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Abstract

Building Information Modeling (BIM) object classification is a key step in supporting the full
automation of architecture, engineering, and construction (AEC) domain tasks such as cost
estimation and building code compliance checking. Machine learning approach is designated to
address any classification task without requiring the domain knowledge to be explicitly or
manually specified in detail. The success of machine learning, however, relies on the quality and
suitability of input features. In order to support seamless interoperability of BIM applications,
the authors have proposed invariant signatures that uniquely define each AEC object and capture
their intrinsic properties. In this paper, the authors combine the use of invariant signatures
together with machine learning approach, to address BIM object classification. The developed
invariant signatures include geometric signatures, locational signatures, and metadata signatures.
To test the robustness of their use as machine learning features, the authors created a new BIM
object dataset with 1,900 AEC objects in five major categories of building elements, including
beams, columns, footings, slabs, and walls. The data were manually annotated by independent

annotators to ensure the quality. Among those AEC objects in the dataset, 1,330 objects (70% of
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the data) were used as training/development data and 570 objects (30% of the data) were used as
testing data. The authors extracted the predefined invariant signatures as features and tested the
robustness of them in AEC object classification using different machine learning algorithms. The
best-performing algorithm achieved 99.6% F1-measure in the testing data, which outperformed
the state of the art (94.9% FIl-measure). As a demonstration of the value of such object
classification, a comparative experiment was conducted to take off quantities of walls from a
student apartment complex, both using the state-of-the-art commercial software and using the
object classification-based automation. Consistent results were found between these two quantity
takeoff methods, whereas using object classification-based automation further saved time and
manual efforts significantly (saved 98.1% of the loading and object selecting time). These results
showed that the use of proposed invariant signatures and machine learning algorithms in BIM

applications is promising.

Introduction

Building Information Modeling (BIM) is “a data-rich digital representation cataloging the
physical and functional characteristics of design and construction” (GSA 2007). Using BIM
technology, architecture, engineering, and construction (AEC) models can be built virtually with
accurate digital representations. BIM serves different stakeholders at different life cycle phases,
such as architects at the design phase and contractors at the construction phase (Eastman et al.
2011). Comparing to a traditional manual process, BIM allows better analysis and control of a
project, such as in cost estimation and progress control. These computer-generated models can
support the construction, fabrication, and procurement activities of a construction project with
accurate information in a digital format, which saves time and effort by supporting the automation

of construction engineering and management tasks.
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For such automation support, the data of building information models (BIMs) must contain
accurate information in their digital representations. A small error in the BIM data may result in
malfunctions in the construction processes such as material misuse or dimension mismatch,
therefore resulting in costly construction failure and/or rework. To prevent such error from
happening, it is critical to generate semantically correct BIM data at each phase of the
construction project, which requires an effective checking of the model in different phases. One
of the key challenges in such a checking process is the classification/labeling of objects in BIM,
i.e., annotating the BIM objects with their correct categories. For BIM data used in practice,
however, misclassification or lack of classification of objects is prevalent. For example, in a
bridge model provided to Ma et al. (2018), an abutment was misclassified as a beam, seven
bearings were misclassified as column, two safety barriers were misclassified as beam, and four
shear keys were misclassified as column. “Before the bridge model could be used in the BMS
(bridge management system), these objects need to be correctly classified” (Ma et al. 2018).
Furthermore, new semantic classes may need to be added depending on the task at hand. For
example, in using BIM data for cost estimation and other construction tasks, objects in BIM may
need to be classified into categories following the established construction classification systems
such as UniFormat, MasterFormat, OmniClass, and UniClass (Afsari and Eastman 2016). To
label the data correctly, a certain level of expertise is required. Labeling the data manually is both
labor-intensive and error-prone. Although some efforts have been conducted to develop methods
that can automatically label BIM data (Ma etal. 2018, Koo et al. 2019), the results of automated
labeling still need to be manually checked in practical use, to ensure the quality of the labels. To
achieve full automation for different BIM tasks such as quantity takeoff (QTO), structural

analysis and code compliance checking, the BIM object classification method still needs further



68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

&3

84

85

86

87

88

89

90

research and development to cover more generic building elements with higher accuracy and
interoperability.

Object classification has been studied extensively in computer science. BIM object classification

has also attracted the attention of the AEC research community in recent years. Different methods
have been used in these studies such as machine learning (Koo et al. 2019; Bloch and Sacks 2018)
and rule-based approaches (Ma et al. 2018; Wu and Zhang 2018). Machine learning approaches
were found to be more powerful than rule-based approaches such as in space classifications

(Bloch and Sacks 2018). Existing machine learning algorithms for object classification can
achieve high accuracy in different settings. However, there is a lack of systematic investigation

of machine learning algorithms for use in BIM object classification which, to a certain extent was
due to the lack of labeled BIM objects data in sufficient amount with distinguishing features that
are publicly available. To address this gap, the authors proposed a new set of features based on
invariant signatures of AEC object for BIM object classification, created a new BIM object
dataset, and tested them using various machine learning algorithms. Invariant signatures of an
AEC object are “a set of intrinsic properties of the object that distinguish it from others and that
do not change with data schema, software implementation, modeling decisions, and/or
language/cultural contexts” (Wu etal. 2021). The authors further tested such object classification

in supporting QTO of wall objects comparatively with the traditional manual approach using
commercial software.

In the experiments, the authors chose to use the Industry Foundation Classes (IFC) data format.

IFC format is open and neutral (BuildingSMART 2018). It aims to solve the interoperability of
different BIM software. Different IFC versions have been released, such as IFC2, IFC2x3, and

IFC4, and it is still under development to higher versions to better support standardized data
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representation. IFC4 was accepted as an International Organization for Standardization (ISO)

standard (ISO 2013). For the representations of the models, IFC schemas were written in

EXPRESS, which is a data modeling language for product data to facilitate data representation
and exchange. IFC is under fast development. However, currently, the most widely used version
is still IFC2x3, which is henceforth the version that the authors chose to conduct their experiments

on.

