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Abstract

We develop data processing inequalities that describe how Fisher information from statistical

samples can scale with the privacy parameter ε under local differential privacy constraints. These

bounds are valid under general conditions on the distribution of the score of the statistical model,

and they elucidate under which conditions the dependence on ε is linear, quadratic, or exponential.

We show how these inequalities imply order optimal lower bounds for private estimation for both the

Gaussian location model and discrete distribution estimation for all levels of privacy ε > 0. We further

apply these inequalities to sparse Bernoulli models and demonstrate privacy mechanisms and estimators

with order-matching squared ℓ2 error.

I. INTRODUCTION

In the model of local differential privacy [1], [2], [3], [4], sensitive data is released to

an aggregator or centralized processor only after having been processed by a privatization

mechanism. This privatization mechanism distorts the data in such a way that it is statistically

guaranteed to not reveal too much about the underlying sensitive data. There is an inherent

trade-off between the degree to which the data is distorted by the mechanism (and therefore the

amount of privacy achieved), and the utility of the data for performing statistical inference and

estimation tasks.

One measure of the information conveyed by a statistical sample for estimating a parameter

is the so-called Fisher information, which describes how a family of probability distributions

changes as one varies the parameter of interest. Under some mild regularity conditions, the Fisher

information at a point θ in the space of possible parameters immediately gives a lower bound
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on the squared ℓ2 risk for estimating θ via the well-known Cramér-Rao bound for unbiased

estimators [5], [6], [7], [8]. More generally, Fisher information describes the complexity of

estimation problems in an asymptotic sense locally around θ [9], [10]; and a Bayesian version

of the Cramér-Rao bound known as the van Trees inequality can be used to give lower bounds

that hold for any estimator (including arbitrarily biased estimators) [11].

In this paper, we consider the problem of estimating a parameter θ ∈ R
d from n independent

statistical samples that have been processed by an ε-locally differentially private mechanism.

See Figure 1. We characterize the Fisher information from the privatized samples, and provide

strong data processing inequalities that describe how the Fisher information can scale with

the privatization parameter ε. These data processing inequalities are valid under very general

conditions on the tail of the score function random variable, and elucidate under which conditions

the dependence on ε is linear, quadratic, or exponential. Using the van Trees inequality, we

recover in a unified way order-wise optimal lower bounds on the minimax squared ℓ2 risk for

Gaussian mean estimation and discrete distribution estimation at all levels of privacy ε > 0,

matching the lower bounds from [12], [13], [14] with simpler and more transparent proofs.

Our results also apply to a sequential interaction model for local differential privacy via a

straightforward consequence of the chain-rule for Fisher information; and they can even be

applied to a fully interactive blackboard model by characterizing the Fisher information from

the entire blackboard transcript, therefore extending, for example, earlier bounds in [13] to fully

interactive models.

We further demonstrate the utility of this framework by developing lower bounds for other

statistical models such as a sparse Bernoulli model with Xi ∼
∏d

j=1 Bern(θj) and
∑d

j=1 θj ≤ s,

and demonstrate a privatization mechanism with matching error. This model is interesting in

that when s = 1, it provides an example where the dependence of the minimax squared ℓ2 risk

on ε is exponential even if the d components of each sample Xi are independent of each other.

This is in contrast to mean estimation for the Gaussian and the dense Bernoulli model (when s

is of order d), where the dependence on ε is linear [14]. When s > 1, the sample-size penalty

due to privatization is of the order s log d
ε

in the privacy regime log d � ε � s log d. This penalty

scales linearly only with the sparsity s rather than the ambient dimension d, which opens up

the possibility of private estimation with a more modest penalty provided that the data can be

assumed to be sparse in a certain sense.
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Our Fisher information approach to lower bounds under privacy constraints is motivated by

recent results for statistical estimation under communication constraints such as [15], [16], [17].

In both the privacy constrained and communication constrained cases, the tail behavior of the

score function plays a central role in determining how the risk can scale. Other works such as

[18], [19], [14] have also noted the connection between communication and privacy constraints in

statistical estimation. In contrast with [20], we analyze the Fisher information from the induced

distribution of the privatized samples Y1, . . . , Yn, rather than that from the original statistical

model of the Xi’s. In [20], Ruan and Duchi observe that the latter has limited applicability for

capturing the local complexity of private estimation problems (see also [21]), while our paper

shows that the former is a powerful measure for the same. Indeed, from the local asymptotic

minimax point of view, it is natural to expect the Fisher information from the privatized samples

to play a role in the complexity of the private estimation problem, but until now it remained

unclear how to characterize or bound this Fisher information for any privatization mechanism

satisfying the local differential privacy condition.

The main contributions of our paper can be summarized as follows:

• We introduce a framework for characterizing Fisher information from ε-differentially pri-

vatized samples. Under very general conditions on the statistical model, we provide upper

bounds on the Fisher information that show that the dependence on ε is dictated by the tail

of the score function random variable. These bounds continue to hold even when samples

are released in an interactive fashion through a shared blackboard. Even though statistical

estimation under privacy constraints has been of significant recent interest, to the best of our

knowledge there are no known bounds on the Fisher information from privatized samples.

• We show that the bounds on Fisher information easily lend themselves to order optimal lower

bounds on the minimax squared ℓ2 risk of statistical estimation under privacy constraints.

In particular, we recover in a unified way lower bounds developed separately for different

statistical models in the literature, such as Gaussian mean estimation [14] and discrete

distribution estimation [13], in the latter case extending the bounds to fully interactive

models.

• To demonstrate the generality of our approach, we apply our bounds to a sparse Bernoulli

model, for which we also develop optimal privacy mechanisms. We show that our framework

can be flexibly applied to different parameter regimes of this model and the dependence of
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Pθ
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· · ·
Xn−1 Xn

Q Q · · · Q Q

Y1 Y2 Yn−1 Yn

centralized processor

θ̂

Fig. 1: An estimation system where sensitive data X1, . . .Xn is processed by the privatization

mechanism Q(y|x) before being released to the centralized processor that will use the data for

statistical inference tasks such as estimating the parameter θ.

the minimax risk on ε can be exponential or linear depending on the parameter regime of

interest.

A. Preliminaries

Let (X ,A) and (Y ,B) be measurable spaces and suppose that {Pθ}θ∈Θ for Θ ⊆ R
d is a family

of probability measures on (X ,A) that is dominated by some sigma-finite measure µ. Denote

the density of Pθ with respect to µ by f(x|θ). Let

X1, . . . , Xn
i.i.d.∼ Pθ

with θ being the parameter of interest that we are trying to estimate. We say that a regular

conditional distribution

Q : B × X → [0, 1]

is an ε-differentially private mechanism if

Q(S|x)
Q(S|x′)

≤ eε (1)
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for any x, x′ ∈ X and S ∈ B.

Suppose that conditioned on Xi = xi, we draw Yi independently from Q(·|xi) where Q

satisfies the ε differentially priviate condition (1) with ε > 0. The privatization mechanisms

can either be the same for each sample, or they can vary across different samples as long as

each mechanism satisfies the condition (1). We will generally assume for simplicity that each

mechanism is the same. In this case the Yi have the marginal probability distribution

Qθ(S) =

∫

Q(S|x)f(x|θ)dµ(x) .

By (1), if Q(S|x) = 0 for some x ∈ X then Q(S|x′) = 0 for all x′ ∈ X . We can therefore

assume that both {Q(·|x)}x∈X and {Qθ}θ∈Θ form dominated families with Q(·|x) << ν for all

x ∈ X and Qθ << ν for all θ ∈ Θ for some sigma-finite measure ν. Abusing notation slightly

let f(y|θ) be the density of Qθ with respect to ν, and let Q(y|x) denote the density of Q(·|x)
with respect to ν.

Instead of working with measures, we will find it more convenient to work with the cor-

responding densities of the probability distributions. The following proposition shows that the

condition (1) implies a similar condition for the density Q(y|x), and this is the form that will

be most useful in the subsequent sections.

Proposition 1. For any x, x′ ∈ X and ν-almost any y ∈ Y , Q(y|x)
Q(y|x′) ≤ eε .

A proof of Proposition 1 is included in Appendix A.

