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Wave excitation and dynamics in non-Hermitian disordered systems
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Dynamic and steady-state aspects of wave propagation are deeply connected in lossless open systems in which
the scattering matrix is unitary. There is then an equivalence among the energy excited within the medium
through all channels, the Wigner time delay, which is the sum of dwell times in all channels coupled to the
medium, and the density of states. But these equivalences fall away in the presence of material loss or gain. In this
paper, we use microwave measurements, numerical simulations, and theoretical analysis to discover the changing
relationships among fundamental wave properties with loss and gain, and their dependence upon dimensionality
and spectral overlap. We begin with the demonstrations that the transmission time in random 1D media is equal
to the density of states even in the presence of ultrastrong absorption and that its ensemble average is independent
of the strengths of scattering and absorption. In contrast, the Wigner time becomes imaginary in the presence
of loss, with real and imaginary parts that fall with absorption. In multichannel media, the transmission time
remains equal to the density of states and is independent of the scattering strength in unitary systems but falls with
absorption to a degree that increases with the strengths of absorption and scattering, and the number of channels
coupled to the medium. We show that the relationships between key propagation variables in non-Hermitian
systems can be understood in terms of the singularities of the phase of the determinant of the transmission matrix.
The poles of the transmission matrix are the same as those of the scattering matrix, but the transmission zeros
are fundamentally different. Whereas the zeros of the scattering matrix are the complex conjugates of the poles,
the transmission zeros are topological: in unitary systems they occur only singly on the real axis or as conjugate
pairs. We follow the evolution and statistics of zeros in the complex plane as random samples are deformed.
The sensitivity of the spacing of zeros in the complex plane with deformation of the sample has a square-root
singularity at a zero point at which two single zeros and a complex pair interconvert. The transmission time is
a sum of Lorentzian functions associated with poles and zeros. The sum over poles is the density of states with
an average that is independent of scattering and dissipation. But the sum over zeros changes with loss, gain,
scattering strength and the number of channels in ways that make it possible to control ultranarrow spectral
features in transmission and transmission time. We show that the field, including the contribution of the still
coherent incident wave, is a sum over modal partial fractions with amplitudes that are independent of loss and
gain. The energy excited may be expressed in terms of the resonances of the medium and is equal to the dwell
time even in the presence of loss or gain.
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I. INTRODUCTION

A. Background of wave propagation in unitary media

Interest in resonance phenomena has expanded from water
waves, musical instruments, tides, pendulums, and catas-
trophic bridge collapses to encompass the entirety of the
physical world described by classical and quantum wave
equations. Thus, resonances are central to the study of
thermodynamics, electronics, and optics, and determine the
interactions of waves and particles across length scales from
nuclei, atoms, and molecules to electronic conductors, pho-
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tonic devices, chaotic cavities, random media, and black holes
[1–26].

The modes of a closed system form a complete orthogonal
set of undamped oscillatory solutions of the wave equation
with real eigenvalues giving point spectra. Once a wave in
a medium is coupled to its surroundings through the bound-
aries, however, the modes of the closed system are broadened
into quasinormal modes (QNMs). When it does not lead to
confusion, we will refer to resonances simply as modes. The
coupling between external channels and modes in lossless
systems has been incorporated into random matrix theory in
the Feshbach [2] and Heidelberg [3,7,8] approaches and in
coupled mode theory [6]. In this work, we seek to discover
the relationships between the scattering coefficients, internal
fields, total energy excited, dynamics of transmission and the
density of states (DOS) in random systems with loss and gain.

The scattering of waves between the channels coupled to a
medium is described by the scattering matrix (SM) [3,7,8].
In studies of wave propagation in random one-dimensional
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(1D), quasi-1D, and slab geometries, it is natural to distin-
guish between the channels at the input and output of the
sample. 1D media include point scatterers on a line, single-
mode waveguides, and layered media with parallel interfaces.
Quasi-1D samples have reflecting transverse boundaries and
constant cross-sectional area A. The number of channels on
either side of a large sample is N ∼ A/(λ/2)2 multiplied by
the multiplicity due to spin or polarization. The SM then sep-
arates into four sectors, S = (t r′

r t ′ ), where t (t
′) and r(r′) are

the transmission and reflection matrices for a wave entering
from the left (right). In unitary, reciprocal, N-channel systems,
the SM can be retrieved from the transmission matrix (TM).

There has been long-standing interest in Fano resonances
in which the scattering spectrum drops sharply and asym-
metrically to zero because of interference between a narrow
resonance and a broad mode or continuum [5]. The Fano res-
onance was first understood in the study of inelastic electron
scattering but is observed in diverse contexts. Recently, there
has been great interest in applications of Fano resonances
to sensing, filtering, and switching in photonic metamateri-
als [5,14,27,28]. It has been shown recently that reflection
can be completely suppressed in all [29–34] or some [35,36]
channels of the SM. In coherent perfect absorption (CPA), a
wave is wholly absorbed when a zero of the SM is brought
to the real axis of the complex energy plane by adjusting the
loss and/or the internal structure of the system [29–33,37].
The imaginary axis of the complex plane is the field decay
rate. The zeros and poles of the SM are conjugate pairs in
conservative systems with the zero in the upper half and the
pole in the lower half of the complex energy or frequency
plane [29,35]. The poles and zeros move down and up when
loss or gain are introduced. CPA is the time reversal of lasing
[29–31]. Zero reflection can be achieved in any set of input
channels by bringing a zeros of the reflection matrix (RM) to
the real axis by modifying the losses or internal structure of a
system [35]. In this work, we consider poles and zeros of the
TM [38] in media in which the SM is or is not unitary.

QNMs are solutions of the wave equation with outgoing
boundary conditions with complex eigenvalues or poles in the
lower half of the complex frequency plane, λm = ωm − iγm.
Here ωm and γm are the central frequency and decay rate
of the field of the mth mode. γm is half the decay rate of
modal energy, γm = �m/2, and equals the half-width of the
Lorentzian spectral line. If we assume that the mode profiles
are not changed by uniform absorption, the field decay rate in
the mth mode in a sample with uniform field absorption rate γ

is γm = γ 0
m + γ , where γ 0

m is the field decay rate in the lossless
medium due to leakage through the boundaries. In an ampli-
fying medium, γ is negative. Below the lasing threshold of
γ = −γ 0

m, the modal linewidth is γm = γ 0
m + γ = γ 0

m − |γ |.
The contribution of a mode to the DOS at a specific frequency
is given by the value of the modal Lorentzian function at that
frequency.

Many key results for closed Hermitian systems have been
demonstrated theoretically to carry over to finite lossless sys-
tems open at one end [11]. When there is a step in the
potential or dielectric constant demarcating the sample from
the surroundings in which the potential or dielectric con-
stant is uniform so that waves do not scatter back into the

sample, modes form a complete biorthogonal set. Departures
from orthogonality grow as spectrally overlap of modes in-
creases and neighboring modes become correlated [9,10,39–
42]. However, the field within the medium can still be ex-
pressed as a superposition of modes [9,14]. Since the ratio
of the wavelength to the sizes of elements of the internal
structure and the boundaries changes with frequency, the cou-
pling between the modes of the sample and the channels
may change with frequency. This gives rise to nonresonant
contributions to the SM [43]. But for high-Q resonances in
random media with linewidth much smaller than the driving
frequency, the coupling to modes does not change appreciably
over the linewidth.

