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Abstract

The classical problem of supervised learning is to infer an accurate predictor of a target variable Y from a measured variable
X by using a finite number of labeled training samples. Motivated by the increasingly distributed nature of data and decision
making, in this paper we consider a variation of this classical problem in which the prediction is performed remotely based on a
rate-constrained description M of X. Upon receiving M, the remote node computes an estimate Y of Y. We follow the recent
minimax approach to study this learning problem and show that it corresponds to a one-shot minimax noisy source coding problem.
We then establish information theoretic bounds on the risk-rate Lagrangian cost and a general method to design a near-optimal
descriptor-estimator pair, which can be viewed as a rate-constrained analog to the maximum conditional entropy principle used in
the classical minimax learning problem. Our results show that a naive estimate-compress scheme for rate-constrained prediction
is not in general optimal.

I. INTRODUCTION

The classical problem of supervised learning is to infer an accurate predictor of a target variable Y from a measured variable
X on the basis of n labeled training samples {(X;,Y;)}?; independently drawn from an unknown joint distribution P. The
standard approach for solving this problem in statistical learning theory is empirical risk minimization (ERM). For a given set
of allowable predictors and a loss function that quantifies the risk of each predictor, ERM chooses the predictor with minimal
risk under the empirical distribution of samples. To avoid overfitting, the set of allowable predictors is restricted to a class
with limited complexity.

Recently, an alternative viewpoint has emerged which seeks distributionally robust predictors. Given the labeled training
samples, this approach learns a predictor by minimizing its worst-case risk over an ambiguity distribution set centered at
the empirical distribution of samples. In other words, instead of restricting the set of allowable predictors, it aims to avoid
overfitting by requiring that the learned predictor performs well under any distribution in a chosen neighborhood of the empirical
distribution. This minimax approach has been investigated under different assumptions on how the ambiguity set is constructed,
e.g., by restricting the moments [1], forming the f-divergence balls [2] and Wasserstein balls [3]] (see also references therein).

In these previous works, the learning algorithm finds a predictor that acts directly on a fresh (unlabeled) sample X to
predict the corresponding target variable Y. Often, however the fresh sample X may be only remotely available, and when
designing the predictor it is desirable to also take into account the cost of communicating X . This is motivated by the fact that
bandwidth and energy limitations on communication in networks and within multiprocessor systems often impose significant
bottlenecks on the performance of algorithms. There are also an increasing number of applications in which data is generated
in a distributed manner and it (or features of it) are communicated over bandwidth-limited links to a central processor to
perform inference. For instance, applications such as Google Goggles and Siri process the locally collected data on clouds. It
is thus important to study prediction in distributed and rate-constrained settings.

In this paper, we study an extension of the classical learning problem in which given a finite set of training samples,
the learning algorithm needs to infer a descriptor-estimator pair with a desired communication rate in between them. This
is especially relevant when both X and Y come from a large alphabet or are continuous random variables as in regression
problems, so neither the sample X nor its predicted value of Y can be simply communicated in a lossless fashion. We adopt
the minimax framework for learning the descriptor-estimator pair. Given a set of labeled training samples, our goal is to
find a descriptor-estimator pair by minimizing their resultant worst-case risk over an ambiguity distribution set, where the
risk now incorporates both the statistical risk and the communication cost. One of the important conclusions that emerge
from the minimax approach to supervised learning in [1] is that the problem of finding the predictor with minimal worst-
case risk over an ambiguity set can be broken into two smaller steps: (1) find the worst-case distribution in the ambiguity
set that maximizes the (generalized) conditional entropy of Y given X, and (2) find the optimal predictor under this worst-
case distribution. In this paper, we show that an analogous principle approximately holds for rate-constrained prediction. The
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descriptor-estimator pair with minimal worst-case risk can be found in two steps: (1) find the worst-case distribution in the
ambiguity set that maximizes the risk-information Lagrangian cost, and (2) find the optimal descriptor-estimator pair under this
worst-case distribution. We then apply our results to characterize the optimal descriptor-estimator pairs for two applications:
rate-constrained linear regression and rate-constrained classification. While a simple scheme whereby we first find the optimal
predictor ignoring the rate constraint, then compress and communicate the predictor output, is optimal for the linear regression
application, we show via the classification application that such an estimate-compress approach is not optimal in general. We
show that when prediction is rate-constrained, the optimal descriptor aims to send sufficiently (but not necessarily maximally)
informative features of the observed variable, which are at the same time easy to communicate. When applied to the case
in which the ambiguity distribution set contains only a single distribution (for example, the true or empirical distribution of
X,Y) and the loss function for the prediction is logarithmic loss, our results provide a new one-shot operational interpretation
of the information bottleneck problem. A key technical ingredient in our results is the strong functional representation lemma
(SFRL) developed in [4], which we use to design the optimal descriptor-estimator pair for the worst-case distribution.

