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7 Abstract 
 

8 Building Information Modeling (BIM) object classification is a key step in supporting the full 
 

9 automation of architecture, engineering, and construction (AEC) domain tasks such as cost 
 

10 estimation and building code compliance checking. Machine learning approach is designated to 
 

11 address any classification task without requiring the domain knowledge to be explicitly or 
 

12 manually specified in detail. The success of machine learning, however, relies on the quality and 
 

13 suitability of input features. In order to support seamless interoperability of BIM applicatio ns, 
 

14 the authors have proposed invariant signatures that uniquely define each AEC object and capture 
 

15 their intrinsic properties. In this paper, the authors combine the use of invariant signatur es 
 

16 together with machine learning approach, to address BIM object classification. The developed 
 

17 invariant signatures include geometric signatures, locational signatures, and metadata signatur es. 
 

18 To test the robustness of their use as machine learning features, the authors created a new BIM 
 

19 object dataset with 1,900 AEC objects in five major categories of building elements, includ ing 
 

20 beams, columns, footings, slabs, and walls. The data were manually annotated by independent 
 

21 annotators to ensure the quality. Among those AEC objects in the dataset, 1,330 objects (70% of 
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22 the data) were used as training/development data and 570 objects (30% of the data) were used as 
 

23 testing data. The authors extracted the predefined invariant signatures as features and tested the 
 

24 robustness of them in AEC object classification using different machine learning algorithms. The 
 

25 best-performing algorithm achieved 99.6% F1-measure in the testing data, which outperformed 
 

26 the state of the art (94.9% F1-measure). As a demonstration of the value of such object 
 

27 classification, a comparative experiment was conducted to take off quantities of walls from a 
 

28 student apartment complex, both using the state-of-the-art commercial software and using the 
 

29 object classification-based automation. Consistent results were found between these two quantity 
 

30 takeoff methods, whereas using object classification-based automation further saved time and 
 

31 manual efforts significantly (saved 98.1% of the loading and object selecting time). These results 
 

32 showed that the use of proposed invariant signatures and machine learning algorithms in BIM 
 

33 applications is promising. 
 

34 Introduction 
 

35 Building Information Modeling (BIM) is “a data-rich digital representation cataloging the 
 

36 physical and functional characteristics of design and construction” (GSA 2007). Using BIM 
 

37 technology, architecture, engineering, and construction (AEC) models can be built virtually with 
 

38 accurate digital representations. BIM serves different stakeholders at different life cycle phases, 
 

39 such as architects at the design phase and contractors at the construction phase (Eastman et al. 
 

40 2011). Comparing to a traditional manual process, BIM allows better analysis and control of a 
 

41 project, such as in cost estimation and progress control. These computer-generated models can 
 

42 support the construction, fabrication, and procurement activities of a construction project with 
 

43 accurate information in a digital format, which saves time and effort by supporting the automatio n 
 

44 of construction engineering and management tasks. 



3  

45 For such automation support, the data of building information models (BIMs) must contain 
 

46 accurate information in their digital representations. A small error in the BIM data may result in 
 

47 malfunctions in the construction processes such as material misuse or dimension mismatc h, 
 

48 therefore resulting in costly construction failure and/or rework. To prevent such error from 
 

49 happening, it is critical to generate semantically correct BIM data at each phase of the 
 

50 construction project, which requires an effective checking of the model in different phases. One 
 

51 of the key challenges in such a checking process is the classification/labeling of objects in BIM, 
 

52 i.e., annotating the BIM objects with their correct categories. For BIM data used in practice, 
 

53 however, misclassification or lack of classification of objects is prevalent. For example, in a 
 

54 bridge model provided to Ma et al. (2018), an abutment was misclassified as a beam, seven 
 

55 bearings were misclassified as column, two safety barriers were misclassified as beam, and four 
 

56 shear keys were misclassified as column. “Before the bridge model could be used in the BMS 
 

57 (bridge management system), these objects need to be correctly classified” (Ma et al. 2018). 
 

58 Furthermore, new semantic classes may need to be added depending on the task at hand. For 
 

59 example, in using BIM data for cost estimation and other construction tasks, objects in BIM may 
 

60 need to be classified into categories following the established construction classification systems 
 

61 such as UniFormat, MasterFormat, OmniClass, and UniClass (Afsari and Eastman 2016). To 
 

62 label the data correctly, a certain level of expertise is required. Labeling the data manually is both 
 

63 labor-intensive and error-prone. Although some efforts have been conducted to develop methods 
 

64 that can automatically label BIM data (Ma et al. 2018, Koo et al. 2019), the results of automated 
 

65 labeling still need to be manually checked in practical use, to ensure the quality of the labels. To 
 

66 achieve full automation for different BIM tasks such as quantity takeoff (QTO), structura l 
 

67 analysis and code compliance checking, the BIM object classification method still needs further 
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68 research and development to cover more generic building elements with higher accuracy and 
 

69 interoperability. 
 

70 Object classification has been studied extensively in computer science. BIM object classificat ion 
 

71 has also attracted the attention of the AEC research community in recent years. Different methods 
 

72 have been used in these studies such as machine learning (Koo et al. 2019; Bloch and Sacks 2018) 
 

73 and rule-based approaches (Ma et al. 2018; Wu and Zhang 2018). Machine learning approaches 
 

74 were found to be more powerful than rule-based approaches such as in space classificatio ns 
 

75 (Bloch and Sacks 2018). Existing machine learning algorithms for object classification can 
 

76 achieve high accuracy in different settings. However, there is a lack of systematic investigat ion 
 

77 of machine learning algorithms for use in BIM object classification which, to a certain extent was 
 

78 due to the lack of labeled BIM objects data in sufficient amount with distinguishing features that 
 

79 are publicly available. To address this gap, the authors proposed a new set of features based on 
 

80 invariant signatures of AEC object for BIM object classification, created a new BIM object 
 

81 dataset, and tested them using various machine learning algorithms. Invariant signatures of an 
 

82 AEC object are “a set of intrinsic properties of the object that distinguish it from others and that 
 

83 do not change with data schema, software implementation, modeling decisions, and/or 
 

84 language/cultural contexts” (Wu et al. 2021). The authors further tested such object classificat ion 
 

85 in supporting QTO of wall objects comparatively with the traditional manual approach using 
 

86 commercial software. 
 

87 In the experiments, the authors chose to use the Industry Foundation Classes (IFC) data format. 
 

88 IFC format is open and neutral (BuildingSMART 2018). It aims to solve the interoperability of 
 

89 different BIM software. Different IFC versions have been released, such as IFC2, IFC2x3, and 
 

90 IFC4, and it is still under development to higher versions to better support standardized data 
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91 representation. IFC4 was accepted as an International Organization for Standardization (ISO) 
 

92 standard (ISO 2013). For the representations of the models, IFC schemas were written in 
 

93 EXPRESS, which is a data modeling language for product data to facilitate data representatio n 
 

94 and exchange. IFC is under fast development. However, currently, the most widely used version 
 

95 is still IFC2x3, which is henceforth the version that the authors chose to conduct their experiments 
 

96 on. 
 

