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Abstract

A kernel polynomial method (KPM) is developed to calculate the random phase approximation
(RPA) correlation energy. In the method, the RPA correlation energy is formulated in terms of
the matrix that is the product of the Coulomb potential and the density linear response functions.
The integration over the matrix’s eigenvalues is calculated by expanding the density of states of
the matrix in terms of the Chebyshev polynomials. The coefficients in the expansion are obtained
through stochastic sampling. Since it is often the energy difference between two systems that is of
much interest in practice, another focus of this work is to develop a correlated sampling scheme to
accelerate the convergence of the stochastic calculations of the RPA correlation energy difference
between two similar systems. The scheme is termed the atom-based correlated sampling (ACS).
The performance of ACS is examined by calculating the isomerization energy of acetone to 2-
propenol and the energy of the water-gas shift reaction. Using ACS, the convergences of these two
examples are accelerated by 3.6 and 4.5 times, respectively. The methods developed in this work
are expected to be useful for calculating RPA-level reaction energies for the reactions that take
place in local regions, such as calculating the adsorption energies of molecules on transition metal

surfaces for modeling surface catalysis.



I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT)"? is widely used for calculating the
properties of molecules and materials. Its accuracy is determined by the approximation used
for the exchange-correlation (XC) functional. Local density approximation and generalized
gradient approximation suffer from the self-interaction error.®* Hybrid functionals partially
resolve the self-interaction error by containing a fraction of the exact exchange (EXX).5 To
go beyond hybrid functional, one can combine EXX with a compatible correlation energy
functional. The random phase approximation (RPA) correlation energy® '3, derived based

on the adiabatic connection fluctuation and dissipation theorem,®®

is a good candidate,
since the RPA correlation largely screens the long-range exchange interaction in metallic
systems. This makes EXX+RPA applicable to both metallic and non-metallic systems.
DFT calculations based on EXX+RPA have been shown to give reasonable predictions
to many challenging problems, such as the a-v phase transition of cerium!* and the CO

adsorption on transition metals.!®

One obstacle in the widespread use of the RPA correlation energy is its high compu-
tational cost and steep computational scaling. Conventional implementations of the RPA
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correlation energy scale as O(N*), where N denotes the number of electrons. Recently,

0 and Gaussian basis functions?!

cubic-scaling implementations based on Green’s function?
were demonstrated. To further reduce the computational scaling, Kally developed a linear-
scaling RPA method?? based on the cluster-in-molecule method?®. Ochsenfeld and coworkers
also developed a linear-scaling RPA method by formulating the RPA correlation energy in
terms of the atomic orbitals through a double-Laplace transformation.?*?® These linear-
scaling methods are suitable for calculating the relative energy between two systems that

only differ much in a local region. In this work, we also focus on calculating the relative

energy between two similar systems.

Different from aforementioned deterministic approaches, Neuhauser and coworkers de-
veloped a stochastic approach to calculate the RPA correlation energy.?® The cost of their
method scales linearly with the system’s size for achieving a fixed error in total energy per
electron. One advantage of stochastic methods is that one can stop the stochastic sampling
whenever the sampling error drops below a given threshold. This make stochastic methods

suitable for calculating the energy difference between two systems that only differ much



in the region of interest. By performing the correlated sampling, the error does not grow
with the system’s size but is determined by the size of the region of interest.?® We note that
stochastic methods have also been developed for other electronic structure calculations, such
as the GW method,?” KS-DFT,?® the Bethe-Salpeter equation,?” time-dependent DFT,3° the
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second-order Mgller-Plesset perturbation theory,' and the Hartree-Fock exchange.3?

In this work, we develop a new stochastic method for calculating the RPA correlation
energy. The method is formulated based on the kernel polynomial method (KPM)?337 and
is termed RPA-KPM. Our method is different from Ref.?® by how the RPA correlation is
formulated. In our method, the RPA correlation energy is written in terms of the eigenvalues
{z;} of the matrix v/ 2X0(iu)vg/ ? where yo(iu) is the KS linear response at the imaginary
frequency u and v.(r,r’) = 1/|r —r’| is the Coulomb potential. The density of states (DOS)
for the eigenvalues is then stochastically evaluated using KPM. As demonstrated in this
work, the absolute RPA correlation energies converge slowly with respect to the number of
samplings. Instead, in this work we focus on computing the RPA energy difference between
two similar systems that only differ much in the region of interest. Such scenarios are often
encountered in practice when reactions take place in a local region. Since RPA correlation
is more accurate for isogyric processes, our stochastic RPA method is recommended for
studying isogyric processes.