To collect IFC data for the experiments, the authors searched existing open IFC repositories such
as the “Open IFC Model Repository” (Dimyadi and Henderson 2012), which provided 105 IFC
model instances, and the NBS National BIM Library (2018) that provided 6,660 IFC model
instances. These existing IFC data facilitated open BIM investigation and are helpful and useful
in many research activities, such as providing building elements data for BIM visualization

development. However, these data repositories did not provide a systematic dataset tailored for
object classification, which would require analyzed building models and verified labels for each
element of that building. To address this data need, the authors collected data through existing
BIM data models from different sources, such as the IFC official website by BuildingSMART

and proprietary BIM authoring tools’ default collections. Furthermore, to achieve the object
classification development goal, a labeled dataset is needed. The authors invited independent
annotators to manually label the collected data and discussed among themselves any
disagreement. If any disagreement could not be resolved through discussion, the majority vote
mechanism was used to decide the label to adopt.

For the task of BIM object classification, in this paper, the authors explored the potential of
combining invariant signature-based features and a machine learning approach. In addition to the

selection of machine learning algorithms, the selection of features also plays an important role in
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the performance of machine learning models. With a reported strong performance that was higher
than 90%, the feature set used by Koo et al. (2019) seems sufficient. However, exploring a wider
range of features could potentially further improve the classification performance, which is
crucial in BIM-based automation applications. To gain more insights about a better set of
features, the authors did a systematic feature engineering and feature selection. The authors
proposed to use invariant signatures to feed into machine learning models. Invariant signatures
can distinguish AEC objects from each other (Wu et al. 2021). By nature, it is expected to suit
well the task of AEC object classification. The developed invariant signatures can be divided into
three main categories: geometric, locational, and metadata. Geometric signatures define the
spatial information, mainly about shape, for each individual object such as its height and width;
locational signatures depict the position and orientation of each individual object, in reference to
the locations of other objects; metadata signatures capture detailed data structure used by each
individual object, which may or may not provide much geometric/locational information. To
demonstrate the value of BIM object classification enabled by invariant signature-based features,
the authors also tested the proposed method in QTO tasks of 60 AEC objects from two building
models.

Background

Shared dataset for research

Open datasets are the cornerstones of many research studies and provide a platform for
comparison and collaboration. In computer vision, Zhou et al. (2017) developed a method for
Scene Parsing through the use ofthe ADE20K Dataset (Zhou et al. 2018). They introduced and
analyzed the ADE20K dataset, which contains diverse annotations of senses, objects, and parts

of objects. Consistent annotations of the images were created following a labeling protocol, and
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the dataset was larger and more diverse compared to many other image datasets, such as COCO
(Lin et al.2014) and ImageNet (Russakovsky et al. 2015). The method proposed by Zhou et al.
(2017) used a Cascade Segmentation Module to parse the images, that could remove image
content and synthesize images automatically. Without the MPCONF 196 dataset, the ADE20K
dataset, and other related image datasets, such research developments would not have been
possible or as successful. In natural language processing, Alamoudi and Alghamdi (2021)
developed a deep learning method to conduct sentiment classification and analysis based on the
Yelp Review data. Without the public data shared by Yelp, such research would not be as
successful. In our AEC research community, published datasets also started to increase in recent
years such as in construction site images (Han and Golparvar-Fard 2015) and part-of-speech
tagged building codes (Xue and Zhang 2020a,b), among others.

In the same spirit of shared data and research tasks, the authors developed a dataset with 1,900
labeled IFC building objects from five models, which are discussed in detail in the Proposed
Method Section later.

Existing methods for BIM (AEC) object classification

The ISO-registered IFC data standard facilitates BIM interoperability by allowing a “one-to-
many” information flow between different BIM applications, which enables the mapping
between one central model and representations in various applications, therefore brings flexibility
into BIM representation. However, such flexibility also creates challenges in data consistency.
An important factor in ensuring IFC data consistency and integrity is a correct object
classification.

Object classification distinguishes BIM from 3D computer-aided design (CAD) by carrying the

semantic information of objects in a building model (Ma et al. 2018). The semantic information,
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especially the entity type (e.g., beam, column) of the AEC object, plays an important role in other
BIM applications. The misuse of entity type could lead to costly errors in later BIM tasks, such
as underestimating construction cost and schedule due to incorrect material information. To
prevent such misuse, AEC object classification can be used to detect and correct this error at the
design phase. Ma et al. (2018) proposed an integrated approach to classify AEC objects that
combined domain knowledge of geometric features and pairwise relationships of 3D objects into
atailored matching algorithm. Their algorithm can process various complex 3D geometries and
compile a knowledge base in civil engineering. In addition, in their experiment, Ma et al. (2018)
achieved 100% accuracy in their two bridge models and provided a knowledge matrix of the
objects. In comparison, Wu and Zhang (2018, 2019a) proposed a seven-step method to develop
BIM object classification algorithms following a rule-based approach using solely geometric
information. Wu and Zhang (2018, 2019a) showed a rule-based algorithm that could
automatically label BIM objects with five categories, including beam, column, footing, slab, and
wall, with high computational efficiency.

Distinct from the rule-based approaches taken by Ma et al. (2018) and Wu and Zhang (2018,
2019a), Koo et al. (2019) proposed a classification method using a machine learning approach,
more specifically using the support vector machines (SVM). Machine learning is gaining
popularity and helped solve many practical problems (Kuang and Xu 2018, Seeliger et al. 2018).
In AEC domain, for example, Son et al. used machine learning algorithm to improve concrete
detection accuracy from 83% to 93%. Yogesh and Vanajakshi used machine learning (SVM) to
improve vehicle detection accuracy from 85% to 99%. For AEC object classification, Koo et al.
(2019) proposed a feature set that could map IFC objects to selected IFC classes with an average

F1-score 0f 94.9% for eight classes. While their feature set was working and SVM was one of
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the most robust supervised machine learning algorithms, different features and different
algorithms may outperform the SVM proposed by Koo et al. (2019) for AEC object classification,
which is representing the state of the art, to push automated BIM object classification closer to
the implementation level. To support a better interoperability, the authors proposed to use
invariant signatures as features to help solve this AEC object classification problem while
supporting BIM interoperability, because invariant signatures are platform-independent and
stable. With the invariant signatures-based features, the authors systematically experimented with
five promising categories of machine learning algorithms for AEC object classification on their
collected data from the newly created data repository.