97 To collect IFC data for the experiments, the authors searched existing open IFC repositories such 
 

98 as the “Open IFC Model Repository” (Dimyadi and Henderson 2012), which provided 105 IFC 
 

99 model instances, and the NBS National BIM Library (2018) that provided 6,660 IFC model 
 

100 instances. These existing IFC data facilitated open BIM investigation and are helpful and useful 
 

101 in many research activities, such as providing building elements data for BIM visualizat ion 
 

102 development. However, these data repositories did not provide a systematic dataset tailored for 
 

103 object classification, which would require analyzed building models and verified labels for each 
 

104 element of that building. To address this data need, the authors collected data through existing 
 

105 BIM data models from different sources, such as the IFC official website by BuildingSMA RT 
 

106 and proprietary BIM authoring tools’ default collections. Furthermore, to achieve the object 
 

107 classification development goal, a labeled dataset is needed. The authors invited independent 
 

108 annotators to manually label the  collected data and discussed among themselves any 
 

109 disagreement. If any disagreement could not be resolved through discussion, the majority vote 
 

110 mechanism was used to decide the label to adopt. 
 

111 For the task of BIM object classification, in this paper, the authors explored the potential of 
 

112 combining invariant signature-based features and a machine learning approach. In addition to the 
 

113 selection of machine learning algorithms, the selection of features also plays an important role in 
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114 the performance of machine learning models. With a reported strong performance that was higher 
 

115 than 90%, the feature set used by Koo et al. (2019) seems sufficient. However, exploring a wider 
 

116 range of features could potentially further improve the classification performance, which is 
 

117 crucial in BIM-based automation applications. To gain more insights about a better set of 
 

118 features, the authors did a systematic feature engineering and feature selection. The authors 
 

119 proposed to use invariant signatures to feed into machine learning models. Invariant signatur es 
 

120 can distinguish AEC objects from each other (Wu et al. 2021). By nature, it is expected to suit 
 

121 well the task of AEC object classification. The developed invariant signatures can be divided into 
 

122 three main categories: geometric, locational, and metadata. Geometric signatures define the 
 

123 spatial information, mainly about shape, for each individual object such as its height and width; 
 

124 locational signatures depict the position and orientation of each individual object, in reference to 
 

125 the locations of other objects; metadata signatures capture detailed data structure used by each 
 

126 individual object, which may or may not provide much geometric/locational information. To 
 

127 demonstrate the value of BIM object classification enabled by invariant signature-based features, 
 

128 the authors also tested the proposed method in QTO tasks of 60 AEC objects from two build ing 
 

129 models. 
 

130 Background 
 

131 Shared dataset for research 
 

132 Open datasets are the cornerstones of many research studies and provide a platform for 
 

133 comparison and collaboration. In computer vision, Zhou et al. (2017) developed a method for 
 

134 Scene Parsing through the use of the ADE20K Dataset (Zhou et al. 2018). They introduced and 
 

135 analyzed the ADE20K dataset, which contains diverse annotations of senses, objects, and parts 
 

136 of objects. Consistent annotations of the images were created following a labeling protocol, and 
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137 the dataset was larger and more diverse compared to many other image datasets, such as COCO 
 

138 (Lin et al.2014) and ImageNet (Russakovsky et al. 2015). The method proposed by Zhou et al. 
 

139 (2017) used a Cascade Segmentation Module to parse the images, that could remove image 
 

140 content and synthesize images automatically. Without the MPCONF196 dataset, the ADE20K 
 

141 dataset, and other related image datasets, such research developments would not have been 
 

142 possible or as successful. In natural language processing, Alamoudi and Alghamdi (2021) 
 

143 developed a deep learning method to conduct sentiment classification and analysis based on the 
 

144 Yelp Review data. Without the public data shared by Yelp, such research would not be as 
 

145 successful. In our AEC research community, published datasets also started to increase in recent 
 

146 years such as in construction site images (Han and Golparvar-Fard 2015) and part-of-speech 
 

147 tagged building codes (Xue and Zhang 2020a,b), among others. 
 

148 In the same spirit of shared data and research tasks, the authors developed a dataset with 1,900 
 

149 labeled IFC building objects from five models, which are discussed in detail in the Proposed 
 

150 Method Section later. 
 

151 Existing methods for BIM (AEC) object classification 
 

152 The ISO-registered IFC data standard facilitates BIM interoperability by allowing a “one-to- 
 

153 many” information flow between different BIM applications, which enables the mapping 
 

154 between one central model and representations in various applications, therefore brings flexibil ity 
 

155 into BIM representation. However, such flexibility also creates challenges in data consistenc y. 
 

156 An important factor in ensuring IFC data consistency and integrity is a correct object 
 

157 classification. 
 

158 Object classification distinguishes BIM from 3D computer-aided design (CAD) by carrying the 
 

159 semantic information of objects in a building model (Ma et al. 2018). The semantic informatio n, 
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160 especially the entity type (e.g., beam, column) of the AEC object, plays an important role in other 
 

161 BIM applications. The misuse of entity type could lead to costly errors in later BIM tasks, such 
 

162 as underestimating construction cost and schedule due to incorrect material information. To 
 

163 prevent such misuse, AEC object classification can be used to detect and correct this error at the 
 

164 design phase. Ma et al. (2018) proposed an integrated approach to classify AEC objects that 
 

165 combined domain knowledge of geometric features and pairwise relationships of 3D objects into 
 

166 a tailored matching algorithm. Their algorithm can process various complex 3D geometries and 
 

167 compile a knowledge base in civil engineering. In addition, in their experiment, Ma et al. (2018) 
 

168 achieved 100% accuracy in their two bridge models and provided a knowledge matrix of the 
 

169 objects. In comparison, Wu and Zhang (2018, 2019a) proposed a seven-step method to develop 
 

170 BIM object classification algorithms following a rule-based approach using solely geometric 
 

171 information. Wu and  Zhang (2018, 2019a) showed  a rule-based  algorithm that could 
 

172 automatically label BIM objects with five categories, including beam, column, footing, slab, and 
 

173 wall, with high computational efficiency. 
 

174 Distinct from the rule-based approaches taken by Ma et al. (2018) and Wu and Zhang (2018, 
 

175 2019a), Koo et al. (2019) proposed a classification method using a machine learning approach, 
 

176 more specifically using the support vector machines (SVM). Machine learning is gaining 
 

177 popularity and helped solve many practical problems (Kuang and Xu 2018, Seeliger et al. 2018). 
 

178 In AEC domain, for example, Son et al. used machine learning algorithm to improve concrete 
 

179 detection accuracy from 83% to 93%. Yogesh and Vanajakshi used machine learning (SVM) to 
 

180 improve vehicle detection accuracy from 85% to 99%. For AEC object classificatio n, Koo et al. 
 