Correlated sampling is a common technique for accelerating the convergence of sampling.
For the case that the atoms from two systems have similar coordinates, a correlated sampling
can be performed to accelerate the convergence of energy-difference calculations, by employ-
ing the same sequence of random numbers for computing the two systems’ RPA correlation
energies.? However, in the region of interest the atoms from the two systems can have very
different coordinates due to the chemical reaction, and therefore the correlated sampling
cannot be performed. One goal of this work is to develop a method to accelerate the RPA
energy difference calculations by partially restoring the correlation sampling. The method is
termed the atom-based correlated sampling (ACS). With ACS, a system is roughly divided
into two regions: (a) the atomic regions near nuclei and (b) the bond regions. With ACS,
the samplings in the atomic regions between two systems are correlated, which effectively
reduces the sampling error. The implementation of ACS is simple and only requires ad-

ditional RPA-KPM calculations on atoms. Compared to RPA-KPM calculations on entire

systems, the cost of ACS becomes negligible for large systems.



The paper is organized as follows. We first formulate the RPA correlation energy in the
framework of KPM. We then discuss the ACS scheme. The performance of RPA-KPM with
and without using ACS is examined by calculating the RPA correlation energy difference for
two cases: (a) the isomerization of acetone to 2-propenol and (b) the energy of the water-
gas shift reaction. For both cases, convergence is much accelerated by ACS. ACS is then
examined in detail with a Hg chain. In the end, the computational cost of RPA-KPM, ACS,

and the stochastic method developed in Ref.?6 are analyzed.

II. THEORETICAL METHODS

A. RPA correlation energy formulated in the framework of KPM

The RPA correlation energy is™:3®

1 x
ECRPA = %/ duTr[In(1 — xo(r, v’;iu)v.) + xo(r, v';iu)v,], (1)
0

where v.(r,r’) = 1/|r — 1’| is the Coulomb potential. xo(r,r’;iu) is the KS linear response
function at the imaginary frequency iu and can be explicitly expressed in term of KS orbitals

({¢;(r)}), eigenvalues ({¢;}), and occupation numbers ({f;}) as

Xo(r,r'siu) = 2 Z Z(fj - fk)¢;<r>¢k<r)¢z<r )95t )7 (2)

€ — €+ iu

where indices j and k loop over all the KS orbitals. Non-spin-polarized case is considered

in this work. Tr[...] in Eq. 1 represents

Tr[AB] = / / drdr’ A(r,v')B(r,r').

Due to the fact the trace is invariant under cyclic permutations, xov. in Eq. 1 can be replaced
by ve!2yove’?, which is denoted by M in this work, that is, M (i) = v *yolin)ve>.
To formulate the RPA correlation energy using KPM, we write it in terms of the density

of states (DOS), p(x;u), for M’s eigenvalues

1 [ 0
B = %/0 du/ p(z;u)[In(1 — x) + x]dx, 3)

where x is M’s eigenvalue and z,;, is the lowest eigenvalue. The upper limit of the integral is

zero, since M is semi-negative definite. In order to expand p(z;u) in terms of the Chebyshev
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polynomials, we need to rescale M such that its eigenvalues are inside (—1, 1), which is

achieved with the linear transformation
M = (M —b)/a, (4)
with the scaling parameters a and b defined as
a = (Tmax — Tmin)/(2 — )
b= (Tmax + Tmin)/2, (5)

where . and x,;, are the maximum and minimum eigenvalues of M. In this work, xy,
is calculated using the conjugate gradient method. x,. is set to zero. The parameter ¢ is
a small positive number to make sure that all M'’s eigenvalues are inside (-1,1). 4 is set to

0.01 in this work. The RPA correlation energy can then be written in terms of M’s DOS as
RPA Cdu [P ~ ~ ~
EF" = Py p(z;u)[In(1 — (aZ + b)) + az + b]dz, (6)
0o 4TJ

where 7 is the eigenvalue of M. 7 is the DOS of M and is related to p as p(7;u) = ap(z; u).
p is expanded using the Chebyshev polynomials

N,
o 1 — -
A= 125 g To(@) ], 7
) = — s [ + 22T 7) @)
where {p,} are the moments given by
i = Te[T,(M)]. (8)

T, is the n-th order Chebyshev polynomial. N,, is the number of moments for the expansion.
{g.} are the Jackson kernels®*? for suppressing the Gibbs oscillations in the DOS:
(Nyy —n+ 1) cos 27— + sin "= cot