II. UPPER BOUNDS ON FISHER INFORMATION

In this section, we introduce the relevant Fisher information quantities and then show how the

Fisher information from the privatized samples Yi can be upper bounded bounded in terms of

the local differential privacy parameter ε. Recall that in the context of Fisher information, the

score function associated with the statistical model Pθ is defined by

Sθ(x) = ∇θ log f(x|θ)

=

(
∂

∂θ1
log f(x|θ), . . . , ∂

∂θd
log f(x|θ)

)T

,

and the Fisher information matrix for estimating θ from a sample Y is

IY (θ) = E

[

(∇θ log f(Y |θ)) (∇θ log f(Y |θ))T
]



6

where the expectation is understood to be taken with respect to the “true” distribution with

parameter θ. All logs are taken with respect to the natural base. In order to ensure that these

quantities are well-defined, and that we can apply the van Trees inequality below, we require

certain regularity conditions on the statistical model Pθ. In particular we assume that the square-

root densities
√

f(x|θ) are continuously differentiable with respect to each θj and that the Fisher

information from X exists and is finite. For more on these conditions and how they are used

see Appendix D.

We are interested in this Fisher information quantity, in part, because it can provide bounds

on the risk in estimating θ from the samples Y1, . . . , Yn. Fisher information is by definition a

local quantity that is defined at each θ ∈ Θ and describes the local complexity of estimating

that particular θ value asymptotically as the number of samples n increases. More concretely, if

the statistical model Qθ is differentiable in quadratic mean 1 [10], meaning that
√

f(y|θ) has

a derivative in a certain L2 sense, then the local asymptotic risk around θ is lower bounded as

follows:

sup
A

lim inf
n→∞

sup
h∈A

Eθ+h/
√
n

∥
∥
∥
∥

√
n

(

θ̂n(Y1, . . . , Yn)−
(

θ +
h√
n

))∥
∥
∥
∥

2

2

≥ Tr(IY (θ)
−1)

≥ d2

Tr(IY (θ))

where A is any finite subset of R
d (e.g. see Theorem 8.11 in [10]). Similarly, under these

conditions, for each θ, there exists a sequence of estimators θ̂n(Y1, . . . , Yn) such that

sup
A

lim sup
n→∞

sup
h∈I

Eθ+h/
√
n

∥
∥
∥
∥

√
n

(

θ̂n(Y1, . . . , Yn)−
(

θ +
h√
n

))∥
∥
∥
∥

2

2

≤ Tr(IY (θ)
−1)

(e.g. see Theorem 8.14 in [10]). In this way the Fisher information can determine both upper

and lower bounds and is of fundamental importance in the parameter estimation problem. In

the sequel, we develop upper bounds on Tr(IY (θ)), which immediately lead to lower bounds

on local asymptotic risk. Additionally, by upper bounding Fisher information uniformly across

all θ ∈ Θ (or a subset of Θ), and using a Bayesian Cramér-Rao bound, we are able to get

1is implied by the assumptions we have made above without any additional assumptions on Q(y|x) other than it being an ε

differentially private mechanism
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more global minimax lower bounds. For this we’ll use a multivariate version of the van Trees

inequality due to Gill and Levit [11], which bounds the average ℓ2 risk by
∫

Θ

E‖θ̂ − θ‖22λ(θ)dθ ≥ d2
∫

Θ
Tr(IY1,...,Yn

(θ))λ(θ)dθ + J(λ)
(2)

where λ(θ) =
∏d

j=1 λj(θj) is a prior for the parameter θ and J(λ) is the Fisher information

associated with the prior λ:

J(λ) =

d∑

j=1

∫
λ′
j(θj)

2

λj(θj)
dθj .

Assuming that Θ = [−B,B]d, the prior λ can be chosen to minimize J(λ) [8], [22]. This

observation along with the independence of the Yi, and upper bounding the average risk by the

maximum risk, leads to

sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥
d2

n supθ∈Θ Tr(IY (θ)) +
dπ2

B2

. (3)

We are therefore interested in upper bounding Tr(IY (θ)). To this end, we will need the following

lemma:

Lemma 1 (Barnes et. al 2018 [15]). The trace of the Fisher information matrix IY (θ) can be

written as

Tr(IY (θ)) = EY ‖EX [Sθ(X)|Y ]‖22 .

For completeness a proof of Lemma 1 is included in Appendix B. Using the characterization of

Fisher information from Lemma 1, the following Propositions 2-5 show how in the differentially

private setting, Tr(IY (θ)) can be upper bounded under various assumptions on the tail of the

score function random vector Sθ(X). We see that depending on the tail behavior, there can be a

qualitatively different upper bound in terms of ε, i.e., it can be linear, quadratic, or exponential

in ε. In Figure 2 we summarize these conditions and the corresponding upper bounds.

Proposition 2. If E[〈u, Sθ(X)〉2] ≤ I0 for any unit vector u ∈ R
d, then

Tr(IY (θ)) ≤ Io(e
ε − 1)2 .

Proof. Using Lemma 1,

Tr(IY (θ)) = EY ‖EX [Sθ(X)|Y ]‖22 . (4)
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For a fixed y let

u =
E[Sθ(X)|Y = y]

‖E[Sθ(X)|Y = y]‖2
so that

‖E[Sθ(X)|Y = y]‖2 = 〈u,E[Sθ(X)|Y = y]〉

= E[〈u, Sθ(X)〉|Y = y]

=
1

f(y|θ)E[〈u, Sθ(X)〉Q(y|X)] . (5)

Let cmin(y) = minxQ(y|x) and cmax(y) = maxx Q(y|x). We can assume that cmin(y) > 0.

Following (5),

1

f(y|θ)E[〈u, Sθ(X)〉Q(y|X)] ≤ 1

cmin(y)

(∫

{x:〈u,Sθ(x)〉≥0}
〈u, Sθ(x)〉Q(y|x)f(x|θ)dµ(x)

+

∫

{x:〈u,Sθ(x)〉<0}
〈u, Sθ(x)〉Q(y|x)f(x|θ)dµ(x)

)

≤ 1

cmin(y)

(

cmax(y)

∫

{x:〈u,Sθ(x)〉≥0}
〈u, Sθ(x)〉f(x|θ)dµ(x)

+ cmin(y)

∫

{x:〈u,Sθ(x)〉<0}
〈u, Sθ(x)〉f(x|θ)dµ(x)

)

. (6)

Note that score functions are mean zero and thus
∫

{x:〈u,Sθ(x)〉≥0}
〈u, Sθ(x)〉f(x|θ)dµ(x) +

∫

{x:〈u,Sθ(x)〉<0}
〈u, Sθ(x)〉f(x|θ)dµ(x) = 0 . (7)

Putting (6) together with (7),

1

f(y|θ)E[〈u, Sθ(X)〉Q(y|X)] ≤ (eε − 1)

∫

{x:〈u,Sθ(x)〉≥0}
〈u, Sθ(x)〉f(x|θ)dµ(x) ,

and then squaring both sides and using Jensen’s inequality yields
(

1

f(y|θ)E[〈u, Sθ(X)〉Q(y|X)]

)2

≤ (eε − 1)2I0 . (8)

The proposition is proved by combining (4), (5), and (8).

Remark 1. If 0 < ε < 1 then (eε − 1)2 ≤ (e− 1)2ε2 and Proposition 2 implies

Tr(IY (θ)) ≤ (e− 1)2Ioε
2 .

Proposition 3. If E[〈u, Sθ(X)〉2] ≤ I0 for any unit vector u ∈ R
d then

Tr(IY (θ)) ≤ Ioe
ε .
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Proof. Following (5) from the proof above, Jensen’s inequality implies

E

[

〈u, Sθ(X)〉 Q(y|X)

E[Q(y|X)]

]2

≤ E

[

〈u, Sθ(X)〉2 Q(y|X)

E[Q(y|X)]

]

≤ I0e
ε .

Using the super-exponential definition of a sub-Gaussian and sub-exponential random variable

[23], we say that a random vector V ∈ R
d is sub-Gaussian with parameter σ if E

[

e(
〈u,V 〉

σ )
2
]

≤ 2

for any unit vector u ∈ R
d. We say that a random vector V ∈ R

d is sub-exponential with

parameter σ if E
[

e| 〈u,V 〉
σ |] ≤ 2 for any unit vector u ∈ R

d.

