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Quantum gases in optical boxes
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Quantum atomic and molecular gases are flexible systems for studies of fundamental many-body physics. They have tradition-
ally been produced in harmonic electromagnetic traps and thus had inhomogeneous densities, but recent advances in light
shaping for optical trapping of neutral particles have led to the development of flat-bottomed optical box traps, allowing the
creation of homogeneous samples. Box trapping simplifies the interpretation of experimental results, provides more direct con-
nections with theory and, in some cases, allows qualitatively new, hitherto impossible experiments. It has now been achieved
for both Bose and Fermi atomic gases in various dimensionalities, and also for gases of heteronuclear molecules. Here we
review these developments and the consequent breakthroughs in the study of both equilibrium and non-equilibrium phenom-

ena such as superfluidity, turbulence and the dynamics of phase transitions.

ful use in studying many-body physics'~* has owed a lot to the
possibility of trapping the atoms in versatile potentials, includ-
ing low-dimensional traps*, double wells® and optical lattices®*. The
electromagnetic trapping potentials are often also dynamically tune-
able, which has allowed experiments ranging from studies of ele-
mentary excitations’ " to reversible crossing of phase transitions'>".

More recent advances in the shaping of optical potentials have
opened many new possibilities. One major development is the
increasingly popular use of the uniform (flat-bottom) optical box
traps'“""’, as opposed to the traditionally used (optical or magnetic)
harmonic ones. Box traps have allowed scientific breakthroughs in
a wide range of areas, including studies of superfluidity, turbulence
and the dynamics of phase transitions. For example, the gas homo-
geneity has been beneficial for measurements of density-dependent
quantities, such as the speeds of different types of sound in various
superfluids®*~?, quantum depletion in a condensed Bose gas* or the
pairing gap in a Fermi gas®*. Qualitatively new observations have
also been made, such as recurrences in closed quantum systems™,
the unexpected observation of the quantum Joule-Thomson effect*
or the discovery of a novel type of breather®.

In this Review, we describe the development of box traps and
the scientific successes in this new and growing field. Before start-
ing, we also draw the reader’s attention to contemporary reviews
on two related emerging fields: (1) the creation of ‘atomtronics’
circuits for coherent matter waves, such as ring traps that sup-
port persistent currents™, and (2) the trapping of individual atoms
or molecules in arrays of optical tweezers”. All three fields take
advantage of advances in light shaping, and there are also scientific
connections; as a prominent example, the dynamics of phase transi-
tions in a homogeneous system have been studied in ring traps™,
two-dimensional (2D) and three-dimensional (3D) box traps'>’
and a one-dimensional (1D) tweezer array*.

f ince the earliest days of ultracold atomic gases, their success-

Making box traps

The basic concept behind most box traps is using sculpted repulsive
(blue-detuned) laser beams to construct the box walls that confine
the particles (Fig. 1a). Three-dimensional box traps are most com-
monly cylindrical and are made using one hollow-tube beam and
two sheet end-cap beams. To make a homogeneous 3D potential,
one also levitates the particles against gravity, which for atoms is
usually done using a static magnetic field gradient', whereas polar
molecules can be levitated using a static electric field gradient”.
To make a low-dimensional box, one freezes out the particle motion

along some direction(s) using very tight confinement, which can be
harmonic; this dimensionality reduction is analogous to the mak-
ing of a low-dimensional harmonic trap*. One could also make
red-detuned (attractive) box traps, and also cancel gravity using a
light field of linearly varying intensity®, but this is technically more
demanding because of the need to sculpt high-intensity light such
that the variations in the optical potential are smaller than all the
relevant energy scales in the gas.

The development of optical boxes was greatly aided by two com-
plementary types of programmable spatial light modulator (SLM)—
the liquid-crystal SLMs that modulate the phase of laser beams
and the digital micromirror devices (DMDs) that modulate their
amplitude (Fig. 1b). A liquid-crystal SLM is a rectangular array of
~10° pixel elements (each ~10 pm in size) with individually control-
lable indices of refraction; using it to imprint a spatially modulated
phase delay on a laser beam, one controls the intensity pattern in
the vicinity of the conjugate (Fourier) plane. Similarly, a DMD is
a rectangular array of ~10° mirrors (each ~10pm in size) that can
be individually turned ‘on’ or ‘off’ (by changing their tilt angle) to
spatially modulate the amplitude of a beam. An arbitrary intensity
pattern can then be imaged onto the cloud™.