Npm+1 Npm+1 Np+1
n f— m m m . 9
g N, +1 9)

Inserting Eq. 7 into Eq. 6, the RPA correlation energy becomes

N,
1 e 7
RPA _
EST = o /0 du [9000#0 +2 7?1 gncnlun:| : (10)
where ¢,, is defined as
! 1
Cn (Z)[In(1 — (ax + b)) + (az + b)|dx. (11)

= | —T,
-1 7'('\/1 — %2

Above integration is evaluated using the quadpack program.*!
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B. Stochastic calculation of moments

The key of KPM is to calculate the moments {x,}. Due to the large size of M, in Eq. 8

the trace is evaluated stochastically using the random vectors {|r)} as?

R
L] ~ 5 S TOD) ) (12)

where R is the number of random vectors. Denote the " entry of |r) as &,. {4} is a
random number and satisfy the conditions: ((¢,;)) = 0 and ((§,:£,/;)) = 6,p70;5, where ((--+))
denotes the statistical average with respect to different realizations of random vectors. These
conditions can be satisfied by setting &,; to the normal random numbers with zero mean and
unit variance. In this work, normal random numbers are generated using the Box-Muller
scheme®? in which uniform random numbers are generated using the RAN3 algorithm.*3

Eq. 12 involves calculating the product of T,,(M) and |r), which is calculated using the

three-term recurrence relation of the Chebyshev polynomials

To(M) r) = 2M T,y y(M) |r) = T, 5(M) |r) (13)

1/2

Above equation relies on calculating the product of v/ QXO(iu)vc and a vector. In this

work, the product of ve/? and a vector is evaluated efficiently by transforming both ve!? and

1/

the vector to the Fourier space, since v % is diagonal in the Fourier space. The product of

Yo(iu) and a vector is calculated by solving the Sternheimer equation®* .

C. The atom-based correlated sampling

As demonstrated in later sections, the strength of RPA-KPM is to calculate the RPA
energy difference between two similar systems that have the same composition. Denote the

two systems as system 1 and system 2. Their RPA energy difference is
ABRPA = EIPA _ P, (14)

where ERPA and ERFPA are the RPA correlation energies of the system 1 and the system 2,
respectively. If the atoms in the two systems have similar coordinates, a correlated sampling

can be performed by using the same sequence of random vectors to calculate ERFA and

RPA
EC2 .



However, the correlated sampling cannot be performed, if the atoms in the two systems
have completely different coordinates. To tackle this problem, in what follows we develop
the ACS method. In ACS, additional RPA-KPM calculations are performed on each atom
in both systems. To be specific, let’s consider the atom ¢ in the system 1. We remove all
the atoms in the system 1 except the atom ¢. The atom ¢ is kept at its original position.
We then perform RPA-KPM calculation on this new system that only contains the atom ¢,
employing the sequence of random vectors used for sampling the system 1. The atom ¢ is
set to neutral in the calculation, and the occupation numbers of its KS orbitals are assigned
using the Fermi-Dirac smearing with a smearing temperature of 0.1 eV, which helps the
KS-DFT calculations converge. Such RPA-KPM calculation is performed for all the atoms
in the systems 1. Similarly, we perform RPA-KPM calculations on each atom in the system
2, using the same sequence of random vectors used for the system 2. We then calculate the

RPA correlation contribution to the atomization energy (AE) as

Natom
RPA __ RPA RPA
EAE,l - Ecl - E : Ecl,atomi (15)
=1
Natom
RPA __ RPA RPA
EAE,Z - Ec2 - E : Ec2,atomi7 (16)
=1

ERPA

where 7 runs over all the atoms in each system and Nytom is the number of atoms. Ejy (.

ERPA

and c2,atom;

are the atom ¢’'s RPA correlation energies calculated using RPA-KPM, as
described above. The RPA correlation energy difference between the two systems is then

calculated as

AEg3os = EXpn — EXis. (17)

ABERN2g defined in Eq. 17 converges faster than AEX"™ defined in Eq. 14. The reason
is that, by subtracting the atomic RPA correlation energies in Egs. 15 and 16, we focus
on calculating the bond energy difference between the two systems. In other words, the
correlated sampling is achieved in the atomic regions, but not in the bond regions. To
better understand ACS, let’s consider a limiting case in which all the atoms in the two
systems are well separated. For this case, AERPA calculated using Eq. 17 is always zero, no

matter how many random vectors are used.