Notation

We assume that log is base 2 and the entropy H is in bits. The length of a variable-length description M € {0,1}* is
denoted as |M|. For random variables U, V, denote the joint distribution by Py and the conditional distribution of U given
V by Py|y. For brevity we denote the distribution of (X,Y’) as P. We write Ip(X; Y) for I(X;Y) when (X,Y) ~ P, and
PY|  1s clear from the context.

II. PROBLEM FORMULATION

We begin by reviewing the minimax approach to the classical learning problem [1].

A. Minimax Approach to Supervised Learning

Let X € X and Y € Y be jointly distributed random variables. The problem of statistical learning is to design an accurate
predictor of a target variable Y from a measured variable X on the basis of a number of independent training samples
{(X;,Y;)}, drawn from an unknown joint distribution. The standard approach for solving this problem is to use empirical
risk minimization (ERM) in which one defines an admissible class of predictors F that consists of functions f : X — )> (where
the reconstruction alphabet 3> can be in general different from ))) and a loss function £ : ji x Y — R. The risk associated with
a predictor f when the underlying joint distribution of X and Y is P is

L(f’ P) £ EP[E(f(X%Y)]

ERM simply chooses the predictor f,, € F with minimal risk under the empirical distribution P, of the training samples.
Recently, an alternative approach has emerged which seeks distributionally robust predictors. This approach learns a predictor
by minimizing its worst-case risk over an ambiguity distribution set I'(P,), i.e.,
= i L(f, P 1
fn argmin  max (f, P), (D
where f can be any function and I'(P,) can be constructed in various ways, e.g., by restricting the moments, forming the
f-divergence balls or Wasserstein balls. While in ERM it is important to restrict the set F of admissible predictors to a
low-complexity class to prevent overfitting, in the minimax approach overfitting is prevented by explicitly requiring that the
chosen predictor is distributionally robust. The learned function f,, can be then used for predicting Y when presented with
fresh samples of X. The learning and inference phases are illustrated in Figure
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Fig. 1. Minimax approach to supervised learning.



B. Minimax Learning for Remote Prediction

In this paper, we extend the minimax learning approach to the setting in which the prediction needs to be performed based
on a rate-constrained description of X. In particular, given a set of finite training samples {(X;,Y;)}" ; independently drawn
from an unknown joint distribution P, our goal is to learn a pair of functions (e, f), where e is a descriptor used to compress
X into M = e(X) € {0,1}* (a prefix-free code), and f is an estimator that takes the compression M and generates an
estimate Y of Y. See Figure |2

Let R(e, P) £ Ep[|e(X)|] be the rate of the descriptor e and L(e, f, P) £ Ep[{(f(e(X)),Y)] be the risk associated with
the descriptor-estimator pair (e, f), when the underlying distribution of (X,Y") is P, and define the risk-rate Lagrangian cost
(parametrized by A > 0) as

L}\(e,f,P):L(e,f,P)+>\R(6,P). (2)

Note that this cost function takes into account both the resultant statistical prediction risk of (e, f), as well as the communication
rate they require. The task of a minimax learner is to find an (e, f,,) pair that minimizes the worst-case L) (e, f, P) over the
ambiguity distribution set T'(P,), i.e.,

(ens fn) = argmin max Lx(e, f, P), 3)
for an appropriately chosen I'(P,) centered at the empirical distribution of samples P,,. Note that we allow here all possible
(e, f) pairs. We also assume that the descriptor and the estimator can use unlimited common randomness W which is
independent of the data, i.e., e and f can be expressed as functions of (X, W) and (M, W), respectively, and the prefix-
free codebook for M can depend on W. The availability of such common randomness can be justified by the fact that in
practice, although the inference scheme is one-shot, it is used many times (by the same user and by different users), hence the
descriptor and the estimator can share a common randomness seed before communication commences without impacting the
communication rate.