Liquid-crystal SLMs are convenient for creating the multiple
beams needed for a box trap using a single device', and are gener-
ally more power-efficient than DMDs. On the other hand, DMDs
are more convenient for making arbitrarily shaped boxes, such as
squares in 2D or cubes in 3D, and much better for creating dynami-
cal potentials. Owing to their subkilohertz refresh rate at present,
liquid-crystal SLMs cannot be reprogrammed during an experi-
mental run without the particles escaping while the phase pattern is
being updated and the trap temporarily turned off. Meanwhile, the
~10kHz refresh rate of DMDs is sufficiently high for the trapping
pattern to be dynamically changed without the ultracold particles
moving noticeably during the updates®'.

The versatility of SLMs has been essential for experimental
exploration®, but box walls can also be made using non-tuneable
tools, such as axicons'”** and custom-manufactured masks",
which can be more cost-effective and power-efficient. Yet another
option is to use ‘painted’ time-averaged potentials created by fast
spatial scanning of laser beams*. For a comprehensive review of
recent advances in light shaping for atom trapping, including com-
parisons of different methods, see ref.*'.

Using the various light-sculpting methods, boxes of various
shapes and dimensionalities have been created for both atomic and
molecular gases'*™", as illustrated in Fig. 1c; see also refs.*~* for
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Fig. 1] Optical box traps. a, The concept. The walls of the box are made using repulsive laser beams (green) and the particles (blue) are confined in the
dark region between them. Here, a cylindrical 3D box is sculpted using one hollow-tube beam and two end-cap beams. A 2D box is made by freezing out
the particle motion in one direction (vertical, in this case) using very tight confinement. To create a 1D box, one freezes out the motion in two directions.

b, The box tools. Programmable spatial light modulators (SLMs)—the phase-controlling liquid-crystal SLM (left) and the amplitude-controlling digital
micromirror device (DMD) (middle)—offer great flexibility for sculpting laser beams. In the cartoon, starting with a single Gaussian beam, a single
liquid-crystal SLM is used to create all three beams for a cylindrical 3D box'. Right: box traps can also be made using specialized fixed optics, such

as an axicon, to create a tube beam. ¢, Box trap gallery. Between 2013 and 2021, optical boxes have been realized for Bose and Fermi atoms in various
dimensionalities, as well as for (fermionic) heteronuclear molecules in 3D, Panels adapted with permission from: b (left), ¢ (top left pair), ref.', APS;

¢ (top middle), ref.™, Springer Nature Ltd; ¢ (top right), ref.’® under a Creative Commons License CC BY 4.0; ¢ (bottom left), ref.”, APS; ¢ (bottom middle),
ref.’®, under a Creative Commons License CC BY 4.0; ¢ (bottom right), ref.”® under a Creative Commons License CC BY 4.0.

earlier examples of confining laser-cooled atoms with blue-detuned
beams and refs. **° for early prototypes of 1D box traps.

As a final point in this section, optical box traps are not perfect.
The sharpness of their walls is limited by the optical wavelength
of ~1pm, which is not negligible compared with the typical box
dimensions of 10—100pum. Moreover, additional fields used for
levitation, the creation of low-dimensional gases'>'**! or tuning of
interactions can lead to further imperfections. In Box 1, we discuss
two complementary methods used to quantify the uniformity of
box-trapped gases. The uniformity achieved so far has been good
enough for the success stories we discuss in the next section, but
how close to perfect a box needs to be ultimately depends on the
specific scientific problem (see the ‘Outlook’ section).

Success stories

Here we outline the scientific advances afforded by homogeneous
atomic gases, which also illustrate the general types of problem for
which box traps are advantageous.

Quantum statistics. We start with experiments on purely
quantum-statistical phenomena (Fig. 2). In harmonic traps, the real
and momentum space are coupled such that, for example, one can
clearly observe real-space effects of Bose-Einstein condensation
(BEC)*? and Fermi pressure®. In a box trap, the signatures of quan-
tum statistics are harder to see in real space (Fig. 2a), but in momen-
tum space they are revealed more cleanly than in harmonic-trap
experiments (Fig. 2b).