Proposition 4. If Sθ(X) is sub-Gaussian with parameter σ and ε ≥ 1 then

Tr(IY (θ)) ≤ 2σ2ε .

Proof. Using the convexity of x 7→ ex
2
,

exp

(

E

[
1

σ
〈u, Sθ(X)〉 Q(y|X)

E[Q(y|X)]

]2
)

≤ E

[

exp

((〈u, Sθ(X)〉
σ

)2
)

Q(y|X)

E[Q(y|X)]

]

≤ eεE

[

exp

(〈u, Sθ(X)〉
σ

)2
]

≤ 2eε .

Taking logs,

E

[

〈u, Sθ(X)〉 Q(y|X)

E[Q(y|X)]

]2

≤ σ2(ε+ log 2)

so that for ε ≥ 1,

E

[

〈u, Sθ(X)〉 Q(y|X)

E[Q(y|X)]

]2

≤ 2σ2ε .

With a nearly identical proof we also have the following sub-exponential result.

Proposition 5. If Sθ(X) is sub-exponential with parameter σ and ε ≥ 1 then

Tr(IY (θ)) ≤ 2σ2ε2 .
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condition on Sθ(X) upper bound on Tr(IY (θ)) lower bound for ℓ22 risk (with n samples)

finite variance I0 I0(e
ε − 1)2 d2

nI0(eε−1)2

finite variance I0 I0e
ε d2

nI0eε

σ2-sub-Gaussian σ2ε d2

nσ2ε

σ-sub-exponential σ2ε2 d2

nσ2ε2

Fig. 2: A summary of the (order-wise) upper bounds on Tr(IY (θ)) under different conditions on

the score function random vector Sθ(X).

A. Interactive Models

So far we have assumed that there are no interactions between the different samples during

privatization, so that the privatized samples Y1, . . . , Yn are independent. It is worth pointing out

that our Fisher information bounds, and the corresponding lower bounds in the estimation error,

can also be extended to interactive communication models where the privatized samples are no

longer necessarily independent. We describe both a sequential interactive model [12] and a more

general fully interactive blackboard model [14] below:

(i) Sequential Interaction: In this scenario, the samples X1, . . . , Xn are ordered and the

mechanism for sample i can depend on the previously privatized samples Y1, . . . , Yi−1.

Formally, there is a collection of ε differentially private mechanisms Qi(Yi|xi, y1, . . . , yi−1)

such that
Qi(S|xi, y1, . . . , yi−1)

Qi(S|x′
i, y1, . . . , yi−1)

≤ eε

for any i = 1, . . . , n, event S, and xi, x
′
i, y1, . . . , yi−1. Using the chain rule for Fisher

information,

Tr(IY1,...,Yn
(θ)) =

n∑

i=1

EY1,...,Yi−1

[
Tr(IYi|Yi−1,...,Y1(θ))

]
(9)

where IYi|yi−1,...,y1(θ) denotes the Fisher information computed using the distribution for Yi

conditioned on y1, . . . , yi−1. For a given θ, Xi is independent of Y1, . . . , Yi−1, so conditioning

on y1, . . . , yi−1 just determines which mechanism is used, and because each mechanism

satisfies the ε differentially private condition, each term inside the expectation in (9) can be
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upper bounded just as in Propositions 2-5, and the total bound on the Fisher information

from all n samples will remain the same.

(ii) Fully Interactive Blackboard Model: In this scenario, there are multiple rounds of se-

quential communication, and a public blackboard with all of the information released after

each round is available to all nodes in future rounds of communication. Suppose there are

T rounds of communication indexed by t = 1, . . . , T . Node i releases Yi,t on round t which

is drawn from Qi,t(Yi,t|b1, . . . , bt−1, y1,t, . . . , yi−1,t, xi) where Bt = (Y1,t, . . . , Yn,t) is the

blackboard that is visible to all nodes after round t. Call the total transcript after all rounds

of communication Z = (B1, . . . , BT ). We assume that there is a total “privacy budget” of

ε for each Xi in the sense that

Pr(Z ∈ S|x1, . . . , xi, . . . , xn)

Pr(Z ∈ S|x1, . . . , x
′
i, . . . , xn)

≤ eε

for any event S, i, x1, . . . , xn, x′
i. Note that by the chain rule, the conditional density of

Z can be written as

Q(Z|x1, . . . , xi, . . . , xn)

Q(Z|x1, . . . , x′
i, . . . , xn)

=

∏

t Qi,t(Yi,t|B1, . . . , Bt−1, Y1,t, . . . , Yi−1,t, xi)
∏

t Qi,t(Yi,t|B1, . . . , Bt−1, Y1,t, . . . , Yi−1,t, x′
i)

. (10)

The total Fisher information from the transcript Z can be upper bounded by n times the

bounds in Propositions 2-5 under the same conditions on the score Sθ(X), so that the same

lower bounds in estimation error also apply for this more general interaction model. The

details for this are found in Appendix E.

III. APPLICATIONS

In this section we show how the upper bounds on Tr(IY (θ)) developed in the last section can

be used to imply order-optimal lower bounds on the private estimation problem using (3). We

are interested in characterizing the minimax risk

inf
(Q,θ̂)

max
θ∈Θ

E‖θ̂(Y1, . . . , Yn)− θ‖22

where the estimator θ̂ is a function of the privatized samples Y1, . . . , Yn, and the infimum is

taken jointly over the estimator θ̂ and privatization mechanism Q. Upper bounds can therefore

be found by jointly designing an estimator and privatization mechanism that achieve a certain

worst-case error.
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Corollary 1 (Gaussian location model). Suppose Xi ∼ N (θ, σ2
0Id) and Θ = [−B,B]d. In this

case Sθ(Xi) ∼ N
(

0, 1
σ2
0
Id

)

and the conditions for Proposition 2 and Proposition 4 are satisfied

with I0 =
1
σ2
0

and σ2 = O
(

1
σ2
0

)

, respectively. Using the van Trees inequality we have

max
θ∈Θ

E‖θ̂(Y1, . . . , Yn)− θ‖22 ≥ c
σ2
0d

2

nmin{ε2, ε}
for an absolute constant c if

nmin{ε2,ε}
σ2
0

≥ d
B2 .

This lower bound for the Gaussian location model matches both the lower and upper bounds

detailed in [14]. The condition on n is a mild technical condition that ensures the second term

in the denominator of (3) will not dominate the order of the lower bound. We will make similar

assumptions in the following examples.

Corollary 2 (discrete distribution estimation). Suppose X = [1 : d + 1] and Xi ∼ Mult(1, θ)

where Θ = {θ ∈ R
d+1 :

∑d+1
i=1 θi = 1}. Then

max
θ∈Θ

E‖θ̂(Y1, . . . , Yn)− θ‖22 ≥ c
d

nmin{(eε − 1)2, eε}
for an absolute constant c if nmin{(eε − 1)2, eε} ≥ d2.

Corollary 2 follows by applying Propositions 2 and 3 with variance I0 ≤ 6d. The details are

included in Appendix C. The lower bound for the discrete distribution example gives the same

order as the upper and lower bounds from [12] when ε is close to zero, and it also matches

the upper and lower bounds from [13] when 1 � eε � d. Other mechanisms for this model are

discussed in [24].

Corollary 3 (Sparse Bernoulli models). Suppose Pθ =
∏d

j=1 Bern(θj).

(i) Sparse Bernoulli: If Θ =
{

θ ∈ [0, 1]d :
∑d

j=1 θj ≤ 1
}

and nmin{(eε−1)2, eε} ≥ d2, then

inf
(Q,θ̂)

max
θ∈Θ

E‖θ̂(Y1, . . . , Yn)− θ‖22 ≍
d

nmin{(eε − 1)2, eε, d} .

(ii) s-Sparse Bernoulli: If Θ =
{

θ ∈ [0, 1]d :
∑d

j=1 θj ≤ s
}

, s ≤ d1−δ for some δ > 0.

