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Abstract—We study minimax statistical estimation over a
Gaussian multiple-access channel (MAC) under squared er-
ror loss, in a framework combining statistical estimation and
wireless communication. We develop “analog” joint estimation-
communication schemes that leverage the additive nature of the
Gaussian MAC and characterize their minimax risk in terms of
the number of nodes =, the dimension of the parameter space
3 and the signal-to-noise ratio of the MAC, for two estimation
tasks: Gaussian location and product Bernoulli model. We then
compare this risk to existing lower bounds for risk in digital
schemes, in which nodes transmit bits noiselessly at the Shannon
capacity. We show that, by leveraging the summation inherent in
the Gaussian MAC, our analog schemes in both cases outperform
these lower bounds, scaling with $ (3/=) rather than Ω(3/log =).
This suggests that in over-the-air statistical estimation, drastic
improvements in estimation error can be obtained by using
analog schemes that work in tandem with the physical layer,
rather than digital schemes using a physical-layer abstraction.

I. INTRODUCTION

In recent years, the use of machine learning has rocketed,
the ubiquity of wireless devices has touched ever more
applications, and the amount of data generated by sensors
everywhere has exploded. The combination of these trends
brings new opportunities to combine data from many sources
to do estimation, inference and learning. The key features that
contrast this setting with more traditional statistical estimation
and learning are that data is generated at the edge, and that
it needs to be communicated to a central server, often over
wireless channels, to solve the desired statistical problems.
This leads to new challenges that lie in the intersection of
two decades-old disciplines: statistics and wireless communi-
cation.

Over the recent years, there has been significant interest in
problems in this intersection. In particular, recent works in the
machine learning literature [1]–[6] have studied the impact of
communication constraints on distributed statistical estimation
and testing. These works simplify the communication problem
by assuming that capacity constraints in the physical layer
dictate the number of bits available to represent each sample.
Each observed sample is then quantized into a fixed given
number of bits, which are assumed to be communicated to
the central receiver without any errors.

In this paper, we seek to study the joint estimation commu-
nication problems from first principles. We formulate a model
for minimax optimal parameter estimation over the Gaussian
multiple-access channel (MAC) and study two canonical esti-
mation models, Gaussian and Bernoulli location models. We
develop “analog” transmission-estimation schemes over this

channel, where each sensor simply scales and transmits its
sample to the receiver in an uncoded fashion, which allows
to leverage the additive nature of the Gaussian MAC to
average the statistical samples over the air. We characterize the
performance of our schemes and show that their resultant esti-
mation error is exponentially smaller than the digital schemes
in the aforementioned literature when both approaches use
the same amount of physical resources. Similar gains have
been observed in source coding for sensor networks [7], [8],
as well as experimentally in recent works [9], which build
on the additive nature of the Gaussian MAC for gradient
accumulation in federated learning-type settings.

The rest of this paper is structured as follows. In Section II,
we define the problem and introduce the definition of a min-
imax estimation scheme in this setting. We then summarize
our main results in Section III. We compare them to existing
lower bounds for digital schemes in Section IV, showing that
analog schemes leveraging the superposition nature of the
wireless channel can significantly outperform digital schemes.
We provide proofs of our results in Sections V and VI.

II. PROBLEM FORMULATION

We study statistical estimation over a Gaussian multiple-
access channel. In each use C of this channel, = senders
transmit their respective symbols -1C , . . . , -=C ∈ R to a single
receiver, which receives a noisy superposition .C ,

.C = -1C + -2C + · · · + -=C + /C , (1)

where /C ∼ N(0, f2
n ) is the noise in the Cth channel use. We

assume an average power constraint % on each sender. That
is, if a task takes B channel uses, we require that

1
B

B∑
C=1
E[-2

8C ] ≤ %, for all 8 = 1, . . . , =, (2)

where the expectation is over whatever randomness might
exist in -8C , which we will make more precise shortly.