For bosons, one clearly observes the statistical nature of the BEC
transition, which is driven by the saturation of the total occupation
of all excited (momentum) states®. As the total atom number in the
gas is increased at a fixed temperature, the number of atoms in the
thermal cloud saturates at the critical value for condensation and all
the extra atoms accumulate in the condensate; in harmonic traps
this textbook effect is obscured by a combination of geometric and
mean-field interaction effects™.

For fermions, one instead observes the occupation-number satu-
ration at the level of individual momentum states, as prescribed by
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Box 1| Characterizing box traps

a, One simple measure of the gas homogeneity is the distribu-
tion of the real-space densities. Here we show the distribution
of column densities, n,;, extracted from in situ images of 3D
clouds”. In a box trap (blue) the probability distribution P (#.p)
is narrow, strongly peaked near the average value 7p. This
means, for example, that most atoms experience essentially the
same mean-field potential. For comparison, the corresponding
distribution in a non-degenerate harmonically trapped gas (red)
is very broad; the expected distribution is uniform between 0
and 275p. b, A complementary characteristic of box traps is the
single-particle density of states, which is seen (for example) in
the dependence of the critical atom number for Bose-Einstein
condensation, N,, on the temperature, T (ref.??). In a 3D har-
monic trap N, o T?, whereas in a perfect 3D box N, T%2. Here
the experimental data are captured by N, o T* with @ =1.65 (red
line). A common way'* to characterize (imperfect) box traps is to
model them by an isotropic power-law potential V(r) 7, with
p>1. Then a=3/2+3/p, and for a Fermi gas one similarly gets
that the Fermi energy is'"E; < N/ In current experiments p> 10
is readily achieved, and there are indications that values of p up
to ~100 are feasible'®.
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the Pauli exclusion principle. Here, the occupation of a state corre-
sponding to a momentum k is denoted #,. As the temperature (nor-

malized to the Fermi temperature T;) is reduced, the occupation of
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Fig. 2 | Quantum statistics in homogeneous gases. a, In situ absorption
images of homogeneous quantum-degenerate 3D gases with different
phase-space densities D > 1(indicated in the bottom-left corners); the
colourscale bar shows the optical density (OD) and applies to all three
panels. The gas with lowest density (lowest OD) is the coldest and actually
has the highest D. However, one cannot see this, or even whether the
gases are fermionic or bosonic (here they are fermionic °Li gases; original
data collected by N.N.'s group), in the images. b, In contrast, the effects of
quantum statistics and degeneracy are striking in momentum space. Left:
for a Bose gas, the statistical nature of the BEC phase transition, driven by
the saturation of the excited states, is revealed more clearly than in the
corresponding harmonic-trap experiments®*. Here the plot shows the total
number of atoms in the thermal cloud (N’, blue symbols and line) and

the condensate (N,, red symbols and line), as the number of atoms in the
cloud (N) is varied at constant temperature™; the inset shows an image

of a partially condensed gas after release from the box and free expansion
(original data collected by Z.H.'s group). Right: for a Fermi gas below T, the
effects of the Pauli exclusion principle are clearly observed. The occupation
of individual momentum states is limited to n, <1, and the Fermi surface
forms at k.. All solid lines are based on ideal-gas theory. In the right panel,
the numbers in the parentheses show fitting errors. Panel b (right) adapted
with permission from ref.”, APS.

all states remains bound to 7, <1 and the Fermi surface forms'” at
the Fermi wavevector k;.

Experiments on the thermodynamics of nearly-ideal box-trapped
gases also lead to the unexpected observation of the Joule-Thomson
effect that arises solely from quantum correlations*. While the ideal
classical gas does not change temperature under isoenthalpic rar-
efaction, the ideal Bose gas cools and the ideal Fermi gas is expected
to heat™.

Equilibrium properties of interacting systems. We now move on
to the experiments on the many-body physics of interacting gases.
We start with the broad class of spectroscopic and transport mea-
surements in which one weakly perturbs a system to extract infor-
mation on its equilibrium properties (Fig. 3).

A lot of attention has been given to long-wavelength sound
waves™~’; in Fig. 3a(i), we show examples of sound propagation
in 3D Fermi* and 2D Bose’' gases. The key quantities studied in
such experiments are the sound speed and the sound attenuation
(or equivalently diffusivity). Both of these quantities are density
dependent, and the crucial advantage of box traps for interpreting
the measurements is that they are constant in space.

