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Abstract

A kernel polynomial method (KPM) is developed to calculate the random phase approximation

(RPA) correlation energy. In the method, the RPA correlation energy is formulated in terms of

the matrix that is the product of the Coulomb potential and the density linear response functions.

The integration over the matrix’s eigenvalues is calculated by expanding the density of states of

the matrix in terms of the Chebyshev polynomials. The coefficients in the expansion are obtained

through stochastic sampling. Since it is often the energy difference between two systems that is of

much interest in practice, another focus of this work is to develop a correlated sampling scheme to

accelerate the convergence of the stochastic calculations of the RPA correlation energy difference

between two similar systems. The scheme is termed the atom-based correlated sampling (ACS).

The performance of ACS is examined by calculating the isomerization energy of acetone to 2-

propenol and the energy of the water-gas shift reaction. Using ACS, the convergences of these two

examples are accelerated by 3.6 and 4.5 times, respectively. The methods developed in this work

are expected to be useful for calculating RPA-level reaction energies for the reactions that take

place in local regions, such as calculating the adsorption energies of molecules on transition metal

surfaces for modeling surface catalysis.
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I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT)1,2 is widely used for calculating the

properties of molecules and materials. Its accuracy is determined by the approximation used

for the exchange-correlation (XC) functional. Local density approximation and generalized

gradient approximation suffer from the self-interaction error.3,4 Hybrid functionals partially

resolve the self-interaction error by containing a fraction of the exact exchange (EXX).5 To

go beyond hybrid functional, one can combine EXX with a compatible correlation energy

functional. The random phase approximation (RPA) correlation energy6–13, derived based

on the adiabatic connection fluctuation and dissipation theorem,6–9 is a good candidate,

since the RPA correlation largely screens the long-range exchange interaction in metallic

systems. This makes EXX+RPA applicable to both metallic and non-metallic systems.

DFT calculations based on EXX+RPA have been shown to give reasonable predictions

to many challenging problems, such as the α-γ phase transition of cerium14 and the CO

adsorption on transition metals.15

One obstacle in the widespread use of the RPA correlation energy is its high compu-

tational cost and steep computational scaling. Conventional implementations of the RPA

correlation energy scale asO(N4),13,16–19 where N denotes the number of electrons. Recently,

cubic-scaling implementations based on Green’s function20 and Gaussian basis functions21

were demonstrated. To further reduce the computational scaling, Kálly developed a linear-

scaling RPA method22 based on the cluster-in-molecule method23. Ochsenfeld and coworkers

also developed a linear-scaling RPA method by formulating the RPA correlation energy in

terms of the atomic orbitals through a double-Laplace transformation.24,25 These linear-

scaling methods are suitable for calculating the relative energy between two systems that

only differ much in a local region. In this work, we also focus on calculating the relative

energy between two similar systems.

Different from aforementioned deterministic approaches, Neuhauser and coworkers de-

veloped a stochastic approach to calculate the RPA correlation energy.26 The cost of their

method scales linearly with the system’s size for achieving a fixed error in total energy per

electron. One advantage of stochastic methods is that one can stop the stochastic sampling

whenever the sampling error drops below a given threshold. This make stochastic methods

suitable for calculating the energy difference between two systems that only differ much
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in the region of interest. By performing the correlated sampling, the error does not grow

with the system’s size but is determined by the size of the region of interest.26 We note that

stochastic methods have also been developed for other electronic structure calculations, such

as the GW method,27 KS-DFT,28 the Bethe-Salpeter equation,29 time-dependent DFT,30 the

second-order Møller-Plesset perturbation theory,31 and the Hartree-Fock exchange.32

In this work, we develop a new stochastic method for calculating the RPA correlation

energy. The method is formulated based on the kernel polynomial method (KPM)33–37 and

is termed RPA-KPM. Our method is different from Ref.26 by how the RPA correlation is

formulated. In our method, the RPA correlation energy is written in terms of the eigenvalues

{xi} of the matrix v
1/2
c χ0(iu)v

1/2
c , where χ0(iu) is the KS linear response at the imaginary

frequency iu and vc(r, r
′) = 1/|r−r′| is the Coulomb potential. The density of states (DOS)

for the eigenvalues is then stochastically evaluated using KPM. As demonstrated in this

work, the absolute RPA correlation energies converge slowly with respect to the number of

samplings. Instead, in this work we focus on computing the RPA energy difference between

two similar systems that only differ much in the region of interest. Such scenarios are often

encountered in practice when reactions take place in a local region. Since RPA correlation

is more accurate for isogyric processes, our stochastic RPA method is recommended for

studying isogyric processes.

Correlated sampling is a common technique for accelerating the convergence of sampling.