D. The reduction of computational cost using ACS

ERPA " which in turn

The goal of ACS is to reduce the standard error from sampling A
reduces the number of random vectors. Due to the central limit theorem, standard error
decreases as 1/v/R, where R is the number of random vectors. The cost reduction (g) is

then related to the standard error as

FACSN 2
q= _( err > 7 (18)

RPA

where 0295 and o, are the standard errors for AE\¢s and AERPA respectively. They are

err

related to the variances as 040 = &4/ Var(AEMNZS) and oer = £+/Var(AERPA). In this

work, ERPA and ERPA are calculated using two different sequences of random vectors for
mimicking the case that the atoms in the two systems have completely different coordinates.

Therefore, ERPA and ERPA are not correlated and we have

Var(AERY) = Var(ERPA) 4 Var(ER™). (19)
Similarly, the variance of AEBE%S is
Var(AENSg) = Var(ERG) + Var(EXLS). (20)
Eq. 18 then becomes
Var(AERLA
g=1- r( c,Acs>‘ (21)
Var(AERPA)

In the ideal case that Var(A 5};‘88) is zero, we have ¢ = 1, which means that the cost

reduction is 100%. This only happens if all the atoms are well separated.

ITII. NUMERICAL DETAILS

The RPA-KPM method is implemented in the ABINIT program?’ (version 7.10.4). In
Eq. 10, the integration over the frequency u is calculated using the Gauss—Legendre quadra-
ture. The upper limit of the integral (umay) is set to 10 a.u.. To have a high density of
the Gauss-Legendre points in the low frequency region, the integration scheme in Ref.*® is
used. The integral [;"™™ f(u)du is first transformed to fol g(t)dt through the variable change
t = exp(—(au)/?) with B = 2. t is in the domain [0,1], and g(¢) = f(u(t))B(—Int)B=1/(at).
The upper limit wy.y is related to a as a = (— Int)? /umay, and « is chosen such that .y

= 10.0 a.u.. The Gauss-Legendre quadrature on fol g(t)dt is performed for ¢ with 16 nodes.
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FIG. 1. Isomerization of (a) acetone to (b) 2-propenol by transferring H6. The oxygen, carbon,

hydrogen atoms are red, brown, and grey, respectively. Figure is made using the VESTA program.>°

IV. RESULTS AND DISCUSSIONS

The performance of RPA-KPM (with and without using ACS) is investigated with three
examples: (1) the energy for the isomerization of acetone to 2-propenol (Fig. 1), (2) the
energy of the water gas shift reaction, and (3) a Hg chain. These systems are first calculated
using the Perdew-Burke-Ernzerhof (PBE)* XC functional, based on which the RPA cor-
relation energies are calculated using RPA-KPM. For all examples, two different sequences
of random vectors are used for system 1 and system 2, to mimic the case that the atoms
from the two systems have very different coordinates. The benchmarks are obtained by
calculating the RPA correlation energies using the method developed in Ref.®, that is,
Tr{In[1 — xo(iu)v:] + xo(iv)v.} is calculated as Ziv:f In(1 — ey) + ex, where {e;} are the

/ZXO(z'u)vcl/

eigenvalues of Ve % and Neig is the number of eigenvalue values. AERPA converges
quickly with respect to Ngg. Nejg is 400 and 800 for the example 1 and the example 2,
respectively. To save the computational cost, low kinetic energy cutoffs are used. Example
1, 2, and 3 are calculated using a kinetic energy cutoff of 200 eV, 400 eV, and 400 eV,

respectively.



TABLE I. The lowest eigenvalues of vé/ 2X0 (1u)ve

1/2

for acetone, 2-propenol, hydrogen, carbon, and

oxygen atoms, for the 16 frequencies. The lower limits zmi, (Eq. 3) are also shown. Atomic units

are used.