• High privacy regime: if ε ≤ log (d/s) and

n

log n
≥ 20

min (ε2, 1)
d3 log d

then

inf
(Q,θ̂)

sup
θ∈Θ

E‖θ̂(Y1, . . . , Yn)− θ‖22 ≍
sd

nmin
(
eε, (eε − 1)2 , d

) . (11)
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• Low privacy regime: if 20 log d ≤ ε ≤ s log d and nε ≥ d log d, then

inf
(Q,θ̂)

sup
θ∈Θ

E‖θ̂(Y1, . . . , Yn)− θ‖22 ≍
s2 log d

nε
. (12)

We sketch the proof of Corollary 3 in the next section. The sparse Bernoulli example is

illustrative of several interesting phenomena. In the sparse Bernoulli model (i), the minimax risk

scales exactly the same as in the discrete distribution estimation problem. This shows that even

in a statistical model with independent components, the dependence on ε can be exponential

instead of linear. In this way, the scaling is dictated by the properties of the score function Sθ(X)

rather than the independence of the model. In the s-sparse Bernoulli model (ii), we see that in

the privacy range log d � ε � s log d, the minimax risk scales as s2 log d
nε

instead of the centralized

(i.e. without privacy constraints) rate s
n

. This means that the sample size penalty is of the order

s log d
ε

for privacy. This is noteworthy in that the penalty scales linearly only with the sparsity

s, rather than with the underlying dimension d, which is the case for, e.g, the sparse Gaussian

location model.

Note that cases (i) and (ii) above focus on two different parameter regimes of the same model,

and the domain Θ in (i) is a subset of that in (ii). As such, the lower bound in (i) can be regarded

as a more local minimax risk bound, while the one in (ii) with s close to d can be regarded

as a worst-case minimax bound. These two bounds together illustrate how having additional

information that restricts the range of the parameter as in (i) can change the dependence of the

risk on the privacy parameter ε.

IV. PROOF OF COROLLARY 3

A. Sparse Bernoulli (i)

The lower bound follows by applying Propositions 2 and 3 with a score function that satisfies

I0 ≤ 3d, as we check below. We restrict our attention to Θ′ =
[

1
2d
, 1
d

]d ⊂ Θ using the fact that

supθ∈Θ E‖θ̂(Y1, . . . , Yn) − θ‖22 ≥ supθ∈Θ′ E‖θ̂(Y1, . . . , Yn) − θ‖22 . The score function for each

component is

Sθj (xj) =
∂

∂θj
log f(xj |θj) =







1
θi

, if xj = 1

−1
1−θi

, if xj = 0 .
(13)
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so that the variance of each component is

E[Sθj (xj)
2] = θj

1

θ2j
+ (1− θj)

1

(1− θj)2
=

1

θj
+

1

(1− θj)

≤ 3d .

By taking sums of independent variables we also have E[〈u, Sθ(x)〉2] ≤ 3d for any unit vector

u ∈ R
d and θ ∈ Θ′, as desired.

For the upper bound, we demonstrate an estimator that works by reducing the problem to the

discrete distribution estimation problem as follows. We perform the analysis for
∑

i θi = 1, but

the mechanism and the derivation also hold for
∑

i θi ≤ 1. Moreover, for any constant sparsity,

say
∑

i θi ≤ c, we can always perform a randomized mapping to ⌈c⌉ · d symbols and reduce

the problem to 1-Sparse Bernoulli problems (with ⌈c⌉ repetition). Therefore the result holds

for any constant sparsity case, i.e.
∑

i θi ≤ c. To convert the product Bernoulli model into the

distribution estimation problem, define the mapping

f(Xk) =







i, if ‖Xk‖1 = 1 and Xk(i) = 1,

d+ 1, if ‖Xk‖1 6= 1.

Then f(Xk) follows (p1, ..., pd+1), with

pi = θi ·
∏

j 6=i

(1− θj), ∀i ∈ [d], pd+1 = 1−
d∑

j=1

pj.

Also define PS ,
∏d

j=1(1− θj), then we have

θi =
θi ·
∏

j 6=i(1− θj)

θi ·
∏

j 6=i(1− θj) +
∏d

j=1(1− θj)
=

pi
pi + PS

.

Therefore, our strategy is to estimate pi and PS separately, and the final estimator will be

θ̂i ,
p̂i

p̂i + P̂S

.

It remains to complete the descriptions of the estimators p̂i and P̂S and to analyze the error from

this strategy.

For ease of analysis, we assume that θi ≤ 1
2
. for all i ∈ {1, ..., d}. Note that this assumption

can be easily circumvented by using a randomized mapping h : Xk → {0, 1}2d, such that if

Xk(i) = 1 then set h(Xk)2i and h(Xk)2i+1 to 1 with probability 1
2
, and otherwise set them to 0.

Obviously h(Xk) follows product Bernoulli with parameter θi
2
≤ 1

2
in each dimension.
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Discrete distribution estimator under LDP

First we review the distribution estimation problem with LDP constraint, where each node

observes a sample Xk ∈ X = {1, ..., d} from a discrete distribution p = (p1, ..., pd) and is

allowed to transmit information under ε-local privacy constraint. The LDP mechanisms can be

viewed as a pair of

• locally privatization mapping QDE(y|i) that maps each observation Xk to Yk ∈ Y
• an estimator p̂ (Y n) = (p̂1 (Y

n) , ..., p̂k (Y
n)).

In particular, [13] propose the following privatization mapping that maps each Xk into y ∈
Yd,w ,

{

y ∈ {0, 1}d :∑i yi = w
}

with the following transitional probability:

QDE(y|i) =
eεyi + (1− yi)

eε
(
d−1
w−1

)
+
(
d−1
w

) .

The estimator is (

(d− 1)eε + (d−1)(d−w)
w

(d− w)(eε − 1)

)

Ti

n
− (w − 1)eε + d− w

(d− w)eε − 1
,

where Ti ,
∑n

k=1 Yk(i).

Theorem 1 (Proposition III.1 [13]).

E‖p̂ (Y n)− p‖22 =
1

n

(

(w(d− 2) + 1) e2ε

(d− w) (eε − 1)2
+

2(d− 2)

(eε − 1)2
+

(d− 2)(d− w) + 1

w (eε − 1)2
−
∑

i

p2i

)

. (14)

For the low privacy regime eε � d, we select w = 1 and the ℓ2 estimation error is

E‖p̂ (Y n)− p‖22 = O

(
e2ε

n (eε − 1)2

)

= O

(
1

n

)

. (15)

For the regime eε ≺ d, we select w =
[

d
eε+1

]
, (see [13, Proposition III.3]) and the ℓ2 estimation

error is given by

Θ

(

d

nmin
{
(eε − 1)2 , eε

}

)

.

The estimation error matches the lower bounds in both high and medium privacy regimes [12],

[13] and thus is rate-optimal. For the low privacy regime, [13] coincides with the k-RR scheme

from [24] and achieves optimal rate (i.e. 1/n) too.

We will use the rate-optimal distribution estimators p̂ to construct an estimator under sparse

Bernoulli model with LDP constraint.
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Estimating pi: We use the first half of nodes to estimate pi. For k ∈ {1, ..., n/2}, node k

transmit Yk according to QDE (·|f(Xk)), and let p̂i be the rate-optimal estimator of pi as defined

in previous subsection. The ℓ2 estimation error of p̂ is controlled by

d∑

i=1

E (p̂i − pi)
2 � d

nmin {eε, (eε − 1)2} . (16)

We can truncate p̂i and obtain a better estimator (i.e. with smaller ℓ2 risk) since by definition

pi cannot take negative values:

p̂∗i , max {p̂i, 0} ,

and thus p̂∗i > 0 almost surely.

Estimating PS: The second half of nodes are used to estimate PS ,
∏d

j=1(1 − θj), which

maps its observation Xk via

g(Xk) =







1, if ‖Xk‖1 = 0,

0, else.

Note that

• g(Xk) ∼ Ber(PS)

• PS is lower bounded by some positive constant (see [18, Section 4.2]):

PS =

d∏

i=1

(1− θi) ≤ exp

(

−
d∑

i=1

ln(1− θi)

)

= exp

(

−
d∑

i=1

ln(1− θi)

)

= exp

(

−1−
∑

t>1

‖θ‖tt/t
)

≥ exp

(

−1 −
∑

t>1

‖θ‖t2/t
)

≥
1− 1√

2

exp
(

1− 1√
2

) .