For the case that the atoms from two systems have similar coordinates, a correlated sampling

can be performed to accelerate the convergence of energy-difference calculations, by employ-

ing the same sequence of random numbers for computing the two systems’ RPA correlation

energies.26 However, in the region of interest the atoms from the two systems can have very

different coordinates due to the chemical reaction, and therefore the correlated sampling

cannot be performed. One goal of this work is to develop a method to accelerate the RPA

energy difference calculations by partially restoring the correlation sampling. The method is

termed the atom-based correlated sampling (ACS). With ACS, a system is roughly divided

into two regions: (a) the atomic regions near nuclei and (b) the bond regions. With ACS,

the samplings in the atomic regions between two systems are correlated, which effectively

reduces the sampling error. The implementation of ACS is simple and only requires ad-

ditional RPA-KPM calculations on atoms. Compared to RPA-KPM calculations on entire

systems, the cost of ACS becomes negligible for large systems.
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The paper is organized as follows. We first formulate the RPA correlation energy in the

framework of KPM. We then discuss the ACS scheme. The performance of RPA-KPM with

and without using ACS is examined by calculating the RPA correlation energy difference for

two cases: (a) the isomerization of acetone to 2-propenol and (b) the energy of the water-

gas shift reaction. For both cases, convergence is much accelerated by ACS. ACS is then

examined in detail with a H8 chain. In the end, the computational cost of RPA-KPM, ACS,

and the stochastic method developed in Ref.26 are analyzed.

II. THEORETICAL METHODS

A. RPA correlation energy formulated in the framework of KPM

The RPA correlation energy is7,9,38

ERPA
c =

1

2π

∫ ∞
0

duTr[ln(1− χ0(r, r
′; iu)vc) + χ0(r, r

′; iu)vc], (1)

where vc(r, r
′) = 1/|r − r′| is the Coulomb potential. χ0(r, r

′; iu) is the KS linear response

function at the imaginary frequency iu and can be explicitly expressed in term of KS orbitals

({φj(r)}), eigenvalues ({εj}), and occupation numbers ({fj}) as

χ0(r, r
′; iu) = 2

∑
j

∑
k

(fj − fk)
φ∗j(r)φk(r)φ∗k(r

′)φj(r
′)

εj − εk + iu
, (2)

where indices j and k loop over all the KS orbitals. Non-spin-polarized case is considered

in this work. Tr[...] in Eq. 1 represents

Tr[AB] =

∫ ∫
drdr′A(r, r′)B(r, r′).

Due to the fact the trace is invariant under cyclic permutations, χ0vc in Eq. 1 can be replaced

by v
1/2
c χ0v

1/2
c , which is denoted by M in this work, that is, M(iu) = v

1/2
c χ0(iu)v

1/2
c .

To formulate the RPA correlation energy using KPM, we write it in terms of the density

of states (DOS), ρ(x;u), for M ’s eigenvalues

ERPA
c =

1

2π

∫ ∞
0

du

∫ 0

xmin

ρ(x;u)[ln(1− x) + x]dx, (3)

where x is M ’s eigenvalue and xmin is the lowest eigenvalue. The upper limit of the integral is

zero, since M is semi-negative definite. In order to expand ρ(x;u) in terms of the Chebyshev
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polynomials, we need to rescale M such that its eigenvalues are inside (−1, 1), which is

achieved with the linear transformation

M̃ = (M − b)/a, (4)

with the scaling parameters a and b defined as

a = (xmax − xmin)/(2− δ)

b = (xmax + xmin)/2, (5)

where xmax and xmin are the maximum and minimum eigenvalues of M . In this work, xmin

is calculated using the conjugate gradient method. xmax is set to zero. The parameter δ is

a small positive number to make sure that all M̃ ’s eigenvalues are inside (-1,1). δ is set to

0.01 in this work. The RPA correlation energy can then be written in terms of M̃ ’s DOS as

ERPA
c =

∫ ∞
0

du

2π

∫ 1

−1
ρ̃(x̃;u)[ln(1− (ax̃+ b)) + ax̃+ b]dx̃, (6)

where x̃ is the eigenvalue of M̃ . ρ̃ is the DOS of M̃ and is related to ρ as ρ̃(x̃;u) = aρ(x;u).

ρ̃ is expanded using the Chebyshev polynomials

ρ̃(x̃) =
1

π
√

1− x̃2

[
g0µ0 + 2

Nm∑
n=1

gnµnTn(x̃)

]
, (7)

where {µn} are the moments given by

µn = Tr[Tn(M̃)]. (8)

Tn is the n-th order Chebyshev polynomial. Nm is the number of moments for the expansion.