181 (2019) proposed a feature set that could map IFC objects to selected IFC classes with an average 
 

182 F1-score of 94.9% for eight classes. While their feature set was working and SVM was one of 
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183 the most robust supervised machine learning algorithms, different features and different 
 

184 algorithms may outperform the SVM proposed by Koo et al. (2019) for AEC object classificatio n, 
 

185 which is representing the state of the art, to push automated BIM object classification closer to 
 

186 the implementation level. To support a better interoperability, the authors proposed to use 
 

187 invariant signatures as features to help solve this AEC object classification problem while 
 

188 supporting BIM interoperability, because invariant signatures are platform-independent and 
 

189 stable. With the invariant signatures-based features, the authors systematically experimented with 
 

190 five promising categories of machine learning algorithms for AEC object classification on their 
 

191 collected data from the newly created data repository. 
 

192 Feature engineering 
 

193 To fully explore the potential of machine learning algorithms, a systematic feature engineering is 
 

194 needed. 
 

195 Feature engineering is one of the critical steps to ensure that the machine learning algorithms can 
 

196 generate good models to achieve the desired classification results. In addition, Feature 
 

197 engineering is one of the most time-consuming and challenging tasks in data mining (Zhang et 
 

198 al. 2018). According to the Occam’s Razor (Bethel 2009), the fewer features used, the more 
 

199 robust machine learning algorithms can potentially be, so the main task in feature engineering is 
 

200 to select a small set of features that maintain a good performance in the target machine learning 
 

201 task. Koo et al. (2019) used a feature set consisted of certain geometric information and relationa l 
 

202 information. The authors proposed to use a different set of features with more geometric 
 

203 information, selected based on invariant signatures of AEC objects and a systematic feature 
 

204 engineering. 
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205 Machine learning algorithms 
 

206 Machine learning plays an important role in the success of many modern computing technologies 
 

207 such as artificial intelligence. There are traditional statistical methods such as linear regression 
 

208 and logistic regression, and new methods that require large computational efforts such as 
 

209 convolutional neural networks (CNN) (Kuang and Xu 2018) and generative adversarial networks 
 

210 (GAN) (Seeliger et al. 2018). Machine learning algorithms can be categorized into two types – 
 

211 supervised and unsupervised. Supervised algorithms require ground truth as input, which is the 
 

212 correct labels of the data. Unsupervised algorithms do not have such prerequisite. Based on the 
 

213 purpose of application, machine learning algorithms can also be categorized by tasks, e.g., 
 

214 classification, regression, and clustering. Kotsiantis (2007) reviewed major machine learning 
 

215 algorithms for the classification task: logic-based algorithms, including decision trees and rule- 
 

216 based algorithms; perception-based algorithms, including logistic regression (Fraix-Burnet et al. 
 

217 2014), neural networks (Cartwright 2015, Hugh and Nawwaf 2018, Angermueller et al. 2016, 
 

218 Zeng et al. 2019, David et al. 2016, Ryan 2017, and Mahanta 2017), and radial basis functio n 
 

219 networks; statistical learning algorithms, including naive Bayes and Bayesian network 
 

220 (Kotsiantis 2007, Quinlan 1986, and Jensen 1996); instance-based learning, including nearest 
 

221 neighbors and k-nearest neighbors (Veropoulos et al. 1999); and SVM. Kotsiantis (2007) 
 

222 summarized the properties and method of each type of algorithms and provided analysis of each 
 

223 of them. For supervised object classification, multiple existing algorithms provide accurate 
 

224 results for different cases. Some of the most promising ones include logic-based algorithms, 
 

225 perception-based techniques, statistical learning algorithms, instance-based algorithms, and SVM 
 

226 (Kotsiantis 2007). In addition to those machine learning algorithms, boosting method can 
 

227 increase the overall accuracy by reducing variance (Trevor 2009) and therefore can be used to 
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228 develop new machine learning algorithms. For example, Random Forest (Trevor 2009) is a 
 

229 machine learning algorithm that is built on substantial modification of the bagging method which 
 

230 in turn is also known as bootstrap aggression to reduce the variance of an estimating functio n. 
 

231 The bagging method works well for tree structures. Random forest pushes that further to build a 
 

232 large collection of de-correlated trees and take the mean prediction of the many trees in 
 

233 classification results using the bagging method. 
 

234 Quantity takeoff (QTO) 
 

235 The cost estimates of construction projects highly depend on the accuracy of the quantities taken 
 

236 off for each individual cost component (Vitasek and Matejka 2017; Alshabab et al. 2017). BIM 
 

237 tools are faster and more reliable to use than the traditional manual QTO approach and can help 
 

238 provide the necessary accuracy required for QTO (Santos et al. 2017). A few researchers have 
 

239 developed BIM-based QTO processes and methods that vastly improved both the accuracy and 
 

240 the time efficiency involved in generating QTO. For example, Akanbi et al. (2020) developed a 
 

241 new data-driven algorithm development method for developing QTO algorithms that process 
 

242 IFC-based BIMs designed in different BIM authoring tools and workflows. Han et al. (2017) 
 

243 proposed a method that improves the accuracy of QTO by extracting geometric dimensions from 
 

244 a proprietary 3D model. Mandava and Zhang (2016) developed a method for generating QTO by 
 

245 leveraging the cartesian points of building objects in an IFC-based BIM. Liu et al. (2016) 
 

246 proposed an ontology-based semantic method to extract QTO information from models. Choi et 
 

247 al. (2015) developed a BIM-based method that computes schematic QTO, improving the 
 

248 accuracy of early design stage cost estimates. Although BIM can provide these benefits in 
 

249 improving the accuracy of QTO results and time efficiency of QTO processes, accurate object 
 

250 classification is further needed to avoid misrepresentation or misuse of BIM data, which is the 
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251 main barrier faced by fully automated QTO and cost estimation. The authors’ proposed method 
 

252 in this research, aims to extract all needed quantities fully automatically using invaria nt 
 

253 signatures-based object classification. 
 

254 Proposed Method 
 

255 For the development of fully automated QTO methods utilizing invariant signatures and machine 
 

256 learning, a comprehensive and robust dataset is required. The data should contain all needed 
 

257 common AEC objects including beams, columns, footings, slabs, and walls. The data also needs 
 

258 to be labeled consistently. After data collection, there are three main steps in the proposed 
 

259 method: (1) construct invariant signatures, (2) apply invariant signatures to object classificatio n, 
 

260 and (3) apply object classification to QTO. 
 

261 Construct invariant signatures 
 

262 As described in the background section, the AEC object classification can potentially be better 
 

263 addressed with invariant signatures for seamless interoperability. In the first step, the authors 
 

264 propose to construct invariant signatures in three sub-types: geometric signatures, locationa l 
 

265 signatures, and metadata signatures. Geometric signatures capture the geometric information of 
 

266 common shapes, such as rectangle and cylinder. Locational signatures capture the position 
 

267 information of an object, including the absolute position, relative position, and orientatio n. 
 

268 Metadata signatures capture representation- level information, especially the representation used 
 

269 in IFC, e.g., the average number of vertices among faces in a boundary representation (Brep). 
 