The relationships between emission and excitation and be-
tween the time and frequency domains lie at the heart of the
study of wave propagation. The spontaneous emission from
a point within a medium to all freely propagating states is
proportional to the local DOS (LDOS) [44]. In unitary sys-
tems, the inverse of the process of spontaneous emission is the
delivery of energy to a point. The sum of the energy delivered
to a point for unit flux over all channels, U (r, ω), is propor-
tional to the LDOS,U (r, ω) = 2πρ(r, ω) . [45] The LDOS is
also proportional to the imaginary part of the Green’s function
for return to the point, ρ(r, ω) = −ImG(r, ω)/π [12]. The
integral of U (r, ω) over the volume of the sample gives the
DOS,U (ω) = ∫

V U (r, ω)dr = 2πρ(ω).
The time to scatter between channels is given by the

derivative of the phase of the transmitted wavefunction, h̄ dϕ

dE ,
or classical field, dϕ

dω
, [8,46–61]. The scattering time is the

temporal average of the delay of the scattered wave packet
or pulse between channels in the limit of vanishing pulse
bandwidth and diverging pulse length [55]. In unitary media,
the Wigner time delay, τW, for a system with M channels,
is the sum over the M eigenvalues, τi, of the Wigner-Smith
delay matrix, Q = −iS† dS

dω
[44]. This sum is proportional to

the DOS, which is a sum over Lorentzian modal contributions
[8]. It is also equal to the twice the dwell time τD, which is the
average of the travel time of the particle or wave over all pairs
of channels weighted by the corresponding flux transmission
coefficients. The factor of 2 indicates that each port can be
considered both as an input and an output. The Wigner time
is also proportional to the number of particles [51,62], which
corresponds to the energy of classical waves excited in the
medium:

τW ≡
M∑
1

τi = 2τD = 2πρ = 2
∑
m

γ 0
m(

ω − ω0
m

)2 + (
γ 0
m

)2
= U, γ = 0. (1)

In quasi-1D samples,M = 2N .
In unitary media, ρ and U may also be expressed in terms

of the transmission time, τT, which is the sum of transmission
times over the eigenchannels of the TM. The TM can be
expressed via the singular value decomposition as t = U
V †,
where V and U are unitary matrices and 
 is a diagonal ma-
trix. The columns of V andU , vn and un, are the transmission
eigenfunction for the nth transmission eigenchannel at the in-
cident and outgoing surfaces of the sample. The squares of the
diagonal elements of 
 are the transmission eigenvalues, τn.
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These are the eigenvalues of tt†, which are the flux transmis-
sion coefficients of the transmission eigenchannels [63–70].
The transmission eigenvalues are indexed from 1 to N in
order of decreasing transmission. The transmittance is the
sum of transmission eigenvalues, T = ∑N

n=1 τn [63–65]. The
transmission time for the nth transmission eigenchannel is the
spectral derivative of the composite phase shift accumulated in
transmission, tn = dθn

dω
= 1

i (u
∗
n · dun

dω
− v∗

n · dvn
dω

) [58]. Here vn

and un are the nth columns ofV andU , which are expressed in
terms of the incident and outgoing channels, respectively, and
θn is the difference between the phase averaged over the flux
in the channels contributing to the nth eigenchannel on the
output and input surfaces of the sample. The transmission time
in a unitary medium is the sum of eigenchannel transmission
times, τT ≡ ∑N

n=1 tn, this gives

τT = τD = πρ =
∑
m

γ 0
m

(ω − ωm)2 + (
γ 0
m

)2 = U/2, γ = 0.

(2)
The wave within a unitary sample can be decomposed into

a sum of modal contributions each of which is a product of
a spatially varying amplitude, am(r) and a resonance partial
fraction. The resonance partial fraction is proportional to the
Fourier transform of the modal field arising from delta func-
tion excitation, which is an exponential decaying oscillation
following the pulse at t = 0, Em(t ) ∼ cosωmtexp(−γmt ). The
field inside a 1D sample is thus given by [11]

E (x) =
∑
m

a0m(x)

ω − (
ω0
m − iγ 0

m

) , (3a)

where a0m(x) is the amplitude of the mode at a depth x into the
unitary medium, and the transmission coefficient in a sample
of length L is

T = |t |2 =
∣∣∣∣∣
∑
m

a0m(L)

ω − (
ω0
m − iγ 0

m

)
∣∣∣∣∣
2

. (3b)

Equivalent relations hold for the TM and for the transmit-
tance in multichannel systems.

The DOS relates dynamic and static aspects of transport in
unitary media. The LDOS and hence the rate of spontaneous
emission may be enhanced or suppressed relative to free space
in cavities [71,72], photonic crystals [73–75], metamateri-
als [76], and near surfaces [77]. The vanishing of the DOS
in electronic band gaps and the implementation of impurity
bands within the gap makes possible the control of charge
density and transport in semiconductors [78]. The exclusion
of light from photonic band gaps of photonic crystals due to
the suppression of the DOS [73] is accompanied by the sup-
pression of spontaneous emission [73]. At the same time, the
enhancement of the DOS at the band edge of photonic crystals
gives rise to a lengthened modal dwell time and suppresses
the laser threshold [79]. Light harvesting can be enhanced by
broadband, wide-angle absorption in high-Q slow modes in
2D photonic crystals [80]. The DOS may also be enhanced in
hyperbolic metamaterials in which ultralow mode volumes at
large wavevectors enable low volume photonic devices [76].
The exclusion of light from the band gap of 2D periodic
photonic materials enables efficient transmission in photonic

crystal waveguides with sharp bends [81]. Similarly light in a
photonic topological insulator is excluded from the band gap
in the bulk of the material but propagates unimpeded along
the edge in a chiral edge state [82]. The DOS also provides
a basis for describing transport in biological realms [83,84].
The average time spent by insects within a given region as
they forage for food by executing a random walk parallels the
average time of diffusing waves within a unitary medium. This
corresponds to τW, which is proportional to the DOS, and so
is independent of the mean-free path [83,85,86].

The understanding of the scaling of the statistics of wave
propagation in disordered systems is built upon the link-
age between static and dynamic aspects of transport and the
DOS. The statistics of transport in nondissipative open ran-
dom media are determined by the Thouless number, which
is equivalent to the degree of modal overlap. The Thouless
number can be expressed as δ = δω/ω, where δω is the
average linewidth and ω is the average spacing between the
modes of the open medium [87]. The Thouless number may
also be expressed as the ratio of the Heisenberg and Thouless
times, δ = tH/tTh. Here tH = 1/ω is the average of the DOS
and equals the time required to visit each coherence volume
of the sample and tTh is the typical time for the energy in
a mode to leak through the sample boundaries. In unitary
systems, the Thouless number is equal to the dimensionless
conductance, g, which is the conductance in units of e2/h, and
equal to the transmittance, δ = g = 〈T 〉 [87]. This reflects the
link between steady-state and dynamic transport. The local-
ization threshold in open systems lies at δ = 1 [87,88]. Modes
of the medium are localized [89] when they are spectrally
isolated, δ < 1, but extend throughout the medium when they
overlap, δ > 1. The spectral narrowing of spatially localized
modes due to weak coupling to the boundaries can be seen
in spectral lines in transmission [90]. The role of dissipation
is crucial in the study of Anderson localization because even
weak absorption dramatically affects transport through long-
lived localized states. As dissipation increases, 〈T 〉 falls but δ
increases since modes are broadened by loss so that 〈T 〉 and δ

are no longer equal.

B. Overview of results in nonunitary media

We find in microwave measurements, numerical simula-
tions and theoretical analysis that the remarkable proportion-
alities between τT, ρ, and U in unitary media seen in Eq. (2)
break down in the presence of loss or gain. The changes in
these relations depend on the strengths of absorption, am-
plification, and scattering and on dimensionality. We show
that the relationships between key propagation variables in
non-Hermitian systems can be understood in terms of the sin-
gularities of the phase of the determinant of the transmission
matrix. The poles of the transmission matrix are the same as
those of the scattering matrix, but the transmission zeros are
fundamentally different. Whereas the zeros of the scattering
matrix are the complex conjugates of the poles, the trans-
mission zeros are topological. In unitary systems they occur
only singly on the real axis or as conjugate pairs. A single
transmission zero can only leave the real axis if it encounters
another transmission zero at a zero point (ZP) and is converted
into a complex pair of zeros. We follow the evolution and
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statistics of zeros in the complex plane as random samples
are deformed.

We find that in 1D, τT = πρ even in samples with ultra-
strong absorption for which the absorption length is much
shorter than the mean-free path. Since the DOS depends only
on the average wavelength and dispersion, it is not affected
by the strength of disorder in samples with the same average
velocity. The average transmission time is therefore the same
as in a uniform sample 〈τT〉 = t+ = L

v+
.