{gn} are the Jackson kernels39,40 for suppressing the Gibbs oscillations in the DOS:

gn =
(Nm − n+ 1) cos nπ

Nm+1
+ sin nπ

Nm+1
cot π

Nm+1

Nm + 1
. (9)

Inserting Eq. 7 into Eq. 6, the RPA correlation energy becomes

ERPA
c =

1

2π

∫ ∞
0

du

[
g0c0µ0 + 2

Nm∑
n=1

gncnµn

]
, (10)

where cn is defined as

cn =

∫ 1

−1

1

π
√

1− x̃2
Tn(x̃)[ln(1− (ax̃+ b)) + (ax̃+ b)]dx̃. (11)

Above integration is evaluated using the quadpack program.41
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B. Stochastic calculation of moments

The key of KPM is to calculate the moments {µn}. Due to the large size of M̃ , in Eq. 8

the trace is evaluated stochastically using the random vectors {|r〉} as33

Tr[Tn(M̃)] ≈ 1

R

R∑
r=1

〈r|Tn(M̃) |r〉 , (12)

where R is the number of random vectors. Denote the ith entry of |r〉 as ξri. {ξri} is a

random number and satisfy the conditions: 〈〈ξrj〉〉 = 0 and 〈〈ξriξr′j〉〉 = δrr′δij, where 〈〈· · · 〉〉

denotes the statistical average with respect to different realizations of random vectors. These

conditions can be satisfied by setting ξri to the normal random numbers with zero mean and

unit variance. In this work, normal random numbers are generated using the Box-Muller

scheme42 in which uniform random numbers are generated using the RAN3 algorithm.43

Eq. 12 involves calculating the product of Tn(M̃) and |r〉, which is calculated using the

three-term recurrence relation of the Chebyshev polynomials

Tn(M̃) |r〉 = 2M̃Tn−1(M̃) |r〉 − Tn−2(M̃) |r〉 . (13)

Above equation relies on calculating the product of v
1/2
c χ0(iu)v

1/2
c and a vector. In this

work, the product of v
1/2
c and a vector is evaluated efficiently by transforming both v

1/2
c and

the vector to the Fourier space, since v
1/2
c is diagonal in the Fourier space. The product of

χ0(iu) and a vector is calculated by solving the Sternheimer equation44–46.

C. The atom-based correlated sampling

As demonstrated in later sections, the strength of RPA-KPM is to calculate the RPA

energy difference between two similar systems that have the same composition. Denote the

two systems as system 1 and system 2. Their RPA energy difference is

∆ERPA
c = ERPA

c1 − ERPA
c2 , (14)

where ERPA
c1 and ERPA

c2 are the RPA correlation energies of the system 1 and the system 2,

respectively. If the atoms in the two systems have similar coordinates, a correlated sampling

can be performed by using the same sequence of random vectors to calculate ERPA
c1 and

ERPA
c2 .

6



However, the correlated sampling cannot be performed, if the atoms in the two systems

have completely different coordinates. To tackle this problem, in what follows we develop

the ACS method. In ACS, additional RPA-KPM calculations are performed on each atom

in both systems. To be specific, let’s consider the atom i in the system 1. We remove all

the atoms in the system 1 except the atom i. The atom i is kept at its original position.

We then perform RPA-KPM calculation on this new system that only contains the atom i,

employing the sequence of random vectors used for sampling the system 1. The atom i is

set to neutral in the calculation, and the occupation numbers of its KS orbitals are assigned

using the Fermi-Dirac smearing with a smearing temperature of 0.1 eV, which helps the

KS-DFT calculations converge. Such RPA-KPM calculation is performed for all the atoms

in the systems 1. Similarly, we perform RPA-KPM calculations on each atom in the system

2, using the same sequence of random vectors used for the system 2. We then calculate the

RPA correlation contribution to the atomization energy (AE) as

ERPA
AE,1 = ERPA

c1 −
Natom∑
i=1

ERPA
c1,atomi

(15)

ERPA
AE,2 = ERPA

c2 −
Natom∑
i=1

ERPA
c2,atomi

, (16)

where i runs over all the atoms in each system and Natom is the number of atoms. ERPA
c1,atomi

and ERPA
c2,atomi

are the atom i’s RPA correlation energies calculated using RPA-KPM, as

described above. The RPA correlation energy difference between the two systems is then

calculated as

∆ERPA
c,ACS = ERPA

AE,1 − ERPA
AE,2. (17)