Therefore, for k ∈ [n/2 + 1 : n], node k transmits Yk according to QDE (·|g(Xk)), and let

P̂S be the rate-optimal estimator of PS. Estimating PS is equivalent to distribution estimation

problem with d′ = 2 (which may falls into low privacy regime (15)), and by (14) the previous

privatization scheme guarantees



17

E

(

P̂S − PS

)2

� e2ε

n (eε − 1)2
. (17)

Notice that if eε ≤ d, then

e2ε

n (eε − 1)2
≤ deε

n (eε − 1)2
≍ d

nmin {eε, (eε − 1)2}
(the last ”≍” is derived by separating eε into eε ≻ 1 and eε ≍ 1). Otherwise eε ≥ 2 and (17) is

O(1/n). Since we already know that PS ≥ 1− 1√
2

exp
(

1− 1√
2

) , the truncated estimator

P̂ ∗
S , max






P̂S,

1− 1√
2

exp
(

1− 1√
2

)







must have smaller ℓ2 estimation error and is bounded

1

P̂ ∗
S

≤
exp

(

1− 1√
2

)

1− 1√
2

almost surely. (18)

Analysis of ℓ2 error of θ̂: Our final estimator is

θ̂i (Y
n) ,

p̂∗i (Y1, ..., Yn
2
)

p̂∗i (Y1, ..., Yn
2
) + P̂ ∗

S(Yn
2
+1, ..., Yn)

.

The ℓ2 error is

E

(

θ̂i − θi

)2

= E

(

p̂∗i

p̂∗i + P̂ ∗
S

− pi
pi + PS

)2

= E

(

p̂∗i − pi

p̂∗i + P̂ ∗
S

+ pi

(

1

p̂∗i + P̂ ∗
S

− 1

pi + PS

))2

≤ 2E

(

p̂∗i − pi

p̂∗i + P̂ ∗
S

)2

︸ ︷︷ ︸

(a)

+2p2i E

(

1

p̂∗i + P̂ ∗
S

− 1

pi + PS

)2

︸ ︷︷ ︸

(b)

By (16) and (18), (a) can be bounded by

(a) ≤ 2E





(

1

p̂∗i + P̂ ∗
S

)2

(p̂∗i − pi)
2



 ≤ 2




exp

(

1− 1√
2

)

1− 1√
2





2

E (p̂∗i − pi)
2 ,



18

By (16), (17) and (18) (b) can be bounded by

(b) = 2p2iE








1

(

p̂∗i + P̂ ∗
S

)

(pi + PS)





2
(

p̂∗i − pi + P̂ ∗
S − PS

)2





≤ 4




exp

(

1− 1√
2

)

1− 1√
2





4

p2i

(

E (p̂∗i − pi)
2 + E

(

P̂ ∗
S − PS

)2
)

.

Finally, summing over all i ∈ [d], we have

E‖θ̂ − θ‖22 ≤ C0

∑

i

E (p̂∗i − pi)
2 + C1E

(

P̂ ∗
S − PS

)2

≍ d

nmin
{
eε, (eε − 1)2

} ,

where C0 and C1 are some universal constants.

B. s-Sparse Bernoulli (ii)

1) High privacy regime: The lower bound follows in the same way as that of (i) above,

except focusing on s
2d

≤ θj ≤ s
d

for each j = 1, . . . , d. For the upper bound, we describe a

scheme that achieves this error but requires at least sequential interaction between the nodes.

The general idea is to group {θ1, ..., θd} into subgroups G1, ..,Gs, such that
∑

i∈Gj
θi = O(1). If

we can do so, then for each sub-group we apply Part (i) of Corollary 3 with effective sample

size n′
j = n |Gj | /d, and the resulting ℓ2 estimation error will be

s∑

j=1

|Gj |
n′
j min{(eε − 1)2, eε, d} =

ds

nmin{(eε − 1)2, eε, d} .

In order to grouping {θ1, ..., θd}, in the first phase we estimate each of them up to precision

1/d with the first half of samples. This requires roughly n ≈ d3/min (ε2, 1) samples. Once we

obtain a coarse estimate of each θj , in the second phase we perform the mechanism for 1-Sparse

Bernoulli model with the rest of the samples and refine the estimate.

Phase 1: grouping parameters: Let n′ = n/2d, and by assumption

n′ ≥ 10

(
eε + 1

eε − 1

)2

d2 log d logn.

We will use n′ samples to estimate θj, ∀j ∈ [d]. For the j-th component of the i-sample Xi(j) ∼
Ber (θj), let Yi(j) be the ε-privatized version of it, so

Yi(j) ∼ Ber

((
eε + 1

eε − 1

)

θj +
1

eε + 1

)

.
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Therefore, by Hoeffding’s inequality we have

Pr

{∣
∣
∣θ̂j

(

Y n′
(j)
)

− θj

∣
∣
∣ ≥ 1

d

}

= Pr

{∣
∣
∣
∣
∣

1

n

n′
∑

i=1

(
eε + 1

eε − 1

)

(Yi(j)− E[Yi(j)])

∣
∣
∣
∣
∣
≥ 1

d

}

≤ 2 exp

(

− n′

2d2
(
eε+1
eε−1

)2

)

≤ 1

d10n
.

Let E =
{

∃j,
∣
∣
∣θ̂j − θj

∣
∣
∣ ≥ 1/d

}

be the event of failure. By union bound,

Pr {E} ≤ 1

nd9
.

For the rest of analysis, we will condition on E c.

Since ∀j, θ̂j ≤ θj + 1/d, we must have
∑

j θ̂j ≤ s + 1, and therefore we can find s groups

G1, ..,Gs, such that

∀k ∈ [s],
∑

j∈Gk

θ̂j ≤ 2.

On the other hand, ∀j, θj ≤ θ̂j + 1/d, so we also have

∀k ∈ [s],
∑

j∈Gk

θj ≤ 3.

Phase 2: reducing to 1-Bernoulli model: Conditioning on E c and applying Part (i) of Corol-

lary 3 for each group Gj , with effective sample size n′
j = n |Gj | /d, the ℓ2 estimation error is

upper bounded by

|Gj|
n′
j min{(eε − 1)2, eε, d} =

d

nmin{(eε − 1)2, eε, d} .

Summing over s groups yields

E

[

‖θ̂ − θ‖22
∣
∣
∣E c
]

≍ ds

nmin{(eε − 1)2, eε, d} . (19)

On the other hand, if phase 1 fails, we have a trivial upper bound:

‖θ̂ − θ‖22 ≤ d.

Therefore

E

[

‖θ̂ − θ‖22
]

≤ Pr {E}E
[

‖θ̂ − θ‖22
∣
∣
∣E
]

+ E

[

‖θ̂ − θ‖22
∣
∣
∣E c
]

≤ 2

nd8
+ E

[

‖θ̂ − θ‖22
∣
∣
∣E c
]

≍ ds

nmin{(eε − 1)2, eε, d} ,

achieving the desired result.
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2) Low privacy regime: Let us first derive the lower bound for estimation error. Restricting

our attention to s
2d

≤ θj ≤ s
d
, the score for each component of the Bernoulli model (13) is

sub-Gaussian with parameter

σ2 ≤ c0d
2

s2 log
(
d
s

) .

This can be checked by letting

σ = max







1

θj
√

log 1
θj

,
1

(1− θj)
√

log 1
(1−θj)






,

and then

E

[

e

(

Sθi
(Xj )

σ

)2]

= θje

(

1
θjσ

)2

+ (1− θj)e

(

1
(1−θj )σ

)2

≤ 2

and thus Sθ(X) is σ2 sub-Gaussian. Then note that for θj ≤ 1
2

the first term is the maximizer

and

σ2 =
1

θ2j log
1
θj

≤ c0d
2

s2 log
(
d
s

) .

Applying Propositon 4, we obtain the desired lower bound. In the rest of the section, we give

an explicit construction of Q and θ̂ and characterize the error for this mechanism.

k-Randomized Response (k-RR) Scheme : If the support size of the input alphabet is k, k-RR

scheme outputs the input symbol with probability eε/(k− 1+ eε) and the rest of k− 1 symbols

with probability 1/(k − 1 + eε):

Q(y|x) =







eε

(k−1)+eε
, if y = x,

1
(k−1)+eε

, if y 6= x.

k-RR scheme works well for low privacy regime, i.e. when eε is large, and will be used later

as our privatization mapping.