In Fig. 3a(ii) we illustrate two scientific highlights of the experi-
ments on sound in homogeneous superfluids. In both 3D and 2D
unitary Fermi gases the quantum limit of sound diffusivity, set by
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h/m (where m is the atom mass), was demonstrated®**; this uni-
versal limit should also be relevant for other strongly interacting
Fermi systems such as neutron stars. In a weakly interacting 2D
Bose gas, first and second sound*®” in a Berezinskii-Kosterlitz—
Thouless (BKT) superfluid®*** were observed for the first time, and
the measurements of the two sound speeds revealed the universal
superfluid-density jump at the BKT transition®. Related experi-
ments on superfluidity have investigated the Josephson effect® and
the critical velocity® in a 2D Fermi gas, whereas a more complex
trapping geometry allowed studies of a Bose gas superfluid flow
through a constriction between two reservoirs®.

In Fig. 3b we illustrate the benefits of gas homogeneity for spec-
troscopic measurements that globally probe the system****-’; for
experiments on the extraction of the properties of a homogeneous
gas by local probing of harmonically trapped gases, see refs.”".

The Rabi radiofrequency spectra shown in Fig. 3b(i) measure
the energy cost of removing a particle from a spin—1/2 3D Fermi
gas at different reduced temperatures T/T; (ref.*). Measurements
were performed on the whole sample and the spectra taken at
closely spaced T/T; values are clearly distinct thanks only to the
lack of inhomogeneous broadening; in a harmonic trap global mea-
surements would mix signals for a wide range of T/Ty(r) xn(r)=>?,
where n(r) is the local density. Rabi radiofrequency spectroscopy
of 3D Fermi gases*®” has, for example, provided an observation of
non-Fermi-liquid behaviour in a normal strongly interacting gas®,
whereas Ramsey radiofrequency spectroscopy of 2D Bose gases
has provided measurements of short-range correlations across
the BKT transition (Fig. 3b(ii)) and an observation of magnetic
dipole interactions®®.

The lack of inhomogeneous broadening is similarly beneficial
for Bragg spectroscopy’*””. Figure 3b(iii) shows measurements of
the excitation spectrum of a strongly interacting 3D Fermi gas,
which were used to extract the concavity of the dispersion rela-
tion and the density-dependent pairing gap in the BEC-BCS cross-
over”’; see also ref.* for similar measurements on 2D Fermi gases.
Bragg spectroscopy experiments on condensed homogeneous 3D
Bose gases have provided an observation of Heisenberg-limited
long-range coherence®, the confirmation of Bogoliubov’s theory
of quantum depletion® and an observation of the breakdown of
Bogoliubov’s theory of the excitation spectrum for sufficiently
strong interactions®.

Non-equilibrium phenomena. In another large class of experi-
ments, homogeneous interacting gases have been driven or
quenched far from equilibrium (Fig. 4).

One paradigmatic topic in non-equilibrium physics is turbu-
lence in strongly driven systems. Depending on the system and the
excitation protocol, turbulent dynamics can be dominated by either
waves or vortices, and the advent of box traps has led to new insights
in both cases (Fig. 4a).

Wave turbulence is theoretically described in terms of dynamics
that are local in momentum space’, so it is advantageous to experi-
mentally study it in momentum space, for which box traps (with
their plane-wave eigenstates) provide the natural setting. In ‘shaken’
3D box-trapped Bose gases the power-law momentum distribution
characteristic of a direct turbulent cascade has been observed”, and
the elusive particle and energy fluxes through the cascade have also
been measured”.

Vortex dynamics have been studied in turbulent (quasi-)2D
box-trapped Bose gases. Such dynamics can arise owing to vari-
ous reasons, including vortex interactions and density gradients;
eliminating the latter allowed clean observations of vortex cluster-
ing corresponding to negative temperatures’” (see also refs. %),
as predicted by Onsager in 1949%. In another recent experiment on
box-trapped 2D Fermi gases, the interplay of accelerated vortices
and waves has also been observed®.
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Fig. 3 | Sound and spectroscopy measurements on box-trapped gases. a, Sound measurements: (i) low-energy sound modes can be probed by
perturbing the gas with an external potential and observing the evolution of the resulting density modulations in time and space. Images show examples
of measurements in a 3D Fermi gas®’ (top; here OD shows the modulated density, and AOD the variation around the average value) and a 2D Bose

gas’' (bottom). (ii) top: the sound diffusivity D (seen in the attenuation of the wave) in a low-temperature unitary Fermi gas approaches the universal
quantum limit, D~ h/m; the red line indicates T, the critical temperature for superfluidity. Bottom: the superfluid phase-space density Ds in a 2D Bose
gas, which was deduced from the measured speeds of first and second sound, undergoes a universal jump from O to 4 at the BKT phase transition;