∆ERPA
c,ACS defined in Eq. 17 converges faster than ∆ERPA

c defined in Eq. 14. The reason

is that, by subtracting the atomic RPA correlation energies in Eqs. 15 and 16, we focus

on calculating the bond energy difference between the two systems. In other words, the

correlated sampling is achieved in the atomic regions, but not in the bond regions. To

better understand ACS, let’s consider a limiting case in which all the atoms in the two

systems are well separated. For this case, ∆ERPA
c calculated using Eq. 17 is always zero, no

matter how many random vectors are used.
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D. The reduction of computational cost using ACS

The goal of ACS is to reduce the standard error from sampling ∆ERPA
c , which in turn

reduces the number of random vectors. Due to the central limit theorem, standard error

decreases as 1/
√
R, where R is the number of random vectors. The cost reduction (q) is

then related to the standard error as

q = 1−
(
σACS
err

σerr

)2

, (18)

where σACS
err and σerr are the standard errors for ∆ERPA

c,ACS and ∆ERPA
c , respectively. They are

related to the variances as σACS
err = 1

R

√
Var(∆ERPA

c,ACS) and σerr = 1
R

√
Var(∆ERPA

c ). In this

work, ERPA
c1 and ERPA

c2 are calculated using two different sequences of random vectors for

mimicking the case that the atoms in the two systems have completely different coordinates.

Therefore, ERPA
c1 and ERPA

c2 are not correlated and we have

Var(∆ERPA
c ) = Var(ERPA

c1 ) + Var(ERPA
c2 ). (19)

Similarly, the variance of ∆ERPA
c,ACS is

Var(∆ERPA
c,ACS) = Var(ERPA

AE,1) + Var(ERPA
AE,2). (20)

Eq. 18 then becomes

q = 1−
Var(∆ERPA

c,ACS)

Var(∆ERPA
c )

. (21)

In the ideal case that Var(∆ERPA
c,ACS) is zero, we have q = 1, which means that the cost

reduction is 100%. This only happens if all the atoms are well separated.

III. NUMERICAL DETAILS

The RPA-KPM method is implemented in the ABINIT program47 (version 7.10.4). In

Eq. 10, the integration over the frequency u is calculated using the Gauss–Legendre quadra-

ture. The upper limit of the integral (umax) is set to 10 a.u.. To have a high density of

the Gauss–Legendre points in the low frequency region, the integration scheme in Ref.48 is

used. The integral
∫ umax

0
f(u)du is first transformed to

∫ 1

0
g(t)dt through the variable change

t = exp(−(αu)1/B) with B = 2. t is in the domain [0,1], and g(t) = f(u(t))B(− ln t)B−1/(αt).

The upper limit umax is related to α as α = (− ln t)B/umax, and α is chosen such that umax

= 10.0 a.u.. The Gauss–Legendre quadrature on
∫ 1

0
g(t)dt is performed for t with 16 nodes.
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FIG. 1. Isomerization of (a) acetone to (b) 2-propenol by transferring H6. The oxygen, carbon,

hydrogen atoms are red, brown, and grey, respectively. Figure is made using the VESTA program.50

IV. RESULTS AND DISCUSSIONS

The performance of RPA-KPM (with and without using ACS) is investigated with three

examples: (1) the energy for the isomerization of acetone to 2-propenol (Fig. 1), (2) the

energy of the water gas shift reaction, and (3) a H8 chain. These systems are first calculated

using the Perdew-Burke-Ernzerhof (PBE)49 XC functional, based on which the RPA cor-

relation energies are calculated using RPA-KPM. For all examples, two different sequences

of random vectors are used for system 1 and system 2, to mimic the case that the atoms

from the two systems have very different coordinates. The benchmarks are obtained by

calculating the RPA correlation energies using the method developed in Ref.46, that is,

Tr{ln[1 − χ0(iu)vc] + χ0(iu)vc} is calculated as
∑Neig

k=1 ln(1 − ek) + ek, where {ek} are the

eigenvalues of v
1/2
c χ0(iu)v

1/2
c and Neig is the number of eigenvalue values. ∆ERPA

c converges

quickly with respect to Neig. Neig is 400 and 800 for the example 1 and the example 2,

respectively. To save the computational cost, low kinetic energy cutoffs are used. Example

1, 2, and 3 are calculated using a kinetic energy cutoff of 200 eV, 400 eV, and 400 eV,

respectively.
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TABLE I. The lowest eigenvalues of v
1/2
c χ0(iu)v

1/2
c for acetone, 2-propenol, hydrogen, carbon, and

oxygen atoms, for the 16 frequencies. The lower limits xmin (Eq. 3) are also shown. Atomic units

are used.

