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Abstract

We develop data processing inequalities that describe how Fisher information from statistical
samples can scale with the privacy parameter € under local differential privacy constraints. These
bounds are valid under general conditions on the distribution of the score of the statistical model,
and they elucidate under which conditions the dependence on ¢ is linear, quadratic, or exponential.
We show how these inequalities imply order optimal lower bounds for private estimation for both the
Gaussian location model and discrete distribution estimation for all levels of privacy € > 0. We further
apply these inequalities to sparse Bernoulli models and demonstrate privacy mechanisms and estimators

with order-matching squared ¢? error.

I. INTRODUCTION

In the model of local differential privacy [1], [2], [3], [4], sensitive data is released to
an aggregator or centralized processor only after having been processed by a privatization
mechanism. This privatization mechanism distorts the data in such a way that it is statistically
guaranteed to not reveal too much about the underlying sensitive data. There is an inherent
trade-off between the degree to which the data is distorted by the mechanism (and therefore the
amount of privacy achieved), and the utility of the data for performing statistical inference and
estimation tasks.

One measure of the information conveyed by a statistical sample for estimating a parameter
is the so-called Fisher information, which describes how a family of probability distributions
changes as one varies the parameter of interest. Under some mild regularity conditions, the Fisher

information at a point # in the space of possible parameters immediately gives a lower bound
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on the squared ¢? risk for estimating # via the well-known Cramér-Rao bound for unbiased
estimators [5], [6], [7], [8]. More generally, Fisher information describes the complexity of
estimation problems in an asymptotic sense locally around 6 [9], [10]; and a Bayesian version
of the Cramér-Rao bound known as the van Trees inequality can be used to give lower bounds
that hold for any estimator (including arbitrarily biased estimators) [11].

In this paper, we consider the problem of estimating a parameter # € R? from n independent
statistical samples that have been processed by an e-locally differentially private mechanism.
See Figure 1. We characterize the Fisher information from the privatized samples, and provide
strong data processing inequalities that describe how the Fisher information can scale with
the privatization parameter . These data processing inequalities are valid under very general
conditions on the tail of the score function random variable, and elucidate under which conditions
the dependence on ¢ is linear, quadratic, or exponential. Using the van Trees inequality, we
recover in a unified way order-wise optimal lower bounds on the minimax squared ¢* risk for
Gaussian mean estimation and discrete distribution estimation at all levels of privacy ¢ > 0,
matching the lower bounds from [12], [13], [14] with simpler and more transparent proofs.
Our results also apply to a sequential interaction model for local differential privacy via a
straightforward consequence of the chain-rule for Fisher information; and they can even be
applied to a fully interactive blackboard model by characterizing the Fisher information from
the entire blackboard transcript, therefore extending, for example, earlier bounds in [13] to fully
interactive models.

We further demonstrate the utility of this framework by developing lower bounds for other
statistical models such as a sparse Bernoulli model with X; ~ H?zl Bern(6;) and Z?:l 0; <s,
and demonstrate a privatization mechanism with matching error. This model is interesting in
that when s = 1, it provides an example where the dependence of the minimax squared ¢ risk
on ¢ is exponential even if the d components of each sample X; are independent of each other.
This is in contrast to mean estimation for the Gaussian and the dense Bernoulli model (when s

is of order d), where the dependence on ¢ is linear [14]. When s > 1, the sample-size penalty

due to privatization is of the order SIZ—gd in the privacy regime logd < ¢ <X slogd. This penalty
scales linearly only with the sparsity s rather than the ambient dimension d, which opens up
the possibility of private estimation with a more modest penalty provided that the data can be

assumed to be sparse in a certain sense.



Our Fisher information approach to lower bounds under privacy constraints is motivated by
recent results for statistical estimation under communication constraints such as [15], [16], [17].
In both the privacy constrained and communication constrained cases, the tail behavior of the
score function plays a central role in determining how the risk can scale. Other works such as
[18], [19], [14] have also noted the connection between communication and privacy constraints in
statistical estimation. In contrast with [20], we analyze the Fisher information from the induced
distribution of the privatized samples Y7, ...,Y,, rather than that from the original statistical
model of the X;’s. In [20], Ruan and Duchi observe that the latter has limited applicability for
capturing the local complexity of private estimation problems (see also [21]), while our paper
shows that the former is a powerful measure for the same. Indeed, from the local asymptotic
minimax point of view, it is natural to expect the Fisher information from the privatized samples
to play a role in the complexity of the private estimation problem, but until now it remained
unclear how to characterize or bound this Fisher information for any privatization mechanism
satisfying the local differential privacy condition.

The main contributions of our paper can be summarized as follows:

o We introduce a framework for characterizing Fisher information from e-differentially pri-
vatized samples. Under very general conditions on the statistical model, we provide upper
bounds on the Fisher information that show that the dependence on ¢ is dictated by the tail
of the score function random variable. These bounds continue to hold even when samples
are released in an interactive fashion through a shared blackboard. Even though statistical
estimation under privacy constraints has been of significant recent interest, to the best of our
knowledge there are no known bounds on the Fisher information from privatized samples.

o We show that the bounds on Fisher information easily lend themselves to order optimal lower
bounds on the minimax squared ¢? risk of statistical estimation under privacy constraints.
In particular, we recover in a unified way lower bounds developed separately for different
statistical models in the literature, such as Gaussian mean estimation [[14] and discrete
distribution estimation [13], in the latter case extending the bounds to fully interactive
models.

o To demonstrate the generality of our approach, we apply our bounds to a sparse Bernoulli
model, for which we also develop optimal privacy mechanisms. We show that our framework

can be flexibly applied to different parameter regimes of this model and the dependence of
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Fig. 1: An estimation system where sensitive data X, ... X, is processed by the privatization
mechanism Q)(y|x) before being released to the centralized processor that will use the data for

statistical inference tasks such as estimating the parameter 6.

the minimax risk on € can be exponential or linear depending on the parameter regime of

interest.

A. Preliminaries

Let (X,.A) and (), B) be measurable spaces and suppose that { P }gce for © C R? is a family
of probability measures on (X, .A) that is dominated by some sigma-finite measure p. Denote
the density of P, with respect to u by f(z]@). Let

i.i.d.
Xi,..., X, "% p,

with 6 being the parameter of interest that we are trying to estimate. We say that a regular

conditional distribution

Q:BxX—|0,1]

is an e-differentially private mechanism if

< e ey



for any z,2’ € X and S € B.