Feature engineering

To fully explore the potential of machine learning algorithms, a systematic feature engineering is
needed.

Feature engineering is one of the critical steps to ensure that the machine learning algorithms can
generate good models to achieve the desired classification results. In addition, Feature
engineering is one of the most time-consuming and challenging tasks in data mining (Zhang et
al. 2018). According to the Occam’s Razor (Bethel 2009), the fewer features used, the more
robust machine learning algorithms can potentially be, so the main task in feature engineering is
to select a small set of features that maintain a good performance in the target machine learning
task. Koo et al. (2019) used a feature set consisted of certain geometric information and relational
information. The authors proposed to use a different set of features with more geometric
information, selected based on invariant signatures of AEC objects and a systematic feature

engineering.
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Machine learning algorithms

Machine learning plays an important role in the success of many modern computing technologies
such as artificial intelligence. There are traditional statistical methods such as linear regression
and logistic regression, and new methods that require large computational efforts such as
convolutional neural networks (CNN) (Kuang and Xu 2018) and generative adversarial networks
(GAN) (Seeliger et al. 2018). Machine learning algorithms can be categorized into two types —
supervised and unsupervised. Supervised algorithms require ground truth as input, which is the
correct labels of the data. Unsupervised algorithms do not have such prerequisite. Based on the
purpose of application, machine learning algorithms can also be categorized by tasks, e.g.,
classification, regression, and clustering. Kotsiantis (2007) reviewed major machine learning
algorithms for the classification task: logic-based algorithms, including decision trees and rule-
based algorithms; perception-based algorithms, including logistic regression (Fraix-Burnet et al.
2014), neural networks (Cartwright 2015, Hugh and Nawwaf 2018, Angermueller et al. 2016,
Zeng et al. 2019, David et al. 2016, Ryan 2017, and Mahanta 2017), and radial basis function
networks; statistical learning algorithms, including naive Bayes and Bayesian network
(Kotsiantis 2007, Quinlan 1986, and Jensen 1996); instance-based learning, including nearest
neighbors and k-nearest neighbors (Veropoulos et al. 1999); and SVM. Kotsiantis (2007)
summarized the properties and method of each type of algorithms and provided analysis of each
of them. For supervised object classification, multiple existing algorithms provide accurate
results for different cases. Some of the most promising ones include logic-based algorithms,
perception-based techniques, statistical learning algorithms, instance-based algorithms, and SVM
(Kotsiantis 2007). In addition to those machine learning algorithms, boosting method can

increase the overall accuracy by reducing variance (Trevor 2009) and therefore can be used to
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develop new machine learning algorithms. For example, Random Forest (Trevor 2009) is a
machine learning algorithm that is built on substantial modification of the bagging method which
in turn is also known as bootstrap aggression to reduce the variance of an estimating function.
The bagging method works well for tree structures. Random forest pushes that further to build a
large collection of de-correlated trees and take the mean prediction of the many trees in
classification results using the bagging method.

Quantity takeoff (QTO)

The cost estimates of construction projects highly depend on the accuracy of the quantities taken
off for each individual cost component (Vitasek and Matejka 2017; Alshabab et al. 2017). BIM
tools are faster and more reliable to use than the traditional manual QTO approach and can help
provide the necessary accuracy required for QTO (Santos etal. 2017). A few researchers have
developed BIM-based QTO processes and methods that vastly improved both the accuracy and
the time efficiency involved in generating QTO. For example, Akanbi et al. (2020) developed a
new data-driven algorithm development method for developing QTO algorithms that process
[FC-based BIMs designed in different BIM authoring tools and workflows. Han et al. (2017)
proposed a method that improves the accuracy of QTO by extracting geometric dimensions from
a proprietary 3D model. Mandava and Zhang (2016) developed a method for generating QTO by
leveraging the cartesian points of building objects in an IFC-based BIM. Liu et al. (2016)
proposed an ontology-based semantic method to extract QTO information from models. Choi et
al. (2015) developed a BIM-based method that computes schematic QTO, improving the
accuracy of early design stage cost estimates. Although BIM can provide these benefits in
improving the accuracy of QTO results and time efficiency of QTO processes, accurate object

classification is further needed to avoid misrepresentation or misuse of BIM data, which is the
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main barrier faced by fully automated QTO and cost estimation. The authors’ proposed method
in this research, aims to extract all needed quantities fully automatically using invariant
signatures-based object classification.

Proposed Method

For the development of fully automated QTO methods utilizing invariant signatures and machine
learning, a comprehensive and robust dataset is required. The data should contain all needed
common AEC objects including beams, columns, footings, slabs, and walls. The data also needs
to be labeled consistently. After data collection, there are three main steps in the proposed
method: (1) construct invariant signatures, (2) apply invariant signatures to object classification,
and (3) apply object classification to QTO.

Construct invariant signatures

As described in the background section, the AEC object classification can potentially be better
addressed with invariant signatures for seamless interoperability. In the first step, the authors
propose to construct invariant signatures in three sub-types: geometric signatures, locational
signatures, and metadata signatures. Geometric signatures capture the geometric information of
common shapes, such as rectangle and cylinder. Locational signatures capture the position
information of an object, including the absolute position, relative position, and orientation.
Metadata signatures capture representation-level information, especially the representation used
inIFC, e.g., the average number of vertices among faces in a boundary representation (Brep).
Apply invariant signatures to AEC object classification

After constructing the invariant signatures, the authors propose to test the robustness of these
properties in two BIM tasks, object classification and furthermore QTO. Object classification is

needed for a lot of common tasks in BIM. Classification accuracy is the premise for any
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subsequence applications. For example, for QTO of wall volume, it can generate costly error if
any wall object is mistakenly classified as a slab. Based on accurate QTO results, in turn, cost
estimation is another important task in BIM, which therefore also relies on the accurate
classification result.