This system has the following estimation task: Each of the
= senders has an i.i.d. sample *8 , 8 = 1, . . . , =, from an
unknown distribution ?\ on an alphabet U, belonging to a
parameterized family of distributions P = {?\ : \ ∈ Θ} with
parameter space Θ ⊆ R3 . We use the notation E\ [·] to mean
expectation under the distribution ?\ . The goal of the receiver
is to estimate \ given . , (.1, . . . , .B).

To complete this task, each sender 8 chooses -8 ,
(-81, . . . , -8B) = 58 (*8) using a function 58 chosen in advance



and known to the receiver, and the receiver uses an estimator
\̂ (. ). We thus define how an estimation is carried out.

Definition 1. An estimation scheme for B channel uses is a
pair (f, \̂) comprising = encoding functions f = ( 51, . . . , 5=),
where 58 : U → RB is used by sender 8, and an estimator
function \̂ : RB → Θ used by the receiver.

We are now in a position to elaborate on the average power
constraint in (2). The distribution of -8 depends (via 5 ) on
?\ , which is not known in advance. We therefore require that
schemes respect this power constraint for every \ ∈ Θ, that
is, that the encoding functions { 58} satisfy

1
B
E\

[
‖ 58 (*8)‖22

]
≤ %, for all 8 ∈ {1, . . . , =}, \ ∈ Θ. (3)

To evaluate possible schemes, we study risk under squared
error loss, with the goal of minimizing the squared error
E\ ‖\̂ (. ) − \‖22. If we fix the encoding functions f, all that re-
mains is to choose an estimator function \̂. We can understand
these estimators using the same frameworks as in classical
statistics; the difference is that our estimator can access only
. , not the samples {*8}. In particular, when f is fixed, we
will call an estimator minimax if it minimizes the worst-case
risk (over \ ∈ Θ).

In our context, it is natural to extend this idea to schemes.
When referring to the risk of a scheme (f, \̂), we mean the
risk when that scheme is used. To remind ourselves that this
also depends on the encoding functions f, we write the risk
as '(\; f, \̂) = E\ ‖\̂ (. ) − \‖22, with f being implicit on the
right-hand side. We can then extend minimaxity to schemes.

Definition 2. Consider a class S of estimation schemes for
B channel uses. A scheme (fM, \̂M) is minimax for S if it
minimizes the maximum risk among all those schemes in S
that also satisfy the power constraint (3). That is, if S% is the
subset of S satisfying (3), then a scheme (f, \̂) is minimax if
it satisfies

inf
(f, \̂) ∈S%

sup
\

'(\; f, \̂) = sup
\

'(\; fM, \̂M). (4)

Where a scheme’s encoding functions are the same for all
nodes, 58 = 5 for all 8 = 1, . . . , =, we will abuse notation
by writing the common encoding function 5 in place of the
collection f, for example, '(\; 5 , \̂) , '(\; f, \̂).

In this paper, we will be concerned with two cases of this
general problem. The first is the Gaussian location model,
in which ?\ = N(\, f2�3), with U = R3 and Θ = {\ ∈ R3 :
‖\‖2 ≤ �

√
3} for some known � > 0. That is, the goal of the

receiver is to estimate the unknown mean \ of the multivariate
Gaussian distribution with known covariance matrix f2�3 .

The second is the product Bernoulli parameter model, in
which ?\ =

∏3
8=1 Bernoulli(\), with U = {0, 1}3 and Θ =

[0, 1]3 . The goal of the receiver is to estimate the unknown
mean \ of the Bernoulli distribution.

We note that the gradient aggregation problem in distributed
stochastic gradient descent, a key part of federated machine
learning, can be cast as a distributed parameter estimation
problem of this type; see e.g. [10].