In general, as long as eε ≈ k, the privatization error is with the same order of estimation

error, so we can estimate the discrete distribution without increasing additional estimation error

by too much.
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LDP Scheme via Sub-sampling and k-RR: In our problem, for each node we aim to transmit

its local observation Xk reliably to the fusion center, and with high probability there will be

roughly s’s 1 in Xk, so the expected number of possible Xk is roughly
(
d
s

)
. Unfortunately this

means we need
(
d
s

)
≈ exp (s log d) symbols to represent it, and notice that ε ≤ s log d, so we

cannot send Xk reliably under ε-local privacy constraint.

To address this issue, we use sub-sampling trick to reduce the effective support size. First let

k be the largest integer such that

∑

0≤i≤k

(
d

i

)

≤ exp (ε− 10 log d) .

Notice that k ≍ ε
log d

since

∑

0≤i≤k

(
d

i

)

≤ d

(
d

k

)

≤ exp (k log d+ log d) ,

so we must have

k ≥ ε

log d
− 11 � ε

log d
.

Next, for each local observation Xk, consider the sub-sampled version X̃k as follows:

X̃k ,







Xk, if ‖X‖1 ≤ k,

randomly keep k’s 1 in X, if ‖Xk‖1 > k.

If we let Rk be the reciprocal of sampling rate
max(‖X‖1,k)

k
, then

E

[

E

[

Rk · X̃k(i)
∣
∣
∣Rk

]]

= E

[

E

[

Xk(i)
∣
∣
∣Rk

]]

= θi.

Finally, each node transmits X̃k via k-RR scheme with privacy level ε:

Q
(

Y |X̃
)

=







eε

(N−1)+eε
, if Y = X̃,

1
(N−1)+eε

, if Y 6= X̃,

where N is the number of possible X̃k:

N ,
∑

i≤k

(
d

i

)

≤ exp (ε) /d10.

We also use pe to denote the probability of privatization error, i.e.

pe , Pr
{

Q
(

Y |X̃
)

6= X̃
}

=
N − 1

(N − 1) + eε
≤ 1

d10
.
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Now we compute Pr {Yk(i) = 1|Rk} for some node k:

Pr {Yk(i) = 1|Rk} =Pr
{

X̃k(i) = 1 ∩ Yk = X̃k|Rk

}

+Pr
{

Yk(i) = 1 ∩ X̃k(i) = 1 ∩ Yk 6= X̃k|Rk

}

+Pr
{

Yk(i) = 1 ∩ X̃k(i) 6= 1 ∩ Yk 6= X̃k|Rk

}

It not hard to see that the first term is (1− pe) ·E
[

X̃k(i)|Rk

]

, and we further derive the second

and the third terms:

Pr
{

Yk(i) = 1 ∩ X̃k(i) = 1 ∩ Yk 6= X̃k|Rk

}

= pe · E
[

X̃k(i)|Rk

]

· Pr
{

Yk(i) = 1|X̃k(i) = 1, Yk 6= X̃k, Rk

}

= pe · E
[

X̃k(i)|Rk

]
∑

1<i≤k

(
d−1
i−1

)

∑

0≤i≤k

(
d
i

)
− 1

,

and

Pr
{

Yk(i) = 1 ∩ X̃k(i) 6= 1 ∩ Yk 6= X̃k|Rk

}

= pe ·
(

1− E

[

X̃k(i)|Rk

])

· Pr
{

Yk(i) = 1|X̃k(i) 6= 1, Yk 6= X̃k, Rk

}

= pe ·
(

1− E

[

X̃k(i)|Rk

])
∑

1≤i≤k

(
d−1
i

)

∑

0≤i≤k

(
d
i

)
− 1

.

Summing the three terms together, we have

Pr {Yk(i) = 1|Rk} = A · E
[

X̃k(i)|Rk

]

+B, (20)

for some known constants A and B. Notice that 1 ≥ A ≥ (1−2pe) ≥ (1− 2
d10

), and B ≤ pe ≤ 1
d10

,

which implies E [Yk(i)|Rk] ≈ E

[

X̃k(i)|Rk

]

.

If we know Rk, then θ̂i , Rk · Yk−B
A

is an unbiased estimator of θi since

Eθ̂i = E

[

Rk ·
Yk(i)−B

A

]

= E

[

RkE

[
Yk(i)−B

A

∣
∣
∣Rk

]]

= E

[

E

[

Xk(i)
∣
∣
∣Rk

]]

= EXk(i) = θi.
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Unfortunately, we cannot directly obtain Rk since otherwise the LDP constraint will be

violated. So instead, we replace Rk with an estimate of E [Rk], denoted as µ̂R, in our estimator:

θ̂i(Yk) , µ̂R · Yk(i)− B

A
.

Notice that

E [Ri] = E

[
max (‖Xi‖1, k)

k

]

= E

[‖Xi‖1
k

]

+ E

[
max (k − ‖Xi‖1, 0)

k

]

=
s

k
− E

[
max (k − ‖Xi‖1, 0)

k

]

.

Since E

[
max(k−‖Xi‖1,0)

k

]

is bounded by 1 and ε = Ω(1), by using first θ(s) = o(n) of samples,

we can estimate E[Ri] to precision 1/s privately, i.e. E
[
(µ̂R − E [Ri])

2] ≤ 1
s
.

Our final estimator is the aggregation of Y1, ..., Yn:

θ̂ (Y1, ..., Yn) ,
1

n

n∑

k=1

µ̂R
Yk − B

A
,

where A,B are constants defined in (20) and are independent of θ. It remains to show that for

this mechanism and estimator,

E‖θ̂(Y1, . . . , Yn)− θ‖22 �
s2 log d

nε
.

Analysis of ℓ2 error: Now let us analyze the ℓ2 error of θ̂. As stated in previous section, θ̂i

is unbiased to θi, so

E





(

1

n

n∑

k=1

µ̂R
Yk(i)−B

A
− θi

)2




=
1

n2

n∑

k=1

E

[(

µ̂R
Yk(i)− B

A
− θi

)2
]

=
1

n
E

[(

µ̂R
Y1(i)−B

A
− θi

)2
]

≤ 3

n
E

[(

µ̂R
Y1(i)−B

A
− µ̂RX̃1(i)

)2
]

︸ ︷︷ ︸

(a)

+
3

n
E

[(

µ̂RX̃1(i)−R1X̃1(i)
)2
]

︸ ︷︷ ︸

(b)

+
3

n
E

[(

R1X̃1(i)− θi

)2
]

︸ ︷︷ ︸

(c)

.
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Note that (a) and (b) can be viewed as privatization errors due to the LDP constraint, and (c) is

the estimation error. We bound (a), (b) and (c) separately.

To bound (a), we leverage the following facts

• 1 > A ≥ (1− 2
d10

),

• 0 < B < 1
d10

,

• Pr
{

X̃1(i) = Y1(i)
}

≥ 1− pe ≥ 1− 1
d10

.

E

[(

µ̂R
Y1(i)− B

A
− µ̂RX̃1(i)

)2
]

= E
[
(µ̂R)

2] · E
[

E

[(
Y1(i)− B

A
− X̃1(i)

)2 ∣
∣
∣R1

]]

≤ (µ̂R)
2 Pr

{

X̃1(i) = Y1(i)
}

·
((

1− B − A

A

)2

+

(
B

A

)2
)

+ E
[
(µ̂R)

2]Pr
{

X̃1(i) 6= Y1(i)
}

·
((

A−B

A

)2

+

(
A+B

A

)2
)

≤ E
[
(µ̂R)

2]

(((
1− B − A

A

)2

+

(
B

A

)2
)

+ pe

((
A− B

A

)2

+

(
A+B

A

)2
))

≤ C0

d10
E
[
(µ̂R)

2] .