In quasi-1D systems, however, τT may drop below πρ

as absorption, scattering strength and the sample’s cross-
sectional area increase. The difference between 1D and
quasi-1Dmedia is that, in 1D, the only singularities in the map
of the phase of the transmitted field in the complex frequency
plane are the poles, while in higher dimensions, in addition
to the poles, zeros of the TM can exist. The transmission
time is a sum of Lorentzians associated with the poles and
zeros of the determinant of the TM. Since the position of
singularities in the complex plane is lowered by iγ when
absorption is added, zeros of the TM that are on the real
axis or in the upper half of the complex plane may be swept
below the real axis with increasing absorption. This gives a
negative sign to the Lorentzian lines associated with the zeros,
so that the average transmission time drops. The density of
transmission zeros in the complex plane at a given frequency
can be determined from the rate of decay of the average with
γ of the transmission time over a random ensemble, 〈τT〉.

The motion of transmission zeros with changes in random
structure is more complex. Increasing the strength of disorder
brings some transmission zeros to the real axis and moves
zeros on the real axis to lower frequencies along the real axis.

Since τT = πρ for γ = 0 in multichannel systems, the
contributions of Lorentzians associated with the transmission
zeros must vanish. The zeros must therefore either lie on the
real axis or appear as conjugate pairs [38]. We present the
evolution of zeros in systems in which the disorder is varied
in systems with the same relative spatial fluctuations from the
average in the dielectric constant but with different ranges of
the fluctuations. In unitary systems, conjugate pairs of zeros
may move towards the real axis and meet at a ZP at which the
pair is transformed into two single zeros on the real axis that
move on the real axis. The merging of two zeros on the real
axis was shown previously to occur in a system of disks which
are displaced within a cavity with a single output channel [38].
The sensitivity of the distance between transmission zeros in
the complex plane to changes in the structure of a random
medium is shown to have a square-root singularity at the ZP.

Transmission vanishes whenever a zero lies on the real
axis. This can occur in a unitary system of dimensionality
higher than 1D and when the upper (lower) zero of a con-
jugate pair can be brought to the real axis by adding sufficient
absorption (gain). A sharp peak can be introduced in the
transmission time when absorption or gain brings a zero close
to the axis.

The approach to a zero point can also be seen in the
transmission time, which is especially sensitive to variations
in absorption and sample structure when zeros are displaced
slightly off the real axis. The width of the Lorentzian peak
in the transmission time tends to zero as the peak diverges

as zeros approach the real axis. The role of zeros in the
transmission time is seen in the lowest transmission eigen-
channels, which is given by the sum of Lorentzians due to
the zeros and a small background due to far off-resonance
modes. Both the vanishing of transmission and sharp peaks
in the phase derivative at two frequencies near a ZP can be
used to sensitively monitor changes within a structure.

In the presence of loss or gain,U is no longer equal to 2πρ,
but when modes do not overlap spectrally in a nonunitary
medium, U is still a sum of modal contributions. Each of the
terms is a product of a Lorentzian function which gives the
contribution of the mode to the DOS and the ratio of the modal
decay rate without and with absorption. When modes do over-
lap, as a result of coupling to the boundaries or to absorption,
U falls even more rapidly with increasing absorption. In all
cases, however,U remains equal to the dwell time. The energy
density is also given by the integral of the sum of the local
energy densities 1

2ε(x)E (x)
2 excited by all channels with the

field E (x) expressed as a sum of modal partial functions. The
amplitudes, am(x) of the modal partial fractions, 1

ω−λm
, in the

modal expansion of the field are independent of loss and gain.
The modes in single and multichannel systems with uni-

form loss or gain are complete, as they are for unitary systems.
Introducing absorption allows for an arresting demonstration
of completeness. In a system with loss, the field is determined
in terms of the parameters of the unitary sample and the
absorption rate. The modal frequencies do not shift with loss
and the modal decay rates are the sum of the modal absorption
rates in the sample without loss and γ , γm = γ 0

m + γ . As
the point of observation approaches the excitation source, the
field, including the large contribution of the coherent incident
wave, is still given in terms of the modes of the medium, but
the spectral range needed to accurately fit the field increases
dramatically near the input surface.

This paper is organized as follows: The introduction first
presents the background of waves scattering from and within
conservative random media and then outlines the results in
non-Hermitian systems presented in this work. Section II
presents the DOS in terms of the counting number, which in
1D is related to both the number of nodes across the sam-
ple and the spectral derivative of the phase. The simulations
presented in this section establishes the modal basis for the
changing nature of spectra and probability distributions of τT
with scattering strength in lossless 1D systems. Section III
begins with a discussion of microwave measurements of the
average energy density 〈U (x)〉 and of the probability distribu-
tion of τT in random ensembles of single-mode waveguides
with and without loss. Simulations in random layered media
over a range of dissipation show that while 〈U (x)〉, 〈U 〉,
the Wigner time, and the reflection time are suppressed by
absorption and enhanced by gain, 〈τT 〉 is unchanged by the
introduction of dissipation and gain. Theoretical calculations
of E (x), T ,U , and τT in random 1D systems with and without
loss and gain are presented and compared to simulations of
spectra of these quantities in a random layered sample. As the
spectral window in increases, all these quantities converge to
the appropriate expression in term of modes, thereby demon-
strating the effective completeness of the QNMs. Section IV
presents the statistics of the tn and their sum τT with changing
absorption, as well as the statistics of transmission zeros with
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changing strengths of scattering and absorption. The changing
disposition of transmission zeros in the complex plane in a
sequence of samples with increasing scattering strength is
described. This shows the divergence of the rate of change
of the position of transmission zeros in the complex plane
with change in the sample configuration near a ZP. The sharp
spectra of transmission and of transmission time of the lowest
transmission eigenchannel near transmission zeros are shown
to be, respectively, products of quadratic functions and as a
sum of Lorentzian lines. As in 1D samples, modal expressions
for propagation variables converge to the predicted sum in
terms of the modes and transmission zeros as the frequency
range analyzed increases. We conclude in Sec. V with an
overview of the broadened perspective of wave propagation
in random media achieved in this work and a discussion of
open questions and possible applications.

II. TRANSMISSION TIME AND DENSITY OF STATES
IN UNITARY RANDOM 1D SYSTEMS

The statistics of transmission time in unitary random sys-
tems is connected to the DOS. The DOS of a volume with
uniform index of refraction is the spectral derivative of the
counting number, ρ(ω) = dN (ω)/dω, where N (ω) is the
number of modes with angular frequency below ω. In a uni-
form medium enclosed in a volume V in d dimensions, the
number of states with a specific spin or polarization with
frequency below ω and wavelength longer than λ = 2πv/ω

is N (ω) ∼ V/(λ/2)d , in line with Weyl’s law. In an inho-
mogeneous closed medium, the average of the DOS should
be related to the effective wavelength, which can be ob-
tained from the correlation length of the field. The separation
at which the field correlation function first crosses zero is
λ/2 [91,92]. This defines the effective wavelength in the
medium, in terms of which N (ω) = V/(λ/2)d . In principle,
the DOS, ρ(ω) = dN

dω
= N (λ)

dλ
dλ
dω

= V
2(λ/2)2

dλ
dω

, varies between
systems because of differences in wave dispersion. However,
in random systems without strong structural correlation, the
DOS is the same as in a uniform system with the same ef-
fective wavelength. Since the ensemble average of the DOS
in a random unitary system depends only on the wavelength
and the sample dimensions, the average of the transmission
time, 〈τT〉 = π〈ρ〉 would be expected to be independent of
the scattering strength. Since the wavelength is determined by
the real part of the dielectric constant, the average DOS should
also be independent of absorption. The average transmission
time through a random medium should therefore be the same
as the transmission time in the equivalent uniform lossless
medium. Thus, in 1D, 〈τT〉 = L

v+
≡ t+, and in quasi-1D,

〈τT〉 = N
L

v+
≡ Nt+, (4)

where 1
N

∑N
n=1

L
vn

≡ L
v+
, and vn is the longitudinal velocity

associated with the nth propagating transmission eigenchan-
nel coupled to the medium. Thus τT is the time to visit each
coherence volume in the medium, which is the Heisenberg
time.

