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Abstract

The classical problem of supervised learning is to infer an accurate predictor of a target variable Y from a measured variable
X by using a finite number of labeled training samples. Motivated by the increasingly distributed nature of data and decision
making, in this paper we consider a variation of this classical problem in which the prediction is performed remotely based on a
rate-constrained description M of X . Upon receiving M , the remote node computes an estimate Ŷ of Y . We follow the recent
minimax approach to study this learning problem and show that it corresponds to a one-shot minimax noisy source coding problem.
We then establish information theoretic bounds on the risk-rate Lagrangian cost and a general method to design a near-optimal
descriptor-estimator pair, which can be viewed as a rate-constrained analog to the maximum conditional entropy principle used in
the classical minimax learning problem. Our results show that a naive estimate-compress scheme for rate-constrained prediction
is not in general optimal.

I. INTRODUCTION

The classical problem of supervised learning is to infer an accurate predictor of a target variable Y from a measured variable
X on the basis of n labeled training samples {(Xi, Yi)}ni=1 independently drawn from an unknown joint distribution P . The
standard approach for solving this problem in statistical learning theory is empirical risk minimization (ERM). For a given set
of allowable predictors and a loss function that quantifies the risk of each predictor, ERM chooses the predictor with minimal
risk under the empirical distribution of samples. To avoid overfitting, the set of allowable predictors is restricted to a class
with limited complexity.

Recently, an alternative viewpoint has emerged which seeks distributionally robust predictors. Given the labeled training
samples, this approach learns a predictor by minimizing its worst-case risk over an ambiguity distribution set centered at
the empirical distribution of samples. In other words, instead of restricting the set of allowable predictors, it aims to avoid
overfitting by requiring that the learned predictor performs well under any distribution in a chosen neighborhood of the empirical
distribution. This minimax approach has been investigated under different assumptions on how the ambiguity set is constructed,
e.g., by restricting the moments [1], forming the f -divergence balls [2] and Wasserstein balls [3] (see also references therein).

In these previous works, the learning algorithm finds a predictor that acts directly on a fresh (unlabeled) sample X to
predict the corresponding target variable Y . Often, however the fresh sample X may be only remotely available, and when
designing the predictor it is desirable to also take into account the cost of communicating X . This is motivated by the fact that
bandwidth and energy limitations on communication in networks and within multiprocessor systems often impose significant
bottlenecks on the performance of algorithms. There are also an increasing number of applications in which data is generated
in a distributed manner and it (or features of it) are communicated over bandwidth-limited links to a central processor to
perform inference. For instance, applications such as Google Goggles and Siri process the locally collected data on clouds. It
is thus important to study prediction in distributed and rate-constrained settings.

In this paper, we study an extension of the classical learning problem in which given a finite set of training samples,
the learning algorithm needs to infer a descriptor-estimator pair with a desired communication rate in between them. This
is especially relevant when both X and Y come from a large alphabet or are continuous random variables as in regression
problems, so neither the sample X nor its predicted value of Y can be simply communicated in a lossless fashion. We adopt
the minimax framework for learning the descriptor-estimator pair. Given a set of labeled training samples, our goal is to
find a descriptor-estimator pair by minimizing their resultant worst-case risk over an ambiguity distribution set, where the
risk now incorporates both the statistical risk and the communication cost. One of the important conclusions that emerge
from the minimax approach to supervised learning in [1] is that the problem of finding the predictor with minimal worst-
case risk over an ambiguity set can be broken into two smaller steps: (1) find the worst-case distribution in the ambiguity
set that maximizes the (generalized) conditional entropy of Y given X , and (2) find the optimal predictor under this worst-
case distribution. In this paper, we show that an analogous principle approximately holds for rate-constrained prediction. The
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descriptor-estimator pair with minimal worst-case risk can be found in two steps: (1) find the worst-case distribution in the
ambiguity set that maximizes the risk-information Lagrangian cost, and (2) find the optimal descriptor-estimator pair under this
worst-case distribution. We then apply our results to characterize the optimal descriptor-estimator pairs for two applications:
rate-constrained linear regression and rate-constrained classification. While a simple scheme whereby we first find the optimal
predictor ignoring the rate constraint, then compress and communicate the predictor output, is optimal for the linear regression
application, we show via the classification application that such an estimate-compress approach is not optimal in general. We
show that when prediction is rate-constrained, the optimal descriptor aims to send sufficiently (but not necessarily maximally)
informative features of the observed variable, which are at the same time easy to communicate. When applied to the case
in which the ambiguity distribution set contains only a single distribution (for example, the true or empirical distribution of
X,Y ) and the loss function for the prediction is logarithmic loss, our results provide a new one-shot operational interpretation
of the information bottleneck problem. A key technical ingredient in our results is the strong functional representation lemma
(SFRL) developed in [4], which we use to design the optimal descriptor-estimator pair for the worst-case distribution.

