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Since the earliest days of ultracold atomic gases, their success-
ful use in studying many-body physics1–3 has owed a lot to the 
possibility of trapping the atoms in versatile potentials, includ-

ing low-dimensional traps4, double wells5 and optical lattices6–8. The 
electromagnetic trapping potentials are often also dynamically tune-
able, which has allowed experiments ranging from studies of ele-
mentary excitations9–11 to reversible crossing of phase transitions12,13.

More recent advances in the shaping of optical potentials have 
opened many new possibilities. One major development is the 
increasingly popular use of the uniform (flat-bottom) optical box 
traps14–19, as opposed to the traditionally used (optical or magnetic) 
harmonic ones. Box traps have allowed scientific breakthroughs in 
a wide range of areas, including studies of superfluidity, turbulence 
and the dynamics of phase transitions. For example, the gas homo-
geneity has been beneficial for measurements of density-dependent 
quantities, such as the speeds of different types of sound in various 
superfluids20–27, quantum depletion in a condensed Bose gas28 or the 
pairing gap in a Fermi gas29,30. Qualitatively new observations have 
also been made, such as recurrences in closed quantum systems31, 
the unexpected observation of the quantum Joule–Thomson effect32 
or the discovery of a novel type of breather33.

In this Review, we describe the development of box traps and 
the scientific successes in this new and growing field. Before start-
ing, we also draw the reader’s attention to contemporary reviews 
on two related emerging fields: (1) the creation of ‘atomtronics’ 
circuits for coherent matter waves, such as ring traps that sup-
port persistent currents34, and (2) the trapping of individual atoms 
or molecules in arrays of optical tweezers35. All three fields take 
advantage of advances in light shaping, and there are also scientific 
connections; as a prominent example, the dynamics of phase transi-
tions in a homogeneous system have been studied in ring traps36, 
two-dimensional (2D) and three-dimensional (3D) box traps15,37 
and a one-dimensional (1D) tweezer array38.

Making box traps
The basic concept behind most box traps is using sculpted repulsive 
(blue-detuned) laser beams to construct the box walls that confine 
the particles (Fig. 1a). Three-dimensional box traps are most com-
monly cylindrical and are made using one hollow-tube beam and 
two sheet end-cap beams. To make a homogeneous 3D potential, 
one also levitates the particles against gravity, which for atoms is 
usually done using a static magnetic field gradient14, whereas polar 
molecules can be levitated using a static electric field gradient19.  
To make a low-dimensional box, one freezes out the particle motion 

along some direction(s) using very tight confinement, which can be 
harmonic; this dimensionality reduction is analogous to the mak-
ing of a low-dimensional harmonic trap4. One could also make 
red-detuned (attractive) box traps, and also cancel gravity using a 
light field of linearly varying intensity39, but this is technically more 
demanding because of the need to sculpt high-intensity light such 
that the variations in the optical potential are smaller than all the 
relevant energy scales in the gas.

The development of optical boxes was greatly aided by two com-
plementary types of programmable spatial light modulator (SLM)—
the liquid-crystal SLMs that modulate the phase of laser beams 
and the digital micromirror devices (DMDs) that modulate their 
amplitude (Fig. 1b). A liquid-crystal SLM is a rectangular array of 
~106 pixel elements (each ~10 μm in size) with individually control-
lable indices of refraction; using it to imprint a spatially modulated 
phase delay on a laser beam, one controls the intensity pattern in 
the vicinity of the conjugate (Fourier) plane. Similarly, a DMD is 
a rectangular array of ~106 mirrors (each ~10 μm in size) that can 
be individually turned ‘on’ or ‘off ’ (by changing their tilt angle) to 
spatially modulate the amplitude of a beam. An arbitrary intensity 
pattern can then be imaged onto the cloud40.

Liquid-crystal SLMs are convenient for creating the multiple 
beams needed for a box trap using a single device14, and are gener-
ally more power-efficient than DMDs. On the other hand, DMDs 
are more convenient for making arbitrarily shaped boxes, such as 
squares in 2D or cubes in 3D, and much better for creating dynami-
cal potentials. Owing to their subkilohertz refresh rate at present, 
liquid-crystal SLMs cannot be reprogrammed during an experi-
mental run without the particles escaping while the phase pattern is 
being updated and the trap temporarily turned off. Meanwhile, the 
~10 kHz refresh rate of DMDs is sufficiently high for the trapping 
pattern to be dynamically changed without the ultracold particles 
moving noticeably during the updates41.