III. MAIN RESULTS

We develop linear estimation schemes for two estimation
models, Gaussian and Bernoulli mean estimation, as described
in the previous section. An important characteristic of these
schemes is that they are “analog” in the sense that senders
simply scale and transmit their samples to the receiver in
an uncoded fashion. This is in contrast to a digital approach
where each sample is encoded with a finite number of bits,
which are then reliably communicated to the receiver using
channel coding techniques. The analog nature of the trans-
missions allow us to make use of the additive nature of the
Gaussian MAC to combine and average the statistical samples
over the air. The following theorems characterize the risk of
these analog schemes. In the next section, we compare their
performance to and quantify their gain over digital approaches
that separate estimation and channel coding.

Theorem 1. In the Gaussian location model, consider the
class of all estimation schemes for 3 channel uses, and using
a scale-and-offset encoding function common to all senders
5 (D) = UD + V for some U ∈ R, V ∈ R3 (and any estimator
function). The minimax scheme is given by the choice

5M (D) =
√

%

�2 + f2 D, \̂M (. ) =
1
=

√
�2 + f2

%
., (5)

and yields the minimax risk

sup
\

'(\; 5M, \̂M) =
3f2

=

[
1 + f

2
n
=%

(
1 + �

2

f2

)]
. (6)

By using a repetition code, Theorem 1 can be extended to
cases where B > 3.

Corollary 1. In the Gaussian location model, if B ≥ 3, there
exists a scheme ( 5R, \̂R) achieving the worst-case risk

sup
\

'(\; 5R, \̂R) =
3f2

=

[
1 + f2

n
bB/3c=%

(
1 + �

2

f2

)]
. (7)

This scheme involves repeating the encoding function (5)
bB/3c times, leaving the remaining B − 3 bB/3c channel uses
unused, and averaging the corresponding repeated estimates.

The proofs of Theorem 1 and Corollary 1 are in Section V.
Where bB/3c is not an integer, the unused channel uses

could be filled with another partial repetition, giving a slight
improvement on (7) but a more unwieldy expression.

For the product Bernoulli parameter model, we provide the
minimax scheme among those using affine estimators.

Theorem 2. In the product Bernoulli parameter model, con-
sider the class of all estimation schemes for 3 channel uses
(B = 3), and using affine estimators. The minimax scheme in
this class is the one using the encoding function defined per
element

[ 5M (D)]C =
{
−
√
%, if [D]C = 0√
%, if [D]C = 1,

(8)



where [·]C is the Cth element of its (vector) argument, and the
estimator function \̂M (. ) = UM. + VM1, where VM = 1

2 and

UM =


1

2
√
=%(
√
= + 1)

, if f2
n ≤ =3/2%,

=
√
%

2(f2
n + =2%)

, if f2
n ≥ =3/2%.

(9)

The minimax risk given by this choice of 5M and (UM, VM) is

sup
\

'(\; 5M, \̂M) =
3

4(
√
= + 1)2

(
1 + f

2
n
=%

)
, if f2

n ≤ =3/2%,

3

4
· 1

1 + = · =%
f2

n

, if f2
n ≥ =3/2%.

(10)

We can also similarly extend this using a repetition code.

Corollary 2. In the product Bernoulli parameter model, if
B ≥ 3, there exists a scheme ( 5R, \̂R) achieving the risk

sup
\

'(\; 5R, \̂R) =
3

4(
√
= + 1)2

(
1 + f2

n
bB/3c=%

)
, if f2

n ≤ =3/2%,

3

4
· 1

1 + = · bB/3c=%
f2

n

, if f2
n ≥ =3/2%.

(11)

This scheme involves repeating the encoding function (8)
bB/3c times, leaving the remaining B − 3 bB/3c channel uses
unused, and averaging the corresponding repeated estimates.

The proofs of Theorem 2 and Corollary 2 are in Section VI.

IV. COMPARISON TO DIGITAL LOWER BOUNDS

In the previous section, we characterized the performance
of analog estimation schemes for the Gaussian and Bernoulli
models. In this section, we compare their performance to dig-
ital approaches that have been studied in the recent literature,
and show that analog schemes can lead to drastically smaller
estimation error for the same amount of physical resources,
i.e. transmission power and number of channel uses.