Note that, E
[
(µ̂R)

2] ≤ E [R2
1] + Var (µ̂R) ≤ 2d2, so term (a) can eventually be bounded by

(a) ≤ C0

d8
,
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for some constant C0. To bound (b), observe that

d∑

i=1

E

[(

µ̂RX̃1(i)−R1X̃1(i)
)2
]

=

d∑

i=1

E

[

X̃1(i)
2 · (µ̂R − R1)

2
]

= E

[(
d∑

i=1

X̃1(i)

)

· (µ̂R − R1)
2

]

= k · E
[
(µ̂R − R1)

2]

≤ 2k ·
(

E
[
(µ̂R − E [R1])

2]+
1

k2
Var (max (k, ‖X1‖1))

)

(1)

≤ 2k

s
+

2

k
· Var (‖X1‖1)

(2)

≤ C1s/k,

where (1) is due to µ̂R is of precision O(1/s) by using first o(n) samples, and (2) is because

k ≍ ε/ log d � s. Finally we bound (c) as follow:

E

[(

R1X̃1(i)− θi

)2
]

= E

[

R2
1X̃

2
1 (i)
]

− θ2i

≤ E

[

E

[

R2
1X̃1(i)

∣
∣
∣R1

]]

= E

[

E

[

R1X1(i)
∣
∣
∣R1

]]

≤ E

[(‖X1‖1
k

+ 1

)

X1(i)

]

≤ E

[‖X1‖1
k

X1(i)

]

+ θi.

Combining (a), (b) and (c) and summing across all dimensions i = 1, ..., d, we obtain

E‖θ̂ − θ‖22 =
d∑

i=1

E

[(

θ̂i − θi

)2
]

≤ 1

n

(

C ′
0

1

(d7)2
+ C ′

1

s

k
+ C ′

2

(
E [‖X1‖21]

k
+ s

))

≍ s2 log d

nε
,

where in the last step we bound the second moment of Poisson binomial distribution by

E‖X1‖21 =
(
∑

i

θi

)2

+
∑

i

θi(1− θi) ≤ s2 + s,

and observe that k is Ω
(

ε
log d

)

.
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APPENDIX

A. Proof of Proposition 1

Fix some δ > 0. Suppose, for contradiction, that

Q(y|x)
Q(y|x′)

> eε + δ

for all y ∈ S with ν(S) > 0. We have

Q(S|x)
Q(S|x′)

=

∫

S
Q(y|x)dν(y)

∫

S
Q(y|x′)dν(y)

≥ inf
y∈S

Q(y|x)
Q(y|x′)

≥ eε + δ .

This contradicts Q(·|·) being an ε-differentially private mechanism, and thus we must have

Q(y|x)
Q(y|x′)

≤ eε + δ

for ν-almost all y. Taking δ → 0 and using the measure’s continuity from above completes the

proof.

B. Proof of Lemma 1

Tr(IY (θ)) =
d∑

i=1

E

[(
∂

∂θi
log f(Y |θ)

)2
]

=
d∑

i=1

E





(
∂
∂θi

f(Y |θ)
f(Y |θ)

)2




=
d∑

i=1

E





(∫
Q(Y |x) ∂

∂θi
f(x|θ)dµ(x)

f(Y |θ)

)2


 (21)

=
d∑

i=1

E





(
∫

Q(Y |x)f(x|θ)
f(Y |θ)

∂
∂θi

f(x|θ)
f(x|θ) dµ(x)

)2




=

d∑

i=1

EY EX

[
∂

∂θi
log f(x|θ)

∣
∣
∣
∣
Y

]2

= EY ‖EX [Sθ(X)|Y ]‖22 .

The key step (21) relies on interchanging integration over the sample space and differentiation

with respect to the components θj which can be made precise via Lebesgue’s Dominated

Convergence Theorem as shown in Appendix D regarding regularity conditions.
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C. Proof of Corollary 2

Without loss of generality we focus on a subset Θ′ ⊂ Θ defined by

Θ′ =

{

θ ∈ Θ :
1

4d
≤ θi ≤

1

2d
for i = 1, . . . , d

}

,

and only consider the error from the first d components of θi. We can do this because

max
θ∈Θ

E‖θ̂(Y1, . . . , Yn)− θ‖22 ≥ max
θ∈Θ′

[

E

d∑

i=1

(

θ̂i − θi

)2
]

.

It remains to show that for all θ ∈ Θ′ and unit vectors u ∈ R
d,

E[〈u, Sθ(X)〉2] ≤ 6d

where

Sθ(X) = (Sθ1(x), . . . , Sθd(x))

=

(
∂

∂θ1
log f(x|θ), . . . , ∂

∂θd
log f(x|θ)

)

is the score from just the first d components. To see this note that

θd+1 = 1−
d∑

i=1

θi,

and

Sθi(x) =







1
θi
, x = i

− 1
θd+1

, x = d+ 1

0, otherwise

for i = 1, . . . , d. Then for any unit vector u = (u1, . . . , ud),

E[〈u, Sθ(X)〉2] =
d+1∑

x=1

θx

(
d∑

i=1

uiSθi(x)

)2

= θd+1
1

θ2d+1

(
d∑

i=1

ui

)2

+

d∑

x=1

θx

(
d∑

i=1

uiSθi(x)

)2

≤ 2d+
d∑

x=1

θxu
2
x

1

θ2x
≤ 6d .

The corollary then follows by applying Propositions 2 and 3 with I0 = 6d to equation (3).
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D. Regularity Conditions

We make the following assumptions on the statistical model Pθ:

(i) The density f(x|θ) is such that
√

f(x|θ) is continuously differentiable with respect to θj

for j = 1, . . . , d and µ-almost all x ∈ X . Note that this is the same as assuming that the

density f(x|θ) itself is continuously differentiable if we assume that f(x|θ) > 0, and this

positivity assumption can always be made valid by considering all integrals to only be over

the subset of X with f(x|θ) > 0.

(ii) The Fisher information for each component IX(θj) = E

[(
∂
∂θj

log f(x|θ)
)2
]

exists and is

a continuous function of θj for each j = 1, . . . , d.

It can easily be checked that for the Gaussian location model, discrete distribution estimation,

and sparse Bernoulli models these conditions are met for an appropriate subset of the space of

possible parameter values Θ.

These conditions are relatively standard sufficient conditions for a statistical model to be dif-

ferentiable in quadratic mean [10]. Unfortunately the differentiable in quadratic mean condition

itself is not appropriate for developing Cramér-Rao type lower bounds, and so it will not work

for our purposes. One important aspect of these conditions is that we make assumptions on

the statistical model Pθ, but not Qθ, so that there are no implicit assumptions on the privacy

mechanism.

Lemma 2. Under the conditions above, f(y|θ) is continuously differentiable with respect to θj

and

∂

∂θj
f(y|θ) = ∂

∂θj

∫

Q(y|x)f(x|θ)dµ(x)

=

∫

Q(y|x) ∂

∂θj
f(x|θ)dµ(x)

at ν-almost any y.

Proof. For simplicity we consider the scalar case with d = 1. The proof for each component of



31

the vector case is identical. Without yet knowing if the limit exists, formally we have

∂

∂θ
f(y|θ) = lim

h→0

1

h

(∫

Q(y|x)f(x|θ + h)dµ(x)−
∫

Q(y|x)f(x|θ)dµ(x)
)

= lim
h→0

∫

Q(y|x)
∫ 1

0

f ′(x|θ + hu)du dµ(x)

= lim
h→0

2

∫ ∫ 1

0

Q(y|x)
√

f(x|θ + hu)
√

f(x|θ + hu)
′
du dµ(x) .

For each h define the set

Ah =

{

x ∈ X : sup
v:|θ−v|<h

√

f(x|v) < 2
√

f(x|θ) , sup
v:|θ−v|<h

|
√

f(x|v)′| < 2|
√

f(x|θ)′|
}

and split the integral into two terms, considering the set Ah and its complement AC
h separately:

∫ ∫ 1

0

Q(y|x)
√

f(x|θ + hu)
√

f(x|θ + hu)
′
du dµ(x) (22)

=

∫

Ah

∫ 1

0

Q(y|x)
√

f(x|θ + hu)
√

f(x|θ + hu)
′
dudµ(x) (23)

+

∫

AC
h

∫ 1

0

Q(y|x)
√

f(x|θ + hu)
√

f(x|θ + hu)
′
dudµ(x). (24)

To deal with term (23) we can use Lebesgue’s dominated convergence theorem noting that

|1Ah
(x)Q(y|x)

√

f(x|θ + hu)
√

f(x|θ + hu)
′| ≤ 4|Q(y|x)

√

f(x|θ)
√

f(x|θ)′| . (25)

The right-hand side of display (25) is absolutely integrable by the Cauchy-Schwarz inequality:

∫

|Q(y|x)
√

f(x|θ)
√

f(x|θ)′|dµ(x) ≤
(∫

Q(y|x)2f(x|θ)dµ(x)
) 1

2
(∫

f ′(x|θ)2
f(x|θ) dµ(x)

) 1
2

≤ f(y|θ)
√

eεIX(θ) .