The versatility of SLMs has been essential for experimental 
exploration42, but box walls can also be made using non-tuneable 
tools, such as axicons17,18,43 and custom-manufactured masks15, 
which can be more cost-effective and power-efficient. Yet another 
option is to use ‘painted’ time-averaged potentials created by fast 
spatial scanning of laser beams44. For a comprehensive review of 
recent advances in light shaping for atom trapping, including com-
parisons of different methods, see ref. 41.

Using the various light-sculpting methods, boxes of various 
shapes and dimensionalities have been created for both atomic and 
molecular gases14–19, as illustrated in Fig. 1c; see also refs. 45–48 for 
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earlier examples of confining laser-cooled atoms with blue-detuned 
beams and refs. 49,50 for early prototypes of 1D box traps.

As a final point in this section, optical box traps are not perfect. 
The sharpness of their walls is limited by the optical wavelength 
of ~1 μm, which is not negligible compared with the typical box 
dimensions of 10−100 μm. Moreover, additional fields used for 
levitation, the creation of low-dimensional gases15,16,51 or tuning of 
interactions can lead to further imperfections. In Box 1, we discuss 
two complementary methods used to quantify the uniformity of 
box-trapped gases. The uniformity achieved so far has been good 
enough for the success stories we discuss in the next section, but 
how close to perfect a box needs to be ultimately depends on the 
specific scientific problem (see the ‘Outlook’ section).

Success stories
Here we outline the scientific advances afforded by homogeneous 
atomic gases, which also illustrate the general types of problem for 
which box traps are advantageous.

Quantum statistics. We start with experiments on purely 
quantum-statistical phenomena (Fig. 2). In harmonic traps, the real 
and momentum space are coupled such that, for example, one can 
clearly observe real-space effects of Bose–Einstein condensation 
(BEC)52 and Fermi pressure53. In a box trap, the signatures of quan-
tum statistics are harder to see in real space (Fig. 2a), but in momen-
tum space they are revealed more cleanly than in harmonic-trap 
experiments (Fig. 2b).

For bosons, one clearly observes the statistical nature of the BEC 
transition, which is driven by the saturation of the total occupation 
of all excited (momentum) states32. As the total atom number in the 
gas is increased at a fixed temperature, the number of atoms in the 
thermal cloud saturates at the critical value for condensation and all 
the extra atoms accumulate in the condensate; in harmonic traps 
this textbook effect is obscured by a combination of geometric and 
mean-field interaction effects54.

For fermions, one instead observes the occupation-number satu-
ration at the level of individual momentum states, as prescribed by 

the Pauli exclusion principle. Here, the occupation of a state corre-
sponding to a momentum k is denoted nk. As the temperature (nor-
malized to the Fermi temperature TF) is reduced, the occupation of 
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Fig. 1 | Optical box traps. a, The concept. The walls of the box are made using repulsive laser beams (green) and the particles (blue) are confined in the 
dark region between them. Here, a cylindrical 3D box is sculpted using one hollow-tube beam and two end-cap beams. A 2D box is made by freezing out 
the particle motion in one direction (vertical, in this case) using very tight confinement. To create a 1D box, one freezes out the motion in two directions. 
b, The box tools. Programmable spatial light modulators (SLMs)—the phase-controlling liquid-crystal SLM (left) and the amplitude-controlling digital 
micromirror device (DMD) (middle)—offer great flexibility for sculpting laser beams. In the cartoon, starting with a single Gaussian beam, a single 
liquid-crystal SLM is used to create all three beams for a cylindrical 3D box14. Right: box traps can also be made using specialized fixed optics, such 
as an axicon, to create a tube beam. c, Box trap gallery. Between 2013 and 2021, optical boxes have been realized for Bose and Fermi atoms in various 
dimensionalities, as well as for (fermionic) heteronuclear molecules in 3D14–19. Panels adapted with permission from: b (left), c (top left pair), ref. 14, APS;  
c (top middle), ref. 15, Springer Nature Ltd; c (top right), ref. 16 under a Creative Commons License CC BY 4.0; c (bottom left), ref. 17, APS; c (bottom middle), 
ref. 18, under a Creative Commons License CC BY 4.0; c (bottom right), ref. 19 under a Creative Commons License CC BY 4.0.