Notation

We assume that log is base 2 and the entropy H is in bits. The length of a variable-length description M ∈ {0, 1}∗ is
denoted as |M |. For random variables U, V , denote the joint distribution by PU,V and the conditional distribution of U given
V by PU |V . For brevity we denote the distribution of (X,Y ) as P . We write IP (X; Ŷ ) for I(X; Ŷ ) when (X,Y ) ∼ P , and
PŶ |X is clear from the context.

II. PROBLEM FORMULATION

We begin by reviewing the minimax approach to the classical learning problem [1].

A. Minimax Approach to Supervised Learning

Let X ∈ X and Y ∈ Y be jointly distributed random variables. The problem of statistical learning is to design an accurate
predictor of a target variable Y from a measured variable X on the basis of a number of independent training samples
{(Xi, Yi)}ni=1 drawn from an unknown joint distribution. The standard approach for solving this problem is to use empirical
risk minimization (ERM) in which one defines an admissible class of predictors F that consists of functions f : X → Ŷ (where
the reconstruction alphabet Ŷ can be in general different from Y) and a loss function ` : Ŷ ×Y → R. The risk associated with
a predictor f when the underlying joint distribution of X and Y is P is

L(f, P ) , EP [`(f(X), Y )].

ERM simply chooses the predictor fn ∈ F with minimal risk under the empirical distribution Pn of the training samples.
Recently, an alternative approach has emerged which seeks distributionally robust predictors. This approach learns a predictor

by minimizing its worst-case risk over an ambiguity distribution set Γ(Pn), i.e.,

fn = argmin
f

max
P∈Γ(Pn)

L(f, P ), (1)

where f can be any function and Γ(Pn) can be constructed in various ways, e.g., by restricting the moments, forming the
f -divergence balls or Wasserstein balls. While in ERM it is important to restrict the set F of admissible predictors to a
low-complexity class to prevent overfitting, in the minimax approach overfitting is prevented by explicitly requiring that the
chosen predictor is distributionally robust. The learned function fn can be then used for predicting Y when presented with
fresh samples of X . The learning and inference phases are illustrated in Figure 1.

Learning: 

  

Inference: 
X Ŷ = fn(X)

Inferrer fn

   {(Xi, Yi)}n
i=1 Pn �(Pn) Learner

fn

Fig. 1. Minimax approach to supervised learning.
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B. Minimax Learning for Remote Prediction

In this paper, we extend the minimax learning approach to the setting in which the prediction needs to be performed based
on a rate-constrained description of X . In particular, given a set of finite training samples {(Xi, Yi)}ni=1 independently drawn
from an unknown joint distribution P , our goal is to learn a pair of functions (e, f), where e is a descriptor used to compress
X into M = e(X) ∈ {0, 1}∗ (a prefix-free code), and f is an estimator that takes the compression M and generates an
estimate Ŷ of Y . See Figure 2.