270 Apply invariant signatures to AEC object classification 
 

271 After constructing the invariant signatures, the authors propose to test the robustness of these 
 

272 properties in two BIM tasks, object classification and furthermore QTO. Object classification is 
 

273 needed for a lot of common tasks in BIM. Classification accuracy is the premise for any 
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274 subsequence applications. For example, for QTO of wall volume, it can generate costly error if 
 

275 any wall object is mistakenly classified as a slab. Based on accurate QTO results, in turn, cost 
 

276 estimation is another important task in BIM, which therefore also relies on the accurate 
 

277 classification result. 
 

278 To achieve a high accuracy in AEC object classification, the authors propose to use invaria nt 
 

279 signatures as features and feed them into machine learning algorithms to classify the AEC object. 
 

280 For algorithm selection, the authors propose to use five promising categories of machine learning 
 

281 algorithms including classic and deep learning algorithms and select the best-performing 
 

282 algorithm to test on the testing dataset. 
 

283 Apply invariant signature-based object classification to QTO 
 

284 For evaluating the developed object classification in generating QTO, the authors utilized the 
 

285 developed object classification algorithm on two types of units from a student apartment complex. 
 

286 The models were created in Autodesk Revit. The results generated using the authors’ developed 
 

287 object classification algorithm are compared against results generated using a commercia l 
 

288 software - Autodesk Navisworks and manual QTO by industry experts. Our expectation is that 
 

289 the algorithm should generate results within a 1% error margin of the results generated by the 
 

290 industry expert using commercial software. Two types of errors may occur, one is from the 
 

291 equations and processes in calculating needed QTO results, with correct invariant signature-based 
 

292 features. The other type are errors in the feature extraction process, where the resulting invaria nt 
 

293 signature-based features would not be error free. To resolve this, in the algorithm development 
 

294 for both tasks, if the existing properties in under-development invariant signatures do not provide 
 

295 enough information, iterative development of the invariant signatures will be performed, i.e., 
 

296 adding more needed properties to the invariant signatures following a data-driven approach. 
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297 Data Collection 
 

298 To collect needed data, the authors explored existing open BIM repositories, including the “Open 
 

299 IFC Model Repository” (Dimyadi and Henderson 2012) and the NBS National BIM Library 
 

300 (2018), which contain 105 and 6,660 IFC data instances, respectively. They provided good 
 

301 quality models for visualization. However, these data were not tailored for object classificatio n, 
 

302 and therefore they did not have verified object class labels. In contrast, the authors developed a 
 

303 new dataset tailored for BIM object classification. 
 

304 Introducing a new dataset 
 

305 The authors selected five models with 1,900 instances of beams, columns, footings, slabs, and 
 

306 walls. The selected models included a duplex apartment model (Deplex_A), a Revit architectura l 
 

307 sample model (Rac_basic), a Revit advanced structural sample model (Rst_advanced), a Revit 
 

308 basic structural sample model (Rst_basic), and the Revit technical school sample structural model 
 

309 (Tech_school). The duplex apartment model was already in IFC, whereas the Revit models were 
 

310 transformed into IFC data format. To facilitate data sharing, the authors hosted this open dataset 
 

311 at Purdue University Research Repository (Wu and Zhang 2019c), an initial version of which 
 

312 was described in (Wu and Zhang 2019b). The new dataset (Wu and Zhang 2021) can be used 
 

313 directly by researchers and developers to develop and test object classification algorithms. The 
 

314 dataset contains not only the 1,900 IFC instances of beams, columns, footings, slabs, and walls 
 

315 but also the object class type labels as described below in the Section of Object Class Labeling, 
 

316 and selected object features as described in the Section of Experiment - Construct Invariant 
 

317 Signatures. 
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318 Object class labeling 
 

319 The authors invited three independent annotators with AEC and BIM background to label the 
 

320 data. The three annotators labeled the data independently leading to an average inter-annotato r 
 

321 agreement of 87.21%. Then the authors led a discussion of the disagreed instances aiming to 
 

322 reach consensus. After that, the average inter-annotator agreement was improved to 99.05% and 
 

323 no objects had more than two different labels. For the rest of the 18 instances (0.95%) where 
 

324 disagreement remained, the authors used the majority vote to decide object type labels to use. 
 

325 Table 1 shows the numbers of AEC object instances in each type of object labels. 
 

326 Experiment 
 

327 In the experiment, the authors randomly split the 1,900 objects into training dataset and testing 
 

328 dataset following a 7:3 ratio. As a result, 1,330 objects were used as training/development data 
 

329 and 570 objects were used as testing data. During the development phase, only the training data 
 

330 set was used. 
 

331 Construct invariant signatures 
 

332 The authors followed the proposed method to construct invariant signatures as the interoperable 
 

333 representations of AEC objects, which can later be used as machine learning features. Based on 
 

334 a preliminary analysis of the data, the authors established invariant signatures with three main 
 

335 sub-types: geometric signatures, locational signatures, and metadata signatures. Geometric 
 

336 signatures contain size (e.g., length) and shape (e.g., I-shape) information of an object. Locationa l 
 

337 signatures include the positional information of all the objects from the same model. Metadata 
 

338 signatures include the data structure (e.g., IFC entities) and statistical data (e.g., the number of 
 

339 faces) used by each object. The invariant signatures include both categorical features and numer ic 
 

340 features. Categorical features can be transformed into numeric values using discrete numbers or 



16  

341 binary representations. For features that an object may miss value for (i.e., empty feature value), 
 

342 a default value of “0” or empty was assigned. In addition, metadata signatures may have certain 
 

343 information overlap with geometric and locational signatures. For example, if an object has a 
 

344 nonzero value for the I-shape signatures then the object should also have a nonzero value for the 
 

345 extruded area solid signature. Table 2. Shows all the developed invariant signatures with their 
 

346 value types and descriptions. 
 

347 The signature set contains built-in feature values, such as Rec_L, Rec_W, Rec_H, which represent 
 

348 the length, width, and height of a 3D rectangular shape, respectively. For regular shapes, 
 

349 rectangular, cylindrical and ring shape features were included. For irregular shapes, the authors 
 

350 defined two sets of signatures, one for extruded area solid and one for Brep. The extruded area 
 

351 solid signature for irregular shapes included a set of 3 decimal numbers to represent the length, 
 

352 width, and thickness dimensions of the bounding box, respectively. For Brep representation, in 
 

353 addition to the dimensions of the bounding box, the signatures that indicate the number of faces 
 

354 were also included. Table 3 shows 16 examples of the invariant signature values of independent 
 

355 objects. 
 

356 The proposed invariant signatures are expected to uniquely identify AEC objects. To allow this 
 

357 identification, the invariant signatures shall describe all the major information embedded in each 
 

358 object. This can be reflected by the statistical relations of each invariant signature with AEC 
 

359 object types. For one type of AEC object, the invariant signature values fall into certain range. 
 