Suppose that conditioned on X; = x;, we draw Y; independently from Q(:|x;) where Q
satisfies the ¢ differentially priviate condition with ¢ > 0. The privatization mechanisms
can either be the same for each sample, or they can vary across different samples as long as
each mechanism satisfies the condition (1). We will generally assume for simplicity that each

mechanism is the same. In this case the Y; have the marginal probability distribution

Q(S) = / Q(S|2) (z]6)d(z)

By (1), if Q(S|z) = 0 for some = € X then Q(S|z’) = 0 for all 2’ € X. We can therefore
assume that both {Q(:|z)},ex and {Qy}yco form dominated families with Q(-|x) << v for all
x € X and Qy << v for all § € O for some sigma-finite measure . Abusing notation slightly
let f(y|f) be the density of )y with respect to v, and let Q(y|z) denote the density of Q(:|x)
with respect to v.

Instead of working with measures, we will find it more convenient to work with the cor-
responding densities of the probability distributions. The following proposition shows that the
condition (I) implies a similar condition for the density Q(y|x), and this is the form that will

be most useful in the subsequent sections.
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Qy|z) < ef .

Proposition 1. For any x,2' € X and v-almost any y € ), Qlyla) =

A proof of Proposition (1] is included in Appendix

II. UPPER BOUNDS ON FISHER INFORMATION

In this section, we introduce the relevant Fisher information quantities and then show how the
Fisher information from the privatized samples Y; can be upper bounded bounded in terms of
the local differential privacy parameter €. Recall that in the context of Fisher information, the

score function associated with the statistical model Py is defined by

Sy(z) = Vglog f(x]0)

00,

and the Fisher information matrix for estimating ¢ from a sample Y is

T
— (a% 1ogf(x|9),...,ilogf(xw)) :

Iv(6) = E |(Volog f(Y10)) (Volog f(Y]0))" ]



where the expectation is understood to be taken with respect to the “true” distribution with
parameter 6. All logs are taken with respect to the natural base. In order to ensure that these
quantities are well-defined, and that we can apply the van Trees inequality below, we require
certain regularity conditions on the statistical model Fy. In particular we assume that the square-
root densities \/W are continuously differentiable with respect to each ¢, and that the Fisher
information from X exists and is finite. For more on these conditions and how they are used
see Appendix D!

We are interested in this Fisher information quantity, in part, because it can provide bounds
on the risk in estimating 6 from the samples Y7, ..., Y,. Fisher information is by definition a
local quantity that is defined at each § € © and describes the local complexity of estimating
that particular ¢ value asymptotically as the number of samples n increases. More concretely, if
the statistical model )y is differentiable in quadratic mean '| [10], meaning that \/m has
a derivative in a certain L? sense, then the local asymptotic risk around 6 is lower bounded as

follows:
2

> Tr(Iy(0)™h)
2

\/ﬁ(én(yl,...,Yn)— <9+%))

sup lim inf sup E -
A N0 pes GV

d2
>_ -
~ Tr(Iy(9))
where A is any finite subset of R? (e.g. see Theorem 8.11 in [10]). Similarly, under these

conditions, for each 6, there exists a sequence of estimators én(Yl, ..., Y,) such that

Vi (i = (0+ 22

(e.g. see Theorem 8.14 in [10]). In this way the Fisher information can determine both upper

2 < Tr(Iy(0)™)

2

sup limsup sup Eg, ,, o
A n—oo hel

and lower bounds and is of fundamental importance in the parameter estimation problem. In
the sequel, we develop upper bounds on Tr(Iy(#)), which immediately lead to lower bounds
on local asymptotic risk. Additionally, by upper bounding Fisher information uniformly across

all # € © (or a subset of ©), and using a Bayesian Cramér-Rao bound, we are able to get

'is implied by the assumptions we have made above without any additional assumptions on Q(y|z) other than it being an &

differentially private mechanism



more global minimax lower bounds. For this we’ll use a multivariate version of the van Trees

inequality due to Gill and Levit [11], which bounds the average ¢? risk by
A~ 9 d?

E||6 — 6|5A(0)do >

B0 00 > e T

.....

2)

where A(6) = H;l:l A;(6;) is a prior for the parameter # and J(\) is the Fisher information

associated with the prior \:

d
)\/_(9')2
J(A\) = /ﬁj] db; .
; Ai(6)
Assuming that © = [—B, B]%, the prior A can be chosen to minimize J()\) [8], [22]. This

observation along with the independence of the Y;, and upper bounding the average risk by the
maximum risk, leads to

d2
nsupgee 1r(1y(0)) + dB—’T; .

sup Eql|6 — 6])2 > (3)
0O

We are therefore interested in upper bounding Tr(/y (6)). To this end, we will need the following

lemma:

Lemma 1 (Barnes et. al 2018 [15]). The trace of the Fisher information matrix Iy (0) can be

written as

Tr(Iy(0)) = Ey [|Ex([Ss(X)|Y]]3 -

For completeness a proof of Lemmal/l]is included in Appendix Bl Using the characterization of
Fisher information from Lemmall} the following Propositions show how in the differentially
private setting, Tr(/y(f)) can be upper bounded under various assumptions on the tail of the
score function random vector Sp(X'). We see that depending on the tail behavior, there can be a
qualitatively different upper bound in terms of ¢, i.e., it can be linear, quadratic, or exponential

in €. In Figure [2] we summarize these conditions and the corresponding upper bounds.
Proposition 2. If E[(u, Sp(X))?] < Iy for any unit vector u € RY, then
Tr(Iy(0)) < L(ef — 1),

Proof. Using Lemma
Tr(Iy(0)) = Ev [Ex[Ss(X)[Y]]5 - )



For a fixed y let
__ESy(X)Y =y
IELSs(X)[Y =yl

u

so that
IE[So(X)Y = ylll2 = (u, E[Sp(X)[Y" = y])
= E[(u, So(X)Y =]
1
= WEK% So(X))Q(y|X)] - ®)
Let cmin(y) = min, Q(y|z) and cnix(y) = max, Q(y|z). We can assume that cp,(y) > 0.
Following (5),

1
f(yw)EKuv SO(X»Q(y‘X)] S Cmin(y) <Ax:<u,59(x)>>0} <U, S@($)>Q(y|l’)f($‘¢9)dlu,(x)

u, Sp(x x)f(x|0)du(x
" /{E:WMKO; () Qyl) f(2]0)di >)