Let R(e, P ) , EP [|e(X)|] be the rate of the descriptor e and L(e, f, P ) , EP [`(f(e(X)), Y )] be the risk associated with
the descriptor-estimator pair (e, f), when the underlying distribution of (X,Y ) is P , and define the risk-rate Lagrangian cost
(parametrized by λ > 0) as

Lλ(e, f, P ) = L(e, f, P ) + λR(e, P ). (2)

Note that this cost function takes into account both the resultant statistical prediction risk of (e, f), as well as the communication
rate they require. The task of a minimax learner is to find an (en, fn) pair that minimizes the worst-case Lλ(e, f, P ) over the
ambiguity distribution set Γ(Pn), i.e.,

(en, fn) = argmin
(e,f)

max
P∈Γ(Pn)

Lλ(e, f, P ), (3)

for an appropriately chosen Γ(Pn) centered at the empirical distribution of samples Pn. Note that we allow here all possible
(e, f) pairs. We also assume that the descriptor and the estimator can use unlimited common randomness W which is
independent of the data, i.e., e and f can be expressed as functions of (X,W ) and (M,W ), respectively, and the prefix-
free codebook for M can depend on W . The availability of such common randomness can be justified by the fact that in
practice, although the inference scheme is one-shot, it is used many times (by the same user and by different users), hence the
descriptor and the estimator can share a common randomness seed before communication commences without impacting the
communication rate.

Learning: 

Inference: 

   

  
X

  
M = en(X) Ŷ = fn(M)

fnen

{(Xi, Yi)}n
i=1 Pn �(Pn) Learner

(en, fn)

Fig. 2. Minimax learning for remote prediction.

III. MAIN RESULTS

We first consider the case where Γ consists of a single distribution P , which may be the empirical distribution Pn as in
ERM. Define the minimax risk-rate cost as

L∗λ(Γ) = inf
(e,f)

sup
P∈Γ

Lλ(e, f, P ). (4)

While it is difficult to minimize the risk-rate cost (2) directly, the minimax risk-rate cost can be bounded in terms of the mutual
information between X and Ŷ .

Theorem 1. Let Γ = {P}. Then

L∗λ ≥ inf
PŶ |X

(
E
[
`(Ŷ , Y )

]
+ λI(X; Ŷ )

)
,

L∗λ ≤ inf
PŶ |X

(
E
[
`(Ŷ , Y )

]
+ λ

(
I(X; Ŷ ) + log(I(X; Ŷ ) + 1) + 5

))
.

As in other one-shot compression results (e.g., zero-error compression), there is a gap between the upper and lower bound.
While the logarithmic gap in Theorem 1 is not as small as the 1-bit gap in the zero-error compression, it is dominated by the
linear term I(X; Ŷ ) when it is large.

To prove Theorem 1, we use the strong functional representation lemma given in [4] (also see [5], [6]): for any random
variables X, Ŷ , there exists random variable W independent of X , such that Ŷ is a function of (X,W ), and

H(Ŷ |W ) ≤ I(X; Ŷ ) + log(I(X; Ŷ ) + 1) + 4. (5)



4

Here, W can be intuitively viewed as the part of Ŷ which is not contained in X . Note that for any W such that Ŷ is a function
of (X,W ) and W is independent of X , H(Ŷ |W ) ≥ I(X; Ŷ ). The statement (5) ensures the existence of an W , independent
of X , which comes close to this lower bound, and in this sense it is most informative about Ŷ . This is critical for the proof
of Theorem 1 as we will see next. Identifying the part of Ŷ which is not contained in X allows us to generate and share
this part between the descriptor and the estimator ahead of time, eliminating the need to communicate it during the course of
inference. To find W , we use the Poisson functional representation construction detailed in [4].

Proof of Theorem 1: Recall that Ŷ = f(e(X,W ),W ). The lower bound follows from the fact that IP (X; Ŷ ) ≤ HP (M) ≤
E[|M |]. To establish the upper bound, fix any PŶ |X . Let W be obtained from (5). Note that W is independent of X and can be
generated from a random seed shared between the descriptor and the estimator ahead of time. For a given w, take m = e(x,w)
to be the Huffman codeword of ŷ(x,w) according to the distribution PŶ |W (·|w) (recall that Ŷ is a function of (X,W )), and
take f(m,w) to be the decoding function of the Huffman code. The expected codeword length

E[|M |] ≤ H(Ŷ |W ) + 1 ≤ I(X; Ŷ ) + log(I(X; Ŷ ) + 1) + 5.

Taking an infimum over all PŶ |X completes the proof.