360 For example, the height of a slab object usually does not exceed 0.3 meters. However, the height 
 

361 of a wall object usually does not fall below 0.3 meters. This is reflected in the distribution of each 
 

362 invariant signature values. Figs. 1 to 3 show three plots of object instances’ distributions across 
 

363 three different invariant signature features, respectively. Fig. 1 shows the distribution of the 
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364 locational signature O3 (elevation of an object) on different object types. It shows that footings 
 

365 have smaller values of elevation. Fig. 2 shows the distribution of the geometric signature Length 
 

366 (horizontal dimension) on different object types. It shows that columns have smaller values of 
 

367 length, comparing to other types. Fig. 3 shows the distribution of the geometric signature Cir_R 
 

368 on different object types. It shows that circle is not used in walls or slabs. 
 

369 Apply invariant signatures to AEC object classification 
 

370 With the proposed invariant signatures, five types of machine learning algorithms were tested 
 

371 using Waikato Environment for Knowledge Analysis (Weka), which is an open machine learning 
 

372 platform developed by the University of Waikato (Witten et al. 2016). Ten-fold cross-validat ion 
 

373 was used to avoid overfitting. 
 

374 Perceptron-based techniques: neural networks 
 

375 A single layer artificial neural network would have the same structure with the linear regression 
 

376 model, so the authors chose to use deep learning (neural networks with multiple layers) for 
 

377 perceptron-based techniques. After parameter tuning, the authors selected the best performing 
 

378 configuration (two-layer with 45 nodes for each layer) to compare with other machine learning 
 

379 algorithms. Fig. 4 shows a visualization of the accuracies of these results. Table 4 shows the 
 

380 detailed classification results of the best configuration. The accuracy started to drop after 3 layers 
 

381 because of overfitting, so the deep learning approach with more hidden layers will not generate 
 

382 better results unless more training data is used. 
 

383 Logic-based: decision table 
 

384 A decision table is a graphical implementation of decision trees. The authors used best-first search 
 

385 (BFS) and greedy stepwise search. For BFS, the authors implemented forward, backward, and 
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386 bidirectional search methods. Fig. 5 shows a visualization of the detailed training results. Table 
 

387 5 shows the details of the classification results of the best configuration. 
 

388 Statistical machine learning: Bayesian network 
 

389 Naïve Bayes assumes that the features are independent from each other. However, some of the 
 

390 features may be highly correlated. To address that, the authors used a Bayesian network instead. 
 

391 Bayesian network used probability graphical model, which was based on the conditiona l 
 

392 dependencies of the parent nodes on each node in the network. The classification results depend 
 

393 on the number of parent nodes implemented. As a result, the authors used different numbers of 
 

394 parent nodes to train the best model. The visualization of the training results is shown in Fig. 6. 
 

395 Table 6 shows the details of the classification results of the best configuration. 
 

396 Support vector machines (SVM) 
 

397 SVM uses hyperplanes to separate data into different classes. The classification results depend 
 

398 on a regularization term, which is defined by a soft margin constant. The authors experimented 
 

399 with different soft margin constants to find the best performance. A visualization of the accuracy 
 

400 using different soft margin constants at different range scales is shown in Fig. 7. Table 7 shows 
 

401 the details of the classification results of the best configuration. 
 

402 Random forest 
 

403 Random forest uses a collection of decision trees and takes the statistical majority of the results 
 

404 of each tree. Search depth will determine the classification results. A low depth value may lead 
 

405 to underfitting, whereas a high depth value may lead to overfitting. The visualization of accuracy 
 

406 on different configurations is shown in Fig. 8. Table 8 shows the details of the classificat ion 
 

407 results of the best configuration. 
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408 Apply invariant signature-based object classification to QTO 
 

409 Based on the automation enabled by object classification, QTO jobs can be implemented with 
 

410 high precision and efficiency. To demonstrate the QTO potential and verify the robustness of 
 

411 automated object classification based on invariant signatures and machine learning, the authors 
 

412 tested the invariant signature-based objection classification on QTO of 2 types of units from a 
 

413 student apartment (Fig. 9). The selected models in Fig. 9a show these two types of student 
 

414 apartment units (2-bedroom unit and 4-bedroom unit) extracted from the student apartment 
 

415 complex (Fig. 9b). As shown in Fig. 9a, the units comprise of wall components and floor 
 

416 components. For this experiment, the authors randomly selected 30 wall objects from the 4- 
 

417 bedroom unit and 30 wall objects from the 2-bedroom unit. The results obtained using our 
 

418 algorithms were compared with results of the state-of-the-art method using commercial software. 
 

419 The comparison of the results showed consistent values for the length, width, height, and volume 
 

420 of the selected objects. 
 

421 Results & Analysis 
 

422 Random forest achieved the highest F1-measure among all the algorithms in the training phase, 
 

423 so the authors selected random forest as the best-performing algorithm to test on the testing 
 

424 dataset. The overall F1-measure was 99.6% as a result. This was 0.20% higher than the training 
 

425 accuracy. This shows the algorithm did not overfit and perform well in the testing dataset. Table 
 

426 9 shows the detailed testing results. 
 

427 Error analysis 
 

428 For the best performing machine learning algorithm, the random forest, the errors were mainly 
 

429 due to the cutoff values of decision trees. The invariant signatures were verified to be correct, so 
 

430 the errors occurred because of the limitations in selected machine learning algorithm. A level of 
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431 depth 7 achieved the best performance in the cross-validated data. More levels might lead to 
 

432 overfitting, which would reduce the training performance. The errors included 2 slabs 
 

433 misclassified as 1 footing and 1 wall, respectively. Fig. 10 shows the trained classifier. The tree 
 

434 on the left shows a branch that successfully classified all instances, which are shown in the 
 

435 bracket in the leaf nodes (5 columns and 15 beams were classified). The tree on the right shows 
 

436 a branch that only successfully classified a part of them: among the 10 objects classified as 
 

437 columns, 8 of them were correct and 2 of them were incorrect, while among the 18 objects 
 

438 classified as beams, 15 of them were correct and 3 of them were incorrect. Although each tree 
 

439 may make wrong predictions, e.g., in one of the branches, among 157 classified columns, 47 of 
 

440 them were wrong, after the voting process, the accuracy increased significantly. For example, 
 

441 Table 10 shows the two incorrectly classified instances. The depth of the voting tree ranged from 
 

442 4 (mRatio < 0.39; mLow < -3.901; mRatio < 0.37; Z3 >= 0.5: Footing (238/0)) to 7 (mLow < - 
 

443 7.151; ExtrudZ >= 0.5; Width >= 0.2375; X1 >= 0.9; O1 < -0.21903; Width >= 0.3178; I_R < 
 

444 0.0076: Column (3/1)). 
 

445 Feature set (invariant signatures) analysis 
 

446 Our invariant signature-based feature set led to a good performance (i.e., 99.6% F1 score in 
 

447 testing data) but may contain extra information that would be needed only for subcategories. 
 