1
< (et [ (1, So(2)) (210} ()
Camin(Y) {z:(u,Sy(z)) >0}
) | S EOdn@)) . ©
{z:(u,Sg(x))<0}
Note that score functions are mean zero and thus
/ (1, Sa(a)) S (alO)u(o) + [ (. Sol)) F(elf)dp(x) = 0. (D)
{z:(u,Sp(x))>0} {z:(u,Sg(x))<0}
Putting (6) together with (7),
1
Frangy Bl Se(X))Q(y|X)] < (e — 1)/ (u, So(x)) f(x]0)dp(z)
f(ylo) {:{u,8(2)) >0}
and then squaring both sides and using Jensen’s inequality yields
1 2
—E u,SXQyX) < (ef =12, . 8)
(7Bl SaXDQUIX ) < (2 = 17,
The proposition is proved by combining (4), (5)), and (8). O

Remark 1. If 0 < ¢ < 1 then (ef — 1)? < (e — 1)%¢? and Proposition 2] implies
Tr(Iy(9)) < (e — 1)*1,e*.
Proposition 3. If E[(u, S¢(X))?] < Iy for any unit vector u € R? then

Te(Iy(0)) < Les .



Proof. Following from the proof above, Jensen’s inequality implies

QuIX) 1° :_QWIX)
E | (u, S@(X»m} <E {(“v So(X)) m}
< lpe® .
[

Using the super-exponential definition of a sub-Gaussian and sub-exponential random variable

(V)2
[23], we say that a random vector V' € R? is sub-Gaussian with parameter o if £ [e( =) ] <2

for any unit vector u € R% We say that a random vector VV € R? is sub-exponential with

, (w.V) .
parameter o if E [e| - ] < 2 for any unit vector u € R

Proposition 4. If Sy(X) is sub-Gaussian with parameter o and € > 1 then

Tr(Iy(9)) < 20°¢ .

Proof. Using the convexity of z — e,

exp <E [§<u 59<X>>EQ(97'X))J ) <E

[Qy|X

2
< e°E |exp ((u, SG(X») ]
o
< 2¢°
Taking logs,
Qy|X)

E {<u, S0(X)) )]] < 0*(c + log2)

E[Q(y|X
so that for ¢ > 1,

Q(?J|X) ? o2
B | S gignrgy | <2

With a nearly identical proof we also have the following sub-exponential result.

Proposition 5. If Sy(X) is sub-exponential with parameter o and € > 1 then

Tr(Iy(0)) < 20%* .
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condition on Sp(X) | upper bound on Tr(/y(6)) | lower bound for ¢2 risk (with n samples)
. . 2 d?
finite variance I Iy(ef — 1) wlo(e—1)2
finite variance [ Lyef n}fes
o%-sub-Gaussian oe nfza
o-sub-exponential o2’ %2252

Fig. 2: A summary of the (order-wise) upper bounds on Tr(/y (#)) under different conditions on

the score function random vector Sy(.X).

A. Interactive Models

So far we have assumed that there are no interactions between the different samples during
privatization, so that the privatized samples Y7, ..., Y, are independent. It is worth pointing out
that our Fisher information bounds, and the corresponding lower bounds in the estimation error,
can also be extended to interactive communication models where the privatized samples are no
longer necessarily independent. We describe both a sequential interactive model [12] and a more

general fully interactive blackboard model [14] below:

(i) Sequential Interaction: In this scenario, the samples Xi,..., X, are ordered and the
mechanism for sample ¢ can depend on the previously privatized samples Yi,...,Y; ;.
Formally, there is a collection of ¢ differentially private mechanisms Q;(Y;|x;, y1, ..., vi—1)
such that

Qi(Sm, Yty - - ,yi—1)
QZ<S‘J:;7 Y1, .- 7yi—1)

for any ¢ = 1,...,n, event S, and z;,x},41,...,y;—1. Using the chain rule for Fisher

<ef

information,

Tr(Iy.v.(0) = > By, vy [Tr(Tvvis, .o (0))] (€))

i=1
where Iy,)y, , ., (0) denotes the Fisher information computed using the distribution for Y;
conditioned on vy, . .., y;_1. For a given 6, X; is independent of Y7, ..., Y;_ 1, so conditioning
on yi,...,Y;—1 just determines which mechanism is used, and because each mechanism

satisfies the ¢ differentially private condition, each term inside the expectation in (9) can be
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upper bounded just as in Propositions and the total bound on the Fisher information
from all n samples will remain the same.

(i) Fully Interactive Blackboard Model: In this scenario, there are multiple rounds of se-
quential communication, and a public blackboard with all of the information released after
each round is available to all nodes in future rounds of communication. Suppose there are
T rounds of communication indexed by ¢ = 1,...,7T". Node ¢ releases Y, on round ¢ which
is drawn from Q;¢(Yi¢|b1,...,b—1, Y14, -, Yi—14, ;) Where By = (Yig,...,Y,,) is the
blackboard that is visible to all nodes after round ¢. Call the total transcript after all rounds
of communication Z = (By, ..., Br). We assume that there is a total “privacy budget” of
€ for each X; in the sense that

Pr(Z € Slxy, ..., % .., xp)
Pr(Z € Slxy, ..., 2k, ..., xp)

79

<ef

for any event S, i, xi,...,x,, x,. Note that by the chain rule, the conditional density of

Z can be written as

Q(Z\xl,...,xi,...,xn) _ Ht Qi,t(}/;,t|Blu---7Bt—17}/1,t7---7}/;—1,t7xi)
Q(Z\xl,...,x;,...,xn) HtQi,t(}/;,t|Bla---7Bt—17}/1,t7---7}/;—1,t7x;') '

The total Fisher information from the transcript Z can be upper bounded by n times the

(10)

bounds in Propositions under the same conditions on the score Sy(X), so that the same
lower bounds in estimation error also apply for this more general interaction model. The

details for this are found in Appendix

III. APPLICATIONS

In this section we show how the upper bounds on Tr(Iy (6)) developed in the last section can
be used to imply order-optimal lower bounds on the private estimation problem using (3). We

are interested in characterizing the minimax risk

inf maxE||0(Yy,...,Y,) —0|>
(Q,é) 0cO

where the estimator 6 is a function of the privatized samples Y7,...,Y,, and the infimum is
taken jointly over the estimator 6 and privatization mechanism (). Upper bounds can therefore
be found by jointly designing an estimator and privatization mechanism that achieve a certain