In particular, recent work in machine learning [1]–[6] has
studied the impact of communication constraints on dis-
tributed parameter estimation. These works abstract out the
physical layer, simply assuming a constraint on the number
of bits available to represent each sample. This implicitly
corresponds to assuming that communication is done in a
digital fashion, with channel coding used to transmit the
resultant bits without any errors. For example, in [6], the
authors develop information-theoretic lower bounds on the
minimax squared error risk over a parameter space Θ ⊂ R3 ,

sup
\ ∈Θ, f∈FD

:

'(\; f, \̂) = sup
\ ∈Θ, f∈FD

:

E\ ‖\̂ (. ) − \‖22,

where F D
:

now is defined as the set of all possible encoding
schemes f , ( 51, . . . , 5=), where 58 (D) ∈ {1, 2, . . . , 2: } for all

8 = 1, . . . =, i.e. each sample *8 is quantized to : bits, which
are then noiselessly communicated to the receiver. Note that
these information-theoretic results lower bound the minimax
risk achieved by any :-bit digital estimation scheme. In this
section, we compare our results to these lower bounds, as
applied to the Gaussian MAC we study in this paper.

We assume that senders can transmit at the Shannon capac-
ity of the channel. The capacity region of a Gaussian multiple-
access channel with = users, power % and channel noise f2

n
is given by the region of all ('1, . . . , '=) satisfying [11]∑

8∈(
'8 <

1
2

log2

(
1 + |( |%̄

f2
n

)
, ∀( ⊆ {1, . . . , =}. (12)

We allocate rates equally among all the senders, in which
case the inequality in which ( comprises all the senders
dominates. If the MAC channel is utilized B times, we assume
that each sender is able to noiselessly communicate

: = sup
('1 ,...,'=)

B

=

=∑
8=1

'8 =
B

2=
log2

(
1 + =%

f2
n

)
bits (13)

to the receiver. We then substitute this expression into the
lower bounds developed in [6] for the Gaussian location
model. Note that at finite block lengths, the senders cannot
communicate to the receiver at the Shannon capacity and that
this optimistic assumption benefits the performance of the
digital schemes.

Proposition 1. In the Gaussian location model, con-
sider all schemes in which senders send bits to the re-
ceiver at the Shannon capacity for B channel uses. For
�2 min{ B23 log2

(
1 + =%/f2

n
)
, =} ≥ f2, the risk associated

with any such scheme is at least

sup
‖\ ‖2≤�

√
3

E\ ‖\̂ − \‖22 ≥ �f
2 max


232

B log2

(
1 + =%

f2
n

) , 3
=

 .
(14)

Proof. Apply Corollary 5 from [6], using (13). Note that
[−�, �]3 ⊂ Θ , {\ : ‖\‖2 ≤ �

√
3}, as required by their

lower bound result. �

Compare this to (7) from Corollary 1. Note that this
corollary implies that as the number of nodes and therefore
the number of samples = increases, the risk of any digital
scheme decreases as Ω(32/B log =), whereas the risk of the
scheme from Corollary 1 scales with $ (3/=). (The effect of
B vanishes as it converges to the classical noiseless case.) This
implies that, when B ≥ 3, the analog schemes can lead to an
exponentially smaller estimation error as compared to digital
schemes employing the same physical resources.

On the other hand, we make a brief note on the case where
B < 3. Here, an analog scheme transmitting scaled versions of
samples cannot easily communicate more coordinates than it
has channel uses. A natural approach would be for each node
to transmit only the (scaled) first B elements of *8 . In this
case, the worst-case risk would scale as Θ(3), independent



of B and =, which is the maximal risk achievable even in the
absence of any samples. Thus, the digital scheme achieves
risk better than Θ(3) whenever B = l(3/log(1 + =%

f2
n
)), which

can be the case when the SNR or = is large, while our analog
scheme requires B ≥ 3 to be viable.