n acetone 2-propenol H C O Tmin

1.03 x 1075 -3.077  -2.893  -0.469 -1.200 -1.049 -3.077
2.87 x 107* -3.077  -2.893  -0.469 -1.200 -1.049 -3.077
1.76 x 1072 -3.077  -2.893  -0.469 -1.200 -1.049 -3.077
6.20 x 1073 -3.076  -2.891  -0.469 -1.200 -1.049 -3.076
1.64 x 1072 -3.067  -2.880 -0.468 -1.200 -1.048 -3.067
3.64 x 1072 -3.030  -2.832 -0.465 -1.191 -1.044 -3.030
721 x 1072 -2.907 -2.676 -0.452 -1.166 -1.030 -2.907
1.32 x 107! -2.605  -2.338  -0.420 -1.094 -0.990 -2.605
2.29 x 1071 -2.116  -1.875 -0.356 -0.939 -0.902 -2.116
3.82 x 1071 -1.571  -1.439  -0.270 -0.703 -0.760 -1.571
6.21 x 10~ -1.074  -1.025 -0.186 -0.459 -0.590 -1.074
9.98 x 10~ -0.671  -0.656  -0.118 -0.308 -0.430 -0.671
1.61 -0.382  -0.378  -0.069 -0.190 -0.287 -0.382
2.66 -0.203  -0.204 -0.034 -0.104 -0.166 -0.203
4.68 -0.093  -0.093 -0.016 -0.047 -0.080 -0.093
10.0 -0.026  -0.026  -0.005 -0.013 -0.024 -0.026

A. Isomerization of acetone to 2-propenol

In this example, acetone is treated as the system 1 and 2-propenol is treated as the

system 2. Table I lists the lowest eigenvalues of ve! QXO(iu)vi/ ? for all the 16 frequencies for

acetone, 2-propenol, and each atom. For each frequency, z.,;, is set to the lowest eigenvalue

and is used in all RPA-KPM calculations to achieve a good error cancellation for computing

A ERPA_

Fig. 2(a) shows that the convergence of E,

C

RPA

with respect to the number of moments is

very slow. Fig. 2(b) shows AERPA without using the ACS scheme, and a fast convergence

is observed. With only 10 moments, AERPA converges to within 0.01 eV. The results
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FIG. 2. (a) Convergence of ERPA for acetone and 2-propenol with respect the number of mo-
ments. ERPA is referenced to its value calculated using 50 moments. (b) Convergence of the RPA

correlation energy difference. 10000 random vectors are used in these calculations.

for the case of using ACS are similar and are not shown. Therefore, a small number of
moments can be used for computing AERPA | which much reduces the computational cost.
These observations suggest that RPA-KPM is not very useful for calculating the absolute
RPA correlation energies, but is useful for calculating the RPA correlation energy difference

between two similar systems.

The convergence of the RPA correlation energy with respect to N, is related to the
convergence of DOS with respect to V,,, which is given in Fig. 3. The results are for
u = 1.03 x 107 a.u.. Other frequencies give similar observations and are not shown. For
both molecules, the first ten eigenvalues are marked by the vertical bars. Both p,cetone and
P2—propenol iNCrease quickly as the eigenvalue approaches zero, due to the fact that most

/2 are close to zero. The resolution of DOSs are determined by

eigenvalues of vy’ *Yo(iu)ve
N,,. As N,, increases, the peaks associated with these eigenvalues become clear. The
convergence of both p,cetone and pPa_propenol 1S very slow, which explains the slow convergence
of their RPA correlation energies observed in Fig. 2(a). In contrast, the convergence of Ap

is much faster, which is the reason for the fast convergence of AERF* observed in Fig. 2(b).

The performance of ACS is demonstrated in Figure 4(a), which shows the convergence

of AERPA with respect to the number of random vectors. 50 moments are used in the
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Pacetone

P2 — propenol
=

—-3.0 -2.5 —-2.0 -1.5 -1.0 -0.5 0.0
Eigenvalue (a. u.)

FIG. 3. DOSs of acetone, 2-propenol, and their difference (Ap = pacetone — P2—propenol) calcu-
lated using different numbers of moments at u = 1.03 x 107 a.u.. The lowest 10 eigenvalues for
each molecule are denoted by the vertical bars. In the bottom subplot, acetone and 2-propenol’s

eigenvalues are marked by the up-pointing green and the down-pointing blue bars, respectively.

calculations. The standard errors are denoted by the red and blue bands. Using ACS, RPA-
KPM’s results stay closer to the benchmark and have smaller standard errors. The cost
reduction due to ACS is 72% (labeled by “All atoms” in Figure 4(b)). This corresponds to
an acceleration of 3.6. In other words, for a fixed error in AERPA, the number of random
vectors needed by RPA-KPM with using ACS is 3.6 times less than that needed by RPA-
KPM without using ACS. To examine each atom’s contribution to the cost reduction, we
performed ACS for each atom, separately. For instance, the bar labeled by “H1” is obtained
by applying ACS only to H1. It is observed that all H atoms do not contribute much to the

cost reduction due to their small contribution to the total RPA correlation energy. Most of
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FIG. 4. (a) Convergence of the RPA correlation energy difference between acetone and 2-propenol
with respect to the number of random vectors, calculated with and without ACS. Standard errors
are represented by the red and blue bands. Benchmark is denoted by the dashed line. (b) Cost

reduction for applying ACS to each and to all the atoms. 50 moments are used.

the cost reduction is from C and O atoms. The sum of all atomic cost reduction is 82%,
which is larger than the “All atoms” reduction (72%). This is expected because samplings

in the atomic regions are not fully decoupled.