D is the critical phase-space density?. The solid blue line is the theoretical prediction, whereas the grey dashed line corresponds to a superfluid

fraction of 100%. For the error bars, see refs. %?°, b, Spectroscopy measurements: (i) particle-ejection spectra I(w) for the unitary 3D Fermi gas®®. Rabi
radiofrequency (rf) spectroscopy was performed on the whole cloud and the differences induced by small changes in T/T; are observable only due to the
lack of inhomogeneous broadening. Such measurements probe short-range correlations and have also revealed non-Fermi-liquid behaviour in the normal
unitary gas at T> T.. Here w is the rf photon angular frequency, 4 is the Fermi wavelength, 1; is the thermal wavelength. As depicted in the cartoon, the
gas is prepared in a mixture of states |1) and |3), and the spectroscopy is performed on the |1) to |2) transition. (ii) Ramsey radiofrequency spectroscopy
on a 2D Bose gas was used to determine the two-body contact (C) as a function of D; the shaded region indicates the non-superfluid phase. (iii) Bragg
spectroscopy was used to measure the excitation spectrum in a strongly interacting 3D Fermi gas, here shown for two values of the interaction parameter
kea, where a is the s-wave scattering length®. Panels adapted with permission from: a(i) (top), a(ii) (top), ref.??, AAAS; a(i) (bottom), ref.?’, APS; a(ii)
(bottom), ref.?>, Springer Nature Ltd; b(i), ref. %, APS; b(ii), ref.°, Springer Nature Ltd. Panel b(iii) courtesy of the authors of ref.?’.
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Fig. 4 | Non-equilibrium phenomena. a, Wave and vortex turbulence. Top: power-law momentum distribution (n, o< k=7, indicated by the dashed line) in
a 3D Bose gas driven on a large length scale reveals a wave-turbulence cascade towards smaller length scales?®”’. a.u., arbitrary units. Bottom: experiments
on vortex turbulence in quasi-2D Bose gases showed large-scale vortex clustering, which was observed by probing the density distribution’® (left) and the
superfluid-velocity field”® (right). b, Critical dynamics: (i) critical slowing down results in non-adiabatic crossing of the BEC transition and the formation
of domains with different spontaneously chosen condensate phases (indicated by the arrows). (ii) Topological defects form at the domain boundaries;
here the image shows vortices spontaneously generated in a quench-cooled gas®. (iii) The power-law dependence of the average domain size, Z, on the
quench time, 7, is in agreement with the Kibble-Zurek theory®. ¢, Recurrences of phase correlations were observed in a 1D Bose gas™. d, A novel breather
was seen in a 2D Bose gas; for particular initial density distributions, such as a uniform triangle prepared in a box trap, the cloud evolving in a harmonic
potential (with trap frequency 1/T) periodically returns to its initial state®*. The scale bars in b(ii) and d correspond to 10 um. Panels adapted with
permission from: a (top), ref.?°, Springer Nature Ltd; a (bottom left), ref.”¢, AAAS; a (bottom right), ref. 7°, AAAS; b(ii), ref. ™, Springer Nature Ltd; b(iii),
ref.?’, AAAS; ¢, ref.?, AAAS; d, ref.?* under a Creative Commons License CC BY 4.0.
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Box 2 | Critical phenomena in harmonic and box traps

Box traps are particularly advantageous for studies of phenomena
associated with long-range correlations, such as those emerging
near second-order phase transitions. Here we illustrate this advan-
tage with a simple ideal-gas calculation, by directly comparing the
range of correlations that can be observed in harmonic and box
traps near the BEC critical point.

In ahomogeneous system near the critical point, the correlation
length £ diverges as illustrated in a. At a fixed temperature,

&/ = A(|ln —nc|/nc)”",

where 1 is the thermal wavelength, #. the critical density, v the
critical exponent and A a non-universal prefactor; for the ideal-gas
BEC transition'** n.=2.612/4°*, y=1 and A=1/2.612.