448 After feature selection, the authors proposed a 6-feature set which achieved 98.65% F1 score. 
 

449 The authors analyzed the features as follows. The Cir_H feature describes the height of a cylinde r 
 

450 shape. A zero value for this feature means a non-cylinder shape. It mainly helps distinguishi ng 
 

451 footings and columns from other object types. The Width feature describes the width of any 
 

452 shape. It is one of the general features that help distinguish many different objects. The O3 feature 
 

453 describes the elevation of any object. The elevation is one of the most important pieces of 
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454 information based on locational features. The Zmin feature describes the lowest point of Brep 
 

455 representation, which not only tells whether the object used that representation or not, but also 
 

456 provides information about the size. The ExtrudZ feature describes the extruded direction of a 
 

457 swept solid representation, which not only tells whether the object used that representation or 
 

458 not, but also provides information about the orientation direction of the object, which is important 
 

459 to differentiate beams from other types. 
 

460 Comparison with the state-of-the-art algorithm 
 

461 The BIM object classification algorithm developed by Ma et al. (2018) encoded experts’ insights 
 

462 as rules. A direct comparison would be difficult as the objects used by Ma et al. (2018) and the 
 

463 authors were of different types. To compare with Koo et al. (2019), the authors reproduced the 
 

464 method by Koo et al. (2019) based on the authors’ understanding of the feature values used by 
 

465 Koo et al. (2019). Because the authors could not get access to the original data used by Koo et al. 
 

466 (2019), the authors used their own dataset while extracting the features that Koo et al. (2019) 
 

467 proposed. After model training and parameter tuning, the authors obtained 94.86% (94.12% on 
 

468 testing) accuracy using SVM with C=200000, which is in the same range as the experiment of 
 

469 Koo et al. (2019). The authors also tested random forest machine learning algorithm using the 
 

470 same set of features and obtained 98.87% (99.12% on testing) accuracy (Table 11). The random 
 

471 forest machine learning algorithm showed high performance and is expected to be robust in 
 

472 similar types of BIM objects. 
 

473 QTO results 
 

474 Table 12 shows a few sample QTO results comparatively using the manual approach and using 
 

475 our method. On average, the difference of the QTO results between using the proposed method 
 

476 (random forest-based object classification) and using traditional approach (manual approach as 



22  

477 gold standard) is 0.3%, within the desirable threshold 1%. More importantly, the time differe nce 
 

478 for QTO tasks was significant. On average, each object took 4.23 seconds in manual QTO, 
 

479 whereas it only took 0.079 seconds using our proposed method. It saved 98.1% of time using our 
 

480 proposed method comparing to the manual approach. The time for QTO using the traditiona l 
 

481 approach was mainly consumed in the loading, project set-up, and element selection. This shows 
 

482 that the proposed invariant signature-based object classifications can produce correct QTO results 
 

483 that are comparable with traditional approach but with much less time, which illustrates the 
 

484 robustness of the invariant signature-based object classification in QTO application. 
 

485 Contributions to the Body of Knowledge 
 

486 There are five main contributions in this paper. First, the authors proposed to use invaria nt 
 

487 signatures of AEC objects as features/input for BIM object classification. Invariant signatur es 
 

488 provided a theoretical foundation for universal and seamless BIM interoperability and practical 
 

489 solutions to push it forward. Second, the authors established an open dataset for BIM object 
 

490 classification, which can be used to reproduce the results and conduct further research in BIM- 
 

491 based automation. This open and consistent data can promote collaboration and comparison 
 

492 between different methods in this task and further BIM-based automation tasks in the AEC 
 

493 domain. Third, the authors improved the state-of-the-art F1-measure (accuracy) for machine 
 

494 learning-based BIM object classification, from 94.9% to 99.6%. This helps push BIM-based full 
 

495 automation of AEC tasks one step closer to reality, which would need 100% accuracy. Fourth, a 
 

496 systematic approach was conducted to test and compare different machine learning algorithms. 
 

497 The best performing algorithm, random forest, was shown to outperform other machine learning 
 

498 algorithms in both the authors’ invariant signatures-based feature set and the state-of-the-art 
 

499 features. Last but not least, object classification is the premise of the full automation of many 
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500 BIM applications. In this experiment, the invariant signatures-based objection classificat ion 
 

501 showed that it led to comparable QTO results with the traditional approach whereas saving time 
 

502 and manual effort significantly. It can be expected to have broader use in other BIM applicatio ns 
 

503 such as building code compliance checking and building energy simulation/analysis to further 
 

504 pursue seamless BIM interoperability and full automation of AEC tasks. 
 

505 Conclusions 
 

506 A high classification accuracy and BIM interoperability are two pillars to support BIM-based 
 

507 automation in AEC tasks such as cost estimation, structural analysis, code compliance checking, 
 

508 energy modeling and simulation. Advancing either pillar alone without the other is not sufficie nt 
 

509 for practical consideration. To synergistically advance both, in the paper, the authors investiga ted 
 

510 the use of invariant signatures of AEC object as features/input for BIM object classification. Five 
 

511 types of machine learning algorithms were systematically tested. The features using invaria nt 
 

512 signatures were shown to deliver better BIM object classification results comparing to the state- 
 

513 of-the-art features. In addition, the authors showed that the random forest machine learning 
 

514 algorithm outperformed SVM (the state of the art) and other machine learning algorithms. The 
 

515 overall performance in object classification was improved to 99.6% F1-measure. This shows that 
 

516 the invariant signatures and the random forest machine learning algorithm are promising in BIM 
 

517 object classification. In addition. The random forest-based object classification was tested to 
 

518 achieve less than 1% error in QTO, compared with a gold standard developed using commercia l 
 

519 software and traditional manual approach, while achieved significant time saving (98.13%) in 
 

520 conducting the QTO tasks. The invariant signatures in combination with machine learning 
 

521 algorithms are expected to be applicable in a variety of other different BIM applications such as 
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522 cost estimation, automated code compliance checking, and building energy simulation and 
 

523 analysis, with high accuracy and efficiency. 
 

524 Limitations and Future Work 
 

525 As a first step towards building a comprehensive BIM object classifier, the authors established a 
 

526 new dataset tailored for object classification. The dataset contains five BIM models with 1,900 
 

527 object instances in IFC format. The dataset provides verified labels and processed features for 
 

528 the objects in a systematic way. The dataset was still small compared to the dataset in other 
 

529 domains, such as the ADE20K (Zhou et al. 2018) with 22,210 images for image processing, so 
 

530 the authors are planning to continuously grow the dataset to contain more verified models and 
 

531 objects. The authors also plan to test the potential of invariant signature-based object 
 

532 classification in other BIM applications such as automated building code compliance checking, 
 

533 and investigate more advanced deep learning algorithms to further reduce the needed feature 
 

534 engineering efforts. 
 