Box 1 | Characterizing box traps

a, One simple measure of the gas homogeneity is the distribu-
tion of the real-space densities. Here we show the distribution 
of column densities, n2D, extracted from in situ images of 3D 
clouds17. In a box trap (blue) the probability distribution P(n2D) 
is narrow, strongly peaked near the average value n2D . This 
means, for example, that most atoms experience essentially the 
same mean-field potential. For comparison, the corresponding 
distribution in a non-degenerate harmonically trapped gas (red) 
is very broad; the expected distribution is uniform between 0 
and 2n2D . b, A complementary characteristic of box traps is the 
single-particle density of states, which is seen (for example) in 
the dependence of the critical atom number for Bose–Einstein 
condensation, Nc, on the temperature, T (ref. 32). In a 3D har-
monic trap Nc ∝ T3, whereas in a perfect 3D box Nc ∝ T3/2. Here 
the experimental data are captured by Nc ∝ Tα with α = 1.65 (red 
line). A common way14 to characterize (imperfect) box traps is to 
model them by an isotropic power-law potential V(r) ∝ rp, with 
p ≫ 1. Then α = 3/2 + 3/p, and for a Fermi gas one similarly gets 
that the Fermi energy is17EF ∝ N1/α. In current experiments p > 10 
is readily achieved, and there are indications that values of p up 
to ~100 are feasible18.
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all states remains bound to nk ≤ 1 and the Fermi surface forms17 at 
the Fermi wavevector kF.

Experiments on the thermodynamics of nearly-ideal box-trapped 
gases also lead to the unexpected observation of the Joule–Thomson 
effect that arises solely from quantum correlations32. While the ideal 
classical gas does not change temperature under isoenthalpic rar-
efaction, the ideal Bose gas cools and the ideal Fermi gas is expected 
to heat55.

Equilibrium properties of interacting systems. We now move on 
to the experiments on the many-body physics of interacting gases. 
We start with the broad class of spectroscopic and transport mea-
surements in which one weakly perturbs a system to extract infor-
mation on its equilibrium properties (Fig. 3).

A lot of attention has been given to long-wavelength sound 
waves20–27; in Fig. 3a(i), we show examples of sound propagation 
in 3D Fermi22 and 2D Bose21 gases. The key quantities studied in 
such experiments are the sound speed and the sound attenuation 
(or equivalently diffusivity). Both of these quantities are density 
dependent, and the crucial advantage of box traps for interpreting 
the measurements is that they are constant in space.

In Fig. 3a(ii) we illustrate two scientific highlights of the experi-
ments on sound in homogeneous superfluids. In both 3D and 2D 
unitary Fermi gases the quantum limit of sound diffusivity, set by 

ℏ/m (where m is the atom mass), was demonstrated22,26; this uni-
versal limit should also be relevant for other strongly interacting 
Fermi systems such as neutron stars. In a weakly interacting 2D 
Bose gas, first and second sound56,57 in a Berezinskii–Kosterlitz–
Thouless (BKT) superfluid58,59 were observed for the first time, and 
the measurements of the two sound speeds revealed the universal 
superfluid-density jump at the BKT transition60. Related experi-
ments on superfluidity have investigated the Josephson effect61 and 
the critical velocity62 in a 2D Fermi gas, whereas a more complex 
trapping geometry allowed studies of a Bose gas superfluid flow 
through a constriction between two reservoirs63.

In Fig. 3b we illustrate the benefits of gas homogeneity for spec-
troscopic measurements that globally probe the system28,29,64–69; for 
experiments on the extraction of the properties of a homogeneous 
gas by local probing of harmonically trapped gases, see refs. 70–73.