Learning:
n (en7 fn)
{(X;,Y))}iey >P, »>[(P,) > Learner- >
Inference:
X M = e, (X) Y = fu(M)
> €p > fn >

Fig. 2. Minimax learning for remote prediction.

IIT. MAIN RESULTS

We first consider the case where I' consists of a single distribution P, which may be the empirical distribution P, as in
ERM. Define the minimax risk-rate cost as
L3 (T) = inf sup Ly(e, f, P). 4)
(e.f) Per

While it is difficult to minimize the risk-rate cost directly, the minimax risk-rate cost can be bounded in terms of the mutual
information between X and Y.

Theorem 1. Let ' = {P}. Then

L3> inf (E [0V, )] +M(X;51)),
PY\X
L3 < inf (E [, v)] + X (10X ) + log(1(X;¥) +1) +5) ).
Y|Xx
As in other one-shot compression results (e.g., zero-error compression), there is a gap between the upper and lower bound.
While the logarithmic gap in Theorem [1]is not as small as the 1-bit gap in the zero-error compression, it is dominated by the
linear term I(X;Y") when it is large.
To prove ’I:heorem we use the strong functional representation lemma gjven in [4] (also see [S], [6]): for any random
variables XY, there exists random variable W independent of X, such that Y is a function of (X, W), and

HY|W) < I(X;Y) +1log(I(X;Y) + 1) + 4. (5)



Here, W can be intuitively viewed as the part of Y which is not contained in X. Note that for any W such that Y is a function
of (X, W) and W is independent of X, H(Y|W) > I(X;Y). The statement (3) ensures the existence of an W, independent
of X, which comes close to this lower bound, and in this sense it is most informative about Y. This is critical for the proof
of Theorem (1| as we will see next. Identifying the part of Y which is not contained in X allows us to generate and share
this part between the descriptor and the estimator ahead of time, eliminating the need to communicate it during the course of
inference. To find W, we use the Poisson functional representation construction detailed in [4].

Proof of Theorem ' Recall that Y = f(e(X, W), W). The lower bound follows from the fact that Ip(X;Y) < Hp(M) <
E[|M]]. To establish the upper bound, fix any Py . Let W be obtained from (5). Note that W is independent of X and can be
generated from a random seed shared between the descriptor and the estimator ahead of time. For a given w, take m = e(x, w)
to be the Huffman codeword of g(x,w) according to the distribution P&"/|W('|w) (recall that Y is a function of (X, W)), and
take f(m,w) to be the decoding function of the Huffman code. The expected codeword length

E[M|<HY|W)+1<I(X;Y)+log(I(X;Y)+1) +5.
Taking an infimum over all PY|  completes the proof. [ ]

Remark 1. If we consider the logarithmic loss £(¢,y) = —log §(y), where § is a distribution over ), then the lower bound
in Theorem [1] reduces to

inf (HY|U)+M(X;U))=H(Y)+ inf (A\[(X;U)—-1(Y;U)),

Py x Py x

which is the information bottleneck function [7]. Therefore the setting of remote prediction provides an approximate one-shot
operational interpretation of the information bottleneck (up to a logarithmic gap). In [§]], [9] it was shown that the asymp-
totic noisy source coding problem also provides an operational interpretation of the information bottleneck. Our operational
interpretation, however, is more satisfying since the feature extraction problem originally considered in [7] is by nature one-shot.

We now extend Theorem |1|to the minimax setting.

Theorem 2. Suppose T is convex. Then
L} > inf sup (Ep [E(Y/,Y)] + /\IP(X;XA/))
Py x Per
Ly < inf sup (Ep [E(Y/,Y)]
Py x Per
A (IP(X; V) 4 2log(Ip(X; V) + 1) + 6) )

This result is related to minimax noisy source coding [10]. The main difference is that we consider the one-shot expected
length instead of the asymptotic rate.

To prove this theorem, we first invoke a minimax result for relative entropy in [[11] (which generalizes the redundancy-
capacity theorem [12]). Then we apply the following refined version of the strong functional representation lemma that is
proved in the proof of Theorem 1 in [4] (also see [S]).