The independence of 〈τT〉 upon scattering strength in ran-
dom 1D unitary systems is demonstrated in the transfer-matrix

FIG. 1. Transmission time and phase in lossless random media.
(a) Schematic diagram of the random layered 1D medium. The
alternating blue and red dielectric layers have indices of refraction
of 1 ± n, while the index of the green surrounding medium is 1.
(b) The linear falloff of the logarithm of the average energy density
for unit flux incident from the left in samples with different scatter-
ing strengths gives the mean-free path, 〈ln u(x)v+〉 = −x/�. (c) The
probability distribution of transmission time for the same ensembles
as in (b). The up-down arrow indicates the average transmission time,
which is independent of scattering strength, 〈τT〉 = t+. (d) Spectra
of phase of the transmitted field for samples with L/� of 1 and
7. The total increase in phase in this frequency range for these
two configurations changes little with scattering strength. ω0 is the
smallest value of the ω in the window. (e) Spectra of the transmission
time, τT = dϕ/dω, corresponding to the spectra of the phase in (d).
Spectral features become sharper as the scattering strength increases.

simulations shown in Fig. 1. A plane wave of wavelength
3 mm is normally incident on a binary dielectric stack shown
schematically in Fig. 1(a). The sample is composed ofNlayer =
200 layers with total length L = 1 m and with layer thickness
selected randomly from a uniform distribution [0, 10] mm.
The real indices of refraction, n1 and n2, alternate between
layers with indices of refraction 1 ± n. The sample is sur-
rounded by free space with unit index of refraction. The values
of the indices of refraction in the sample for a desired value of
L/� in the layered sample is shown in Appendix A to be set by
the relation, Nlayer ln[n1(2 − n1)] = −L/�, up to a small cor-
rection due to the weaker scattering at first and last interfaces
of the sample. The value of L/� given by this relation for each
ensemble is within 0.3% of the value obtained in the linear fit
to the average of the logarithm of the energy density in the
sample when the sample is excited by unit flux from the left
side, with 〈ln u(x)v+〉 = −x/� [93], shown in Fig. 1(b).

The probability distributions of τT/t+ for the same en-
sembles for which the values of the localization parameter
s = L/� are found in Fig. 1(b) are shown in Fig. 1(c). The
distribution can be seen to broaden with increasing scatter-
ing strength, however, the average transmission time is the
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same for all scattering strengths, including uniform samples
without scattering, so that 〈τT〉 = L/v+ = t+. The reason for
the higher probability of long and short transmission times
in samples with higher scattering strength can be seen in
the typical spectra of the phase and phase derivative shown
in Figs. 1(d) and 1(e) for two random configurations with
the smallest and largest scattering strengths, respectively. In
samples with weak scattering, for which δ > 1, modes are
wide, and modal overlap is strong. ϕ(ω) is, therefore, a
smooth function with small departures from a line with slope
〈dϕ(ω)/dω〉 = t+. In contrast, in a more strongly scattering
sample, in which modal overlap is weak, δ < 1. The reso-
nances are then narrow so that the phase increases rapidly near
resonance where the DOS and τT are large and slowly between
resonance. As the resonances narrow, higher values of τT/t+
are reached on resonance so that the tail of P(τT/t+) extends
to higher values of τT/t+ while the bulk of the distribution of
τT/t+ shifts to small values found between resonances.

III. PROPAGATION IN NONUNITARY
RANDOM 1D SYSTEMS

A. Measurement of energy density and transmission time
in absorbing single-mode random waveguides

Measurements of field spectra along the length of random
layered samples contained in a waveguide supporting a sin-
gle transverse mode are carried out in an ensemble of 100
random sample configurations with use of a vector network
analyzer. Measurements are made in the frequency range
10.00–10.70 GHz in a copper waveguide with cutoff fre-
quency of 6.56 GHz. The medium inserted in the waveguide
is composed of randomly positioned ceramic elements with
index of refraction n = 1.7 and U-channel Teflon spacers.
Photos of a portion of the waveguide and of the scattering
medium inserted into the waveguide are shown in Figs. 2(a)
and 2(b), respectively. Measurements of the intensity inside
the sample shown in Fig. 2(c) are carried out in samples
of length L = 86 cm, while measurements of the spectral
derivative of the field τT = dϕ/dω shown in Fig. 2(d) are
made in a shorter sample of length L = 80 cm. The shorter
sample is used to provide additional space for measurements
of the field before the sample to more accurately determine
the incident field and so the transmission time. The wave is
detected by an antenna inserted sequentially into small holes
spaced by 1 cm along the waveguide. The measured field is
normalized to the incident field, which is found by fitting the
expression for the sinusoidal variation of the intensity due to
counterpropagating incident and reflected waves at five points
in front of the sample to the measured intensity. The sample is
weakly absorbing with an absorption rate of 9.4 × 10−3 ns−1

corresponding to γ = 4.7 × 10−3 ns−1 determined from the
linewidth of modes localized in the middle of the sample with
reflectors placed at the ends. This corresponds to an absorp-
tion length of �a = v+τa = 2v+/γ = 23 m, giving L/�a =
0.035. The impact of the weak absorption in this sample is
removed by Fourier transforming field spectra into the time
domain, compensating for the average decay due to absorption
by multiplying by a factor eγ t , and then Fourier transforming
back into the frequency domain, as discussed in Appendix B.
Following this approach, additional absorption is effectively

FIG. 2. Microwave measurement of energy density and transmis-
sion time. (a) Photo of the single-mode copper waveguide with holes
separated by 1 cm. The field is measured by an antenna inserted in
the holes. (b) Photo of one segment of the sample showing dielec-
tric slabs and U-channel spacers. (c) The average energy density
in 100 random configurations in a sample of length L = 86 cm
in a single-mode random waveguide. The blue/red circles give the
average energy density in samples without (L/�a = 0) and with
absorption (L/�a = 0.90). The dashed lines are simulations for the
same values of L/� and L/�a as in the experiment. Measurements of
〈ln u(x)v+〉 from which � and �a are found are shown in the inset.
(d) The probability distribution function for the transmission time
for the samples with the same local disorder as in (c) with length,
L = 80 cm. The solid/dashed curve shows the transmission time for
the experiment/simulation. The up down arrows indicates the average
values of τT /t+ (t+ = 3.70 ns).

incorporated into the sample by multiplying the field in the
time domain by a decaying exponential factor. The energy
densities within the sample and the probability distributions
of transmission times for the random ensemble with the im-
pact of the small natural absorption removed and with added
dissipation of γ = 0.11 ns−1 are shown in Figs. 2(c) and 2(d),
respectively.

The average energy density within the sample for excita-
tion with unit flux from the left, is 〈u(x)〉 = 1

2 〈ε(x)E2(x)〉.
Because the electric field is measured but the precise position
of the dielectric slabs in the experiments is not known, we
approximate 〈u(x)〉 by 1

2 〈ε〉〈E2(x)〉 with the spatial average
of the dielectric constant of 〈ε〉 = 1.2. Since the disorder in
the random structure is statistically homogeneous throughout
the sample, the ensemble average energy density in the sam-
ple when excited from the left and right, 〈u(x)〉 and 〈u′(x)〉,
respectively, will be symmetrical with respect to the center of
the sample, 〈u′(x)〉 = 〈u(L − x)〉. Adding the average energy
density for excitation from the left and right gives 〈U (x)〉 =
〈u(x)〉 + 〈u(L − x)〉. This is shown in Fig. 2(a) as the blue/red
circles for the lossless/absorbing sample. 〈U (x)〉 in the sample
without loss is uniform, as expected, since the average of the
LDOS is uniform. In the absorbing sample, however, 〈U (x)〉
falls towards the middle of the sample since waves reaching
the center of the sample have spent more time within the
sample on average than the waves near the sample boundaries
and are consequently more strongly absorbed.