B. The water-gas shift reaction

Next, we examine RPA-KPM’s performance by calculating the energy of the water-gas
shift reaction: CO 4+ HyO — COy + H,. For this example, the system 1 involves two separate
RPA-KPM calculations: one for CO and one for HyO. Similarly, the system 2 involves two
separate RPA-KPM calculations: one for COy and one for Hy. The molecules are put in
cubic boxes with side length of 10 A. The RPA part of the reaction energy is obtained as
AERPA = Egg‘é + E§§§O — ECPS , EEIEI’/;, where ES;ZA is the RPA correlation energy of
molecule X.

ERPA with respect to the number of random vectors is given in

The convergence of A
Fig. 5(a). 50 moments are used. Again, as the number of random vectors increases, RPA-
KPM results gradually converge to the benchmark. Fig. 5(b) shows the cost reduction by

applying ACS to each atom separately, and also by applying ACS to all the atoms. Similar

13



1.5 100%
@ Benchmark (b)
1.0 4 —e— without ACS o
—8— with ACS

"

3 0.5 A - 60%
g S
<y ©

g 0.0 A | § 40% -
(s

—0.5 1 20% A

-1.0 - T . T . . . . , 0% -

0 2000 4000 6000 8000 10000 H1 H2 C1 01 02 All atoms

Number of random vectors

FIG. 5. (a) Convergence of the RPA correlation energy difference between (CO+H0) and
(CO2+H;), with respect to the number of random vectors, calculated with and without ACS.
Standard errors are represented by the red and blue bands. Benchmark is denoted by the dashed
line. (b) Cost reduction for applying ACS to each atom and to all the atoms. 50 moments are

used.

to the above case, the major reductions are from carbon and oxygen, due to their large
contribution to the system’s RPA correlation energy. By applying ACS to all atoms, the

cost is reduced by 78.1%, which gives an acceleration of 4.6 times.

In the above, good convergence of AERPA with respect to the numbers of random vectors
and moments was observed. Here, we verify such convergence by computing the reaction
energies of four other reactions: (1) CoHg + Hy — 2CHy, (2) HCN — HNC, (3) N,O + Hy —
Ny + H0, and (4) Ny + 3Hs — 2NH;3. RPA-KPM calculation is performed for each molecule
with a kinetic energy cutoff of 300 eV. The molecules are put in 10 Ax10 Ax10 A boxes.
A special attention is paid for the reaction 4, whose energy is calculated as AERPA =

E&Eﬁ + 3E§§f — 2E§§ﬁ3 — 2ERPA where Efffﬁ( is from the RPA-KPM calculation on an

c,box

ERPA

~box 18 t0 achieve a good error cancellation. Figure 6

empty box. The reason for including
shows AERPA versus the number of random vectors with 50 moments. The standard errors
at 2000 random vectors are similar to the previous two examples. Figure 7 shows that for

all reactions AERPA converges quickly with respect to the number of moments.
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FIG. 6. Convergence of reaction energies with respect to the number of random vectors.

C. Hsg chain

To further understand ACS’s performance, we study a simple system: a Hg chain, in

which all atoms are the same. The H-H bond length is 0.7 A. The system 1 and the system

RPA
E c

2 contain the same Hg chain, and A equals zero. However, due to the use of two

RPA
E c

different sequences of random vectors for sampling these two systems, A is non-zero

with a finite number of random vectors.