Lemma 1. For any PY\X and Py, there exists random variable W, and functions k(x,w) € {1,2,...} and §(k,w) such that
§(k(a, W), W) ~ Py, (o), and ~
E [log k(z, W)] < D(Pyx (-|z) || Py) + 1.6. (6)

We are now ready to prove Theorem R
Proof: The lower bound follows from Ep[|M|] > Hp(M) = Ip(X;Y). To prove the upper bound, we fix any Py .,
and show that the following risk-rate cost is achievable:

L' = sup (Ep [e(Y,Y)}
Pel’
A (Ip(X; V) 4+ 2log(Ip(X; V) + 1) + 6) )

Let
o(P.Py) = (17 1)) + A [ D(Py x| Pr)aPle)

+ 210g</ D(Py e, || By )dP (@) + 1) + 6>.



Note that g is concave in P for fixed ]55; since EPJE(SACY)} and fD(PY|X:m H P{,)dp(l‘) are linear in P. Also g is
quasiconvex in ]5? for fixed P since [ D(PY‘ X H P}A,)dP(m) is convex in 15};, and is lower semicontinuous in ]5)», since

D (PY| x—x || Py) is lower semicontinuous with respect to the topology of weak convergence [13], and hence [ D(PY‘ v—n || Py )dP(x)
is lower semicontinuous by Fatou’s lemma. A

Write Py x o P for the distribution of ¥* when (X,Y)~Pand Y{X =z} ~ Py y(-|v). Let I'y ={PyyoP: Pel}
and I'y. be the closure of I'y in the topology of weak convergence. It can be shown using the same arguments as in [11] (on g
instead of relative entropy, and using Sion’s minimax theorem [14] instead of Lemma 2 in [11]]) that if I'y- is uniformly tight,

then there exists P; € I'y such that

sup g(P, ]5;) = supinf g(P, Py) = L.
Perll Pel’ Py

If I'y is not uniformly tight, then by Lemma 4 in [11], suppcpinfp fD(P1?|X:z H Py)dP(:r) = 00, and hence L' =

~ Y
SUpper infls? g(P,Py) = oo.
Applying Lemma |1} to Py, PZ we obtain W independent of X, random variable K = E(X, W) € {1,2,...}, and
Y = (K, W) following the conditional distribution Py . and
Ellog K| X =a] < D(Pyx || PE | X =) + 1.6
for any x. Then we use Elias delta code [15] for K to produce M. Note that the average length of the Elias delta code is
upper bounded by log K + 2log (log K + 1) + 1. Hence, we have

Ep[|M|] <Epllog K]+ 2log (Ep[log K]+ 1) +1
< [ Dy, | Pp)aPl)

+ 2log (/D(PYX_z || P;;)dP(x) + 1> + 6.
Hence

L3 <sup (Ep [0V, V) + AM||) < sup g(P, Py) < L.
Per Per

) |

Theorem suggest that we can simplify the analysis of the risk-rate cost (2) Ly = Ep [6 (Y, Y)} + AEp [|M]] by replacing

the rate Ep [[M]] with the mutual information Ip(X;Y). Define the risk-information cost as

La(Py . P) = Ep [((V,Y)] + Mp(X; V). )
Theorem |2 implies that the minimax risk-rate cost L} can be approximated by the minimax risk-information cost
L3(T) = inf sup Ly(Py x, P), (8)
Py x per

within a logarithmic gap. Theorem 2| can also be stated in the following slightly weaker form
Ly < Ly < Ly 42X\ log(AML5 + 1) + 7\

The risk-information cost has more desirable properties than the risk-rate cost. For example, it is convex in PY\  for fixed P,
and concave in P for fixed Py ,. This allows us to exchange the infimum and supremum in Theorem [2| by Sion’s minimax
theorem [14], which gives the following proposition.

Proposition 1. Suppose X, YV and )7 are finite, " is convex and closed, and \ > 0, then
Li(T) = inf sup Ly(Py x,P)=sup inf Ly(Py x,P).
PY\X pPel PGI‘P{qX

Moreover, there exists P; attaining the infimum in the left hand side, which also attains the infimum on the right hand side

| X
when P is fixed to P*, the distribution that attains the supremum on the right hand side.