We also have a similar situation for the Bernoulli model.

Proposition 2. In the product Bernoulli model, con-
sider all schemes in which senders send bits to the re-
ceiver at the Shannon capacity for B channel uses. For
min{ B23 log2

(
1 + =%/f2

n
)
, =} ≥ 1, the risk associated with any

such scheme is at least

sup
\ ∈[0,1]3

E\ ‖\̂ − \‖22 ≥ �max


232

B log2

(
1 + =%

f2
n

) , 3
=

 . (15)

Proof. Apply Corollary 8 from [6], using (13). �

Note that analogously to the Gaussian case, this result
implies that the risk of any digital scheme for the Bernoulli
model scales as Ω(32/B log =), while the risk of our ana-
log scheme decreases as $ (3/=). At sufficiently low SNR
=%/f2

n , the analog scheme appears to achieve $ (32/B=2)
(compared to Ω(3/=)), but since increasing = also increases
the SNR, this relationship will eventually give way to the
high SNR regime, where f2

n ≤ =3/2%. These results show that
building on the inherent summation of transmitted signals in
the Gaussian MAC to perform the averaging that classical
statistical estimators would do can provide drastic gains in
estimation performance. Similar gains have been observed in
asymptotic lossy source coding for Gaussian sensor networks
in [7], [8], where one is interested in communicating an
i.i.d. Gaussian source over a MAC under mean-squared error
distortion, as well as for distributed stochastic gradient descent
in experimental comparisons in [9].

V. GAUSSIAN LOCATION MODEL

In this section, we prove our main results for the Gaussian
location model, Theorem 1 and Corollary 1. In this model,
the samples *8 ∼ N(\, f2�3), where \ lies in an ℓ2-ball in
a 3-dimensional space, {‖\‖2 ≤ �

√
3}, and the goal is to

estimate \.
Since the multiple-access channel already produces a sum,

one might suspect that that an estimation scheme emulating
the sample mean would be a natural candidate, given its
properties in classical estimation. Indeed, it is minimax among
schemes using affine encoders (and any estimator). First, we
show that this estimator is minimax for a fixed affine encoder,
as we state formally in the following proposition.

Proposition 3. In the Gaussian location model, let the senders
use any scale-and-offset encoding function 5 (D) = UD + V for
some U ∈ R, V ∈ R3 , common to all senders, and assume that
this encoding function satisfies the power constraint, and that
the channel is used 3 times (i.e., B = 3). Then the minimax
estimator is given by

\̂M (. ) =
1
U=
. − 1

U
V, (16)

which yields risk

E\ ‖\̂M (. ) − \‖22 =
3

=

(
f2 + f2

n
=U2

)
. (17)

Remark. The estimator given by Proposition 3 is also the
maximum likelihood estimator.

The proof for this follows similar lines to the classical result
using a least favorable sequence of priors, with modifications
for channel noise.

Lemma 1. If ) is distributed according to the prior
N(`, 12�3), and all senders use the common encoding func-
tion 5 (D) = UD + V for some U ∈ R, V ∈ R3 , then the Bayes
estimator \̂`,12 (H) is given by

\̂`,12 (. ) = ` + U=12

U2=212 + U2=f2 + f2
n
(. − U=` + =V), (18)

and the Bayes risk is

E‖\̂`,12 (. ) − \‖2 =
3 (U2=f2 + f2

n )
U2=2 + U2=f2+f2

n
12

. (19)

Proof. Under squared error loss, the Bayes estimator for
N(`, 12�3) is (by well-known theorem, e.g. [12, Cor.
4.1.2(a)]) \̂`,12 (H) = E() |H), which we will evaluate. The
relevant covariance matrices are

Σ. = (U2=212 + U2=f2 + f2
n )�3 ,

Σ.) = E
[
(U=, + U∑

8 +8),>
]
= U=12�3 .