To achieve ahigh accuracy in AEC object classification, the authors propose to use invariant
signatures as features and feed them into machine learning algorithms to classify the AEC object.
For algorithm selection, the authors propose to use five promising categories of machine learning
algorithms including classic and deep learning algorithms and select the best-performing
algorithm to test on the testing dataset.

Apply invariant signature-based object classification to QTO

For evaluating the developed object classification in generating QTO, the authors utilized the
developed object classification algorithm on two types of units from a student apartment complex.
The models were created in Autodesk Revit. The results generated using the authors’ developed
object classification algorithm are compared against results generated using a commercial
software - Autodesk Navisworks and manual QTO by industry experts. Our expectation is that
the algorithm should generate results within a 1% error margin of the results generated by the
industry expert using commercial software. Two types of errors may occur, one is from the
equations and processes in calculating needed QTO results, with correct invariant signature-based
features. The other type are errors in the feature extraction process, where the resulting invariant
signature-based features would not be error free. To resolve this, in the algorithm development
for both tasks, if the existing properties in under-development invariant signatures do not provide
enough information, iterative development of the invariant signatures will be performed, i.e.,

adding more needed properties to the invariant signatures following a data-driven approach.
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Data Collection

To collect needed data, the authors explored existing open BIM repositories, including the “Open
IFC Model Repository” (Dimyadi and Henderson 2012) and the NBS National BIM Library
(2018), which contain 105 and 6,660 IFC data instances, respectively. They provided good
quality models for visualization. However, these data were not tailored for object classification,
and therefore they did not have verified object class labels. In contrast, the authors developed a
new dataset tailored for BIM object classification.

Introducing a new dataset

The authors selected five models with 1,900 instances of beams, columns, footings, slabs, and
walls. The selected models included aduplex apartment model (Deplex A), aRevit architectural
sample model (Rac basic), a Revit advanced structural sample model (Rst advanced), a Revit
basic structural sample model (Rst basic), and the Revit technical school sample structural model
(Tech_school). The duplex apartment model was already in [FC, whereas the Revit models were
transformed into IFC data format. To facilitate data sharing, the authors hosted this open dataset
at Purdue University Research Repository (Wu and Zhang 2019c), an initial version of which
was described in (Wu and Zhang 2019b). The new dataset (Wu and Zhang 2021) can be used
directly by researchers and developers to develop and test object classification algorithms. The
dataset contains not only the 1,900 IFC instances of beams, columns, footings, slabs, and walls
but also the object class type labels as described below in the Section of Object Class Labeling,
and selected object features as described in the Section of Experiment - Construct Invariant

Signatures.
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Object class labeling

The authors invited three independent annotators with AEC and BIM background to label the
data. The three annotators labeled the data independently leading to an average inter-annotator
agreement of 87.21%. Then the authors led a discussion of the disagreed instances aiming to
reach consensus. After that, the average inter-annotator agreement was improved to 99.05% and
no objects had more than two different labels. For the rest of the 18 instances (0.95%) where
disagreement remained, the authors used the majority vote to decide object type labels to use.
Table 1 shows the numbers of AEC object instances in each type of object labels.

Experiment

In the experiment, the authors randomly split the 1,900 objects into training dataset and testing
dataset following a 7:3 ratio. As aresult, 1,330 objects were used as training/development data
and 570 objects were used as testing data. During the development phase, only the training data
set was used.

Construct invariant signatures

The authors followed the proposed method to construct invariant signatures as the interoperable
representations of AEC objects, which can later be used as machine learning features. Based on
a preliminary analysis of the data, the authors established invariant signatures with three main
sub-types: geometric signatures, locational signatures, and metadata signatures. Geometric
signatures contain size (e.g., length) and shape (e.g., I-shape) information of an object. Locational
signatures include the positional information ofall the objects from the same model. Metadata
signatures include the data structure (e.g., IFC entities) and statistical data (e.g., the number of
faces) used by each object. The invariant signatures include both categorical features and numeric

features. Categorical features can be transformed into numeric values using discrete numbers or

15
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binary representations. For features that an object may miss value for (i.e., empty feature value),
adefault value of “0” or empty was assigned. In addition, metadata signatures may have certain
information overlap with geometric and locational signatures. For example, if an object has a
nonzero value for the I-shape signatures then the object should also have a nonzero value for the
extruded area solid signature. Table 2. Shows all the developed invariant signatures with their
value types and descriptions.

The signature set contains built-in feature values, such as Rec L, Rec W, Rec_H, which represent
the length, width, and height of a 3D rectangular shape, respectively. For regular shapes,
rectangular, cylindrical and ring shape features were included. For irregular shapes, the authors
defined two sets of signatures, one for extruded area solid and one for Brep. The extruded area
solid signature for irregular shapes included a set of 3 decimal numbers to represent the length,
width, and thickness dimensions of the bounding box, respectively. For Brep representation, in
addition to the dimensions of the bounding box, the signatures that indicate the number of faces
were also included. Table 3 shows 16 examples of the invariant signature values of independent
objects.

The proposed invariant signatures are expected to uniquely identify AEC objects. To allow this
identification, the invariant signatures shall describe all the major information embedded in each
object. This can be reflected by the statistical relations of each invariant signature with AEC
object types. For one type of AEC object, the invariant signature values fall into certain range.
For example, the height of a slab object usually does not exceed 0.3 meters. However, the height
of'awall object usually does not fall below 0.3 meters. This is reflected in the distribution of each
invariant signature values. Figs. 1 to 3 show three plots of object instances’ distributions across

three different invariant signature features, respectively. Fig. 1 shows the distribution of the
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locational signature O3 (elevation of an object) on different object types. It shows that footings
have smaller values of elevation. Fig. 2 shows the distribution of the geometric signature Length
(horizontal dimension) on different object types. It shows that columns have smaller values of
length, comparing to other types. Fig. 3 shows the distribution of the geometric signature Cir R
on different object types. It shows that circle is not used in walls or slabs.

