff Phillips, Avishek Saha, and Suresh Venkatasubramanian. Proto-
cols for learning classifiers on distributed data. In Artificial Intelligence and Statistics,
pages 282–290, 2012.

[DJW13] John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and statis-
tical minimax rates. In IEEE 54th Annual Symposium on Foundations of Computer
Science (FOCS), pages 429–438. IEEE, 2013.

[DJW18] John C Duchi, Michael I Jordan, and Martin J Wainwright. Minimax optimal proce-
dures for locally private estimation. Journal of the American Statistical Association,
113(521):182–201, 2018.
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