We determine the mean-free path, �, and the absorption
length, �a, from the relation 〈ln u(x)v+〉 = −x/� − x/�a using
a linear fit to the data shown in the inset of Fig. 2(c). This
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gives � = 24.5 cm and �a = 107 cm, and the dimensionless
parameters s = L/� = 3.51, L/�a = 0.81. The values of the
localization parameter in the sample with L = 80 cm for
which results are shown in Fig. 2(d) is s = 3.39. Simulations
carried out with these parameters give the thin curves in
Fig. 2(c), which closely match the measurements of 〈U (x)〉.
Absorption is incorporated in the simulations by adding an
imaginary component ni to the indices of refraction n1 and n2
such that 2ω

c ni = 1/�a.
The probability distributions of transmission time mea-

sured in the random ensembles with and without absorption
are shown in Fig. 2(d). In the sample in which the impact of
absorption is removed, we find 〈τT〉 = 3.70 ns. The probabil-
ity distribution at high and low values is greater in the sample
without absorption. This is consistent with the increase in
the probability distribution of the transmission time delay
at long and short times in more strongly scattering samples
with narrowed average linewidths shown in Fig. 1(c). The
average transmission time in the two ensembles with differ-
ent modal broadening are the same within the uncertainty in
the measurements of 1%. A small fraction of the measured
transmission times is negative. Negative transmission times in
1D do not occur in the simulations, but they arise when the
measured transmitted field is comparable to the noise level
the difference in tT between the sample without absorption
and with the same absorption as in the experiment is less
than 0.2%. The results shown in Figs. 1 and 2 indicates that
the average transmission time through a random ensemble of
1D sample is independent of the strengths of scattering and
absorption so 〈τT〉 = t+ = L/v+.

B. Simulations of total energy and delay times
in nonunitary random 1D media

To better understand the nature of propagation in random
media, we carry out simulations of total energy excited within
the sample and of key delay times over a wide range of
absorption and gain. In the simulations shown in Figs. 3(a)
and 3(b) carried out in ensembles of random 1D samples with
the same value of s of 3.39 as in the measurements in Fig. 2,
the averages of the energy density 〈U (x)〉 and of the total
excitation within the sample 〈U 〉 are suppressed by loss and
enhanced by gain. The total energy within the sample can be
found by equating the rate of loss of energy due to absorption
within the sample, 2γU , to the difference between the sum of
flux into the sample on both sides of 2 for unit flux in each
channel, and the flux out of the sample to give [94]

U = U1 = [2 − (|t |2 + |t ′|2 + |r|2 + |r′|2)]/2γ . (5)

U can also be found by integrating the energy density in
a 1D medium excited by unit incident flux from the left and
right. The energy density isU (x) = u(x) + u′(x), with u(x) =
1
2ε(x)E (x)

2 and u′(x) = 1
2ε(x)E

′(x)2 in terms of the field due
to excitation from the left and right, respectively. The total
excited energy is

U = U2 =
∫ L

0
u(x) + u′(x) dx

=
∫ L

0

1

2
ε(x)[E (x)2 + E ′(x)2] dx. (6)

FIG. 3. Simulations of energy density and propagation times in
random 1D media with L/� = 3.39. (a) The average energy density
for different values of loss and gain in samples with the indicated
values of L/�a. (b) The probability distribution of transmission time
for the values of L/�a indicated in (a). The up-down arrows indicate
the values of the normalized average transmission time, which are
independent of loss or gain. (c) The average energy excited within the
sample vs strength of absorption or gain. (d) The ensemble average
of the transmission time (blue circles), reflection time (red circles)
and the real part of the Wigner time (green circles) for different
strengths of absorption or gain. 〈τT 〉 is invariant up to the highest
level of absorption γ = 3.6 ns−1 at which L/�a = 24.

Whereas 〈U 〉 is independent of scattering strength for a
given value of t+ in unitary systems but falls and rises with
increasing absorption and gain, 〈τT〉 is pegged to t+ up to
the largest values of L/�a = 24 at which it was feasible
to determine the phase derivative of the transmitted field,
as seen in Figs. 3(c) and 3(d). At this level of absorption,
〈ln T 〉 = −L/� − L/�a = −3.39−24 = −27.4. The average
of the field decay rate due to absorption in the layered sample
with v+ = c is then γ = 1

2�a = 1
2

c
�a

= 3.6 ns−1. Up to this
high level of absorption, the average transmission time is pro-
portional to the average density of states, 〈τT〉 = t+ = π〈ρ〉.
The probability distribution of τT relative to the transit time in
the uniform system, t+, P(τT/t+), narrows as L/�a increases
[Fig. 3(c)]. This is due to the increasing width of the modes
of the medium, which leads to a smoother variation of ϕ and
a narrower range of values of the spectral derivative.

The Wigner time delay becomes complex in nonunitary
systems. Recently a connection between a generalized com-
plex Wigner time delay and poles and zeros of the scattering
matrix has been found [95,96]. Here we consider the real part
of the Wigner time and the reflection time, as functions of
absorption. Both these times are seen in Fig. 3(d) to rise in
amplifying media and fall in absorbing media. The invariance
of 〈τT〉 is consistent with τT being a sum over modes and the
constant value of the average DOS for fixed t+. The contribu-
tion to 〈τT〉 of a single mode within a spectral range ω much
greater than the mode linewidth is the ratio of the change in
phase of the field due to the mode of π , which is independent
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FIG. 4. Spectra of total internal energy and dwell time.
Simulations of total internal energy and dwell time without
loss or gain (γ = 0 ns−1), with loss (γ = 0.3 ns−1), with gain
(γ = −0.015 ns−1) for a single sample drawn from an ensemble with
s = 3.39. The solid lines are U1, the black dashed lines are U2, and
the circles are 2τD.

of loss or gain, and the spectral range, giving π/ω. Since
the number of modes in the medium is not changed by the
introduction of loss or gain, the modal contribution to 〈τT〉 is
constant.

In lossless systems, the Wigner time is equal to twice the
dwell time, τD, which is the average over all channels of the
residence time of waves within a medium, and to U , τW =
2τD = U . In the presence of loss, τW becomes complex and its
real part is not equal toU, as seen in Fig. 3, but τD is still well
defined. The contribution of each channel to τD, is the average
of the residence time of the wave within the medium before
the wave either exits the medium through the boundaries or is
absorbed. In 1D,

τD = 1

2

[
T τT + RτR + T ′τ ′

T + R′τ ′
R

+ 2γ
∫ L

0
u(ω, x)

∂ϕ[E (ω, x)]

∂ω

+ u′(ω, x)
∂ϕ[E ′(ω, x)]

∂ω
dx

]
, (7)

where 2γ u(ω, x) is the energy dissipation rate at position x
and ∂ϕ[E (ω,x)]

∂ω
is the travel time from the source to x [50].

Simulations of spectra of U1, U2, and τD are shown in Fig. 4
for an 1D sample drawn from an ensemble of 1D systems
with s = L/� = 3.39 with and without loss and gain. In all
cases, spectra of U1, U2 and 2τD overlap, so that U = U1 =
U2 = 2τD. The equality of 2τD and U is natural from the
particle perspective. For electromagnetic waves, for example,
U is proportional to the number of photons in the medium

which is proportional to the dwell time of injected photons
within the medium, regardless of the strength of scattering
and whether photons leave the medium by escaping through
the boundaries or by being absorbed. In a uniform, lossless
medium, 2τD = 2Nt+ = U , so that, in general, 2τD = U .

The independence of the dwell time of a wave within a
lossless diffusive medium of scattering strength arises from
the relation 2τD = U = 2πρ. But in non-Hermitian systems,
U is not proportional to ρ . This raises the question of whether
2τD, which is equal to U and proportional to the sum over
pathlengths for all channels, is independent of the strength of
scattering in samples with the same absorption. The variation
ofU with scattering strength and loss in 1D and quasi-1D me-
dia is explored in Appendix D. For a given rate of dissipation,
and so of 2τD,U is seen in Fig. 17 to decrease with scattering
strength. Therefore, the average pathlength is not independent
of scattering strength in the presence of loss. This conclusion
may be applied to the pathlength of randomly walking insects
expiring at a fixed rate. Their residence time within a given
region will decrease with scattering strength.

C. Theory of field, energy density, and transmission time
in nonunitary random media: Poles and zeros

The completeness of the QNMs has been demonstrated
theoretically for a 1D dissipationless sample closed at one end
and open at the other when there is a step in the wave velocity
at the open end and when the potential or dielectric constant
is uniform outside the sample so that the wave is not scattered
back into the sample [11]. Here we consider the completeness
of modes in 1D and quasi-1D samples open at both ends with
uniform loss or gain. The statistics of τT and high-quality
modal fits of key variables of propagation are demonstrated
in 1D in Sec. III D and in quasi-1D in Sec. IV.