The Rabi radiofrequency spectra shown in Fig. 3b(i) measure 
the energy cost of removing a particle from a spin − 1/2 3D Fermi 
gas at different reduced temperatures T/TF (ref. 66). Measurements 
were performed on the whole sample and the spectra taken at 
closely spaced T/TF values are clearly distinct thanks only to the 
lack of inhomogeneous broadening; in a harmonic trap global mea-
surements would mix signals for a wide range of T/TF(r) ∝ n(r)−2/3, 
where n(r) is the local density. Rabi radiofrequency spectroscopy 
of 3D Fermi gases66,67 has, for example, provided an observation of 
non-Fermi-liquid behaviour in a normal strongly interacting gas66, 
whereas Ramsey radiofrequency spectroscopy of 2D Bose gases 
has provided measurements of short-range correlations across 
the BKT transition (Fig. 3b(ii)) and an observation of magnetic  
dipole interactions68,69.

The lack of inhomogeneous broadening is similarly beneficial 
for Bragg spectroscopy74,75. Figure 3b(iii) shows measurements of 
the excitation spectrum of a strongly interacting 3D Fermi gas, 
which were used to extract the concavity of the dispersion rela-
tion and the density-dependent pairing gap in the BEC–BCS cross-
over29; see also ref. 30 for similar measurements on 2D Fermi gases. 
Bragg spectroscopy experiments on condensed homogeneous 3D 
Bose gases have provided an observation of Heisenberg-limited 
long-range coherence64, the confirmation of Bogoliubov’s theory 
of quantum depletion28 and an observation of the breakdown of 
Bogoliubov’s theory of the excitation spectrum for sufficiently 
strong interactions65.

Non-equilibrium phenomena. In another large class of experi-
ments, homogeneous interacting gases have been driven or 
quenched far from equilibrium (Fig. 4).

One paradigmatic topic in non-equilibrium physics is turbu-
lence in strongly driven systems. Depending on the system and the 
excitation protocol, turbulent dynamics can be dominated by either 
waves or vortices, and the advent of box traps has led to new insights 
in both cases (Fig. 4a).

Wave turbulence is theoretically described in terms of dynamics 
that are local in momentum space76, so it is advantageous to experi-
mentally study it in momentum space, for which box traps (with 
their plane-wave eigenstates) provide the natural setting. In ‘shaken’ 
3D box-trapped Bose gases the power-law momentum distribution 
characteristic of a direct turbulent cascade has been observed20, and 
the elusive particle and energy fluxes through the cascade have also 
been measured77.