Remark 1. If we consider the logarithmic loss `(ŷ, y) = − log ŷ(y), where ŷ is a distribution over Y , then the lower bound
in Theorem 1 reduces to

inf
PU|X

(H(Y |U) + λI(X;U)) = H(Y ) + inf
PU|X

(λI(X;U)− I(Y ;U)) ,

which is the information bottleneck function [7]. Therefore the setting of remote prediction provides an approximate one-shot
operational interpretation of the information bottleneck (up to a logarithmic gap). In [8], [9] it was shown that the asymp-
totic noisy source coding problem also provides an operational interpretation of the information bottleneck. Our operational
interpretation, however, is more satisfying since the feature extraction problem originally considered in [7] is by nature one-shot.

We now extend Theorem 1 to the minimax setting.

Theorem 2. Suppose Γ is convex. Then

L∗λ ≥ inf
PŶ |X

sup
P∈Γ

(
EP
[
`(Ŷ , Y )

]
+ λIP (X; Ŷ )

)
L∗λ ≤ inf

PŶ |X

sup
P∈Γ

(
EP
[
`(Ŷ , Y )

]
+ λ

(
IP (X; Ŷ ) + 2 log(IP (X; Ŷ ) + 1) + 6

))
.

This result is related to minimax noisy source coding [10]. The main difference is that we consider the one-shot expected
length instead of the asymptotic rate.

To prove this theorem, we first invoke a minimax result for relative entropy in [11] (which generalizes the redundancy-
capacity theorem [12]). Then we apply the following refined version of the strong functional representation lemma that is
proved in the proof of Theorem 1 in [4] (also see [5]).

Lemma 1. For any PŶ |X and P̃Ŷ , there exists random variable W , and functions k(x,w) ∈ {1, 2, . . .} and ŷ(k,w) such that
ŷ(k(x,W ),W ) ∼ PŶ |X(·|x), and

E [log k(x,W )] ≤ D
(
PŶ |X(·|x)

∥∥ P̃Ŷ )+ 1.6. (6)

We are now ready to prove Theorem 2.
Proof: The lower bound follows from EP [|M |] ≥ HP (M) ≥ IP (X; Ŷ ). To prove the upper bound, we fix any PŶ |X ,

and show that the following risk-rate cost is achievable:

L′ = sup
P∈Γ

(
EP
[
`(Ŷ , Y )

]
+ λ

(
IP (X; Ŷ ) + 2 log(IP (X; Ŷ ) + 1) + 6

))
.

Let

g(P, P̃Ŷ ) = EP
[
`(Ŷ , Y )

]
+ λ

(∫
D
(
PŶ |X=x

∥∥ P̃Ŷ )dP (x)

+ 2 log
(∫

D
(
PŶ |X=x

∥∥ P̃Ŷ )dP (x) + 1
)

+ 6

)
.
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Note that g is concave in P for fixed P̃Ŷ since EP
[
`(Ŷ , Y )

]
and

∫
D
(
PŶ |X=x

∥∥ P̃Ŷ )dP (x) are linear in P . Also g is

quasiconvex in P̃Ŷ for fixed P since
∫
D
(
PŶ |X=x

∥∥ P̃Ŷ )dP (x) is convex in P̃Ŷ , and is lower semicontinuous in P̃Ŷ since
D
(
PŶ |X=x

∥∥ P̃Ŷ ) is lower semicontinuous with respect to the topology of weak convergence [13], and hence
∫
D
(
PŶ |X=x

∥∥ P̃Ŷ )dP (x)
is lower semicontinuous by Fatou’s lemma.

Write PŶ |X ◦P for the distribution of Ŷ when (X,Y ) ∼ P and Ŷ |{X = x} ∼ PŶ |X(·|x). Let ΓŶ = {PŶ |X ◦P : P ∈ Γ}
and ΓŶ be the closure of ΓŶ in the topology of weak convergence. It can be shown using the same arguments as in [11] (on g
instead of relative entropy, and using Sion’s minimax theorem [14] instead of Lemma 2 in [11]) that if ΓŶ is uniformly tight,
then there exists P ∗

Ŷ
∈ ΓŶ such that

sup
P∈Γ

g(P, P̃ ∗
Ŷ

) = sup
P∈Γ

inf
P̃Ŷ

g(P, P̃Ŷ ) = L′.