WwOorst-case error.
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Corollary 1 (Gaussian location model). Suppose X; ~ N'(0,021;) and © = [—B, B]%. In this
case Sp(X;) ~ N (O, %Id) and the conditions for Proposition 2 and Proposition 4 are satisfied
0

with Iy = Uiz and 0 = O < : ) respectively. Using the van Trees inequality we have
0

g
2 72
A oyd
maxE[0(V7,...,Y,) — 0|3 > c—2——
9eo || ( 1 ) n) ||2— nm1n{82,8}
: 2
for an absolute constant c if "™t > 4

0

This lower bound for the Gaussian location model matches both the lower and upper bounds
detailed in [14]. The condition on n is a mild technical condition that ensures the second term
in the denominator of (3) will not dominate the order of the lower bound. We will make similar

assumptions in the following examples.

Corollary 2 (discrete distribution estimation). Suppose X = [1 : d + 1] and X; ~ Mult(1,0)
where © = {0 € R . Zf:ll 0; = 1}. Then

d
nmin{(e® — 1)2, e}

: : e __ 2 e 2
,ef} > d2.
for an absolute constant ¢ if nmin{(e® — 1)%,e°} > d

N 2
— >
max E[|0(Y1,..., Vo) =03 > ¢

Corollary [2] follows by applying Propositions [2] and [3] with variance [y < 6d. The details are
included in Appendix [Cl The lower bound for the discrete distribution example gives the same
order as the upper and lower bounds from [12] when ¢ is close to zero, and it also matches
the upper and lower bounds from [13] when 1 < ¢ < d. Other mechanisms for this model are

discussed in [24].

Corollary 3 (Sparse Bernoulli models). Suppose Py = H;l:l Bern(6;).
(i) Sparse Bernoulli: If © = {6’ € [0,1] : Z;l:l 6; < 1} and nmin{ (e —1)%, e} > d? then

. d
inf E0(Y1,...,Y,) — 0|2 < .
iy B IO 1) = Ol = e T e

(ii) s-Sparse Bernoulli: If © = {9 € [0,1]¢ : Z;l:l 9, < s}, s < d'70 for some § > 0.

e High privacy regime: if ¢ < log(d/s) and
n 20

d®logd
logn — min (2,1) °8

then

. d
inf sup E||A(Y:,...,Y,) — 0|2 = i
(Q,é)eeg oy ) E nmin (ef,(e€—1)2,d)

(1)
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e Low privacy regime: if 20logd < ¢ < slogd and ne > dlogd, then

A 2logd
inf supE[|(Y3, ..., Y,) - 0] =< Z—2C (12)
(Q,9) 6€© ne

We sketch the proof of Corollary 3] in the next section. The sparse Bernoulli example is
illustrative of several interesting phenomena. In the sparse Bernoulli model (i), the minimax risk
scales exactly the same as in the discrete distribution estimation problem. This shows that even
in a statistical model with independent components, the dependence on € can be exponential
instead of linear. In this way, the scaling is dictated by the properties of the score function Sy(X)

rather than the independence of the model. In the s-sparse Bernoulli model (ii), we see that in

s2logd
ne

the privacy range logd =< ¢ <X slogd, the minimax risk scales as instead of the centralized

(i.e. without privacy constraints) rate 2. This means that the sample size penalty is of the order
Shji—gd for privacy. This is noteworthy in that the penalty scales linearly only with the sparsity
s, rather than with the underlying dimension d, which is the case for, e.g, the sparse Gaussian
location model.

Note that cases (i) and (ii) above focus on two different parameter regimes of the same model,
and the domain © in (i) is a subset of that in (ii). As such, the lower bound in (i) can be regarded
as a more local minimax risk bound, while the one in (ii) with s close to d can be regarded
as a worst-case minimax bound. These two bounds together illustrate how having additional

information that restricts the range of the parameter as in (i) can change the dependence of the

risk on the privacy parameter ¢.

IV. PROOF OF COROLLARY
A. Sparse Bernoulli (i)

The lower bound follows by applying Propositions 2/ and [3| with a score function that satisfies

11
2d’ d

supgeo El|0(Y1, ..., Yy) — 0]|2 > suppee E||6(Y4,...,Y,) — 0]|3 . The score function for each

. . d )
I, < 3d, as we check below. We restrict our attention to ©’ = [ } C O using the fact that

component is
e . if Ty = 1

)
S, (z;) = %logf(xjwj) — 1 (13)
J — . if .CL’j =0.
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so that the variance of each component is

1 1 1 1
E[Sp, (z;)*] = 9;’@ +(1=0) =5+
J

(1-05)2 0, (1-0))
< 3d.

By taking sums of independent variables we also have E[(u, Sp(z))?] < 3d for any unit vector
u € R and 0 € ©, as desired.

For the upper bound, we demonstrate an estimator that works by reducing the problem to the
discrete distribution estimation problem as follows. We perform the analysis for > .6; = 1, but
the mechanism and the derivation also hold for ) . 6; < 1. Moreover, for any constant sparsity,
say »_.6; < c, we can always perform a randomized mapping to [c]| - d symbols and reduce
the problem to 1-Sparse Bernoulli problems (with [c] repetition). Therefore the result holds
for any constant sparsity case, i.e. ), 6; < c. To convert the product Bernoulli model into the
distribution estimation problem, define the mapping

7, if || Xk|l1 =1 and Xi(d) =1,

f(Xk) =
d+1, if [[Xplly # 1.

Then f(Xj) follows (pi, ..., pat1), With
d
pi="0;-[[(1=0)), Vi€ [d], pss1 =1-> p;.
i =1
Also define Pg = H;l:l(l — 0;), then we have
_ 0; - H#i(l —0;) __ P
0; - T1;.(1—0;) +T1_,(1—6;) pi+Ps

Therefore, our strategy is to estimate p; and Pg separately, and the final estimator will be

%

A

A Di
Di + Ps

>

;

It remains to complete the descriptions of the estimators p; and Pg and to analyze the error from
this strategy.

For ease of analysis, we assume that 0; < % for all i € {1,...,d}. Note that this assumption

can be easily circumvented by using a randomized mapping h : X; — {0,1}?%, such that if

Xk (i) = 1 then set h(Xy)o; and h(X})211 to 1 with probability %, and otherwise set them to 0.