Apply invariant signatures to AEC object classification

With the proposed invariant signatures, five types of machine learning algorithms were tested
using Waikato Environment for Knowledge Analysis (Weka), which is an open machine learning
platform developed by the University of Waikato (Witten et al. 2016). Ten-fold cross-validation
was used to avoid overfitting.

Perceptron-based techniques: neural networks

A single layer artificial neural network would have the same structure with the linear regression
model, so the authors chose to use deep learning (neural networks with multiple layers) for
perceptron-based techniques. After parameter tuning, the authors selected the best performing
configuration (two-layer with 45 nodes for each layer) to compare with other machine learning
algorithms. Fig. 4 shows a visualization of the accuracies of these results. Table 4 shows the
detailed classification results of the best configuration. The accuracy started to drop after 3 layers
because of overfitting, so the deep learning approach with more hidden layers will not generate
better results unless more training data is used.

Logic-based: decision table

A decision table is a graphical implementation of decision trees. The authors used best-first search

(BFS) and greedy stepwise search. For BFS, the authors implemented forward, backward, and
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bidirectional search methods. Fig. 5 shows a visualization of the detailed training results. Table
5 shows the details of the classification results of the best configuration.

Statistical machine learning: Bayesian network

Naive Bayes assumes that the features are independent from each other. However, some of the
features may be highly correlated. To address that, the authors used a Bayesian network instead.
Bayesian network used probability graphical model, which was based on the conditional
dependencies of the parent nodes on each node in the network. The classification results depend
on the number of parent nodes implemented. As a result, the authors used different numbers of
parent nodes to train the best model. The visualization of the training results is shown in Fig. 6.
Table 6 shows the details of the classification results of the best configuration.

Support vector machines (SVM)

SVM uses hyperplanes to separate data into different classes. The classification results depend
on aregularization term, which is defined by a soft margin constant. The authors experimented
with different soft margin constants to find the best performance. A visualization of the accuracy
using different soft margin constants at different range scales is shown in Fig. 7. Table 7 shows
the details of the classification results of the best configuration.

Random forest

Random forest uses a collection of decision trees and takes the statistical majority of the results
of each tree. Search depth will determine the classification results. A low depth value may lead
to underfitting, whereas a high depth value may lead to overfitting. The visualization of accuracy
on different configurations is shown in Fig. 8. Table 8 shows the details of the classification

results of the best configuration.

18



408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

Apply invariant signature-based object classification to QTO

Based on the automation enabled by object classification, QTO jobs can be implemented with
high precision and efficiency. To demonstrate the QTO potential and verify the robustness of
automated object classification based on invariant signatures and machine learning, the authors
tested the invariant signature-based objection classification on QTO of 2 types of units from a
student apartment (Fig. 9). The selected models in Fig. 9a show these two types of student
apartment units (2-bedroom unit and 4-bedroom unit) extracted from the student apartment
complex (Fig. 9b). As shown in Fig. 9a, the units comprise of wall components and floor
components. For this experiment, the authors randomly selected 30 wall objects from the 4-
bedroom unit and 30 wall objects from the 2-bedroom unit. The results obtained using our
algorithms were compared with results of the state-of-the-art method using commercial software.
The comparison of the results showed consistent values for the length, width, height, and volume
ofthe selected objects.

Results & Analysis

Random forest achieved the highest F1-measure among all the algorithms in the training phase,
so the authors selected random forest as the best-performing algorithm to test on the testing
dataset. The overall F1-measure was 99.6% as aresult. This was 0.20% higher than the training
accuracy. This shows the algorithm did not overfit and perform well in the testing dataset. Table
9 shows the detailed testing results.

Error analysis

For the best performing machine learning algorithm, the random forest, the errors were mainly
due to the cutoff values of decision trees. The invariant signatures were verified to be correct, so

the errors occurred because of the limitations in selected machine learning algorithm. A level of
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depth 7 achieved the best performance in the cross-validated data. More levels might lead to
overfitting, which would reduce the training performance. The errors included 2 slabs
misclassified as 1 footing and 1 wall, respectively. Fig. 10 shows the trained classifier. The tree
on the left shows a branch that successfully classified all instances, which are shown in the
bracket in the leaf nodes (5 columns and 15 beams were classified). The tree on the right shows
a branch that only successfully classified a part of them: among the 10 objects classified as
columns, 8 of them were correct and 2 of them were incorrect, while among the 18 objects
classified as beams, 15 of them were correct and 3 of them were incorrect. Although each tree
may make wrong predictions, e.g., in one of the branches, among 157 classified columns, 47 of
them were wrong, after the voting process, the accuracy increased significantly. For example,
Table 10 shows the two incorrectly classified instances. The depth of the voting tree ranged from
4 (mRatio < 0.39; mLow < -3.901; mRatio < 0.37; Z3 >= 0.5: Footing (238/0)) to 7 (mLow < -
7.151; ExtrudZ >=0.5; Width >= 0.2375; X1 >= 0.9; Ol < -0.21903; Width >= 0.3178; I R <
0.0076: Column (3/1)).

Feature set (invariant signatures) analysis

Our invariant signature-based feature set led to a good performance (i.e., 99.6% F1 score in
testing data) but may contain extra information that would be needed only for subcategories.
After feature selection, the authors proposed a 6-feature set which achieved 98.65% F1 score.
The authors analyzed the features as follows. The Cir H feature describes the height of a cylinder
shape. A zero value for this feature means a non-cylinder shape. It mainly helps distinguishing
footings and columns from other object types. The Width feature describes the width of any
shape. It is one of the general features that help distinguish many different objects. The O3 feature

describes the elevation of any object. The elevation is one of the most important pieces of

20



454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

information based on locational features. The Zmin feature describes the lowest point of Brep
representation, which not only tells whether the object used that representation or not, but also
provides information about the size. The ExtrudZ feature describes the extruded direction of a
swept solid representation, which not only tells whether the object used that representation or
not, but also provides information about the orientation direction ofthe object, which is important
to differentiate beams from other types.