According to the Mittag-Leffler theorem, the
Green’s tensor can be expanded as G(ω) =∑∞

m=1 Res[G(ωm)](ω − ωm)−1, where the Res[G(ωm)] is
the residue of the Green’s function around ωm [97]. The
spatial variation of Res[G(ωm)] for a source on the left or
right side of the sample corresponds to the amplitudes of the
biorthogonal states. The Green’s function in an open system
is given by G(r′, r, ω) = 〈r′| 1

E−Heff
|r〉 = ∑

n
〈r′ |ψmr〉〈ψml |r〉
E−Em+i�m/2 .

Here 〈ψml | and |ψmr〉 represent the biorthogonal states of
the effective Hamiltonian of the scattering region, Heff , for
excitation from the left or right of the sample. Assuming that
the biorthogonal states are not changed by loss or gain, the
field within and the flux transmitted through a non-Hermitian
sample can be expressed as

E (x) =
∑
m

a0m(x)

ω − [
ω0
m − i

(
γ 0
m + γ

)] , (8a)

T = |t |2 =
∣∣∣∣∣
∑
m

a0m(L)

ω − [
ω0
m − i

(
γ 0
m + γ

)]
∣∣∣∣∣
2

, (8b)

where a0m(x) = Res[G(ωm, x)] = 〈r′|ψmr〉〈ψml |r〉 is propor-
tional to the modal amplitude for excitation from the left in
both unitary and nonunitary media.
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1. Total energy

The energy excited in lossless media with unit flux inci-
dent in all channels is calculated in Appendix E using the
Heidelberg model following the Feshbach quantum formalism
[2,3,7,8]. The Heidelberg model treats the coupling of the
continuum states of the channels to the modes of the scattering
region. The quantum calculation of Appendix E holds only
when the Hamiltonian is Hermitian. The result of the quantum
calculation may be transcribed for classical waves in a system
without loss as

U = 2
∑
m

γ 0
m

(ω − ωm)2 + (
γ 0
m

)2 , γ = 0. (9a)

This result is in accord with the relationship between U
and τW in Eq. (1) in a unitary system but breaks down in the
presence of dissipation.

The total energy excited in a single isolated mode at ωm

with linewidth γm can be calculated by considering the re-
sponse to δ-function excitation at t = 0. The response at a
point x in the medium is a damped oscillation, Em(x, t ) ∼
exp(−γmt ) cosωmt, which may be Fourier transformed to
give the response in the frequency domain. For a high-
Q resonance, ωm 	 γm, this gives Em(x, ω) ∼ 1

ω−(ωm−iγm )
.

The spectral variation of the energy density would then be
Um(x, ω) ∼ 1

(ω−ωm )2+γ 2
m
. Since all points in the medium have

the same spectral variation, the total energy excited in a
spectrally isolated mode is Um(ω) ∼ 1

(ω−ωm )2+γ 2
m
. In a lossless

medium, the energy excited summed over all incident chan-

nels is 2γ 0
m

(ω−ωm )2+(γ 0
m )

2 , in accord with Eqs. (1) and (9a). The

integral of Um(ω) over frequency is 2π . The integral over
frequency of the energy excited in an isolated high-Qmode by
δ-function excitation in a system with loss is reduced relative
to that in the lossless system by a factor equal to the ratio of the
temporal integral of the decaying intensity in the two systems
of γm

γ 0
m
. Since the function with the same spectral variation as

the mode in an absorbing medium and with the same integral
over frequency would be 2γm

(ω−ωm )2+γ 2
m
, the total energy excited

in the mode in the lossy system is Um = 2γm
(ω−ωm )2+γ 2

m

γ 0
m

γm
. This

gives

Um = 2γ 0
m

(ω − ωm)2 + γ 2
m

, γm = γ 0
m + γ . (9b)

In Sec. III D we demonstrate the validity of Eq. (9b) in
simulations of total energy excited near resonance with a
defect state in the band gap of an absorbing photonic crys-
tal which does not overlap strongly with modes of the pass
band. Modal overlap is also low in random media in which
waves are strongly localized so that δ 
 1, and when sam-
ples are weakly coupled to their surroundings. But generally,
the total energy excited in a nonunitary sample is not given
by the sum over modes when modes overlap. Nonetheless,

U = ∑
m

2γ 0
m

(ω−ωm )2+γ 2
m
is a good approximation in samples in

which modal overlap is weak and a serviceable approximation
in weakly absorbing or amplifying media with appreciable
modal overlap, as shown in Sec. III D. Simulations presented
in Sec. III D show that the total excited energy in nonunitary

media may be expressed, in terms of the integral over the
energy density in Eq. (6) with E expressed as the coherent
sum over modes in Eq. (8a).

2. Transmission time

To find the transmission time for classical waves in a
quasi-1D sample, τT = d

dω
argdet(t ), it is necessary to find the

determinant of the transmission sector of the SM. Using the
Heidelberg model, which gives the coupling between a scat-
tering region and its surroundings [7,8,98,99], the determinant
of the TM is found to be [38]

det (t ) ∼
∏

i (ω − ηi)∏
m (ω − λm)

. (10)

The summation is over all QNMs with poles λm = ωm −
iγm and all transmission zeros with zeros at ηi = Zi + iζi
in the complex frequency plane. The phase of det(t ) is the
difference between the sum of phases of the factors in the
numerator and the denominator of Eq. (10). The transmission
time is given by the spectral derivative of the phase of det(t )
gives [38]

τT = τp + τz

=
∑
m

γm

(ω − ωm)2 + γm2
+

∑
i

ζi

(ω − Zi )2 + ζi
2

=
∑
m

γ 0
m + γ(

ω − ω0
m

)2 + (
γ 0
m + γ

)2
+

∑
i

ζi − γ(
ω − Z0

i

)2 + (
ζ 0
i − γ

)2 . (11)

This is equal to the sum of spectral derivatives of the
cumulative phases dθn/dω over all transmission eigenchan-
nels. Since τT = τp for a unitary system, τz must vanish. This
can occur if zeros either lie on the real axis, ζ 0

i = 0, or are
members of a conjugate pair with η0

i± = Z0
i ± iζ 0

i . In the latter
case, the two Lorentzian terms in τz associated with the pair
have equal magnitudes but opposite signs so that their sum
vanishes. This imposes topological constraints on the ηi in a
lossless system: As the system is deformed, any single zero
must move along the real axis and any zero off the real axis
must be part of a conjugate pair of zeros. When a system is
deformed, the zeros of the conjugate pair either both move
towards or away from the real axis. When a conjugate pair
is brought to the real axis, the zeros meet at a ZP and are
converted into two single zeros which subsequently move
along the real axis. Any zeros on the real axis in lossless
systems can only come off the real axis when it encounters
another zero and the two zeros are converted into a conjugate
pair that moves away from the real axis, as will be seen in
Sec. IV.

When loss or gain are present, all zeros are displaced in
the complex frequency plane by −iγ , breaking the reflection
symmetry of ηi relative to the real axis of the complex fre-
quency plane. The contribution of a zero to the transmission

time is then τzi = ζ 0
i −γ

(ω−Z0
i )

2+(ζ 0
i −γ )2

. The contribution of single

zeros with ζ 0
i = 0 then no longer vanish and the contribution

of a pair of transmission zeros at the same frequency with
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FIG. 5. Phase map and modal fits of spectra of transmission time and transmission. (a) A portion of the phase map of the trans-
mitted field with poles indicated by blue diamonds. The poles over a wider range of ζ than shown in (a) are presented in Table I in
Appendix I. (b) Simulations of transmission time without loss or gain (γ = 0 ns−1, blue curves), with loss (γ = 0.3 ns−1, red curves), with
gain (γ = −0.015 ns−1, green curves), and associated modal sums (black dashed curves) for the same sample of Fig. 4. (c) The corresponding
transmission and associated modal sums.

equal magnitude and opposite sign no longer cancel. Since the
zero above the real axis of a pair moves closer to the real axis,
while the zero below the real axis movers farther from the real
axis, the contribution of the pair to τz is positive. However,
once γ > ζ 0

i , both zeros of the pair are in the lower half of
the complex plane and the contributions of both Lorentzian
to τz is negative. Since the integral over frequency of the
Lorentzians line of a transmission zero is equal to ±π for
a transmission zero above or below the real axis, and added
absorption moves the zeros down in the complex plane, 〈τT〉
is reduced by absorption.