For a harmonically trapped gas with spatially uniform T, one
can evaluate a spatially varying &(r), where r is the distance from
the trap center, within the LDA; that is, assuming that £ at each r is
the same as in a homogeneous system with density n(r). However,
this approach breaks down if n(r=0) approaches n,, because the
deduced & becomes larger than the length scale over which # (and
hence £ itself) varies significantly. One can still, at the cost of
reducing the experimental signal, focus on the central part of the
cloud and assume that 7 is constant within some non-infinitesimal
volume (as in refs.”*’"7>!*). In reality, n and £ vary within this
region but one can still directly probe correlations on a length
scale 2 if £(r) > ¢ for all r < £/2; this approach was used in ref. '*%.

Setting n(r=0)=n, assuming an isotropic potential
(1/2)mw?*r*, and expanding the ideal-gas distribution' near r=0
gives &(r)/A~ kT/(hw) X [2nr/2A] . Noting that

ke T/(hw) = (N/1.202)"7,

where N is the total number of atoms in the trap and k; the
Boltzmann constant, in b we plot /4 versus /A for different N
(black lines). The intersects of these curves with the line £ =2r (red)
then give the achievable £ =2r for a given N, irrespective of the
choices of @ and corresponding T. Conversely, the atom number
needed to directly observe correlations on ¢ in a harmonic trap is

Nharm = 1.202 1 (¢/2)°, (1)
shown by the red line in ¢. With a typical N~ 10°, one can reach
only £~ 54.

On the other hand, working with a box trap, one just needs a
box of size £ and the corresponding atom number

Npox = ncl® = 2.612 x (¢4/4)*, (2)
shown by the green line in c. In this case, the same N~ 10° is suf-
ficient for measurements up to £ = 704.

For an interacting gas, for which'*"** 1~ 0.67, one reaches
similar conclusions. In this case, Ny, x(£/4)* is essentially the
same, with just the prefactor (xn./4’) changing slightly, and one
can estimate N,,., in various ways: still assuming ideal-gas n(r)
gives Ny, «x (£/1)**"*=(£/1)"*, whereas approximating n(r) as
a Gaussian gives Ny, x (£/4)*¥) = (£/2)>*. In either case, one
concludes that with the same atom number resources one can
directly observe much-longer-range correlations in a box trap.
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Another major topic for which homogeneous gases have distinct
advantages is the critical behaviour near second-order phase transi-
tions, where the range of correlations in the gas diverges (Fig. 4b and
Box 2). This is fundamentally homogeneous-system physics and it is
hard to study it in inhomogeneous systems, because the local density
approximation (LDA) breaks down owing to the divergence of the
correlation length. In a non-equilibrium context, dynamic crossing
of such a transition results in causally disconnected domains that
display different choices of the symmetry-breaking order parameter.
The Kibble-Zurek theory** that describes these dynamics was orig-
inally developed specifically for homogeneous systems and its key
assumption is that when it comes to the choice of the order param-
eter, all parts of the system have ‘equal voting rights***. Box-trap
experiments have provided quantitative tests of the Kibble-Zurek
predictions for how the domain size’” and the resulting density of
defects in the ordered state'” depend on the quench rate (see also
refs. %% for ring-trap and optical-tweezer experiments).

A number of other non-equilibrium experiments have been
made possible by different properties of homogeneous gases.
The form of the excitation spectrum of a weakly interacting
1D Bose gas allowed the observation of recurrences in a closed
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quantum system’-*’ (Fig. 4c). A momentum-space study of an
energy-quenched far-from-equilibrium 3D Bose gas revealed bidi-
rectional universal scaling dynamics™. Finally, in a 3D Bose gas
quenched to unitarity, the fact that all parts of a non-equilibrium
homogeneous cloud evolved in the same way allowed the observa-
tion of universal loss and prethermalization dynamics’”.

Other box-trap-enabled experiments. Finally, box trapping and
related technologies have also facilitated many experiments that are
less directly related to the physics of homogeneous gases. One exam-
ple of this is the discovery of a novel breather in a 2D Bose gas®; the
breather shown in Fig. 4d is observed in a harmonic potential, but
the initial state had to be prepared in a box trap™. Another similar
example is the deterministic preparation of a Townes soliton in ref. **
(see also refs.”** for other observations of Townes solitons in box
traps); this 2D soliton is an inhomogeneous ground state of the sys-
tem, but its deterministic preparation started with a homogeneous
gas and imprinting arbitrary density profiles using a DMD*. A dif-
ferent example of a practical advantage of box traps is the observa-
tion of the transition from an atomic to a molecular condensate”;
in this case the creation of a (quasi-)equilibrium condensed gas of
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unstable molecules was facilitated by the use of a 2D box trap to
minimize losses and heating. Further examples of box-trap-enabled
experiments include observation of the weak collapse of a conden-
sate with attractive interactions” and the studies of the modulation
instabilities that lead to emission of matter-wave jets, pattern forma-
tion and quasiparticle pair-production”-'"%