Comparison with the state-of-the-art algorithm

The BIM object classification algorithm developed by Ma et al. (2018) encoded experts’ insights
asrules. A direct comparison would be difficult as the objects used by Ma et al. (2018) and the
authors were of different types. To compare with Koo et al. (2019), the authors reproduced the
method by Koo et al. (2019) based on the authors’ understanding of the feature values used by
Koo etal. (2019). Because the authors could not get access to the original data used by Koo et al.
(2019), the authors used their own dataset while extracting the features that Koo et al. (2019)
proposed. After model training and parameter tuning, the authors obtained 94.86% (94.12% on
testing) accuracy using SVM with C=200000, which is in the same range as the experiment of
Koo etal. (2019). The authors also tested random forest machine learning algorithm using the
same set of features and obtained 98.87% (99.12% on testing) accuracy (Table 11). The random
forest machine learning algorithm showed high performance and is expected to be robust in
similar types of BIM objects.

QTO results

Table 12 shows a few sample QTO results comparatively using the manual approach and using
our method. On average, the difference ofthe QTO results between using the proposed method

(random forest-based object classification) and using traditional approach (manual approach as
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gold standard) is 0.3%, within the desirable threshold 1%. More importantly, the time difference
for QTO tasks was significant. On average, each object took 4.23 seconds in manual QTO,
whereas it only took 0.079 seconds using our proposed method. It saved 98.1% of time using our
proposed method comparing to the manual approach. The time for QTO using the traditional
approach was mainly consumed in the loading, project set-up, and element selection. This shows
that the proposed invariant signature-based object classifications can produce correct QTO results
that are comparable with traditional approach but with much less time, which illustrates the
robustness of the invariant signature-based object classification in QTO application.
Contributions to the Body of Knowledge

There are five main contributions in this paper. First, the authors proposed to use invariant
signatures of AEC objects as features/input for BIM object classification. Invariant signatures
provided a theoretical foundation for universal and seamless BIM interoperability and practical
solutions to push it forward. Second, the authors established an open dataset for BIM object
classification, which can be used to reproduce the results and conduct further research in BIM-
based automation. This open and consistent data can promote collaboration and comparison
between different methods in this task and further BIM-based automation tasks in the AEC
domain. Third, the authors improved the state-of-the-art F1-measure (accuracy) for machine
learning-based BIM object classification, from 94.9% to 99.6%. This helps push BIM-based full
automation of AEC tasks one step closer to reality, which would need 100% accuracy. Fourth, a
systematic approach was conducted to test and compare different machine learning algorithms.
The best performing algorithm, random forest, was shown to outperform other machine learning
algorithms in both the authors’ invariant signatures-based feature set and the state-of-the-art

features. Last but not least, object classification is the premise of the full automation of many
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BIM applications. In this experiment, the invariant signatures-based objection classification
showed that it led to comparable QTO results with the traditional approach whereas saving time
and manual effort significantly. It can be expected to have broader use in other BIM applications
such as building code compliance checking and building energy simulation/analysis to further
pursue seamless BIM interoperability and full automation of AEC tasks.

Conclusions

A high classification accuracy and BIM interoperability are two pillars to support BIM-based
automation in AEC tasks such as cost estimation, structural analysis, code compliance checking,
energy modeling and simulation. Advancing either pillar alone without the other is not sufficient
for practical consideration. To synergistically advance both, in the paper, the authors investigated
the use of invariant signatures of AEC object as features/input for BIM object classification. Five
types of machine learning algorithms were systematically tested. The features using invariant
signatures were shown to deliver better BIM object classification results comparing to the state-
of-the-art features. In addition, the authors showed that the random forest machine learning
algorithm outperformed SVM (the state of the art) and other machine learning algorithms. The
overall performance in object classification was improved to 99.6% F1-measure. This shows that
the invariant signatures and the random forest machine learning algorithm are promising in BIM
object classification. In addition. The random forest-based object classification was tested to
achieve less than 1% error in QTO, compared with a gold standard developed using commercial
software and traditional manual approach, while achieved significant time saving (98.13%) in
conducting the QTO tasks. The invariant signatures in combination with machine learning

algorithms are expected to be applicable in a variety of other different BIM applications such as
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cost estimation, automated code compliance checking, and building energy simulation and
analysis, with high accuracy and efficiency.
Limitations and Future Work
As a first step towards building a comprehensive BIM object classifier, the authors established a
new dataset tailored for object classification. The dataset contains five BIM models with 1,900
object instances in IFC format. The dataset provides verified labels and processed features for
the objects in a systematic way. The dataset was still small compared to the dataset in other
domains, such as the ADE20K (Zhou et al. 2018) with 22,210 images for image processing, so
the authors are planning to continuously grow the dataset to contain more verified models and
objects. The authors also plan to test the potential of invariant signature-based object
classification in other BIM applications such as automated building code compliance checking,
and investigate more advanced deep learning algorithms to further reduce the needed feature
engineering efforts.
Data Availability Statement
Some data and models used during the study are available in a repository online in accordance
with funder data retention policies.

e 1,900 IFC instances of beams, columns, footings, slabs, and walls labeled with invariant

signatures (https://purr.purdue.edu/publications/3832/1)
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Tables

Table 1. Numbers of instances in each object types.

Object Type Number of Instances
Beam 790
Column 412
Footing 354
Slab 79
Wall 265
Total 1,900

Table 2. Developed object invariant signatures.