We find in Fig. 3(d) that in random 1D samples, 〈τT〉 =
t+ = π〈ρ〉 = 〈τp〉, so that 〈τz〉 = 0 even at extraordinarily
high levels of absorption. But this can only be the case if
transmission zeros do not exist or are further from the real
axis than γ for all values of γ for which simulations were car-
ried out in strictly 1D samples. In the argument that follows,
we show that transmission zeros do not exist in strictly 1D
samples. Assume for a moment that transmission does vanish
in a 1D structure. Now consider the wave approaching the first
interface after which the flux vanishes. Since the transmission

coefficient of an interface which is not a perfect reflector does
not vanish, a fraction of the flux impinging on the interface
will be transmitted, giving nonvanishing transmission. But
this contradicts the assumption that transmission vanishes in
the sample. Thus, transmission cannot vanish in a strictly
1D structure. Reports of the vanishing of transmission in 1D
structures with Fano line shapes [100,101] must therefore
indicate that the samples studied are not strictly 1D. Similarly,
calculations of nulls in conductance in systems containing
coupled quantum dots with single channels leads [102,103]
and in transmission through a cavity with a single incident and
outgoing channel may arise because the interior of the system
supports several internal transverse channels [38,104].

D. Modal fit to simulated spectra in random 1D media

In this section, we present a modal analysis of simulations
of spectra of τT, T , E (x), andU in a random 1D sample with
and without loss or gain based on expressions developed in
Sec. III C. It is not possible to demonstrate perfect agreement
between the results of simulations and theoretical expressions
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FIG. 6. Modal fit of transmission time in a unitary sample in spectral windows with different widths. (a) Simulations of τT in the sample of
Fig. 5 (solid curves) and fits of the modal sum for τp in Eq. (11) with τz = 0 plus a second-order background (dashed curves). (b) Off-resonance
quadratic background function found in fits in the central frequency region between dashed red vertical lines in (a). The background falls as
the spectral window widens. The fit to τT in the central section of the spectrum between the vertical red dashed lines improves as the spectral
window in which poles are determined increases with values of the chi-squared test 1

N χ 2 = 1
N

∑N
i=1

(Oi−Ei )
2

Ei
of 4.83 × 10−3, 2.16 × 10−5, and

2.09 × 10−5 for the three spectra shown. The red solid line is the difference between the simulated spectrum of τT and the modal sum in the
expression for τp in Eq. (11).

in terms of modes since this would require the precise location
of the unlimited number of poles in the complex frequency
plane. We can, however, show that the modes are effectively
complete in random 1D media by demonstrating that the fits
to simulated spectra of propagation variables approach the
results of simulations as the area in the complex plane in
which the positions of poles are determined increases. The
completeness of modes in quasi-1D random media, in which
transmission zeros may exist, and the impact of transmission
zeros on τT are discussed in Sec. IV.

The phase map of the transmitted field is shown in Fig. 5(a)
for the same sample as in Fig. 4. The phase along lines parallel
to the real axis in the imaginary frequency plane is found by
calculating the phase of the transmitted field when uniform
gain or loss are added. The poles indicated by blue diamonds
are the singularities in the phase map. Since τz = 0, we first
consider the match of Eq. (11) to τT = τp since this does not
involve the amplitudes of the modes. A test of Eq. (11) is
made by calculating the background that needs to be added
to the sum in Eq. (11) due to modes in frequency windows of
different widths. Alternatively, one can fit spectra of τT to a
sum of modes within the spectral range and a slowly varying
background function. In either approach, the magnitude of
the background and the quality of the match to simulations
is then evaluated as the spectral range in which the poles are
determined is widened. The coordinates of the poles (ω0

m, γ 0
m)

in a larger area of the complex frequency plane for the 1D
sample than is shown in Fig. 5(a) is given in Table I of
Appendix I. The background is modeled as a(ω − ωmin)2 + b.
Since the poles are determined from the phase map, the only
free parameters in the fit of Eq. (11) to simulations of τT using
the poles within the spectral window are the three parameters
of the background function, which represent the impact of
modes which lie outside the spectral window. The solid curves
in Figs. 5(b) and 6(a) are the results of the simulation, and the
black dashed curves give the fits including the background.

The background found from the fit for the unitary sample is
presented as the dashed colored curves in Fig. 6(b) and seen to
drop as the spectral widow is broadened with the value of the
chi-squared test falling by more than two orders of magnitude.
The differences between the results of simulations and the
contribution of modes within different spectral windows to
Eq. (11) is shown as the solid curves in Fig. 6(b) and seen
to approximately track the background function found in the
fit.

The transmitted field E (L) and transmission T ∼ |E |2 in
unitary and nonunitary samples are given by Eqs. (3) and
(8). These variables depend upon the modal amplitudes of
the transmitted field a0m(L), as well as upon the poles. The
modal amplitudes for the sample of Fig. 5(b) with γ = 0
at x = L are found in the fit of the simulated spectrum of
E (L) by the expression in Eq. (3). The contribution to the
field of off-resonance modes oscillates with frequency due
to modal interference so we do not include a background in
the fit. The values of ω0

m, γ
0
m, and a0m(L) found for the unitary

sample are used to obtain the black dashed curves for T in
the absorbing and amplifying samples shown in Figs. 5(c).
Excellent agreement is found.

It is a general feature of simple mechanical and electro-
magnetic circuit resonances that resonances shift to lower
frequencies in the presence of damping. Such a downward
shift of modes in random media would correspond to an in-
crease in the DOS with absorption. But the DOS is related
to the wavelength, which is not changed by absorption, as
seen in the invariance of τT/t+ with absorption in Fig. 3(d),
so that on average the central frequency of modes should
not shift. The present results show that the modal fre-
quency shifts are not observed up to the levels absorption of
γ = 0.3 ns−1.

We have seen that the modal fits to E (L), which give
the black dashed curves in Fig. 5(b) for T are in excellent
agreement with simulations for samples with and without loss
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FIG. 7. Modal fits to the field inside the medium in spectral win-
dows with different widths. (a) Simulations of 1

2 c|E |2 (green curves)
and the fit of the square magnitude of the field given in the coherent
sum in Eq. (8) (black dashed curve) to spectra of increasing spectral
width for the same sample as in Figs. 4 and 5 with γ = 0. The fit to
1
2 c|E |2 in the center of the spectrum improves as the spectral window

increases with values of the chi-squared test 1
N χ 2 = 1

N

∑N
i=1

(Oi−Ei )
2

Ei
being 7.63 × 10−3, 2.85 × 10−4, and 8.41 × 10−6 for the three spec-
tra shown. (b) The results for the widest spectrum for γ = 0.2 ns−1.
In the central sector of the spectrum, 1

N χ 2 = 7.81 × 10−4.

and gain. We next consider the accuracy of the modal fit to the
field throughout the sample and the completeness of modes in
non-Hermitian systems.

In general, a wider spectral range is required to fit the field
at points closer to the input surface. The quality of the fit to
E (x) is demonstrated in the plots of |E (x)|2 with x = 0.1L ∼
0.34� in Fig. 7(a) using modes over different frequency ranges
in the lossless sample and in the plot in Fig. 7(b) in a strongly
absorbing sample with γ = 0.2 ns−1 in the widest frequency
range. A plot of the in- and out-of-phase components of the
field in the same configuration with and without the same
loss as in Fig. 7 is shown Appendix F (Fig. 18). The fit in
the narrowest spectral window shown between the dashed
vertical lines in the top frame of Fig. 7(a) using only the modes
in this region bears little resemblance to the simulated field.
However, an excellent fit of Eq. (3a) to the simulated field in
this central spectral region is achieved when the modes in the
full spectrum shown are used in the fit of the central region,
with a chi-squared test in the central sector reduced by three
orders of magnitude relative to the fit using only modes in the
central sector of the spectrum. Using the modal amplitudes
and the known values of the poles found in the lossless sample
of Fig. 7(a) and an absorption rate γ = 0.2 ns−1 gives the
black dashed curve in Fig 7(b), which overlaps the simulated
spectrum shown as the red curve. The excellent agreement ob-
tained even though the relative modal amplitudes are changed
appreciably by absorption demonstrates the effective com-
pleteness of QNMs in random media when the spectrum is
sufficiently wide.