If ΓŶ is not uniformly tight, then by Lemma 4 in [11], supP∈Γ inf P̃Ŷ

∫
D
(
PŶ |X=x

∥∥ P̃Ŷ )dP (x) = ∞, and hence L′ =

supP∈Γ inf P̃Ŷ
g(P, P̃Ŷ ) =∞.

Applying Lemma 1 to PŶ |X , P ∗
Ŷ

we obtain W independent of X , random variable K = k(X,W ) ∈ {1, 2, . . .}, and
Ŷ = ŷ(K,W ) following the conditional distribution PŶ |X , and

E [logK |X = x] ≤ D
(
PŶ |X

∥∥P ∗
Ŷ

∣∣X = x
)

+ 1.6

for any x. Then we use Elias delta code [15] for K to produce M . Note that the average length of the Elias delta code is
upper bounded by logK + 2 log (logK + 1) + 1. Hence, we have

EP [|M |] ≤ EP [logK] + 2 log (EP [logK] + 1) + 1

≤
∫
D
(
PŶ |X=x

∥∥P ∗
Ŷ

)
dP (x)

+ 2 log

(∫
D
(
PŶ |X=x

∥∥P ∗
Ŷ

)
dP (x) + 1

)
+ 6.

Hence

L̃∗λ ≤ sup
P∈Γ

(
EP
[
`(Ŷ , Y ) + λ|M |

])
≤ sup
P∈Γ

g(P, P ∗
Ŷ

) ≤ L′.

Theorem 2 suggest that we can simplify the analysis of the risk-rate cost (2) Lλ = EP
[
`(Ŷ , Y )

]
+λEP [|M |] by replacing

the rate EP [|M |] with the mutual information IP (X; Ŷ ). Define the risk-information cost as

L̃λ(PŶ |X , P ) = EP
[
`(Ŷ , Y )

]
+ λIP (X; Ŷ ). (7)

Theorem 2 implies that the minimax risk-rate cost L∗λ can be approximated by the minimax risk-information cost

L̃∗λ(Γ) = inf
PŶ |X

sup
P∈Γ

L̃λ(PŶ |X , P ), (8)

within a logarithmic gap. Theorem 2 can also be stated in the following slightly weaker form

L̃∗λ ≤ L∗λ ≤ L̃∗λ + 2λ log(λ−1L̃∗λ + 1) + 7λ.

The risk-information cost has more desirable properties than the risk-rate cost. For example, it is convex in PŶ |X for fixed P ,
and concave in P for fixed PŶ |X . This allows us to exchange the infimum and supremum in Theorem 2 by Sion’s minimax
theorem [14], which gives the following proposition.

Proposition 1. Suppose X , Y and Ŷ are finite, Γ is convex and closed, and λ ≥ 0, then

L̃∗λ(Γ) = inf
PŶ |X

sup
P∈Γ

L̃λ(PŶ |X , P ) = sup
P∈Γ

inf
PŶ |X

L̃λ(PŶ |X , P ).

Moreover, there exists P ∗
Ŷ |X attaining the infimum in the left hand side, which also attains the infimum on the right hand side

when P is fixed to P ∗, the distribution that attains the supremum on the right hand side.

Proposition 1 means that in order to design a robust descriptor-estimator pair that work for any P ∈ Γ, we only need to
design them according to the worst-case distribution P ∗ as follows.
Principle of maximum risk-information cost: Given a convex and closed Γ, we design the descriptor-estimator pair based
on the worst-case distribution

P ∗ = arg max
P∈Γ

inf
PŶ |X

L̃λ(PŶ |X , P ).

We then find PŶ |X that minimizes L̃λ(PŶ |X , P
∗) and design the descriptor-estimator pair accordingly, e.g. using Lemma 1

on PŶ |X and the induced distribution P ∗
Ŷ

from PŶ |X and P ∗.
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IP (X; Ŷ ) = h(Ŷ )− h(Ŷ |X)

≤ 1

2
log

(
2CTXY Σ−1

X CXY

λ log e

)
.