Obviously h(X}) follows product Bernoulli with parameter % < % in each dimension.
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Discrete distribution estimator under LDP

First we review the distribution estimation problem with LDP constraint, where each node
observes a sample X, € X = {1,...,d} from a discrete distribution p = (p,...,ps) and is
allowed to transmit information under e-local privacy constraint. The LDP mechanisms can be
viewed as a pair of

« locally privatization mapping Qpg(y|i) that maps each observation X to Y, € )

« an estimator p (Y") = (p1 (Y™),...,px (Y™)).

In particular, [13] propose the following privatization mapping that maps each Xj into y €
Viw = {y e {0,1}: YooY = w} with the following transitional probability:

ey + (1 —yy)
e (o) + (1)

((d—l)ewW) T, (w—1)e+d—w

Qoe(yli) =

The estimator is

(d—w)(es —1) n (d—we—1 "

where T; £ Y7 Vi (i).

Theorem 1 (Proposition III.1 [13]).

Bl () ol = (%fz(il I AT Zp?) Y

i

For the low privacy regime e® > d, we select w = 1 and the ¢, estimation error is

Ellp (Y") — ||2—0(672€)—0(1) as)
p Pl = n(65—1)2 = n:

_d_
ef+1

d
© :
(nmin{(e6 - 1)2,68}>

The estimation error matches the lower bounds in both high and medium privacy regimes [12],

For the regime e® < d, we select w = [ }, (see [13, Proposition II1.3]) and the ¢, estimation

error is given by

[13] and thus is rate-optimal. For the low privacy regime, [13] coincides with the k-RR scheme
from [24] and achieves optimal rate (i.e. 1/n) too.
We will use the rate-optimal distribution estimators p to construct an estimator under sparse

Bernoulli model with LDP constraint.
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Estimating p;: We use the first half of nodes to estimate p;. For k € {1,...,n/2}, node k
transmit Y}, according to Qpg (+|f(X%)), and let p; be the rate-optimal estimator of p; as defined

in previous subsection. The /5 estimation error of p is controlled by

d d
> E (i —pi)* = (16)
i=1

nmin {ec, (ef — 1)2}
We can truncate p; and obtain a better estimator (i.e. with smaller /5 risk) since by definition

p; cannot take negative values:
A~ A ~
pi = max {p;, 0},

and thus p; > 0 almost surely.
Estimating Ps: The second half of nodes are used to estimate Pg = H;.lzl(l — 6;), which
maps its observation X; via

1, if || X|s =0,
9(Xy) =

0, else.
Note that
° g(Xk) ~ Bel"(Pg)

o Pg is lower bounded by some positive constant (see [18, Section 4.2]):
d

d
Py = H(l —0;) <exp (— Zln(l — 92)>

1=1

=exp | — Zln(l - 91)>
=exp | —1— Z||9||§/t>

t>1
>exp | —1-— ZIIQIIE/t>
t>1
1
S
1
exp (1 — %>

Therefore, for k € [n/2 + 1 : n], node k transmits Y} according to Qpg (-|g(X}%)), and let
Pg be the rate-optimal estimator of Ps. Estimating Pg is equivalent to distribution estimation
problem with d’ = 2 (which may falls into low privacy regime (15)), and by the previous

privatization scheme guarantees
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E (PS — P5>2 ~< n(;’i 17)

Notice that if e < d, then
e%* < def d
n(ee—1)% " n(es—1)  nmin{es, (e — 1)}

(the last <" is derived by separating e into ¢° = 1 and e < 1). Otherwise e > 2 and is
1—-L
O(1/n). Since we already know that Py > ﬁ, the truncated estimator
exp(1-—5

1
-5

1555 £ max { Py, ——¥——
exp (1 — %)

~

must have smaller ¢, estimation error and is bounded

1
1 <exp<1—ﬁ)

= < T almost surely. (18)
Pg 1— 7

Analysis of U5 error of 0: Our final estimator is
pi(Y1, .., Yn)
ﬁj()/la sy Y%) + PS*(Y%J’_:L, ceey Yn)

0, (Y") &

The ¢, error is

2
N 2 H* .
E(el_el> :E pl _ _ pl
P+ Py pi+Ps
o 1 1 ’
=FE ?Z Z?Z —i—pi ~ ~ —
p; + P3 pr+P; pitPs

2 2
5 — p; 1 1
<R (LB GopE( —— -
Py + P p;+P; pitPs
— ~

-

@ (®)
By and (18)), (a) can be bounded by

2
1 -
(a) < 2E <p = ) (D; _pi)2 <2 -
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By (16), and (b) can be bounded by
2

1

(b) = 2p’E (ﬁ;-* N p;) (pi + Ps)

R 2
<ﬁf—pi+P§—Ps)

Finally, summing over all ¢ € [d], we have
. . 2
E|l6 - 03 < Co Y E (5} - pi)’ + C1E (Ps - Ps)

d
nmin {e°, (ef — 1)2}7

where Cy and (' are some universal constants.

~
—~

B. s-Sparse Bernoulli (ii)

1) High privacy regime: The lower bound follows in the same way as that of (i) above,

except focusing on 55 < 6; < 5 for each j = 1,...,d. For the upper bound, we describe a
scheme that achieves this error but requires at least sequential interaction between the nodes.
The general idea is to group {6;, ..., fa} into subgroups Gy, .., G, such that 3, ; 6; = O(1). If
we can do so, then for each sub-group we apply Part (i) of Corollary |3/ with effective sample

size n; = n|G;| /d, and the resulting /, estimation error will be

i 19il _ ds
p nfmin{(es — 1)%,e5,d}  nmin{(es —1)2, ¢, d}
In order to grouping {01, ...,0,}, in the first phase we estimate each of them up to precision
1/d with the first half of samples. This requires roughly n &~ d®/ min (2, 1) samples. Once we
obtain a coarse estimate of each ¢, in the second phase we perform the mechanism for 1-Sparse
Bernoulli model with the rest of the samples and refine the estimate.
Phase 1: grouping parameters: Let ' = n/2d, and by assumption

n,zm(e +1

2
1) d*log dlogn.