This allows us to switch the limit inside the integral to get

lim
h→0

∫

AC
h

∫ 1

0

Q(y|x)
√

f(x|θ + hu)
√

f(x|θ + hu)
′
dudµ(x) =

∫

Q(y|x)
√

f(x|θ)
√

f(x|θ)′dµ(x)

where we have used the continuity of
√

f(x|θ) and
√

f(x|θ)′ to see that 1Ah
(x) → 1.
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It remains to show that term (24) approaches zero as h → 0. For this we again use the

Cauchy-Schwarz inequality:
∫

AC
h

∫ 1

0

|Q(y|x)
√

f(x|θ + uh)
√

f(x|θ + uh)
′|dudµ(x)

≤
(∫ ∫ 1

0

Q(y|x)2f(x|θ + uh)dudµ(x)

)1
2

(
∫

AC
h

∫ 1

0

f ′(x|θ + uh)2

f(x|θ + uh)
dudµ(x)

) 1
2

≤ eεf(y|θ)
(
∫

AC
h

∫ 1

0

f ′(x|θ + uh)2

f(x|θ + uh)
dudµ(x)

) 1
2

. (26)

The term inside the parentheses in (26) goes to zero as h → 0 since

IX(θ) = lim
h→0

(
∫

Ah

∫ 1

0

f ′(x|θ + uh)2

f(x|θ + uh)
dudµ(x) +

∫

AC
h

∫ 1

0

f ′(x|θ + uh)2

f(x|θ + uh)
dudµ(x)

)

and
∫

Ah

∫ 1

0

f ′(x|θ + uh)2

f(x|θ + uh)
dudµ(x) → IX(θ)

as h → 0 using the dominated convergence theorem just as above.

1) Applying the van Trees Inequality: In order to apply the van Trees inequality we will need
∫ (

∂

∂θj
log f(y|θ)

)

f(y|θ)dν(y) =
∫

∂

∂θj
f(y|θ)dν(y) = 0

for each j = 1, . . . , d. In this subsection we check this condition under assumptions (i) and

(ii) above regarding the distributions Pθ and their densities f(x|θ). We will make no further

assumptions on f(y|θ) so that there are no implicit assumptions on the privacy mechanism Q

other than it being a regular conditional distribution and an ε-differentially private mechanism.
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Using Lemma 2 and the Fubini-Tonelli Theorem,
∫

∂

∂θj
f(y|θ)dν(y) =

∫
∂

∂θj

∫

Q(y|x)f(x|θ)dµ(x)dν(y)

=

∫ ∫

Q(y|x) ∂

∂θj
f(x|θ)dµ(x)dν(y)

=

∫ ∫

{

x: ∂
∂θj

f(x|θ)≥0

} Q(y|x) ∂

∂θj
f(x|θ)dµ(x)dν(y)

+

∫ ∫

{

x: ∂
∂θj

f(x|θ)<0

} Q(y|x) ∂

∂θj
f(x|θ)dµ(x)dν(y)

=

∫

{

x: ∂
∂θj

f(x|θ)≥0

}

∂

∂θj
f(x|θ)dµ(x) +

∫

{

x: ∂
∂θj

f(x|θ)<0

}

∂

∂θj
f(x|θ)dµ(x)

=
∂

∂θj

∫

f(x|θ)dµ(x) = 0 .

E. Blackboard Model

The density of the total transcript Z can be written as

f(z|θ) = EX1,...,Xn

[
∏

i,t

Qi,t(yi,t|b1, . . . , bt−1, y1,t, . . . , yi−1,t, Xi)

]

=
n∏

i=1

EX1,...,Xn

[
∏

t

Qi,t(yi,t|b1, . . . , bt−1, y1,t, . . . , yi−1,t, Xi)

]

=

n∏

i=1

EXi
[pi,z(Xi)]

where

pi,z(xi) =
∏

t

Qi,t(yi,t|b1, . . . , bt−1, y1,t, . . . , yi−1,t, xi) .

The score for this total transcript has components

∂

∂θj
log f(z|θ) =

n∑

i=1

EXi

[
Sθj (Xi)pi,z(Xi)

]

EXi
[pi,z(Xi)]

.

To get the above display we require interchanging differentiation and integration just like in the

proof of Lemma 1. The trace of the Fisher information from the whole transcript is thus

Tr(IZ(θ)) =

d∑

j=1

EZ

[(
∂

∂θj
log f(Z|θ)

)2
]

= EZ




∑

i,j

(

EXi

[
Sθj(Xi)pi,Z(Xi)

]

EXi
[pi,Z(Xi)]

)2


 (27)
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where (27) follows because the cross terms

EZ

[

EXi

[
Sθj(Xi)pi,Z(Xi)

]

EXi
[pi,Z(Xi)]

EXk
[Sθk(Xk)pk,Z(Xk)]

EXk
[pk,Z(Xk)]

]

= EXi,Xk

[
Sθj(Xi)Sθj (Xj)

]
= 0

for i 6= k.

1) Blackboard Proposition 2: Let

uZ =

EXi

[

Sθ(Xi)
pi,Z(Xi)

EXi [pi,Z(Xi)]

]

∥
∥
∥
∥
EXi

[

Sθ(Xi)
pi,Z(Xi)

EXi [pi,Z(Xi)]

]∥
∥
∥
∥
2

.

Following from (27),

Tr(IZ(θ)) =
n∑

i=1

EZ

[〈

uZ ,EXi

[

Sθ(Xi)
pi,Z(Xi)

EXi
[pi,Z(Xi)]

]〉2
]

=
n∑

i=1

EZ

[

EXi

[
〈
uZ , Sθ(Xi)

〉 pi,Z(Xi)

EXi
[pi,Z(Xi)]

]2
]

.

We split up the expectation over Xi as follows:

EXi

[
〈
uZ , Sθ(Xi)

〉 pi,Z(Xi)

EXi
[pi,Z(Xi)]

]

≤ 1

minx pi,Z(x)
EXi

[〈
uZ , Sθ(Xi)

〉
pi,Z(Xi)

]

=
1

minx pi,Z(x)

∫

{x:〈uZ ,Sθ(x)〉≥0}

〈
uZ , Sθ(x)

〉
pi,Z(x)f(x|θ)dµ(x)

+
1

minx pi,Z(x)

∫

{x:〈uZ ,Sθ(x)〉<0}

〈
uZ , Sθ(x)

〉
pi,Z(x)f(x|θ)dµ(x)

≤(eε − 1)

∫

{x:〈uZ ,Sθ(x)〉≥0}

〈
uZ , Sθ(x)

〉
f(x|θ)dµ(x)

so that

EXi

[
〈
uZ , Sθ(Xi)

〉 pi,Z(Xi)

EXi
[pi,Z(Xi)]

]2

≤ I0(e
ε − 1)2

and

Tr(IZ(θ)) ≤ nI0(e
ε − 1)2

as desired.
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2) Blackboard Proposition 3: Using Jensen’s inequality,

n∑

i=1

EZ

[

EXi

[
〈
uZ , Sθ(Xi)

〉 pi,Z(Xi)

EXi
[pi,Z(Xi)]

]2
]

≤
n∑

i=1

EZ

[

EXi

[
〈
uZ , Sθ(Xi)

〉2 pi,Z(Xi)

EXi
[pi,Z(Xi)]

]]

≤ nI0e
ε

where the last step uses (10) and the blackboard differential privacy condition.

3) Blackboard Proposition 4: By the convexity of x 7→ ex
2
,

exp














EXi

[

〈uZ , Sθ(Xi)〉 pi,Z(Xi)

EXi[pi,Z(Xi)]

]

σ







2







≤ EXi

[

pi,Z(Xi)

EXi
[pi,Z(Xi)]

exp

((〈uZ , Sθ(Xi)〉
σ

)2
)]

≤ 2eε .

Taking logs,
(

EXi

[

〈uZ , Sθ(Xi)〉
pi,Z(Xi)

EXi
[pi,Z(Xi)]

])2

≤ σ2(ε+ log 2) .

Blackboard Proposition 5 follows in the same way.
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