Then the Bayes estimate is given by

\̂`,12 (. ) = E() |. ) = E) + Σ).Σ−1
. (. − E. )

= ` + U=12 · 1
U2=212 + U2=f2 + f2

n
· (. − U=` − =V),

and since this estimator is unbiased, the squared error is given
by the trace of the conditional variance,

E‖\̂`,12 − \‖ = tr var() |. ) = tr(Σ) − Σ).Σ−1
. Σ.))

= 312 − 3 (U=12)2

U2=212 + U2=f2 + f2
n
. �

Proof of Proposition 3. Take the Bayes estimator from
Lemma 1. Let 12 → ∞, then we have a sequence of priors
N(`, 12) yielding increasing Bayes risk converging to

lim
1→∞
E‖\̂`,12 − \‖ =

3 (U2=f2 + f2
n )

U2=2 =
3

=

(
f2 + f2

n
=U2

)
.

The minimax estimator is then

lim
1→∞

\̂`,12 (. ) = ` + 1
U=
. − ` − 1

U
V. �

In the absence of a power constraint, the offset V has
no effect—since it is known, it is easily cancelled by the
receiver’s estimator. Intuitively, with a power constraint, one
would expect no offset to be preferable. In Theorem 1, where
we find the best choice of (U, V), we find that this is indeed
the case.



Proof of Theorem 1. For any given U, V, the minimax risk
from Proposition 3 is decreasing in U. Therefore, we choose
the largest U satisfying the power constraint (3). Note that

E\
[
‖-8 ‖22

]
= U2 (‖\‖2 + 3f2) + 2U\>V + ‖V‖2

= ‖U\ + V‖22 + U
23f2. (20)

We thus solve

maximize U

subject to ‖U\ + V‖22 + U
23f2 ≤ 3% ∀\ : ‖\‖ ≤

√
3�.

(21)
If we relax the constraint to ‖V ± U�1‖22 + U

23f2 ≤ 3%, we
can use Lagrange multipliers to find the solution

U =

√
%

�2 + f2 , V = 0, (22)

and verify that it also satisfies the constraints of, and is
therefore also a solution to, (21). �

We now turn to the case where B > 3. A natural extension of
the scheme from Theorem 1 would be to transmit repetitions
of the sample.

Lemma 2. Let (f, \̂) be a scheme with \̂ (. ) affine in .

and consider a scheme (f', \̂R) that repeats the encoding
function < times and averages the estimates for each rep-
etition, \̂R (. ) = 1

<

∑<
9=1 \̂ ( [. ] 9 ), where [. ] 9 is the part of .

corresponding to the 9 th repetition. The risk of (f', \̂R) is the
same as for (f, \̂), but with f2

n /< in place f2
n .

Proof. The bias of the estimator is unaffected by the repetition
(and is independent of f2

n ), and if the original estimator is
written as \̂ (. ) = �. + 2, the variance can be shown to be∑
8 var(�-8) + 1

<
var(�/). Relative to the original estimator

variance, this is equivalent to dividing f2
n � by <. �

This then yields the achievability result of Corollary 1.

Proof of Corollary 1. Apply Lemma 2 to Theorem 1, with
< = 3 bB/3c and ignoring the leftover channel uses. �

Comparing this to the B = 3 case, the repetition reduces the
noise by a factor of roughly B/3, which is the expected effect
of averaging a repeated transmission. The minimax risk then
converges more quickly to the noiseless case as B/3 →∞.

VI. BERNOULLI PARAMETER MODEL

In this section, we prove our main results for the Bernoulli
parameter model, Theorem 2 and Corollary 2. In this model,
*8 ∼

∏3
8=1 Bernoulli(\), and the goal is to estimate \, which

is in [0, 1]3 . Our calculations in this section will work with
the parameterized encoding function common to all senders

5� (D) =
{
−�, if D = 0
�, if D = 1.

(23)

Our analysis of the Bernoulli parameter model focuses on the
scalar case, as stated in Proposition 4 below. Theorem 2 will
then follow by extension to independent dimensions.