Proposition |1| means that in order to design a robust descriptor-estimator pair that work for any P € I', we only need to
design them according to the worst-case distribution P* as follows.
Principle of maximum risk-information cost: Given a convex and closed I', we design the descriptor-estimator pair based
on the worst-case distribution R

P — argmaxpinf L)\(PY‘X,P).
Pel’ Y|Xx

We then find Py that minimizes L ’\(PY’I > P*) and design the descriptor-estimator pair accordingly, e.g. using Lemma
on PY\  and the induced distribution P}i‘j from PY\ y and P~



I[V. APPLICATIONS
A. Rate-constrained Minimax Linear Regression
Suppose X € RY, Y € R, £(§,y) = (y — §)? is the mean-squared loss, and we observe the data {(X;,Y;)}",. Take I to
be the set of distributions with the same first and second moments as given by the empirical distribution, i.e.,
I'= {ny s E[X] = px, E[Y] = py, Var[X] = 3x,
Var[Y] = o3, Cov[X, Y] = C'xy}, 9)

where iy, iy, Xx, 0%, Cxy are the corresponding statistics of the empirical distribution. The following proposition shows
that P* is Gaussian.

Proposition 2 (Linear regression with rate constraint). Consider mean-squared loss and define I' as in @i Then the minimax
risk-information cost is

5 T -1 \ 2¢05%v 5% Oxy ,\loge T y-1
oy — CxyXx Oxy + 5 log =257 if < OxyEx Cxy

L = (10)
A O’% lf)\loge > CT )_(ICXYa

where the optimal Py, is Gaussian with its mean and covariance matrix specified in , and the optimal estimate

o aCLy I X +b+ Z  if2ese « o, w3 Oxy
0% if M98 > C%y Sx' Cxy,
where
Moge

a=1-—""2"  bh=py—aCk I s
QC';‘EYZ;(IC'XY Hy Xy &x Mx

and Z ~ N(0, 0%) is independent of X with o3, = %_

Note that this setting does not satisfy the conditions in Propoqmonl 1} We directly analyze to obtain the optimal Py, .
Given the optimal Py, Theorem and Lemma can be used to construct the scheme. Operationally, e, (z,w) is a random
quantizer of aCxy Xy X + b such that the quantization noise follows N(0, 0%). With this natural choice of the ambiguity set,
our formulation recovers a compressed version of the familiar MMSE estimator.

Figure plots the tradeoff between the rate and the risk when d = 1, ux = py = 0, U.%c = a?, =1, Cxy =095
for the scheme constructed using the Poisson functional representation in [4], with the lower bound given by the minimax
risk-information cost L%, and the upper bound given in Theorem

16 :
3 . . .
: — Poisson functional representation
14 E
i --- Lower bound
]
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|
104 '
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Fig. 3. Tradeoff between the rate and the risk in rate-constrained minimax linear regression.

Proof of Pmpmmonl Without loss of generality, assume gy = 0 and gy = 0. We first prove “< 7 in . For this,

fix Py\x as given in the proposition and consider any P € I'. When &EL < CL, Tx 'Cxy, we have

Ep [ﬁ(f/,Y] _ Ep[ ]
/\loge

nyz ny, and



Therefore,

inf sup (Ep [E(Y,Y)] + /\Ip(X;f/)) < R.H.S. of (10).
Pyx per

It can also be checked that the above relation holds when % > C;YE; Cxy, and thus we have proved “< ” in (I0).
To prove “> ” in (10), fix a Gaussian Pxy with its mean and covariance matrix specified in (9) and consider an arbitrary
PY|X' We have

Ep V(?,Y)} —Ep [(Y - Y)ﬂ
=02 — X, S5 Cxy +Ep [(Yf - c;cyz;;xﬂ , and
Ip(X; V) = Ip (Chky S X5 V)
> h (ChySx'X) = b (CySx'X — 1)
1

. 1 ; _
> 3 log Cky By Oxy — 5 logEp [(Y - c;szlxﬂ .