Outlook

The scientific exploitation of box-trapped quantum gases is still in
its infancy, with many exciting possibilities for the future. The suc-
cessful studies of phase-transition dynamics could be extended to
the infinite-order BKT transition'”"'” and the bubble-nucleation
dynamics associated with first-order transitions, including some
believed to be relevant to the physics of the early Universe'*-"".
Another general area where box traps could offer great advantage
is topological physics''>'"*; sharp boundaries could allow real-space
studies of edge states', which have so far been observed in
cold-atom systems exploiting synthetic dimensions associated with
internal (spin) degrees of freedom''*~'"”. It has also been predicted'"
that the supersolid phases of gases with strong dipolar interac-
tions'*-'** should be qualitatively different in a box trap.

Further opportunities are offered by combining box traps with
other trapping methods. For example, the combination of box
traps and optical lattices has already facilitated the observation
of long-range antiferromagnetic correlations'”, as well as studies
of competing magnetic orders in the bilayer Hubbard model'*.
Further possibilities are suggested by the hybrid trap of ref. 7, which
is box-like along two directions and harmonic along the third.
In this case, the harmonic direction provides tuning of the local
chemical potential, while probing the system along a perpendicu-
lar direction retains many of the advantages of box traps—at least
as long as the LDA is valid. Such a set-up could be used to study
interfaces between different phases of matter, and could also facili-
tate searches for exotic states that are expected to occur only in nar-
row regions of bulk phase diagrams; an important example of such
a still-sought-for phase is the Fulde-Ferrell-Larkin-Ovchinikov
superfluid'?’-'%.

Although the range of scientific possibilities is broad and excit-
ing, we can already anticipate that some will also require further
technological developments.

The first issue is that many interesting experiments are likely
to require increasingly larger and closer-to-perfect box traps. This
is particularly true for studies of critical phenomena (Box 2), and
more generally long-range correlations. As an illustration, a para-
digmatic problem for which current technology is insufficient
is that of the critical temperature for Bose-Einstein condensa-
tion in an interacting homogeneous gas"**"'**. Critical fluctuations
in a repulsively interacting gas are predicted to raise T, above the
ideal-gas value. However, in a harmonic trap, one observes the oppo-
site’****—the beyond-mean-field correlation shift of T, is dimin-
ished because only a small fraction of the cloud is critical at T, and
it is overpowered by a geometric mean-field effect'*' that reduces
T.. For a general power-law trap, V(r) xr” (Box 1), with increasing
p the beyond-mean-field shift should be more pronounced and
the mean-field one should diminish. Using an LDA estimate, we
found that for the currently typical values p~ 10 the two effects are
still comparable, and that one needs p > 100 to cleanly observe the
beyond-mean-field correlation shift of T.. We expect other funda-
mental correlation—physics problems to similarly create a moving
target for tolerable box imperfections.

The second issue is that many exciting possibilities rely on spe-
cific features of different atomic species and their mixtures, but the
methods for the levitation of gases in 3D box traps are generally
species-specific. The simplest magnetic levitation'* works (strictly
speaking) only for single-component gases, but can work well
enough for mixtures of species that have similar ratios of mass and
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magnetic moment". For two spin states of the same isotope, rapid
swapping of the spins of individual particles can be used to levitate
them simultaneously even if the two magnetic moments are signifi-
cantly different'*”. Optical levitation can also extend the possibilities
further, to multiple species with similar ratios of mass and polariz-
ability®. However, creating arbitrary homogeneous mixtures of dif-
ferent chemical elements, different isotopes or even just different
spin states of the same isotope, remains an open challenge.

These two issues are in fact related, as even in single-species
experiments the limitations for making the box traps larger and
closer to uniform (with larger p values) are often related to the
need to levitate particles with additional fields. An exciting pos-
sibility for the future would therefore be to send box-trap set-ups
into space and perform many-body experiments in a microgravity
environment'*"'%,
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