65 —
We will use n’ samples to estimate ¢, Vj € [d]. For the j-th component of the i-sample X;(j) ~

Ber (;), let Y;(j) be the e-privatized version of it, so

. ef+1 1
Yi()) NBer<<€a_1>9j+ ee+1)-
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Therefore, by Hoeffding’s inequality we have

Pr{@(yﬂuw-—@ zg}zﬂ%{

n/
=200 "o ()
1

= don’

>1/ d} be the event of failure. By union bound,

n/

1§:(f+ﬁ(MQ—Emom

n et —1
i=1

v
Ul

}

Let & — {Hj, 6, — 0,

1

For the rest of analysis, we will condition on £°.
Since V7, éj <0+ 1/d, we must have Zj éj < s+ 1, and therefore we can find s groups
Gi,..,G,, such that
Vkels], > 0, <2
J€Gk
On the other hand, Vj, 6; < éj + 1/d, so we also have
Vke[s], > 0, <3.

JEGK
Phase 2: reducing to 1-Bernoulli model: Conditioning on £¢ and applying Part (i) of Corol-

lary 3 for each group G;, with effective sample size n/; = n |G;| /d, the (5 estimation error is

upper bounded by
191 _ d
nmin{(e —1)%,es,d}  nmin{(ef —1)%e°,d}’

Summing over s groups yields

£ [Hé — 0z 56} = nmin{(ead—s 1) es,d} (19)
On the other hand, if phase 1 fails, we have a trivial upper bound:
16— 6[13 < d.
Therefore
E 116 - 0113] < Pr{€}E [18 - ol3|¢] +E[116 - 0)3|e°]
< 2 vE (10— ope]

ds
nmin{ (e — 1)2,e%,d}’

~
—~

achieving the desired result.
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2) Low privacy regime: Let us first derive the lower bound for estimation error. Restricting

our attention to 55 < 0; < the score for each component of the Bernoulli model (13) is

s
2d d’

sub-Gaussian with parameter
d2
2 o

— s?log (%)
This can be checked by letting

1 1

g, logeij (1—-106;), /logﬁ

0 = Inax

and then

and thus Sy(X) is o® sub-Gaussian. Then note that for 6; < % the first term is the maximizer

and
2 1 Co d2

o’ = < :
07 logeij s2log (4)

Applying Propositon 4, we obtain the desired lower bound. In the rest of the section, we give
an explicit construction of () and 6 and characterize the error for this mechanism.

k-Randomized Response (k-RR) Scheme : If the support size of the input alphabet is k, k-RR
scheme outputs the input symbol with probability e°/(k — 1+ ¢°) and the rest of £ — 1 symbols
with probability 1/(k — 1+ €°):

86

k—1)+es”
Qyle) ="
m, lfy;él’

if y ==z,

k-RR scheme works well for low privacy regime, i.e. when e° is large, and will be used later
as our privatization mapping.

In general, as long as e® =~ k, the privatization error is with the same order of estimation
error, so we can estimate the discrete distribution without increasing additional estimation error

by too much.
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LDP Scheme via Sub-sampling and k-RR: In our problem, for each node we aim to transmit
its local observation X reliably to the fusion center, and with high probability there will be
roughly s’s 1 in X}, so the expected number of possible X is roughly (‘j) Unfortunately this
means we need (Csl) ~ exp (slogd) symbols to represent it, and notice that ¢ < slogd, so we
cannot send X, reliably under e-local privacy constraint.

To address this issue, we use sub-sampling trick to reduce the effective support size. First let
k be the largest integer such that

> <f) < exp (e — 10logd).

0<i<k

Notice that k& =< 105 5 since
23

> (d) gd(Z) < exp (klogd +logd)
0<i<k ¢

so we must have

€
k> — 11>
- logd ~ logd’

Next, for each local observation X}, consider the sub-sampled version Xk as follows:

- Xy, if | X <k,
X

randomly keep £’s 1 in X, if || Xy||; > k.

max ([ X[[1,k)
k

If we let Ry be the reciprocal of sampling rate , then

|| =E[E [ xu0)|Re]| =6

Finally, each node transmits X via k-RR scheme with privacy level &

E [E [Rk X,(0)

13

O
1 )
e HY # X,

where N is the number of possible X

N2 Z<)<exp (e) /d*.

i<k

We also use p. to denote the probability of privatization error, i.e.

oo () 4 ) - 5 <
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Now we compute Pr{Y} (i) = 1| Ry} for some node k:
Pr{Y,(i) = 1|R.} =Pt {Xk(z') —1nY, = kak}
+Pr {Yk(i) — 1N X,() = 1N Y, # X’kmk}

It not hard to see that the first term is (1 —p,) - E [f( k(z)\Rk} , and we further derive the second
and the third terms:

Pr {Yk(@') — 1N X)) =1NY; # Xku-zk}

= po- E[Xu@)IR] - Pr{¥i(i) = 1X(0) = LY # Ko R |

] Zl<i§ (?:11)
=p.-E [Xk(2)|Rk Z(KK:(?) -1

and
Pr {Yk(i) — 1N X(i) £1N0Y; # kak}
—pe (1= B[ Xa(0)|Bi] ) - Pr{¥a(i) = 11%0) # 1, Y5 # X, R}

—n-(1-8 [woin]) Zs L)

Summing the three terms together, we have

Pr{¥i(i) = 1|Re} = A-E | S(0) | Bi] + B, (20)

for some known constants A and B. Notice that 1 > A > (1—-2p,) > (1

~2),and B < p, <
which implies E [Vy(i)|R)] ~ E [Xk(iﬂRk].

d10-°

If we know Ry, then é,- 2R Y’€A+B is an unbiased estimator of 6, since

Ef;, = E [Rk : MA_B] —E [RkIE [Y’“@T_B‘Rk”

~E [E [Xk(i)‘RkH = EX,(i) = 0;.