Proposition 4. In the scalar Bernoulli parameter model
(3 = 1), consider the class of all estimation schemes using
affine estimators \̂U,V (. ) = U. + V, U, V ∈ R (and any scalar
encoding function with B = 1). The minimax scheme in this
class is the one using the encoding function

5M (D) =
{
−
√
%, if D = 0√
%, if D = 1,

(24)

and the estimator \̂M (. ) = UM. + VM, where VM = 1
2 and UM

is as provided in (9). The minimax risk given by this choice
of (UM, VM) is

sup
\

'(\; 5M, \̂M) =


1
4(
√
=+1)2

(
1 + f2

n
=%

)
, if f2

n ≤ =3/2%,

1
4 ·

1
1+= ·=%/f2

n
, if f2

n ≥ =3/2%.

(25)

Our steps for proving Proposition 4 will be first to establish
the minimax risk for the common encoding function 5� , then
to show that a scheme using any other encoding function can
be transformed to one using 5� for some � of equal risk, and
finally to show that the optimal value for � is

√
%. Before we

continue, we compute the risk for a general affine estimator.

Lemma 3. In the scalar Bernoulli parameter model (3 = 1), if
all senders use the encoding function 5� (23), and the receiver
uses the affine estimator \̂U,V (. ) = U. + V, then the risk is

'(\; 5� , \̂U,V) = U2 [
4=�2\ (1 − \) + f2

n
]

+ [U=� (2\ − 1) + V − \]2 . (26)

Proof. Recall that . =
∑=
8=1 5� (*8) + / and that 5� (*8) = �

w.p. \ and 5� (*8) = −� w.p. 1− \. The variance and bias of
the estimator are then

var\ [\̂U,V (. )] = U2var(. ) = U2 [
4=�2\ (1 − \) + f2

n
]
.

bias\ [\̂U,V (. )] , E\ \̂U,V (. ) − \ = U=� (2\ − 1) + V − \.
The result then follows from combining these as

E\ [\̂U,V (. ) − \]22 = var\ [\̂U,V (. )] + (bias\ [\̂U,V (. )])2. �
The bulk of the work in proving Proposition 4 is in showing

Proposition 5, which establishes the minimax estimator for the
encoding function 5� .

Proposition 5. In the scalar Bernoulli parameter model, let
all senders use the encoding function 5� (D) from (23), and
consider the class of all affine estimators Θ̂aff = {\̂U,V (. ) =
U. + V, U, V ∈ R}. The minimax affine estimator is given by
\̂M (. ) = UM. + VM, where VM = 1

2 and

UM =


1

2
√
=� (
√
=+1) , if f2

n ≤ =3/2�2,

=�

2(f2
n+=2�2) , if f2

n ≥ =3/2�2.
(27)

The minimax risk given by this choice of (UM, VM) is

sup
\

'(\; 5M, \̂M) =


1
4(
√
=+1)2

(
1 + f2

n
=�2

)
, if f2

n ≤ =3/2�2,

1
4 ·

1
1+= ·=�2/f2

n
, if f2

n ≥ =3/2�2.

(28)



Proof. Define Ulo =
1

2
√
=� (
√
=+1) and Uhi =

=�

2(f2
n+=2�2) . Note

that then UM = min{Ulo, Uhi}. For convenience, and with some
abuse of notation, let '(\; 5� , U, V) refer to the expression in
(26). We will repeatedly use the facts that:
(a) '(\; 5� , Ulo, VM) is constant with respect to \.
(b) '(\; 5� , Uhi, VM) is convex in \ and minimized at \ ∈
{0, 1}, at which the risk is equal.

(c) '(0; 5� , U, VM) is convex in U and minimized at U = Uhi.

These can all be verified by appropriate substitutions into (26).
Where we invoke these facts, we will label the equality or
inequality signs accordingly.

We will show that for every other choice (U, V), there exists
some \ ∈ [0, 1] with risk exceeding sup\ '(\;UM, VM). We
divide into three cases.