Sigrgt:];rl:?\rll;me Value Type Slg%l;g;res Description
Rec L Numerical Geometric Length of a rectangular shape
Rec W Numerical Geometric Width of a rectangular shape
Rec H Numerical Geometric Height of a rectangular shape
Cir R Numerical Geometric Radius of a cylinder shape
Cir H Numerical Geometric Height of'a cylinder shape
R R Numerical Geometric Radius of a ring shape
R H Numerical Geometric Height of a ring shape
RT Numerical Geometric Thickness of aring shape
w Numerical Geometric Width of an I-shape
I Numerical Geometric Height of an I-shape (extruded
- depth)
I D Numerical Geometric Depth of an I-shape
IR Numerical Geometric Radius of an I-shape
I WT Numerical Geometric Wide thickness of an I-shape
I FT Numerical Geometric Flange thickness of an I-shape
X1 Numerical Locational
X2 Numerical Locational Vector x for placement
X3 Numerical Locational
Zl Numerical Locational
z2 Numerical Locational Vector z for placement
Z3 Numerical Locational
gé II:IIumeqcal Locaqonal Center Cartesian point of the
umerical Locational biect
03 Numerical Locational oRJee
mHigh Numerical Locational nghegt glevatlon of the
original model
mLow Numerical Locational Lowest elevation of the original
model
mRatio Numerical Locational EE?)SV(; ;é;?lgrflflllglfr?}nl]%f)l\:)
Length Numerical Geometric Length of the bounding box
Width Numerical Geometric Width of the bounding box
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Height Numerical Geometric Height of the bounding box
Volume Numerical Geometric Volume of the bounding box
Items Integer Metadata Number of items
Faces Integer Metadata Number offaceg of Brep
representation
F3 Integer Metadata Number of faces with 3 edges
of Brep representation
F4 Integer Metadata Number of faces with 4 edges
of Brep representation
F5 Integer Metadata Number of faces with 5 edges
of Brep representation
6 Integer Metadata Number of faces with 6 edges
of Brep representation
F7 Integer Metadata Number of faces with 7 edges
of Brep representation
AveVerti Numerical Metadata Average number of edges ‘ofall
faces of Brep representations
Xmax Numerical Metadata Max value in x direction
Xmin Numerical Metadata Min value in x direction
Ymax Numerical Metadata Max value in y direction
Ymin Numerical Metadata Min value in y direction
Zmax Numerical Metadata Max value in z direction
Zmin Numerical Metadata Min value in z direction
Brep Nominal (Binary) Metadata If Brep representation is used
Extruded Nominal (Binary) Metadata Ifswept solldurszf:iresentatlon 18
Clipping Nominal (Binary) Metadata If clipping rgggsentaﬂon 18
CSG Nominal (Binary) Metadata If CSG representation is used
SurfaceModel Nominal (Binary) Metadata It SurfaceMpdel r(eipresentatlon
is use
ExtrudX Numerical Geometric
ExtrudY Numerical Geometric Extruded direction
ExtrudZ Numerical Geometric
Rec Nominal (Binary) Metadata If a rectangular shape is used
Cir Nominal (Binary) Metadata If a cylinder shape is used
Ring Nominal (Binary) Metadata If a ring-shape is used
1 Nominal (Binary) Metadata If an I-shape is used
Type Nominal (Quinary) Ground Truth Labeled type
703
704 Table 3. Sample invariant signature values by instances.

Instance Model Rec L Rec W  Height Cir R  AveVerti Type
IfcFootingl Duplex A 18.28 0.9 0.3 0 0 Footing
IfcFooting2 Duplex A 8.38 0.9 0.3 0 0 Footing
IfcFooting3 Duplex A 17.38 0.9 0.3 0 0 Footing
IfcColumnl Rst advanced 0 0 3.5 225 0 Column
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IfcColumn2 Rst advanced 0 0 3.5 0.225 0 Column
IfcColumn3 Rst advanced 0 0 3.5 0.225 0 Column
IfcBeam125 Rst_Basic 0 0 1.44 0.015 0 Beam
IfcBeam126 ~ Rst Basic 0 0 2.88 0 3.52 Beam
IfcBeam127 Rst Basic 0 0 3.13 0 3.52 Beam
705
706  Table 4. Classification results of best configuration of neural networks.
Number of Number of
Category Number  correctly objects Recall  Precision F1 ROC
of objects  classified classified
objects into
Beam 549 548 551 99.8% 99.5% 99.6%  100.0%
Column 286 284 286 99.3% 99.3% 99.3%  100.0%
Footing 250 249 255 99.6% 97.6% 98.3% 99.8%
Slab 53 45 49 84.9% 91.8% 88.2% 99.0%
Wall 192 185 189 96.4% 97.9% 97.1% 99.6%
Total 1,330 1,310 1,330 98.6% 98.6% 98.6% 99.9%
707
708 __ Table 5. Classification results of the best configuration of decision table.
Number of Number
Number of correctly of
Category . . correctly Recall Precision F1 ROC
objects classified lassified
objects classi
objects
Beam 549 544 550 99.1% 98.9% 99.0% 100.0%
Column 286 277 280 96.9% 98.9% 98.2% 99.3%
Footing 250 248 260 99.2% 95.4% 97.3% 99.7%
Slab 53 47 48 88.7% 97.9% 93.1% 98.4%
Wall 192 184 192 95.8% 95.8% 95.8% 99.3%
Total 1,330 1,300 1,330 97.7% 97.7% 97.7%  99.6%
709
710  Table 6. Classification results of the best configuration of Bayesian network.
Number of Number of
Number of correctl objects ..
Category objects classiﬁez cla stiﬁe d Recall Precision F1 ROC
objects into
Beam 549 547 549 99.6% 99.6% 99.6%  100.0%
Column 286 285 285 99.7% 100.0% 99.8%  100.0%
Footing 250 247 241 98.8% 98.4% 98.6%  100.0%
Slab 53 44 49 83.0% 89.8% 87.3% 99.8%
Wall 192 181 186 99.5% 97.4% 98.5%  100.0%
Total 1,330 1,300 1,330 98.8% 98.8% 98.8%  100.0%
711
712
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713

714
715

716
717

718

719

720

Table 7. Classification results of the best configuration of SVM.