Therefore,

inf
PŶ |X

sup
P∈Γ

(
EP
[
`(Ŷ , Y )

]
+ λIP (X; Ŷ )

)
≤ R.H.S. of (10).

It can also be checked that the above relation holds when λ log e
2 ≥ CTXY Σ−1

X CXY , and thus we have proved “≤ ” in (10).
To prove “≥ ” in (10), fix a Gaussian PXY with its mean and covariance matrix specified in (9) and consider an arbitrary

PŶ |X. We have

EP
[
`(Ŷ , Y )

]
= EP

[
(Y − Ŷ )2

]
= σ2

Y − CTXY Σ−1
X CXY + EP

[
(Ŷ − CTXY Σ−1

X X)2
]
, and

IP (X; Ŷ ) = IP

(
CTXY Σ−1

X X ; Ŷ
)

≥ h
(
CTXY Σ−1

X X
)
− h

(
CTXY Σ−1

X X− Ŷ
)

≥ 1

2
logCTXY Σ−1

X CXY −
1

2
log EP

[
(Ŷ − CTXY Σ−1

X X)2
]
.

Letting γ = EP
[
(Ŷ − CTXY Σ−1

X X)2
]
, we have

EP
[
`(Ŷ , Y )

]
+ λIP (X; Ŷ )

≥ σ2
Y − CTXY Σ−1

X CXY +
λ

2
logCTXY Σ−1

X CXY + γ − λ log γ

2
≥ R.H.S. of (10),

where the second inequality follows by evaluating the minimum value of γ − λ log γ
2 . Combing this with the above completes

the proof of Proposition 2.
The optimal scheme in the above example corresponds to compressing and communicating the minimax optimal rate-

unconstrained predictor Ȳ = CTXY Σ−1
X (X−µX) + µY , since the optimal Ŷ can be obtained from Ȳ by shifting, scaling and

adding noise. This estimate-compress approach can be thought as a separation scheme, since we first optimally estimate Ȳ ,
then optimally communicate it while satisfying the rate constraint. In the next application, we show that such separation is not
optimal in general.

B. Rate-constrained Minimax Classification

We assume Y = Ŷ = {1, . . . , k} and X are finite, `(ŷ, y) = 1{ŷ 6= y}, and Γ is closed and convex. The following
proposition gives the minimax risk-information cost and the optimal estimator.

Proposition 3. Consider the setting described above. The minimax risk-information cost is given by

L̃∗λ = sup
P∈Γ

(
1 + λ inf

P̃Ŷ

EP

(
− log

∑
y

2λ
−1PY |X(y|X)P̃Ŷ (y)

))
,

the worst-case distribution P ∗ is the one attaining the supremum, and the optimal estimator is given by P ∗
Ŷ |X(ŷ|x) ∝

2λ
−1P∗Y |X(ŷ|x)P̃ ∗

Ŷ
(ŷ), where P̃ ∗

Ŷ
attains the infimum (when P = P ∗), and P ∗Y |X is obtained from P ∗.

In particular, if Γ is symmetric for different values of Y (i.e., for any y1, y2 ∈ Y , there exists permutation π of Y , τ of X
such that π(y1) = y2 and PX,Y ∈ Γ⇔ Pτ(X),π(Y ) ∈ Γ),

L̃∗λ = sup
P∈Γ

(
1 + λ log k − λEP

(
log
∑
y

2λ
−1PY |X(y|X)

))
.