u acetone 2-propenol H C O xmin

1.03× 10−5 -3.077 -2.893 -0.469 -1.200 -1.049 -3.077

2.87× 10−4 -3.077 -2.893 -0.469 -1.200 -1.049 -3.077

1.76× 10−3 -3.077 -2.893 -0.469 -1.200 -1.049 -3.077

6.20× 10−3 -3.076 -2.891 -0.469 -1.200 -1.049 -3.076

1.64× 10−2 -3.067 -2.880 -0.468 -1.200 -1.048 -3.067

3.64× 10−2 -3.030 -2.832 -0.465 -1.191 -1.044 -3.030

7.21× 10−2 -2.907 -2.676 -0.452 -1.166 -1.030 -2.907

1.32× 10−1 -2.605 -2.338 -0.420 -1.094 -0.990 -2.605

2.29× 10−1 -2.116 -1.875 -0.356 -0.939 -0.902 -2.116

3.82× 10−1 -1.571 -1.439 -0.270 -0.703 -0.760 -1.571

6.21× 10−1 -1.074 -1.025 -0.186 -0.459 -0.590 -1.074

9.98× 10−1 -0.671 -0.656 -0.118 -0.308 -0.430 -0.671

1.61 -0.382 -0.378 -0.069 -0.190 -0.287 -0.382

2.66 -0.203 -0.204 -0.034 -0.104 -0.166 -0.203

4.68 -0.093 -0.093 -0.016 -0.047 -0.080 -0.093

10.0 -0.026 -0.026 -0.005 -0.013 -0.024 -0.026

A. Isomerization of acetone to 2-propenol

In this example, acetone is treated as the system 1 and 2-propenol is treated as the

system 2. Table I lists the lowest eigenvalues of v
1/2
c χ0(iu)v

1/2
c for all the 16 frequencies for

acetone, 2-propenol, and each atom. For each frequency, xmin is set to the lowest eigenvalue

and is used in all RPA-KPM calculations to achieve a good error cancellation for computing

∆ERPA
c .

Fig. 2(a) shows that the convergence of ERPA
c with respect to the number of moments is

very slow. Fig. 2(b) shows ∆ERPA
c without using the ACS scheme, and a fast convergence

is observed. With only 10 moments, ∆ERPA
c converges to within 0.01 eV. The results
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FIG. 2. (a) Convergence of ERPA
c for acetone and 2-propenol with respect the number of mo-

ments. ERPA
c is referenced to its value calculated using 50 moments. (b) Convergence of the RPA

correlation energy difference. 10000 random vectors are used in these calculations.

for the case of using ACS are similar and are not shown. Therefore, a small number of

moments can be used for computing ∆ERPA
c , which much reduces the computational cost.

These observations suggest that RPA-KPM is not very useful for calculating the absolute

RPA correlation energies, but is useful for calculating the RPA correlation energy difference

between two similar systems.

The convergence of the RPA correlation energy with respect to Nm is related to the

convergence of DOS with respect to Nm, which is given in Fig. 3. The results are for

u = 1.03 × 10−5 a.u.. Other frequencies give similar observations and are not shown. For

both molecules, the first ten eigenvalues are marked by the vertical bars. Both ρacetone and

ρ2−propenol increase quickly as the eigenvalue approaches zero, due to the fact that most

eigenvalues of v
1/2
c χ0(iu)v

1/2
c are close to zero. The resolution of DOSs are determined by

Nm. As Nm increases, the peaks associated with these eigenvalues become clear. The

convergence of both ρacetone and ρ2−propenol is very slow, which explains the slow convergence

of their RPA correlation energies observed in Fig. 2(a). In contrast, the convergence of ∆ρ

is much faster, which is the reason for the fast convergence of ∆ERPA
c observed in Fig. 2(b).

The performance of ACS is demonstrated in Figure 4(a), which shows the convergence

of ∆ERPA
c with respect to the number of random vectors. 50 moments are used in the
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FIG. 3. DOSs of acetone, 2-propenol, and their difference (∆ρ = ρacetone − ρ2−propenol) calcu-

lated using different numbers of moments at u = 1.03 × 10−5 a.u.. The lowest 10 eigenvalues for

each molecule are denoted by the vertical bars. In the bottom subplot, acetone and 2-propenol’s

eigenvalues are marked by the up-pointing green and the down-pointing blue bars, respectively.

calculations. The standard errors are denoted by the red and blue bands. Using ACS, RPA-

KPM’s results stay closer to the benchmark and have smaller standard errors. The cost

reduction due to ACS is 72% (labeled by “All atoms” in Figure 4(b)). This corresponds to

an acceleration of 3.6. In other words, for a fixed error in ∆ERPA
c , the number of random

vectors needed by RPA-KPM with using ACS is 3.6 times less than that needed by RPA-