Vortex dynamics have been studied in turbulent (quasi-)2D 
box-trapped Bose gases. Such dynamics can arise owing to vari-
ous reasons, including vortex interactions and density gradients; 
eliminating the latter allowed clean observations of vortex cluster-
ing corresponding to negative temperatures78,79 (see also refs. 80,81), 
as predicted by Onsager in 194982. In another recent experiment on 
box-trapped 2D Fermi gases, the interplay of accelerated vortices 
and waves has also been observed83.
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Fig. 2 | Quantum statistics in homogeneous gases. a, In situ absorption 
images of homogeneous quantum-degenerate 3D gases with different 
phase-space densities D > 1 (indicated in the bottom-left corners); the 
colourscale bar shows the optical density (OD) and applies to all three 
panels. The gas with lowest density (lowest OD) is the coldest and actually 
has the highest D. However, one cannot see this, or even whether the 
gases are fermionic or bosonic (here they are fermionic 6Li gases; original 
data collected by N.N.’s group), in the images. b, In contrast, the effects of 
quantum statistics and degeneracy are striking in momentum space. Left: 
for a Bose gas, the statistical nature of the BEC phase transition, driven by 
the saturation of the excited states, is revealed more clearly than in the 
corresponding harmonic-trap experiments54. Here the plot shows the total 
number of atoms in the thermal cloud (N′, blue symbols and line) and 
the condensate (N0, red symbols and line), as the number of atoms in the 
cloud (N) is varied at constant temperature32; the inset shows an image 
of a partially condensed gas after release from the box and free expansion 
(original data collected by Z.H.’s group). Right: for a Fermi gas below TF, the 
effects of the Pauli exclusion principle are clearly observed. The occupation 
of individual momentum states is limited to nk ≤ 1, and the Fermi surface 
forms at kF. All solid lines are based on ideal-gas theory. In the right panel, 
the numbers in the parentheses show fitting errors. Panel b (right) adapted 
with permission from ref. 17, APS.
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gas, which was deduced from the measured speeds of first and second sound, undergoes a universal jump from 0 to 4 at the BKT phase transition; 
Dc is the critical phase-space density25. The solid blue line is the theoretical prediction, whereas the grey dashed line corresponds to a superfluid 
fraction of 100%. For the error bars, see refs. 22,25. b, Spectroscopy measurements: (i) particle-ejection spectra I(ω) for the unitary 3D Fermi gas66. Rabi 
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lack of inhomogeneous broadening. Such measurements probe short-range correlations and have also revealed non-Fermi-liquid behaviour in the normal 
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spectroscopy was used to measure the excitation spectrum in a strongly interacting 3D Fermi gas, here shown for two values of the interaction parameter 
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a 3D Bose gas driven on a large length scale reveals a wave-turbulence cascade towards smaller length scales20,77. a.u., arbitrary units. Bottom: experiments 
on vortex turbulence in quasi-2D Bose gases showed large-scale vortex clustering, which was observed by probing the density distribution78 (left) and the 
superfluid-velocity field79 (right). b, Critical dynamics: (i) critical slowing down results in non-adiabatic crossing of the BEC transition and the formation 
of domains with different spontaneously chosen condensate phases (indicated by the arrows). (ii) Topological defects form at the domain boundaries; 
here the image shows vortices spontaneously generated in a quench-cooled gas15. (iii) The power-law dependence of the average domain size, ℓ, on the 
quench time, τQ, is in agreement with the Kibble–Zurek theory37. c, Recurrences of phase correlations were observed in a 1D Bose gas31. d, A novel breather 
was seen in a 2D Bose gas; for particular initial density distributions, such as a uniform triangle prepared in a box trap, the cloud evolving in a harmonic 
potential (with trap frequency 1/T) periodically returns to its initial state33. The scale bars in b(ii) and d correspond to 10 µm. Panels adapted with 
permission from: a (top), ref. 20, Springer Nature Ltd; a (bottom left), ref. 78, AAAS; a (bottom right), ref. 79, AAAS; b(ii), ref. 15, Springer Nature Ltd; b(iii), 
ref. 37, AAAS; c, ref. 31, AAAS; d, ref. 33 under a Creative Commons License CC BY 4.0.

INSIGHT | Review ArticleNaTure PHysIcs

Nature Physics | VOL 17 | December 2021 | 1334–1341 | www.nature.com/naturephysics 1337

https://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturephysics


Review Article | INSIGHT NaTure PHysIcs

Another major topic for which homogeneous gases have distinct 
advantages is the critical behaviour near second-order phase transi-
tions, where the range of correlations in the gas diverges (Fig. 4b and 
Box 2). This is fundamentally homogeneous-system physics and it is 
hard to study it in inhomogeneous systems, because the local density 
approximation (LDA) breaks down owing to the divergence of the 
correlation length. In a non-equilibrium context, dynamic crossing 
of such a transition results in causally disconnected domains that 
display different choices of the symmetry-breaking order parameter. 
The Kibble–Zurek theory84,85 that describes these dynamics was orig-
inally developed specifically for homogeneous systems and its key 
assumption is that when it comes to the choice of the order param-
eter, all parts of the system have ‘equal voting rights’86,87. Box-trap 
experiments have provided quantitative tests of the Kibble–Zurek 
predictions for how the domain size37 and the resulting density of 
defects in the ordered state15 depend on the quench rate (see also 
refs. 36,38,88 for ring-trap and optical-tweezer experiments).

A number of other non-equilibrium experiments have been 
made possible by different properties of homogeneous gases. 
The form of the excitation spectrum of a weakly interacting 
1D Bose gas allowed the observation of recurrences in a closed 

quantum system31,89 (Fig. 4c). A momentum-space study of an 
energy-quenched far-from-equilibrium 3D Bose gas revealed bidi-
rectional universal scaling dynamics90. Finally, in a 3D Bose gas 
quenched to unitarity, the fact that all parts of a non-equilibrium 
homogeneous cloud evolved in the same way allowed the observa-
tion of universal loss and prethermalization dynamics91,92.