Letting v = Ep {(f/ - C’%YE;CIX)Q}, we have
Ep [z(?, Y)] T AR(X;Y)

Mlog~y
2

_ A _
> 032/ — ngylecxy + 5 log ngylecxy +v—
> R.H.S. of (10),

where the second inequality follows by evaluating the minimum value of v — %. Combing this with the above completes
the proof of Proposition [ ]

The optimal scheme in the above example corresponds to compressing and communicating the minimax optimal rate-
unconstrained predictor Y = C’%YE;CI(X — px) + py, since the optimal Y can be obtained from Y by shifting, scaling and
adding noise. This estimate-compress approach can be thought as a separation scheme, since we first optimally estimate Y,
then optimally communicate it while satisfying the rate constraint. In the next application, we show that such separation is not
optimal in general.

B. Rate-constrained Minimax Classification
We assume ) = )V = {1,...,k} and X are finite, £(§j,y) = 1{§ # y}, and T is closed and convex. The following
proposition gives the minimax risk-information cost and the optimal estimator.

Proposition 3. Consider the setting described above. The minimax risk-information cost is given by

f& = sup (1 + Ainf Ep (— 1ng 2>\1PYX(y|X)I3{/(Z/))> )
Per Py y

the worst-case distribution P* is the one attaining the supremum, and the optimal estimator is given by P;;‘ X(g}|x) x

2)\—1P;}|X(?9|90)]5;(Q), where I:’;; attains the infimum (when P = P*), and P}*,IX is obtained from P*.
In particular, if I' is symmetric for different values of Y (i.e., for any y1,ys € ), there exists permutation 7 of Y, T of X
such that m(y1) = y2 and Pxy €' < P.(x) ~(v) €T),

L} = sup (1 + Mogk — AEp <logz 2>‘_1PYX(?/|X))>.
Per ”

We can see that when A — 0, P} _ tends to the maximum a posteriori estimator (under P*, the worst-case distribution

VX
when \ = 0).



Proof: Assume I' is closed and convex. By Proposmon the minimax rate-information cost is L% } = suppcrinfp Py x L /\(PY| P),
where
inf Lx(Py |, P)
Y|X
= inf (Ep [z(?,Y)} +AIP(X;1>)>
Y|X
= inf (P{Y # Y}+/\ipf/D(PmX:x HIE’Y)dP(x))
P?'|X P{, ’
= _inf (P{Y #Y} +A/D(PY|X:I | I?’Y)dP(x)>
vy x
PyixwlX)
=1+X_inf Ep Py« (y|X) 1g7—/\ Py x (y|X)
Py Py x (Z | Py )
Y\x(l/|X) A1 Py x (51X) o
=1+ Ainf inf Ep Py (y|X) [ log == = — —log ) 2 vix{y o (1)
Py Pyix <Z | A7 Prix(WX) B (y) )/ X, 2 Py ix (1) B (y) zy:
@14+ NinfEp < log Y 2% Pyx(y'X)Py(y)) ,
where (a) is due to that relative entropy is nonnegative, and equality is attained when PY‘ «(ylz) o< oA Pyix (ylX )ﬁy(y).
Next we consider the case in which I' is symmetric. Consider the minimax rate-information cost
L% = inf sup f’/\(Pi/\X7P) = inf sup (Ep [E(Y,Y)} + )\Ip(X;f/)).
Py x per Py \x per
For any ¢,j € Y = {1,...,k}, let m;; be the permutation over Y such that m;;(¢) = j and let 7;; be the corresponding
permutation over X in the symmetry assumption. Since the function
Pf/lx — sup ‘Z’A(PY\X’ P)
pPer
is convex and symmetric about 7;; and 7;; (i.e., SUppcr ZNL,\(PY‘X,P) = SuPper i/\(Pm]Ym +»P)), to find its infimum,
we only need to consider PY‘ xS satisfying PY| x = Pm,Y|T y for all ¢, (if not, we can instead consider the average of
P7r Ve X for a from 1 up to the product of the periods of m;; and 7;;, which gives a value of the function not larger than
that of PY| ). For brevity we say Py Vix is symmetric if it satisfies this condition.
Fix any symmetric PY\ - Since the function
P — L/\(PY|X7P)
is concave and symmetric about 7;; and 7;; (i.e., iA(Pqu’ Pxy)= 1~L>\(Pf,|X, Py, x x,;v)), to find its supremum, we only
need to consider symmetric P’s. Hence,
Li = inf sup I~/A(P§,‘X,P)
PY|X Symm. Pelsymm.
= inf sup (Ep {E(Y, Y)} + Mp(X; Y))
P‘{f|x Symm. Pl symm.
= inf sup (P{Y#Y}—i-/\(logk—Hp(YX)))
P§/|X symm. Pel symm.
—1+Alogk+A inf sup  Ep (Z v x (1) (logPYIX(y|X) _ A—lPYX(y|X))>
Py | x symm. pel symm.
Py x (yX) -
— : . Y|X _ AT Py x (y]X)
L+ Alogh+A Pylfgmm Peﬁﬁfmm Ep (Z Py x (y1X) log PPy (W) /S AT Py x (W) log Z 2
: Y Yy Yy
> 1+)\logk—|—)\ inf sup Ep —logZ2/\71PYlX(y‘X)
Py x symm. pel symm. v