Number of Number of

Number correctly objects -
Category f’f classified classified Recall  Precision F1 ROC
objects . .
objects into
Beam 549 547 551 99.6% 99.3% 99.5%  99.6%
Column 286 284 286 99.3% 99.3% 99.3%  99.8%
Footing 250 250 256 100.0% 97.7% 98.8%  99.7%
Slab 53 44 46 83.0% 95.7% 88.9%  97.5%
Wall 192 186 191 96.9% 97.4% 97.1%  99.0%
Total 1,330 1,300 1,330 98.6% 98.6% 98.6%  99.5%
Table 8. Classification results of the best configuration of random forest.
Number of Number of
Number correctly objects ..
Category f)f classified classified Recall Precision F1 ROC
objects . .
objects into
Beam 549 549 551 100% 99.6% 99.8%  100%
Column 286 285 285 99.7% 100.0% 99.8%  100.0%
Footing 250 250 254 100% 98.4% 99.2%  100.0%
Slab 53 47 48 88.7% 97.9% 93.1%  99.8%
Wall 192 191 191 99.5% 99.5% 99.5% 100.0%
Total 1,330 1,300 1,330 99.4% 99.4% 99.4%  99.9%

Table 9. Testing performance of the selected machine learning algorithm - the random forest.

Number of Number of
Number correctly objects
Category f)f classified classified Recall Precision F1 ROC
objects . .
objects into
Beam 241 241 241 100.0% 100.0% 100.0% 100.0%
Column 126 126 126 100.0% 100.0% 100.0% 100.0%
Footing 104 104 105 100.0% 99.0% 99.5% 100.0%
Slab 26 24 24 92.3% 100.0% 96.0% 99.1%
Wall 73 73 74 100.0% 98.6% 99.3% 100.0%
Total 570 568 570 99.6% 99.7% 99.6% 99.9%

Table 10. Error analysis of the best machine learning algorithm - the random forest.

Instance  Real type Classified type Comment/ analysis

IfcSlabl Slab Footing Voting trees: 5 footings, 3 slabs, 1 column, 1
wall

IfcSlab3 Slab Wall Voting trees: 5 walls, 2 footings, 2 slabs, 1

column
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735
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Table 11. Performance comparison with the state of the art

Koo et al.'s Features  Authors' Features (Invariant Signatures)

SVM 94.86% 98.65%
Random Forest 98.87% 99.40%

Table 12. Example quantity takeoff results

Model Volume Using Volume Using Commercial ~ Difference
Invariant Software (Gold Standard)
Signatures (m?3) (m?3)
Walll  Two-bedroom unit 4.221 4.221 0.0%
Wall2  Two-bedroom unit 0.409 0.410 0.3%
Wall1  Four-bedroom unit 9.855 9.855 0.0%
Wall 2 Four-bedroom unit 0.212 0.212 0.0%
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Figure Captions

Fig. 1. Distribution of the locational signature O3 (elevation) on different object types.
Fig. 2. Distribution ofthe geometric signature Length on different object types.

Fig. 3. Distribution of the geometric signature Cir R on different object types.

Fig. 4. Visualization oftraining results of deep learning on different configurations.
Fig. 5. Visualization of training results of decision table on different configurations.
Fig. 6. Visualization of training results of Bayesian network on different configurations.
Fig. 7. Visualization of training results of SVM using different configurations.

Fig. 8. Visualization of training results of random forest in different configurations.
Fig. 9a. Visualization of the 2-bedroom and 4-bedroom units used for quantity takeoft.
Fig. 9b. Visualization of the student apartment complex used for quantity takeoff.

Fig. 10. Visualization of the best-performing machine learning model (random forest).
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Appendices

Appendix 1. Neural network accuracy using different layers and different number of nodes.

Layeri\N"des per 10 20 30 35 40 45 50
ayer
1 98.05%  98.20% 98.12% 97.89% 98.20% 98.02%  97.97%
2 97.74%  98.05% 98.12% 98.05% 98.35% 98.57%  98.20%
3 96.91% 97.97% 97.67% 97.52% 97.97% 97.29%  97.00%
Appendix 2. Decision table accuracy using different search direction and depth.
Forward A Backward A Bidirectional A
Depth ccuracy Depth ccuracy Depth ccuracy
1 97.44% 1 97.74% 1 97.44%
2 97.44% 2 97.74% 2 97.44%
3 97.44% 3 97.74% 3 97.59%
4 97.44% 4 97.74% 4 97.59%
5 97.44% 5 97.74% 5 97.59%
10 97.44% 10 97.74% 10 97.59%

Appendix 3. Accuracy vs. number of parents of Bayesian network.
No. of Parents  Accuracy

1 96.62%

2 98.80%

3 98.80%

4

5

98.80%
98.80%

6-10 98.80%

Appendix 4. Accuracy on different regulation terms C for SVM.

C Accuracy C Accuracy C Accuracy C Accuracy

1 97.44% 9 98.50% 10 98.57% 14.2 98.65%

5 97.97% 10 98.57% 14 98.65% 1425  98.72%
10 98.57% 20 98.72% 15 98.72% 14.5 98.72%
50 98.57% 30 98.57% 16 98.72%  14.75  98.72%
100 98.57% 40  98.57% 17 98.65% 15 98.72%
1000 98.20% 50  98.57% 18 98.65% 1525  98.72%
10000  98.05% 60  98.50% 19 98.65% 15.5 98.72%
80  98.50% 20 98.72% 1575  98.72%

100 98.57% 25 98.65% 16 98.72%

105 98.50 16.25  98.65%
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774  Appendix 5. Accuracy of random forest on different number of parents.

Parents Accuracy

1 60.08%

2 88.72%

3 94.59%

4 97.97%

5 99.17%

6 99.25%

7 99.40%

8 99.24%

9 99.17%

10 99.17%

11 99.17%

12 99.25%

13 99.25%

14 99.25%

15 99.25%

20 99.25%

50 99.25%

Unlimited 99.25%
775
776
777
778
779
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