535 Data Availability Statement 
 

536 Some data and models used during the study are available in a repository online in accordance 
 

537 with funder data retention policies. 
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699 Tables  

700 Table 1. Numbers of instances in each object types. 
 Object Type Number of Instances 
 Beam 790 
 Column 412 
 Footing 354 
 Slab 79 
 Wall 265 
 Total 1,900 

701   

702 Table 2. Developed object invariant signatures.  

Invariant 
Signature Name 

Value Type 
Signatures 

Type 
Description 

 
 

Rec_L    Numerical    Geometric Length of a rectangular shape 
Rec_W    Numerical    Geometric  Width of a rectangular shape 

Rec_H   Numerical   Geometric Height of a rectangular shape 
Cir_R  Numerical  Geometric   Radius of a cylinder shape 
Cir_H   Numerical   Geometric    Height of a cylinder shape 
R_R Numerical Geometric    Radius of a ring shape 
R_H Numerical Geometric Height of a ring shape 

R_T Numerical Geometric Thickness of a ring shape 

I_W Numerical Geometric Width of an I-shape 

I_H Numerical Geometric 
Height of an I-shape (extruded 

depth) 
I_D Numerical Geometric Depth of an I-shape 

I_R   Numerical   Geometric   Radius of an I-shape 

I_WT   Numerical   Geometric  Wide thickness of an I-shape 

I_FT  Numerical  Geometric Flange thickness of an I-shape 

X1 Numerical Locational 

X2 Numerical Locational 
X3 Numerical Locational 

Z1 Numerical Locational 
Z2 Numerical Locational 
Z3 Numerical Locational 

Vector x for placement 

 
 

Vector z for placement 

 
Center Cartesian point of the 

object 

Highest elevation of the 
original model 

Lowest elevation of the original 
model 

mRatio Numerical Locational 
mRatio = (mHigh – (mHigh + 
mLow) / 2) / (mHigh - mLow) 

Length Numerical Geometric Length of the bounding box 

Width Numerical Geometric Width of the bounding box 

O1 Numerical Locational 

O2 Numerical Locational 

O3 Numerical Locational 

mHigh Numerical Locational 

mLow Numerical Locational 
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Height Numerical Geometric Height of the bounding box 
Volume Numerical Geometric Volume of the bounding box 
Items Integer Metadata Number of items 

Number of faces of Brep 
representation 

Number of faces with 3 edges 

of Brep representation 

Number of faces with 4 edges 

of Brep representation 

Number of faces with 5 edges 

of Brep representation 

Number of faces with 6 edges 

of Brep representation 

Number of faces with 7 edges 

of Brep representation 

AveVerti Numerical Metadata 
Average number of edges of all 

faces of Brep representations 
Xmax   Numerical   Metadata  Max value in x direction 

Xmin  Numerical  Metadata  Min value in x direction 

Ymax  Numerical  Metadata  Max value in y direction 

Ymin Numerical Metadata Min value in y direction 

Zmax   Numerical   Metadata  Max value in z direction 

Zmin  Numerical  Metadata  Min value in z direction 

If Brep representation is used 

If swept solid representation is 

used 

If clipping representation is 
used 

If CSG representation is used 

If SurfaceModel representation 

is used 
ExtrudX Numerical Geometric 
ExtrudY Numerical Geometric 

ExtrudZ Numerical Geometric 

 

Extruded direction 

Rec  Nominal (Binary)  Metadata If a rectangular shape is used 

Cir Nominal (Binary) Metadata  If a cylinder shape is used 

Ring  Nominal (Binary)  Metadata   If a ring-shape is used 
I Nominal (Binary) Metadata If an I-shape is used 

Type Nominal (Quinary) Ground Truth Labeled type 

703 

704 Table 3. Sample invariant signature values by instances. 

Instance Model Rec_L Rec_W Height Cir_R AveVerti Type 

IfcFooting1 Duplex_A 18.28 0.9 0.3 0 0 Footing 
IfcFooting2 Duplex_A 8.38 0.9 0.3 0 0 Footing 

IfcFooting3 Duplex_A 17.38 0.9 0.3 0 0 Footing 

IfcColumn1 Rst_advanced 0 0 3.5 0.225 0 Column 

Brep 

Extruded 

Nominal 

Nominal 

(Binary) 

(Binary) 

Metadata 

Metadata 

Clipping Nominal (Binary) Metadata 

CSG Nominal (Binary) Metadata 

SurfaceModel Nominal (Binary) Metadata 

 

Faces Integer Metadata 

F3 Integer Metadata 

F4 Integer Metadata 

F5 Integer Metadata 

F6 Integer Metadata 

F7 Integer Metadata 
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 IfcColumn2 Rst_advanced 0 0 3.5 0.225 0 Column 
IfcColumn3 Rst_advanced 0 0 3.5 0.225 0 Column 

IfcBeam125 Rst_Basic 0 0 1.44 0.015 0 Beam 

IfcBeam126 Rst_Basic 0 0 2.88 0 3.52 Beam 

IfcBeam127 Rst_Basic 0 0 3.13 0 3.52 Beam 

705         

706 Table 4. Classification results of best configuration of neural networks.  

Number of Number of 

 
Category 

Number 

of objects 

correctly 

classified 

objects 

objects 

classified 

into 

Recall Precision F1 ROC 

Beam 549 548 551 99.8% 99.5% 99.6% 100.0% 

Column 286 284 286 99.3% 99.3% 99.3% 100.0% 

Footing 250 249 255 99.6% 97.6% 98.3% 99.8% 

Slab 53 45 49 84.9% 91.8% 88.2% 99.0% 

Wall 192 185 189 96.4% 97.9% 97.1% 99.6% 

Total 1,330 1,310 1,330 98.6% 98.6% 98.6% 99.9% 

707         

708  Table 5. Classification results of the best configuration of decision table.  

 
 

Category 

 
Number of 

objects 

Number of 

correctly 

classified 

objects 

Number 

of 

correctly 

classified 

objects 

 
 

Recall Precision F1 ROC 

 
 

Beam 549 544 550 99.1% 98.9% 99.0% 100.0% 
Column 286 277 280 96.9% 98.9% 98.2% 99.3% 

Footing 250 248 260 99.2% 95.4% 97.3% 99.7% 
Slab 53 47 48 88.7% 97.9% 93.1% 98.4% 
Wall 192 184 192 95.8% 95.8% 95.8% 99.3% 
Total 1,330 1,300 1,330 97.7% 97.7% 97.7% 99.6% 

709 

710 Table 6. Classification results of the best configuration of Bayesian network.  

Category 
Number of 

Number of 

correctly 

Number of 

objects 
 

Recall Precision F1 ROC 
  objects classified 

objects 

classified 

into 
 

Beam 549 547 549 99.6% 99.6% 99.6% 100.0% 

Column 286 285 285 99.7% 100.0% 99.8% 100.0% 

Footing 250 247 241 98.8% 98.4% 98.6% 100.0% 

Slab 53 44 49 83.0% 89.8% 87.3% 99.8% 
Wall 192 181 186 99.5% 97.4% 98.5% 100.0% 

Total 1,330 1,300 1,330 98.8% 98.8% 98.8% 100.0% 

711         

712         
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713 Table 7. Classification results of the best configuration of SVM. 