23

Unfortunately, we cannot directly obtain R since otherwise the LDP constraint will be

violated. So instead, we replace Rj, with an estimate of E [Ry], denoted as jir, in our estimator:
A . Yi.(1)— B
GZ(Yk) é UR * %

Notice that
E[R]—E {max(”é@”hk)] & {@} LR {max(k; _kHXiHl’O)]
_ % _E lmax(k — ||X,-||1,O)} .

k k

Since E [w] is bounded by 1 and ¢ = (1), by using first §(s) = o(n) of samples,
we can estimate E[R;] to precision 1/s privately, i.e. E [(ir — E [RZ])2] <1

Our final estimator is the aggregation of Y7, ..., Y,:
n

1 . Y.—B
OV Yo) 2 % i

k=1

where A, B are constants defined in and are independent of 6. It remains to show that for
this mechanism and estimator,

A 2]
E|0(Yi,...,Y,) — 02 <> ogd

ne

Analysis of {5 error: Now let us analyze the ¢y error of 0. As stated in previous section, éi

is unbiased to 6;, so

- i E (ﬂRYk(iil_ b 92)2]
- E <ARY1(?4 b @)2]
< g (ﬂRYl@ m ﬂRX1<z'>)2 B {(ﬂRXl(w - RJQ(?:))T
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Note that (a) and (b) can be viewed as privatization errors due to the LDP constraint, and (c) is
the estimation error. We bound (a), (b) and (c) separately.

To bound (a), we leverage the following facts

e 1>A>(1-55),

e 0<B< o5,

. Pr{X’l(i) - Yl(z')} >1-p.>1- 4

Note that, E [(,&Rﬂ < E[R?] + Var (ig) < 2d?, so term (a) can eventually be bounded by
C

(a) < d—g,
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for some constant C'y. To bound (b), observe that

éE{(gRXl( — R Xy )} ZE[Xl jin — Ry’
(Zxa ) (frr = Ra)?

= kB [(jin — R1)’]

<ok (Eﬂ (i~ B [])"] + g5 Var (e (0 1 )

(1) 2k
< — 42 Var ([[X4l]y)

?T‘[\D

S C’ls/k,

where (1) is due to fig is of precision O(1/s) by using first o(n) samples, and (2) is because
k =< e/logd =< s. Finally we bound (c) as follow:
. 2 S
E [(Rle(i) ~ ;) } —E |RX3()| - 02
{R%(@) R ]]
X (0)| B ||

<E i(”ﬁ?“l +1) Xl(i)}

(|| X
I 1||1X1(Z.)}+9i.

E
E

k

Combining (a), (b) and (c) and summing across all dimensions ¢ = 1, ..., d, we obtain

B10— 03 = 3 E (-0
=1

1 1 , (E (1 13]
< — L L =)
_n(C(d7) +Ck+02< - + s
s?logd

—~ 5

ne

where in the last step we bound the second moment of Poisson binomial distribution by

E|IX, 3 = (ZeZ) 30005 s

and observe that k is {2 <1 d)
og
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APPENDIX
A. Proof of Proposition

Fix some 6 > 0. Suppose, for contradiction, that

Qylz)
Q(ylz")
for all y € S with v(S) > 0. We have
Q(Slaf/) Js Qul)dvly) . Q(ylﬂf/) >
Q(S|z") [ Qyla")dv(y) ~ ves Q(ylz')
This contradicts Q(-|-) being an e-differentially private mechanism, and thus we must have
Q(ylﬂf/) <
Q(yla")

for v-almost all y. Taking 6 — 0 and using the measure’s continuity from above completes the

e +9.

e +4

proof.

B. Proof of Lemma

(al6)dp(z >> on

>
Y |z) f(210) 75 f («]0) ’
[ =5 e d“(“"))

d 2

= Ey ||Ex[Ss(X)]Y] Hg :

o f(Y]6)
F(Y1]0)
Q(

(
(

The key step relies on interchanging integration over the sample space and differentiation
with respect to the components ¢; which can be made precise via Lebesgue’s Dominated

Convergence Theorem as shown in Appendix D] regarding regularity conditions.



C. Proof of Corollary

Without loss of generality we focus on a subset © C © defined by

1 1
f = L — << —fori=1,...
e {96@ 4d_9_2dforZ 1, ,d},

and only consider the error from the first d components of #;. We can do this because

=) (0-0)].

It remains to show that for all § € ©’ and unit vectors u € R¢,

maxE||0(Y1,...,Y,) — 0]? > max
00 0ce’

E[(u, So(X))?] < 6d
where
So(X) = (Se,(2), ..., Sp,(x))
(0@ log f(z0), ..., aied logf(x|9))

is the score from just the first d components. To see this note that

d
Ogp1 =1 — Zem
i—1

and
9%_, T =1
So, () = —91 , x=d+1
d+1
0, otherwise
for i = 1,...,d. Then for any unit vector u = (uy, ..., uq),

E[(u, Sp(X Z 0, <Z u; Sy, (x))
2 d d 2
=0gr1-5— 92 <Z Uz) + Z O <Z ;S (@)

1
§2d+29mu§9—2 < 6d .

r=1

The corollary then follows by applying Propositions [2/ and [3| with Iy = 6d to equation (3).

29
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D. Regularity Conditions
We make the following assumptions on the statistical model Fy:

(i) The density f(x|@) is such that /f(x|¢) is continuously differentiable with respect to 6,
for j = 1,...,d and p-almost all x € X. Note that this is the same as assuming that the
density f(z|0) itself is continuously differentiable if we assume that f(z|f) > 0, and this
positivity assumption can always be made valid by considering all integrals to only be over
the subset of X with f(x|0) > 0.

(ii) The Fisher information for each component /x(f;) = E [(8%1- log f (x|9))2} exists and is
a continuous function of 6; for each j =1,...,d.

It can easily be checked that for the Gaussian location model, discrete distribution estimation,
and sparse Bernoulli models these conditions are met for an appropriate subset of the space of
possible parameter values ©.

These conditions are relatively standard sufficient conditions for a statistical model to be dif-
ferentiable in quadratic mean [10]. Unfortunately the differentiable in quadratic mean condition
itself is not appropriate for developing Cramér-Rao type lower bounds, and so it will not work
for our purposes. One important aspect of these conditions is that we make assumptions on
the statistical model Fy, but not (g, so that there are no implicit assumptions on the privacy

mechanism.

Lemma 2. Under the conditions above, f(y|0) is continuously differentiable with respect to 6;

and

551019 = 557 [ Qi) (el

:/@@@%;@@@@)

at v-almost any .

Proof. For simplicity we consider the scalar case with d = 1. The proof for each component of
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the vector case is identical. Without yet knowing if the limit exists, formally we have
8
010 = fim 5 ([ Qi) elo-+ (o) ~ [ Quuia) falpinta) )
= lim/@(y|x)/ f'(z|0 + hu)du du(x)

—11m2// Qy|x)\/f (16 + hu)\/f( x|9+hu)dudu( ).