KPM without using ACS. To examine each atom’s contribution to the cost reduction, we

performed ACS for each atom, separately. For instance, the bar labeled by “H1” is obtained

by applying ACS only to H1. It is observed that all H atoms do not contribute much to the

cost reduction due to their small contribution to the total RPA correlation energy. Most of
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FIG. 4. (a) Convergence of the RPA correlation energy difference between acetone and 2-propenol

with respect to the number of random vectors, calculated with and without ACS. Standard errors

are represented by the red and blue bands. Benchmark is denoted by the dashed line. (b) Cost

reduction for applying ACS to each and to all the atoms. 50 moments are used.

the cost reduction is from C and O atoms. The sum of all atomic cost reduction is 82%,

which is larger than the “All atoms” reduction (72%). This is expected because samplings

in the atomic regions are not fully decoupled.

B. The water-gas shift reaction

Next, we examine RPA-KPM’s performance by calculating the energy of the water-gas

shift reaction: CO + H2O→ CO2 + H2. For this example, the system 1 involves two separate

RPA-KPM calculations: one for CO and one for H2O. Similarly, the system 2 involves two

separate RPA-KPM calculations: one for CO2 and one for H2. The molecules are put in

cubic boxes with side length of 10 Å. The RPA part of the reaction energy is obtained as

∆ERPA
c = ERPA

c,CO + ERPA
c,H2O

− ERPA
c,CO2

− ERPA
c,H2

, where ERPA
c,X is the RPA correlation energy of

molecule X.

The convergence of ∆ERPA
c with respect to the number of random vectors is given in

Fig. 5(a). 50 moments are used. Again, as the number of random vectors increases, RPA-

KPM results gradually converge to the benchmark. Fig. 5(b) shows the cost reduction by

applying ACS to each atom separately, and also by applying ACS to all the atoms. Similar
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FIG. 5. (a) Convergence of the RPA correlation energy difference between (CO+H2O) and

(CO2+H2), with respect to the number of random vectors, calculated with and without ACS.

Standard errors are represented by the red and blue bands. Benchmark is denoted by the dashed

line. (b) Cost reduction for applying ACS to each atom and to all the atoms. 50 moments are

used.

to the above case, the major reductions are from carbon and oxygen, due to their large

contribution to the system’s RPA correlation energy. By applying ACS to all atoms, the

cost is reduced by 78.1%, which gives an acceleration of 4.6 times.

In the above, good convergence of ∆ERPA
c with respect to the numbers of random vectors

and moments was observed. Here, we verify such convergence by computing the reaction

energies of four other reactions: (1) C2H6 + H2→ 2CH4, (2) HCN→ HNC, (3) N2O + H2→

N2 + H2O, and (4) N2 + 3H2→ 2NH3. RPA-KPM calculation is performed for each molecule

with a kinetic energy cutoff of 300 eV. The molecules are put in 10 Å×10 Å×10 Å boxes.

A special attention is paid for the reaction 4, whose energy is calculated as ∆ERPA
c =

ERPA
c,N2

+ 3ERPA
c,H2
− 2ERPA

c,NH3
− 2ERPA

c,box where ERPA
c,box is from the RPA-KPM calculation on an

empty box. The reason for including ERPA
c,box is to achieve a good error cancellation. Figure 6

shows ∆ERPA
c versus the number of random vectors with 50 moments. The standard errors

at 2000 random vectors are similar to the previous two examples. Figure 7 shows that for

all reactions ∆ERPA
c converges quickly with respect to the number of moments.
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FIG. 6. Convergence of reaction energies with respect to the number of random vectors.

C. H8 chain

To further understand ACS’s performance, we study a simple system: a H8 chain, in

which all atoms are the same. The H-H bond length is 0.7 Å. The system 1 and the system

2 contain the same H8 chain, and ∆ERPA
c equals zero. However, due to the use of two

different sequences of random vectors for sampling these two systems, ∆ERPA
c is non-zero

with a finite number of random vectors.

Fig. 8 shows the cost reduction for different numbers of H atoms used in the ACS scheme.

The results are obtained using 2000 random vectors and 30 moments. A good linear rela-

tionship between the number of H atoms and the cost reduction is observed. To explain

this observation, let’s partition the total variance into the variances from the atomic regions

and the bond regions. This partitioning assumes that samplings in these two regions are

not correlated. This assumption is not true in general, since v
1/2
c χ0(iu)v

1/2
c is not diagonal

in real space.
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FIG. 7. Convergence of reaction energies with respect to the number of moments.