Other box-trap-enabled experiments. Finally, box trapping and 
related technologies have also facilitated many experiments that are 
less directly related to the physics of homogeneous gases. One exam-
ple of this is the discovery of a novel breather in a 2D Bose gas33; the 
breather shown in Fig. 4d is observed in a harmonic potential, but 
the initial state had to be prepared in a box trap33. Another similar 
example is the deterministic preparation of a Townes soliton in ref. 93 
(see also refs. 94,95 for other observations of Townes solitons in box 
traps); this 2D soliton is an inhomogeneous ground state of the sys-
tem, but its deterministic preparation started with a homogeneous 
gas and imprinting arbitrary density profiles using a DMD96. A dif-
ferent example of a practical advantage of box traps is the observa-
tion of the transition from an atomic to a molecular condensate97; 
in this case the creation of a (quasi-)equilibrium condensed gas of 

Box 2 | Critical phenomena in harmonic and box traps

Box traps are particularly advantageous for studies of phenomena 
associated with long-range correlations, such as those emerging 
near second-order phase transitions. Here we illustrate this advan-
tage with a simple ideal-gas calculation, by directly comparing the 
range of correlations that can be observed in harmonic and box 
traps near the BEC critical point.

In a homogeneous system near the critical point, the correlation 
length ξ diverges as illustrated in a. At a fixed temperature,

ξ/λ = A(|n− nc|/nc)−ν ,

where λ is the thermal wavelength, nc the critical density, ν the 
critical exponent and A a non-universal prefactor; for the ideal-gas 
BEC transition146 nc = 2.612/λ3, ν = 1 and A = 1/2.612.

For a harmonically trapped gas with spatially uniform T, one 
can evaluate a spatially varying ξ(r), where r is the distance from 
the trap center, within the LDA; that is, assuming that ξ at each r is 
the same as in a homogeneous system with density n(r). However, 
this approach breaks down if n(r = 0) approaches nc, because the 
deduced ξ becomes larger than the length scale over which n (and 
hence ξ itself) varies significantly. One can still, at the cost of 
reducing the experimental signal, focus on the central part of the 
cloud and assume that n is constant within some non-infinitesimal 
volume (as in refs. 70,71,73,147). In reality, n and ξ vary within this 
region but one can still directly probe correlations on a length 
scale ℓ if ξ(r) > ℓ for all r < ℓ/2; this approach was used in ref. 148.

Setting n(r = 0) = nc, assuming an isotropic potential 
(1/2)mω2r2, and expanding the ideal-gas distribution1 near r = 0 
gives ξ(r)/λ ≈ kBT/(ℏω) × [2πr/λ]−1. Noting that

kBT/(h̄ω) = (N/1.202)1/3,

where N is the total number of atoms in the trap and kB the 
Boltzmann constant, in b we plot ξ/λ versus r/λ for different N 
(black lines). The intersects of these curves with the line ξ = 2r (red) 
then give the achievable ℓ = 2r for a given N, irrespective of the 
choices of ω and corresponding T. Conversely, the atom number 
needed to directly observe correlations on ℓ in a harmonic trap is

Nharm = 1.202 π
3(ℓ/λ)6 , (1)

shown by the red line in c. With a typical N ≈ 106, one can reach 
only ℓ ≈ 5λ.

On the other hand, working with a box trap, one just needs a 
box of size ℓ and the corresponding atom number

Nbox = ncℓ3 ≈ 2.612× (ℓ/λ)3 , (2)

shown by the green line in c. In this case, the same N ≈ 106 is suf-
ficient for measurements up to ℓ ≈ 70λ.

For an interacting gas, for which148–150 ν ≈ 0.67, one reaches 
similar conclusions. In this case, Nbox ∝ (ℓ/λ)3 is essentially the 
same, with just the prefactor (∝nc/λ3) changing slightly, and one 
can estimate Nharm in various ways: still assuming ideal-gas n(r) 
gives Nharm ∝ (ℓ/λ)3+3/ν = (ℓ/λ)7.5, whereas approximating n(r) as 
a Gaussian gives Nharm ∝ (ℓ/λ)3+3/(2ν) = (ℓ/λ)5.25. In either case, one 
concludes that with the same atom number resources one can 
directly observe much-longer-range correlations in a box trap.
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unstable molecules was facilitated by the use of a 2D box trap to 
minimize losses and heating. Further examples of box-trap-enabled 
experiments include observation of the weak collapse of a conden-
sate with attractive interactions98 and the studies of the modulation 
instabilities that lead to emission of matter-wave jets, pattern forma-
tion and quasiparticle pair-production99–102.