Fig. 8 shows the cost reduction for different numbers of H atoms used in the ACS scheme.
The results are obtained using 2000 random vectors and 30 moments. A good linear rela-
tionship between the number of H atoms and the cost reduction is observed. To explain
this observation, let’s partition the total variance into the variances from the atomic regions
and the bond regions. This partitioning assumes that samplings in these two regions are

/ /

. L . . 12 ..\ 1/2 . )
not correlated. This assumption is not true in general, since v.’'“yo(iu)ve’” is not diagonal

in real space.
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FIG. 7. Convergence of reaction energies with respect to the number of moments.
The Hg chain has eight H atoms and seven bonds, and Eq. 19 becomes
Var(AEf‘PA) =2 X (8varatom + 7Varb0nd), (22)

where Var,;,m and Varpe,q denote the variances from the atomic and bond regions, respec-
tively. By assuming that ACS fully removes the variance from the atomic regions, we obtain

the variance for ACS
Var(AEMGs) = 2 x ((8 — m) Varagom + 7Varbond), (23)

where m is the number of H atoms used in ACS. Following Eq. 21, the cost reduction is a

function of m
 Var(AESREs) M Varaion
Var(AERPA)  (8Var,uom + 7TVarpena)

q(m) = (24)

By fitting the data in Fig. 8 using ¢(m), we obtain the ratio Variom/Varpona = 1.5, which
indicates that the variance of the atomic region is about 1.5 times as large as the bond

region.
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FIG. 8. Cost reduction versus the number of H atoms used in ACS. The red dashed line is obtained

by fitting the data with Eq. 24.

D. Computational cost

In this section, we analyze the computational cost of RPA-KPM, and compare it against
the stochastic method by Neuhauser and coworkers?®. The computational parameters that
determine their costs are summarized in Table II. See Table II'’s caption for the meanings

of the symbols. First, we discuss RPA-KPM’s computational cost, which is estimated as
C = Ny NrN¢Citep. (25)

Ny, Ng, and Ny are the number of moments, random vectors, and frequencies, respectively.
Clstep 1s the cost of the dominant step. For RPA-KPM, the dominant step is the calculation
of moments using Eq. 12. The calculations rely on computing the perturbed electron density
for a perturbing potential, which is obtained by solving the Sternheimer equation whose cost
scales as O(Noee X NoeeNy). The first factor N, is due to solving the Sternheimer equation
for all occupied states, and the second factor N,..IN, is due to projection to the occupied-
state manifold.”" Thus, we have Cy, ~ N2 _N,. The number of moments is expected to scale

with system’s size, i.e., IV, ~ N,. To estimate Ng, we note that the sampling error decays

as \/D/Ng (where D = N, is the dimension of the ve/>xo(iu)ve’> matrix)3. This gives
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TABLE II. Compare RPA-KPM and Neuhauser and coworkers’ method?. Parameters for calcu-
lating both ERPA (outside parentheses) and AERPA (in parentheses) are listed. N, and N, are the
number of grid points in the system and the region of interest (ROI), respectively. N,.. denotes
the number of occupied orbitals of the system. N, and N ror denote the number of electrons in
the total system and the region of interest, respectively. Ny is the number of frequencies used for

the integration of imaginary frequency iu in Eq. 10. Ng is the number of random vectors.

RPA-KPM Method from Ref.?
Matrix VVeXo (1) \/Ve L in Ref.26
Dimension of matrix Ny x Ny 2NoceNg X 2Noee Ny
Time-consuming step Linear-response calculation Apply L to a vector
Cost of the time-consuming step ~ NZ2..N, ~ NoceNyg
Number of moments ~ Ny (~ Ny ror) ~ NocelNg (~ N ROINQ ROI)
Number of random vectors ~ Ny (~ Ny N‘%’VREOI) ~ NoeeNg (~ Noee N ENRQO’)
Number of frequency Ny -
Cost for ERPA ~ N2 N3Ny ~ N3 N3
Cost for AERPA ~ N2, N2N, porane SIOLN,  ~ N2 NN, ror vafgof

Ng ~ N,. Inserting N,,,, Ng, and Cy,, into Eq. 25, the total cost C' scales as O( OCCN3Nf)
By assuming N, and NN, scale with system’s size and N; does not scale with system’s size,
the cost of RPA-KPM for computing a system’s RPA correlation energy scales as the fifth

power of that system’s size.

Next, we estimate RPA-KPM'’s cost for calculating A ERPA between two similar systems
that only differ much in a local region. The number of moments scales with the number of
grid points in the region of interest (N, ror), that is, N,, ~ Ny gor. The sampling errors
of the moments decay as \/m. The error associated with the electrons inside the

region of interest then scales as %\/N /Ng, where N, and N, ro; are the numbers of

electrons in the system and in the region of interest, respectively. To obtain a fixed error
in AERPA we have Np ~ ( %)QNQ. Ciiep 1s still due to solving the system’s Sternheimer

equation, that is, Cgep ~ N2,.N,. With Eq. 25, the cost for calculating AERPA scales

occ

as O(N? N2Ng ROI(NE ROI)2N ). By assuming that N,., N, and N, all scale with the

occ

system’s size and Ny does not depend on the system’s size, the cost scales quadratically
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with the system’s size.