The H8 chain has eight H atoms and seven bonds, and Eq. 19 becomes

Var(∆ERPA
c ) = 2× (8Varatom + 7Varbond), (22)

where Varatom and Varbond denote the variances from the atomic and bond regions, respec-

tively. By assuming that ACS fully removes the variance from the atomic regions, we obtain

the variance for ACS

Var(∆ERPA
c,ACS) = 2× ((8−m)Varatom + 7Varbond), (23)

where m is the number of H atoms used in ACS. Following Eq. 21, the cost reduction is a

function of m

q(m) = 1−
Var(∆ERPA

c,ACS)

Var(∆ERPA
c )

=
mVaratom

(8Varatom + 7Varbond)
. (24)

By fitting the data in Fig. 8 using q(m), we obtain the ratio Varatom/Varbond = 1.5, which

indicates that the variance of the atomic region is about 1.5 times as large as the bond

region.
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FIG. 8. Cost reduction versus the number of H atoms used in ACS. The red dashed line is obtained

by fitting the data with Eq. 24.

D. Computational cost

In this section, we analyze the computational cost of RPA-KPM, and compare it against

the stochastic method by Neuhauser and coworkers26. The computational parameters that

determine their costs are summarized in Table II. See Table II’s caption for the meanings

of the symbols. First, we discuss RPA-KPM’s computational cost, which is estimated as

C = NmNRNfCstep. (25)

Nm, NR, and Nf are the number of moments, random vectors, and frequencies, respectively.

Cstep is the cost of the dominant step. For RPA-KPM, the dominant step is the calculation

of moments using Eq. 12. The calculations rely on computing the perturbed electron density

for a perturbing potential, which is obtained by solving the Sternheimer equation whose cost

scales as O(Nocc×NoccNg). The first factor Nocc is due to solving the Sternheimer equation

for all occupied states, and the second factor NoccNg is due to projection to the occupied-

state manifold.51 Thus, we have Cstep ∼ N2
occNg. The number of moments is expected to scale

with system’s size, i.e., Nm ∼ Ng. To estimate NR, we note that the sampling error decays

as
√
D/NR (where D = Ng is the dimension of the v

1/2
c χ0(iu)v

1/2
c matrix)33. This gives
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TABLE II. Compare RPA-KPM and Neuhauser and coworkers’ method26. Parameters for calcu-

lating both ERPA
c (outside parentheses) and ∆ERPA

c (in parentheses) are listed. Ng and Ng are the

number of grid points in the system and the region of interest (ROI), respectively. Nocc denotes

the number of occupied orbitals of the system. Ne and Ne,ROI denote the number of electrons in

the total system and the region of interest, respectively. Nf is the number of frequencies used for

the integration of imaginary frequency iu in Eq. 10. NR is the number of random vectors.

RPA-KPM Method from Ref.26

Matrix
√
vcχ0(iu)

√
vc L̂ in Ref.26

Dimension of matrix Ng ×Ng 2NoccNg × 2NoccNg

Time-consuming step Linear-response calculation Apply L̂ to a vector

Cost of the time-consuming step ∼ N2
occNg ∼ NoccNg

Number of moments ∼ Ng (∼ Ng,ROI) ∼ NoccNg (∼ Ne,ROINg,ROI)

Number of random vectors ∼ Ng (∼ Ng
N2

e,ROI

N2
e

) ∼ NoccNg (∼ NoccNg
N2

e,ROI

N2
e

)

Number of frequency Nf -

Cost for ERPA
c ∼ N2

occN
3
gNf ∼ N3

occN
3
g

Cost for ∆ERPA
c ∼ N2

occN
2
gNg,ROI

N2
e,ROI

N2
e

Nf ∼ N2
occN

2
gNg,ROI

N3
e,ROI

N2
e

NR ∼ Ng. Inserting Nm, NR, and Cstep into Eq. 25, the total cost C scales as O(N2
occN

3
gNf ).

By assuming Nocc and Ng scale with system’s size and Nf does not scale with system’s size,

the cost of RPA-KPM for computing a system’s RPA correlation energy scales as the fifth

power of that system’s size.

Next, we estimate RPA-KPM’s cost for calculating ∆ERPA
c between two similar systems

that only differ much in a local region. The number of moments scales with the number of

grid points in the region of interest (Ng,ROI), that is, Nm ∼ Ng,ROI . The sampling errors

of the moments decay as
√
Ng/NR. The error associated with the electrons inside the

region of interest then scales as
Ne,ROI

Ne

√
Ng/NR, where Ne and Ne,ROI are the numbers of

electrons in the system and in the region of interest, respectively. To obtain a fixed error

in ∆ERPA
c , we have NR ∼ (

Ne,ROI

Ne
)2Ng. Cstep is still due to solving the system’s Sternheimer

equation, that is, Cstep ∼ N2
occNg. With Eq. 25, the cost for calculating ∆ERPA

c scales

as O(N2
occN

2
gNg,ROI(

Ne,ROI

Ne
)2Nf ). By assuming that Nocc, Ne, and Ng all scale with the

system’s size and Nf does not depend on the system’s size, the cost scales quadratically
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with the system’s size.