We can see that when λ → 0, P ∗
Ŷ |X tends to the maximum a posteriori estimator (under P̄ ∗, the worst-case distribution

when λ = 0).
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Proof: Assume Γ is closed and convex. By Proposition 1, the minimax rate-information cost is L̃∗λ = supP∈Γ infPŶ |X L̃λ(PŶ |X , P ),
where

inf
PŶ |X

L̃λ(PŶ |X , P )

= inf
PŶ |X

(
EP
[
`(Ŷ , Y )

]
+ λIP (X; Ŷ )

)
= inf
PŶ |X

(
P{Ŷ 6= Y }+ λ inf

P̃Ŷ

∫
D
(
PŶ |X=x

∥∥ P̃Ŷ )dP (x)

)
= inf
P̃Ŷ ,PŶ |X

(
P{Ŷ 6= Y }+ λ

∫
D
(
PŶ |X=x

∥∥ P̃Ŷ )dP (x)

)

= 1 + λ inf
P̃Ŷ ,PŶ |X

EP

(∑
y

PŶ |X(y|X)

(
log

PŶ |X(y|X)

P̃Ŷ (y)
− λ−1PY |X(y|X)

))

= 1 + λ inf
P̃Ŷ

inf
PŶ |X

EP

(∑
y

PŶ |X(y|X)

(
log

PŶ |X(y|X)

2λ
−1PY |X(y|X)P̃Ŷ (y)/

∑
y′ 2

λ−1PY |X(y′|X)P̃Ŷ (y′)

)
− log

∑
y

2λ
−1PY |X(y|X)P̃Ŷ (y)

)
(a)
= 1 + λ inf

P̃Ŷ

EP

(
− log

∑
y

2λ
−1PY |X(y|X)P̃Ŷ (y)

)
,

where (a) is due to that relative entropy is nonnegative, and equality is attained when PŶ |X(y|x) ∝ 2λ
−1PY |X(y|X)P̃Ŷ (y).

Next we consider the case in which Γ is symmetric. Consider the minimax rate-information cost

L̃∗λ = inf
PŶ |X

sup
P∈Γ

L̃λ(PŶ |X , P ) = inf
PŶ |X

sup
P∈Γ

(
EP
[
`(Ŷ , Y )

]
+ λIP (X; Ŷ )

)
.

For any i, j ∈ Y = {1, . . . , k}, let πij be the permutation over Y such that πij(i) = j and let τij be the corresponding
permutation over X in the symmetry assumption. Since the function

PŶ |X 7→ sup
P∈Γ

L̃λ(PŶ |X , P )

is convex and symmetric about πij and τij (i.e., supP∈Γ L̃λ(PŶ |X , P ) = supP∈Γ L̃λ(Pπij Ŷ |τijX , P )), to find its infimum,
we only need to consider PŶ |X ’s satisfying PŶ |X = Pπij Ŷ |τijX for all i, j (if not, we can instead consider the average of
Pπaij Ŷ |τaijX

for a from 1 up to the product of the periods of πij and τij , which gives a value of the function not larger than
that of PŶ |X ). For brevity we say PŶ |X is symmetric if it satisfies this condition.

Fix any symmetric PŶ |X . Since the function
P 7→ L̃λ(PŶ |X , P )

is concave and symmetric about πij and τij (i.e., L̃λ(PŶ |X , PX,Y ) = L̃λ(PŶ |X , PτijX,πijY )), to find its supremum, we only
need to consider symmetric P ’s. Hence,

L̃∗λ = inf
PŶ |X symm.

sup
P∈Γ symm.

L̃λ(PŶ |X , P )

= inf
PŶ |X symm.

sup
P∈Γ symm.

(
EP
[
`(Ŷ , Y )

]
+ λIP (X; Ŷ )

)
= inf
PŶ |X symm.

sup
P∈Γ symm.

(
P{Ŷ 6= Y }+ λ(log k −HP (Ŷ |X))

)
= 1 + λ log k + λ inf

PŶ |X symm.
sup

P∈Γ symm.
EP

(∑
y

PŶ |X(y|X)
(

logPŶ |X(y|X)− λ−1PY |X(y|X)
))

= 1 + λ log k + λ inf
PŶ |X symm.

sup
P∈Γ symm.

EP

(∑
y

PŶ |X(y|X) log
PŶ |X(y|X)

2λ
−1PY |X(y|X)/

∑
y′ 2

λ−1PY |X(y′|X)
− log

∑
y

2λ
−1PY |X(y|X)

)

≥ 1 + λ log k + λ inf
PŶ |X symm.

sup
P∈Γ symm.

EP

(
− log

∑
y

2λ
−1PY |X(y|X)

)

= sup
P∈Γ symm.