We now compare RPA-KPM with the stochastic method by Neuhauser and coworkers.2°
Our method employs the RPA correlation energy formulated in terms of the density linear
response functions (Eq. 1). Their method employed the RPA correlation energy formu-
lated based on the time-dependent Hartree approach.?>®> The numerical advantages of their
method is that their method does not require (a) integrating over the imaginary frequency
(which gives Ny = 1) or (b) solving the Sternheimer equation. The dominant step in their
method is the calculation of the product of L (defined in Eq. 4 in Ref.28) and a vector. The
size of L is 2NoeeNg X 2Noee Ny, which gives Cyiep ~ NoeelNy. This scaling is better than that
of solving the Sternheimer equation in our method. The numerical disadvantage of their
method is that more moments and random vectors are needed for achieving a fixed error, due
to the large size of L. The number of moments for expanding the DOS of L should scale as
NoceNy. The sampling error decays as \/m, where D' = 2N,..N, is the dimension of L.
To achieve the same error as our method, Ng scales as No..[N,. With Eq. 25, the cost for their
method scales as N3,.N3 for computing the total RPA correlation energy. To estimate the
cost for calculating AERFA | we note that the number of moments is determined by the size
of the region of interest as listed in Table II. The error associated with the electrons in the
region of interest decays as Nej\,—’iol\/m. With D" ~ N,..Ng, we have Np ~ Ny Ny ‘fNIEOI.
Finally, the cost for computing AERPA scales as O(IN? N Ny ror Neror ). By assuming that

occ N2 2

Noce, Ne, and Ny all scale with the system’s size, this gives a quadratic scaling (the same as

our method).

Last, we estimate the cost for the ACS calculations. ACS’s cost is due to the ad-
ditional RPA-KPM calculations on atoms. The number of occupied orbitals for each
atom is on the order of Ny../Natom. The dominant step is solving the atoms’ Sternheimer
equations, and we have Cyep ~ Nasom(Noce/Natom)? Ny With Eq. 25, ACS’s cost then
scales as O(Natom(Noce/Natom)*NyNi NrNy). Note that N,,, Ny, and Ng used for atomic
RPA-KPM calculations are the same as those used for the system’s RPA-KPM calcula-
tions, that is, N,, ~ N, ror and Nr ~ N, EN%OI. Finally, the cost of ACS scales as
O(Natom(Noce /Natom)QNQQN ROI ‘o1 Ny), which is linear with respect to the system’s size

N2

(assuming Noce, Natom, Ne, and N, all scale with the system’s size). For large systems, ACS’s
cost is expected to become negligible compared to the cost of the RPA-KPM calculations

on entire systems. For small systems, ACS’s cost can be larger than the system’s RPA-

19



KPM calculation. For the acetone isomerization example, the cost for solving all atoms’
Sternheimer equations is 13 seconds, which is slightly higher than the cost (10 seconds) for
solving acetone and 2-propenol’s Sternheimer equations. In practice, ACS’s cost can be fur-
ther reduced if we only need to perform ACS on the atoms in the region of interest. This is
possible, if, outside that region, the atoms in the two systems have very similar coordinates.
This is often the case for surface catalysis, in which the positions of surface-slab atoms do

not change much during the surface reactions.

V. CONCLUSION

In this work, we have developed a kernel polynomial method to calculate the RPA cor-
relation energy. We focused on calculating the RPA correlation energy difference between
two systems, which is of much interest in practice. To accelerate the convergence of energy-
difference calculations, we have developed a simple, yet effective correlated sampling scheme:
atom-based correlated sampling. ACS relies on additional RPA-KPM calculations on atoms,
whose calculation cost becomes negligible as the system becomes large. The performance
of ACS is examined with two examples: the isomerization of acetone to 2-propenol and the
energy of the water-gas shift reaction. The convergences of these two examples are much
accelerated by ACS, with a boost factor of 3.6 and 4.5 times, respectively. RPA-KPM and
ACS developed in this work would be found useful for calculating reaction energies for the
chemical reactions that take place in local regions. One possible application is to calculate
the adsorption energies of molecules on transition metal surfaces. Accurate predictions for

these adsorption energies are important for predicting the kinetics of heterogeneous catalysis.
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