Outlook
The scientific exploitation of box-trapped quantum gases is still in 
its infancy, with many exciting possibilities for the future. The suc-
cessful studies of phase-transition dynamics could be extended to 
the infinite-order BKT transition103–107 and the bubble-nucleation 
dynamics associated with first-order transitions, including some 
believed to be relevant to the physics of the early Universe108–111. 
Another general area where box traps could offer great advantage 
is topological physics112,113; sharp boundaries could allow real-space 
studies of edge states114, which have so far been observed in 
cold-atom systems exploiting synthetic dimensions associated with 
internal (spin) degrees of freedom115–117. It has also been predicted118 
that the supersolid phases of gases with strong dipolar interac-
tions119–124 should be qualitatively different in a box trap.

Further opportunities are offered by combining box traps with 
other trapping methods. For example, the combination of box 
traps and optical lattices has already facilitated the observation 
of long-range antiferromagnetic correlations125, as well as studies 
of competing magnetic orders in the bilayer Hubbard model126. 
Further possibilities are suggested by the hybrid trap of ref. 17, which 
is box-like along two directions and harmonic along the third. 
In this case, the harmonic direction provides tuning of the local 
chemical potential, while probing the system along a perpendicu-
lar direction retains many of the advantages of box traps—at least 
as long as the LDA is valid. Such a set-up could be used to study 
interfaces between different phases of matter, and could also facili-
tate searches for exotic states that are expected to occur only in nar-
row regions of bulk phase diagrams; an important example of such 
a still-sought-for phase is the Fulde–Ferrell–Larkin–Ovchinikov 
superfluid127–129.

Although the range of scientific possibilities is broad and excit-
ing, we can already anticipate that some will also require further 
technological developments.

The first issue is that many interesting experiments are likely 
to require increasingly larger and closer-to-perfect box traps. This 
is particularly true for studies of critical phenomena (Box 2), and 
more generally long-range correlations. As an illustration, a para-
digmatic problem for which current technology is insufficient 
is that of the critical temperature for Bose–Einstein condensa-
tion in an interacting homogeneous gas130–135. Critical fluctuations 
in a repulsively interacting gas are predicted to raise Tc above the 
ideal-gas value. However, in a harmonic trap, one observes the oppo-
site136–140—the beyond-mean-field correlation shift of Tc is dimin-
ished because only a small fraction of the cloud is critical at Tc, and 
it is overpowered by a geometric mean-field effect141 that reduces 
Tc. For a general power-law trap, V(r) ∝ rp (Box 1), with increasing 
p the beyond-mean-field shift should be more pronounced and 
the mean-field one should diminish. Using an LDA estimate, we 
found that for the currently typical values p ≈ 10 the two effects are 
still comparable, and that one needs p ≳ 100 to cleanly observe the 
beyond-mean-field correlation shift of Tc. We expect other funda-
mental correlation–physics problems to similarly create a moving 
target for tolerable box imperfections.

The second issue is that many exciting possibilities rely on spe-
cific features of different atomic species and their mixtures, but the 
methods for the levitation of gases in 3D box traps are generally 
species-specific. The simplest magnetic levitation14 works (strictly 
speaking) only for single-component gases, but can work well 
enough for mixtures of species that have similar ratios of mass and 

magnetic moment17. For two spin states of the same isotope, rapid 
swapping of the spins of individual particles can be used to levitate 
them simultaneously even if the two magnetic moments are signifi-
cantly different142. Optical levitation can also extend the possibilities 
further, to multiple species with similar ratios of mass and polariz-
ability39. However, creating arbitrary homogeneous mixtures of dif-
ferent chemical elements, different isotopes or even just different 
spin states of the same isotope, remains an open challenge.

These two issues are in fact related, as even in single-species 
experiments the limitations for making the box traps larger and 
closer to uniform (with larger p values) are often related to the 
need to levitate particles with additional fields. An exciting pos-
sibility for the future would therefore be to send box-trap set-ups 
into space and perform many-body experiments in a microgravity 
environment143–145.
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