(
1 + λ log k − λEP log

∑
y

2λ
−1PY |X(y|X)

)
,
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where the inequality is because relative entropy is nonnegative (and equality is attained when PŶ |X(y|x) ∝ 2λ
−1PY |X(y|x)).

Note that
1 + λ log k − λEP log

∑
y

2λ
−1PY |X(y|X) = inf

PŶ |X

(
P{Ŷ 6= Y }+ λ(log k −HP (Ŷ |X))

)
is an infimum of affine functions of P , hence it is concave in P . Also it is symmetric about π and τ , hence

L̃∗λ ≥ sup
P∈Γ symm.

(
1 + λ log k − λEP log

∑
y

2λ
−1PY |X(y|X)

)

= sup
P∈Γ

(
1 + λ log k − λEP log

∑
y

2λ
−1PY |X(y|X)

)
.

The other direction follows from setting P̃Ŷ (y) = 1/k.
To show that the estimate-compress approach is not always optimal, let `(ŷ, y) = 1{ŷ 6= y}, Y = Y1∪Y2, where Y1∩Y2 = ∅

and |Yi| = ki is finite. Let Γ = {P}, where P is such that (X1, X2) ∼ Unif(Y1 × Y2), and Y = Xi with probability qi for
i = 1, 2. By Proposition 3, the optimal risk-information cost is

1− λ log max
{ 1

k1
(2λ

−1q1 − 1) + 1,
1

k2
(2λ

−1q2 − 1) + 1
}
, (11)

and the optimal estimator is

P ∗
Ŷ |X1,X2

(ŷ|x1, x2) =


2λ
−1q1

2λ
−1q1+k1−1

if ŷ = x1

1

2λ
−1q1+k1−1

if ŷ ∈ Y1\{x1}
0 if ŷ ∈ Y2

(12)

if 1
k1

(2λ
−1q1 − 1) + 1 ≥ 1

k2
(2λ

−1q2 − 1) + 1, and similar for the other case. Assume q1 > q2, then the optimal MAP estimate
is Ȳ = X1. An estimate-compress approach would either communicate a compressed version of Ȳ = X1 as in (12), or output
any element in Y2 (giving a risk 1− q2k

−1
2 ). The risk-information cost achieved by this approach is

min
{

1− λ log
( 1

k1
(2λ

−1q1 − 1) + 1
)
, 1− q2k

−1
2

}
= 1− λ log max

{ 1

k1
(2λ

−1q1 − 1) + 1, 2λ
−1q2k

−1
2

}
. (13)

Now, if k1 � k2, the optimal rate constrained descriptor communicates a lossy version of X2 instead, and the risk of estimate–
compress in (13) is larger than (11).

Moreover, the gap between the rates needed by the two approaches for a fixed risk can be unbounded. Take q1 = 1− q2 =
2/3, k2 = 2, k1 ≥ 15. The minimum rate needed to achieve a risk 2/3 is 1 (by Ŷ = X2). For the estimate-compress
approach, since Ŷ ∼ Unif(Y2) gives a risk 5/6, we have to compressing X1 (by passing it through a symmetric channel with
P{Ŷ = X1} = 1/2) to achieve a risk 2/3, which requires an unbounded rate

I(X; Ŷ ) = H(Ŷ )−H(Ŷ |X1) = log k1 −
1

2
log(k1 − 1)− 1

2
.

Figure 4 compares the optimal scheme, the lower bound obtained from the optimal risk-information tradeoff (11), the
upper bound of the optimal rate by Theorem 1, and the risk-information tradeoff for the estimate-compress approach (13) for
q1 = 1− q2 = 2/3, k1 = 232, k2 = 2. Note that the optimal scheme is to perform time sharing (using common randomness)
between encoding X1 using 32 bits with risk 1/3, encoding X2 using 1 bit with risk 2/3, and fixing the output at one value
of X2 using 0 bit with risk 5/6. The mutual information needed by the estimate-compress approach (which is a lower bound
on the actual rate needed by this approach) is strictly greater than the optimal rate (except when the risk is at its minimum
1/3 or maximum 5/6).
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