We now compare RPA-KPM with the stochastic method by Neuhauser and coworkers.26

Our method employs the RPA correlation energy formulated in terms of the density linear

response functions (Eq. 1). Their method employed the RPA correlation energy formu-

lated based on the time-dependent Hartree approach.52–55 The numerical advantages of their

method is that their method does not require (a) integrating over the imaginary frequency

(which gives Nf = 1) or (b) solving the Sternheimer equation. The dominant step in their

method is the calculation of the product of L̂ (defined in Eq. 4 in Ref.26) and a vector. The

size of L̂ is 2NoccNg × 2NoccNg, which gives Cstep ∼ NoccNg. This scaling is better than that

of solving the Sternheimer equation in our method. The numerical disadvantage of their

method is that more moments and random vectors are needed for achieving a fixed error, due

to the large size of L̂. The number of moments for expanding the DOS of L̂ should scale as

NoccNg. The sampling error decays as
√
D′/NR, where D′ = 2NoccNg is the dimension of L̂.

To achieve the same error as our method, NR scales as NoccNg. With Eq. 25, the cost for their

method scales as N3
occN

3
g for computing the total RPA correlation energy. To estimate the

cost for calculating ∆ERPA
c , we note that the number of moments is determined by the size

of the region of interest as listed in Table II. The error associated with the electrons in the

region of interest decays as
Ne,ROI

Ne

√
D′/NR. With D′ ∼ NoccNg, we have NR ∼ NoccNg

N2
e,ROI

N2
e

.

Finally, the cost for computing ∆ERPA
c scales as O(N2

occN
2
gNg,ROI

N3
e,ROI

N2
e

). By assuming that

Nocc, Ne, and Ng all scale with the system’s size, this gives a quadratic scaling (the same as

our method).

Last, we estimate the cost for the ACS calculations. ACS’s cost is due to the ad-

ditional RPA-KPM calculations on atoms. The number of occupied orbitals for each

atom is on the order of Nocc/Natom. The dominant step is solving the atoms’ Sternheimer

equations, and we have Cstep ∼ Natom(Nocc/Natom)2Ng. With Eq. 25, ACS’s cost then

scales as O(Natom(Nocc/Natom)2NgNmNRNf ). Note that Nm, Nf , and NR used for atomic

RPA-KPM calculations are the same as those used for the system’s RPA-KPM calcula-

tions, that is, Nm ∼ Ng,ROI and NR ∼ Ng
N2

e,ROI

N2
e

. Finally, the cost of ACS scales as

O(Natom(Nocc/Natom)2N2
gNg,ROI

N2
e,ROI

N2
e
Nf ), which is linear with respect to the system’s size

(assuming Nocc, Natom, Ne, and Ng all scale with the system’s size). For large systems, ACS’s

cost is expected to become negligible compared to the cost of the RPA-KPM calculations

on entire systems. For small systems, ACS’s cost can be larger than the system’s RPA-
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KPM calculation. For the acetone isomerization example, the cost for solving all atoms’

Sternheimer equations is 13 seconds, which is slightly higher than the cost (10 seconds) for

solving acetone and 2-propenol’s Sternheimer equations. In practice, ACS’s cost can be fur-

ther reduced if we only need to perform ACS on the atoms in the region of interest. This is

possible, if, outside that region, the atoms in the two systems have very similar coordinates.

This is often the case for surface catalysis, in which the positions of surface-slab atoms do

not change much during the surface reactions.

V. CONCLUSION

In this work, we have developed a kernel polynomial method to calculate the RPA cor-

relation energy. We focused on calculating the RPA correlation energy difference between

two systems, which is of much interest in practice. To accelerate the convergence of energy-

difference calculations, we have developed a simple, yet effective correlated sampling scheme:

atom-based correlated sampling. ACS relies on additional RPA-KPM calculations on atoms,

whose calculation cost becomes negligible as the system becomes large. The performance

of ACS is examined with two examples: the isomerization of acetone to 2-propenol and the

energy of the water-gas shift reaction. The convergences of these two examples are much

accelerated by ACS, with a boost factor of 3.6 and 4.5 times, respectively. RPA-KPM and

ACS developed in this work would be found useful for calculating reaction energies for the

chemical reactions that take place in local regions. One possible application is to calculate

the adsorption energies of molecules on transition metal surfaces. Accurate predictions for

these adsorption energies are important for predicting the kinetics of heterogeneous catalysis.
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