 
Category 

Number 

of 

objects 

Number of 

correctly 

classified 

objects 

Number of 

objects 

classified 

into 

 
Recall Precision F1 ROC 

 

Beam 549 547 551 99.6% 99.3% 99.5% 99.6% 
Column 286 284 286 99.3% 99.3% 99.3% 99.8% 

Footing 250 250 256 100.0% 97.7% 98.8% 99.7% 

Slab 53 44 46 83.0% 95.7% 88.9% 97.5% 
Wall 192 186 191 96.9% 97.4% 97.1% 99.0% 
Total 1,330 1,300 1,330 98.6% 98.6% 98.6% 99.5% 

714 

715 Table 8. Classification results of the best configuration of random forest. 

 
Category 

Number 

of 

objects 

Number of 

correctly 

classified 

objects 

Number of 

objects 

classified 

into 

 
Recall Precision F1 ROC 

 

Beam 549 549 551 100% 99.6% 99.8 % 100% 
Column 286 285 285 99.7% 100.0% 99.8% 100.0% 
Footing 250 250 254 100% 98.4% 99.2% 100.0% 

Slab 53 47 48 88.7% 97.9% 93.1% 99.8% 
Wall 192 191 191 99.5% 99.5% 99.5% 100.0% 
Total 1,330 1,300 1,330 99.4% 99.4% 99.4% 99.9% 

716 

717 Table 9. Testing performance of the selected machine learning algorithm - the random forest.  

 
Category 

Number 

of 

objects 

Number of 

correctly 

classified 

objects 

Number of 

objects 

classified 

into 

 
Recall Precision F1 ROC 

 

Beam 241 241 241 100.0% 100.0% 100.0% 100.0% 
Column 126 126 126 100.0% 100.0% 100.0% 100.0% 
Footing 104 104 105 100.0% 99.0% 99.5% 100.0% 

Slab 26 24 24 92.3% 100.0% 96.0% 99.1% 

Wall 73 73 74 100.0% 98.6% 99.3% 100.0% 

Total 570 568 570 99.6% 99.7% 99.6% 99.9% 

718 

 

719 Table 10. Error analysis of the best machine learning algorithm - the random forest.  

Instance Real type Classified type Comment/ analysis 
 

IfcSlab1 Slab Footing Voting trees: 5 footings, 3 slabs, 1 column, 1 
wall 

IfcSlab3 Slab Wall Voting trees: 5 walls, 2 footings, 2 slabs, 1 

column 

720 
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721 Table 11. Performance comparison with the state of the art  

Koo et al.'s Features Authors' Features (Invariant Signatures) 

SVM 94.86%  98.65% 

Random Forest 98.87% 99.40% 
 

722 
723 Table 12. Example quantity takeoff results  

Model Volume Using 
Invariant 

Signatures (m3) 

Volume Using Commercial 

Software (Gold Standard) 

(m3) 

Difference 

 

Wall 1 Two-bedroom unit 4.221 4.221 0.0% 
Wall 2 Two-bedroom unit 0.409 0.410 0.3% 

Wall 1 Four-bedroom unit 9.855 9.855 0.0% 
Wall 2 Four-bedroom unit 0.212 0.212 0.0% 

724 

 
725 

 
726 

 
727 

 
728 

 
729 

 
730 

 
731 

 
732 

 
733 

 
734 

 
735 

 
736 

737 



35  

738 Figure Captions 
 

739 Fig. 1. Distribution of the locational signature O3 (elevation) on different object types. 
 

740 Fig. 2. Distribution of the geometric signature Length on different object types. 
 

741 Fig. 3. Distribution of the geometric signature Cir_R on different object types. 
 

742 Fig. 4. Visualization of training results of deep learning on different configurations. 
 

743 Fig. 5. Visualization of training results of decision table on different configurations. 
 

744 Fig. 6. Visualization of training results of Bayesian network on different configurations. 
 

745 Fig. 7. Visualization of training results of SVM using different configurations. 
 

746 Fig. 8. Visualization of training results of random forest in different configurations. 
 

747 Fig. 9a. Visualization of the 2-bedroom and 4-bedroom units used for quantity takeoff. 
 

748 Fig. 9b. Visualization of the student apartment complex used for quantity takeoff. 
 

749 
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751 

 

752 

753 

754 

755 

756 

757 

758 

759 

760 

761 

762 

Fig. 10. Visualization of the best-performing machine learning model (random forest). 
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763 Appendices 
 

764 Appendix 1. Neural network accuracy using different layers and different number of nodes. 

 Layers\Nodes per 

Layer 
10 20 30 35 40 45 50 

1 98.05% 98.20% 98.12% 97.89% 98.20% 98.02% 97.97% 

2 97.74% 98.05% 98.12% 98.05% 98.35% 98.57% 98.20% 

3 96.91% 97.97% 97.67% 97.52% 97.97% 97.29% 97.00% 

765         

766 Appendix 2. Decision table accuracy using different search direction and depth. 

 Forward 

Depth 
Accuracy 

Backward 

Depth 
Accuracy 

Bidirectional 

Depth 
Accuracy 

1 97.44% 1 97.74% 1 97.44% 

2 97.44% 2 97.74% 2 97.44% 

3 97.44% 3 97.74% 3 97.59% 
4 97.44% 4 97.74% 4 97.59% 

5 97.44% 5 97.74% 5 97.59% 

10 97.44% 10 97.74% 10 97.59% 

767       

768 Appendix 3. Accuracy vs. number of parents of Bayesian network. 

 No. of Parents Accuracy  

1 96.62% 
2 98.80% 

3 98.80% 

4 98.80% 
5 98.80% 

 6 - 10 98.80%  

769 

770 Appendix 4. Accuracy on different regulation terms C for SVM. 

 C Accuracy C Accuracy C Accuracy C Accuracy 
1 97.44% 9 98.50% 10 98.57% 14.2 98.65% 

5 97.97% 10 98.57% 14 98.65% 14.25 98.72% 

10 98.57% 20 98.72% 15 98.72% 14.5 98.72% 

50 98.57% 30 98.57% 16 98.72% 14.75 98.72% 
100 98.57% 40 98.57% 17 98.65% 15 98.72% 

1000 98.20% 50 98.57% 18 98.65% 15.25 98.72% 

10000 98.05% 60 98.50% 19 98.65% 15.5 98.72% 
  80 98.50% 20 98.72% 15.75 98.72% 
  100 98.57% 25 98.65% 16 98.72% 
  105 98.50   16.25 98.65% 

771         

772         

773         
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774 Appendix 5. Accuracy of random forest on different number of parents. 

 Parents Accuracy  

1 60.08% 

2 88.72% 
3 94.59% 

4 97.97% 

5 99.17% 

6 99.25% 

7 99.40% 

8 99.24% 

9 99.17% 

10 99.17% 

11 99.17% 

12 99.25% 
13 99.25% 

14 99.25% 

15 99.25% 

20 99.25% 

50 99.25% 

  Unlimited 99.25%  
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