Case 1: U > Ulo, or U = Ulo and V ≠ 1
2 . In this case, take

\ = 1
2 and we have

'( 1
2 ; 5� , U, V) = U2 (=�2 + f2

n ) + (V − 1
2 )

2

> U2
lo (=�

2 + f2
n ) = '( 1

2 ; 5� , Ulo, VM).

Then, if UM = Ulo, then by (a), the right-hand side is equal to
sup\ '(\; 5� , UM, VM). If UM = Uhi, then note that

'( 1
2 ; 5� , Ulo, VM)

(a)
= '(0; 5� , Ulo, VM)
(c)
≥ '(0; 5� , Uhi, VM)

(b)
= sup

\

'(\; 5� , UM, VM),

where labeled steps refer to corresponding facts above.
Case 2: U < Ulo and V ≥ 1

2 . Take \ = 0 and we have

'(0; 5� , U, V) = U2f2
n + (V − U=�)2

≥ U2f2
n + ( 1

2 − U=�)
2 = '(0; 5� , U, VM),

where in the inequality we used the fact that U=� < Ulo=� =√
=

2(
√
=+1) <

1
2 . Then, if UM = Ulo, we also have Ulo < Uhi, and

by fact (c), is strictly decreasing in U for all U < Ulo, thus

'(0; 5� , U, VM) > '(0; 5� , Ulo, VM)
(a)
= sup

\

'(\; 5� , UM, VM).

If UM = Uhi, then we have

'(0; 5� , U, VM)
(c)
≥ '(0; 5� , Uhi, VM)

(b)
= sup

\

'(\; 5� , UM, VM).

Case 3: U < Ulo and V ≤ 1
2 . Take \ = 1 and argue similarly

to case 2 that '(1; 5� , U, VM) > sup\ '(\; 5� , UM, VM). �

Lemma 4. In the scalar Bernoulli parameter model, consider
the scheme ( 5 , \̂), in which all senders use the encoding
function 5 (0) = �, 5 (1) = �, and the receiver uses the
estimator \̂. Then there exists a scheme ( 5 ′, \̂ ′) satisfying
5 ′(0) = − 5 ′(1) and with minimax risk equal to that of ( 5 , \̂).

Proof. Choose � = �−�
2 , so that 5 ′(D) , 5� (D) = 5 (D)− �+�2 .

By construction, 5 ′(0) = − 5 ′(1) = �−�
2 . Then, if . and . ′ are

what the receiver observes under 5 and 5 ′ respectively, we
have . ′ =

∑
8 5
′(*8) + / =

∑
8 [ 5 (*8) − �+�

2 ] + / = . − =
�+�

2 .

We can then define \̂ ′(. ′) , \̂ (. ′ + = �+�2 ), and this will have
exactly the same statistical properties as \̂ (. ). �

Now we may complete the proof of Proposition 4.

Proof of Proposition 4. Because Lemma 4 shows there is no
sacrifice in minimax risk, it suffices to consider just schemes
using encoding functions of the form 5� in (23). The minimax
affine estimator for such encoding functions is found in
Proposition 5. From (28), the minimax risk for 5� is strictly
decreasing in �2. Therefore, to minimize over all encoding
functions 5� , we take the highest-magnitude � satisfying the
power constraint (3), � = ±

√
%. �

The extension of this result to the product Bernoulli model
is then an application of the scalar case on a per-sample basis.

Proof of Theorem 2. Because each dimension 1, . . . , 3 is in-
dependent, each dimension can be optimized separately. Each
sender transmits its 9 th sample [ 5� (*8)] 9 using the scheme
from Proposition 4. The even division of power still satisfies
the average power constraint (3). The minimax risk is then 3
times the minimax risk along one dimension. �

Finally, Corollary 2 follows using Lemma 2 again.

Proof of Corollary 2. Apply Lemma 2 to Theorem 2, with
< = 3 bB/3c and ignoring the leftover channel uses. �
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