= sup <1+)\10gk—)\EplogZQ>‘1PY|x(y|X)> 7

Pel's .
€l’symm "



where the inequality is because relative entropy is nonnegative (and equality is attained when Pf,‘ X(y\a:) x 2/\71PY\X(Q|OB))_
Note that

1 logk — ANEpl E A" Pyix(WlX) — ipf

+ )\ og p log F}n

Y|X

(P{Y Y} + Mlogk — HP(Y/|X)))

is an infimum of affine functions of P, hence it is concave in P. Also it is symmetric about 7 and 7, hence

Ly >  sup (1 + Moghk — AEplog » 2“PYX<y|X>>

~ Pper )
cl’symm y

— sup <1 +Alogk — AEp 1og22“Pv|x<yX>> .
Pel "

The other direction follows from setting Py (y) = 1/k. [ |

To show that the estimate-compress approach is not always optimal, let £(§,y) = 1{§ # y}, Y = Y1 UVs, where Y1NYe =0
and |Y;| = k; is finite. Let I' = {P}, where P is such that (X7, X3) ~ Unif(}; x V»), and Y = X; with probability ¢; for
i = 1,2. By Proposition |3, the optimal risk-information cost is

1- Alogmax{i(leql 41, L@ e g 1}, (11)
k1 ko
and the optimal estimator is
-1
st =0
Pf;le)Xz(Q\xl,xg) = m 1f@€yl\{11} (12)
0 ifge s

if é(2’\71q1 -1)+1> é(?\fl‘” — 1) + 1, and similar for the other case. Assume i > g, then the optimal MAP estimate
is Y = X;. An estimate-compress approach would either communicate a compressed version of Y = X; as in (12), or output
any element in ), (giving a risk 1 — gok5 1). The risk-information cost achieved by this approach is
min{1 — Mog<ki(2”1m —1)+ 1), 1- qgkgl} —1- /\logmax{ki(?‘_lql 1) 41,2 ek } (13)
1 1
Now, if k1 > ko, the optimal rate constrained descriptor communicates a lossy version of X5 instead, and the risk of estimate—
compress in is larger than (I1).

Moreover, the gap between the rates needed by the two approaches for a fixed risk can be unbounded. Take ¢ = 1 — g2 =
2/3, ko = 2, k; > 15. The minimum rate needed to achieve a risk 2/3 is 1 (by Yy = X5). For the estimate-compress
approach, since Y ~ Unif ()2) gives a risk 5/6, we have to compressing X7 (by passing it through a symmetric channel with
P{Y = X;} = 1/2) to achieve a risk 2/3, which requires an unbounded rate

I(X;Y)=H(Y)—HY|X,) =logk — %mg(/ﬁ -1) - %

Figure [4] compares the optimal scheme, the lower bound obtained from the optimal risk-information tradeoff (II), the
upper bound of the optimal rate by Theorem |1} and the risk-information tradeoff for the estimate-compress approach for
G =1—q=2/3, k1 = 232 ky = 2. Note that the optimal scheme is to perform time sharing (using common randomness)
between encoding X using 32 bits with risk 1/3, encoding X using 1 bit with risk 2/3, and fixing the output at one value
of X5 using 0 bit with risk 5/6. The mutual information needed by the estimate-compress approach (which is a lower bound
on the actual rate needed by this approach) is strictly greater than the optimal rate (except when the risk is at its minimum
1/3 or maximum 5/6).
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