For each h define the set

Ah:{xe){: sup flzlv) < 24/ f(z|0) sup |/ f(x|v) \<2\\/ z|0) \}

v:|0—v|<h v:|0—v|<h

and split the integral into two terms, considering the set A, and its complement AS separately:

[ | Qi) VTl T Falo = ) duduta) 22
~ [ Qi) /TGl + R o+ ) duduo) 23)
_|_/ / Q(y|g:)\/f(x|6’+hu)\/f(x|6’+hu)/dud,u(x). (24)

A¢ Jo

To deal with term (23) we can use Lebesgue’s dominated convergence theorem noting that

14, (2)Q(yl) v/ F(@l0 + hu)y/F (0 + hu) | < 41Q(yla) v/ F(]0)\/F(x]0) (25)

The right-hand side of display is absolutely integrable by the Cauchy—Schwarz inequality:

/IQ yl2) /T (210)/ F(]6) |dp(x (/Q ylz)’ f(]0)dp(e ) ( F'( |9 )

< f(ylo)v e Ix(0) -

This allows us to switch the limit inside the integral to get

lim / / QUlo)/F0+ R/ Falo+ B dude) = [ Qo) V/TGIO o) dua

where we have used the continuity of / f(z|f) and \/f(:)s|9)/ to see that 14, (z) — 1.
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It remains to show that term approaches zero as h — 0. For this we again use the

Cauchy-Schwarz inequality:

/AC /0 Q(ylz)/f(x]0 + uh)\/f(2]0 + uh) |dudu(x)

g( /] 1Q<y|x>2f<x|e+uh>dudu<x>) ( / ) / I fj‘@jfg du(%)f

: b ()0 + uh)?
< e f(ylo) (/A,C/o Wdudu(az)> : (26)

The term inside the parentheses in goes to zero as h — ( since

f'(x]6 + uh)* + uh)? / / f'(x]6 + uh)* + uh)?
I =l dud
x(0) = s (/ / x|9+uh AC f(2]0 + uh) ()

and
f'(x|6 + uh)?
——————dud — Ix(0
// o duda) > 1(0)
as h — 0 using the dominated convergence theorem just as above. O

1) Applying the van Trees Inequality: In order to apply the van Trees inequality we will need

/ ( a@ logf(y|9)) £ (y10)du(y) = %f(yW)dV(y) 0

for each j = 1,...,d. In this subsection we check this condition under assumptions (i) and
(ii) above regarding the distributions P, and their densities f(xz|f). We will make no further
assumptions on f(y|0) so that there are no implicit assumptions on the privacy mechanism )

other than it being a regular conditional distribution and an e-differentially private mechanism.
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Using Lemma 2] and the Fubini-Tonelli Theorem,

531 00it) = [ 2o [ Qulnsloduiv)

://Q(y\x)ﬁ—ej (z]0)dp(r)dv(y)

://{xzaf(x0)>o} Q(y|$)%f($‘9)dlu(x)dy(y)

0
' / /{”a%f(xe)w} Q(yu)a—@jf(g:'e)du(x)dy(y)

- /{ e g alute) + /{ o) 3, al0) ()
-5 / F(@10)dpu(x) =

E. Blackboard Model

The density of the total transcript Z can be written as
f<2|9) ]E'Xl ..... Xn [HQlt ylt‘b17”’7bt—17y1,t7'"7yi—1,t7Xi>]
- HEXl ..... Xn [H Qlt ylt‘b17 sy bt—17 yl,h e 7yi—1,t7 XZ)]
=1
o | CNPC
where

pzz CUZ Hta yzt‘bh---,bt—l,yl,t, . --ayi—l,taxz’) .

The score for this total transcrlpt has components

) = B[S, (Xa)ps (X))
89 log f(=16) = Z Ex, [pi,-(Xi)] .

To get the above display we require interchanging differentiation and integration just like in the

1=1

proof of Lemma [1l The trace of the Fisher information from the whole transcript is thus

ZEZ < logf(ZIQ))2

B Ex, [So,(X:)ps,2(X;)] ;
~ Z( Ex. (%) ) 0

1,J
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where follows because the cross terms

Exi [Sej (Xi)pi,Z<Xi)} Exk [Sek (Xk)pk,Z(Xk)]
EXi [pi,Z(Xi)] EXk [pk,Z(Xk)]

= EXth [Sej (Xi)Sej (X])} =0

Z

for i # k.
1) Blackboard Proposition 2: Let

EXZ- |:59(X2) pi,z(X:) ]

Ex, [pi,z(Xi)]

EXi [SG(Xz) pi,z(X4) ]

Ex, [pi,Z(Xi)]

2
Following from ,

Tr(12(0)) = ZEZ <“Z>EX2' {SO(X")%} >2]

r i,2( X i
:ZEZ Ex, [<UZ’SG(XZ)>%} ] |

We split up the expectation over X; as follows:

pi,Z(Xi) }
EXi [pi,Z(Xi)]
1
Smﬂzxi [<UZa Se(Xi)>p¢,z(Xi)}

- / (uz, So(2))pi.z () (218 dp()
{z:(uz,Se(x))>0}

Ex, [<uz, So(X:))

" min, piz(T)
1

Ming pi z(T) Jiz:(uy,89(2))<0}

<(ef = 1) / (uz, Sol)) £ (x]0)dpa(x)
{z:(uz,S¢(x))>0}

(uz, So(x))piz(x) f(x]0)dp(z)

so that )
Pi,z(Xi)

—EXZ, [pZ’Z(XZ)] < Io(ee _ 1)2

Ex, [<uz, So(X:))

and
Tr(I2(9)) < nlp(ef —1)2

as desired.
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2) Blackboard Proposition 3: Using Jensen’s inequality,

" i, 7 (X ?
;Ez Ex, {<quSG(Xi>>W} ]

< ZEZ [EX [(uZ,Se(Xi)Y%H

S nIoe‘E

where the last step uses and the blackboard differential privacy condition.

3) Blackboard Proposition 4: By the convexity of x — e,

pirX) ([l Sy(X))?
Ex, [pi.z(X0) p(( o ))]

Ex;, [pi,z(Xi)]

2
Ex, |(uz, Se(Xi)>“7(X”}
exp E

= i

g

< 2¢° .

Taking logs,

i, z(X;) 2 2
Ex, [pi,Z<Xz->]D S o(etlog2).

Blackboard Proposition 5 follows in the same way.

(Ex. |0z, 50060
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