FIG. 8. Spectrum of total energy near the center of the photonic
band gap of a 1D photonic crystal with a single defect in the center
of the sample. (a) The spatial distribution of the refractive index of
the sample. (b)–(d) Comparisons between simulations of spectra of
total energy U (red curve) and the incoherent modal sum of Eq. (9)
U3 (dashed black curve). The difference between these expressions
increases with absorption. In part (c), the difference between curves
is smaller than 1% even when the peak of the excited energy is
reduced to 1% of its value in the lossless system.

The excellent match of the modal sum to the simulated
field for a point at a depth into the sample much smaller than
the mean-free path, at which the incident field has not yet
been randomized, would suggest that a comparable fit could
similarly be obtained for points still closer to the sample input.
However, the quality of the fit to the square of the amplitude
of the field within a given spectral window degrades rapidly
as the position at which the field is evaluated moves closer to
the input. This is seen in Fig. 19 of Appendix F for x = 0.01�.
The fit improves with increasing spectral window but is poorer
for each spectral window than for x = 0.1� seen in Fig. 7. The
larger spectral window required to obtain an equivalent quality
of fit for smaller values of x may be related to the shorter
residence time of a fraction of the wave which is promptly
scattered from the sample and is more strongly represented in
the field at smaller depths into the sample.

We now study U in terms of modes. In the absence of
absorption,U = 2πρ so thatU is given by an incoherent sum
of Lorentzians. We consider the impact of absorption onU in
samples with increasing modal overlap. We first consider the
energy excited in a single isolated mode created at a quarter-
wave defect state in the center of the band gap of the quarter
wave stack shown in Fig. 8(a). The peak energy of the defect
state shown in Fig. 8(b) is reduce by more than three orders
of magnitude when loss at a level of γ = 0.2 is introduced,
as seen in Fig. 8(c). At this level of absorption, at which
modes of the pass band are broadened sufficiently that they
overlap with the defect state, the peak intensity is reduced by
less than 1% from the value predicted for a perfectly isolated

mode of Um/2 = γ 0
m

(ω−ωm )2+γm2 . In contrast, simulations of τT
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FIG. 9. Impact of loss and gain on total energy. Comparison of simulations ofU (red solid curves), the incoherent modal of Eq. (9b) (black
dashed curves),U3, and the difference U = U3 −U (green dashed curve) in a sample with (a) γ = 0 and (b) γ = 0.1 ns−1.U is lower/higher
than the result of Eq. (9b) when absorption/gain is present. (c) Variation with γ of 〈U 〉ω and 〈U3〉ω and the difference 〈U 〉ω = 〈U3〉ω − 〈U 〉ω

for a single sample.U falls below the incoherent sum in Eq. (9b) for γ > 0 and is above it for γ < 0.

are well fit by the incoherent sum over modes in Eq. (10) at
all levels of absorption, as seen in Fig. 7(d) and in Fig. 4. Thus,
the discrepancy is significant, and we might expect larger
deviations when the degree of modal overlap increases.

Simulations of the total energy U in a unitary sample ob-
tained from the scattered fields [Eq. (5)] and from the integral
involving the square of the fields within the sample [Eq. (6)]
are identical and are shown as the red curve in Fig. 9(a). This
curve is seen to be in full agreement with the incoherent modal
sum in Eq. (9) shown as the black dashed curve. Though
Eqs. (5) and (6) give identical results forU when absorption is
present, these are no longer equivalent to the incoherent sum
over modes in a nonunitary sample, with γ 0

m → γm = γ 0
m + γ

in Eq. (9),
∑

m
γ 0
m

(ω−ωm )2+γ 2
m
. The difference between the black

dashed curve and the red curve is shown as the dashed green
curve in Fig. 9(b) for a sample with γ = 0.1 ns−1. This shows
that peaks in simulations of spectra of U are suppressed rela-
tive to the incoherent sum over modes. A plot of the variation
with γ of simulations of U determined from Eq. (5) and of
from the incoherent modal sum for the spectral window in
Fig. 9(b) is shown in Fig. 9(c). The plots indicate that U is
reduced by absorption and enhanced by gain relative to the
incoherent sum over modes.

Spectra of propagation variables in a single random con-
figuration and the ensemble averages of these variables in
random 1D samples for different values of γ such that γ 0

m +
γ > 0 are seen in Figs. 1–8 and 17–19 to be in full accord
with Eqs. (5)–(8) and (11) with values of ω0

m, γ 0
m, and a0m(x)

that are independent of γ . When the amplification rate within
the medium equals the leakage rate from the medium for a
particular mode, the modal linewidth vanishes and the energy
inside the sample at resonance diverges. This corresponds to
the modal lasing threshold. For stronger amplification, the
effective linewidth becomes negative, γm = γ 0

m + γ = γ 0
m −

|γ | < 0. We find that transfer-matrix simulations of spectra of
τT, T , U and τD for the same spatial distribution of the real
part of the index of refraction of the 1D sample studied thus
far but with gain above the lasing threshold are fully in accord
with Eqs. (7)–(9) and (11), as seen in Fig. 20 of Appendix G.
The transmission time, however, no longer corresponds to the

DOS since the phase shift in tuning though a mode above the
lasing threshold is −π instead of +π , as it is in unitary or
absorbing samples so that τT < πρ.

Previous transfer-matrix simulations in random 1D media
and calculations based on the time-independent wave equa-
tion [105–107] noted a linear scaling of 〈ln T 〉 [108] well
above the lasing threshold, 〈ln T (L)〉 = − L

�
− L

|�a | +C, where
|�a| = −�a is the gain length in an amplifying medium, as
given in Eq. (G2) in Appendix G. Here C is a positive constant
well above the lasing threshold and equal to zero in absorb-
ing samples. The dual symmetry of absorption and gain for
systems below and above the lasing threshold with the same
value |�a| runs counter to the known increase in energy density
in lasing media that arises due to stimulated emission. The
drop of transmission above the lasing threshold was shown to
be an artifact of the use of the time-independent wave equa-
tion, which disappears when time-dependent simulations are
used [109].

The source of the dual symmetry for 〈ln T (L)〉 in the
presence of loss and gain in random 1D media can be ap-
preciated from a modal perspective. The numerators of the
modal partial fractions in Eq. (8b) for T (L), a0m(L), as well as
ω0
m and γ 0

m in the denominator are independent of γ . In the
limit in which |γ | is much greater than the half-linewidths
of the modes in the interior, γm = γ 0

m + γ → γ and T →∑
m,n

a0m (L)(a
0
n (L))

∗

[(ω−ω0
m)−iγ ][(ω−ω0

b )+iγ ]
. Thus T is the same for positive

and negative γ . The dual symmetry of 〈ln T (γ )〉 upon γ

shown in Fig. 21 of Appendix G is parallel to the previous
finding of dual symmetry of 〈ln T (L)〉 upon L for absorption
and gain.

E. Measurements of spectra of transmission
and transmission time

Measurements of field spectra in one sample from the
ensemble of 100 random waveguides with s = L/� = 3.39
for which results were given in Fig. 2 are used to obtain
the amplitude and phase of the transmitted field. Spectra of
τT = dϕ/dω and T = |E (L)|2 are shown in Fig. 10 for this
sample with the impact of the small natural absorption re-
moved, [Fig. 10(a), L/�a = 0], with absorption [Fig. 10(b),
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FIG. 10. Microwave measurements and modal fits of spectra of transmission, transmission time, and phase. (a)–(c) The transmission (red
curves) and transmission time (blue curves) and fits of the associated coherent and incoherent modal sums (black dashed curves) for (a) the
sample without absorption (L/�a = 0), (b) the sample with loss (L/�a = 0.87), and (c) the sample with gain (L/�a = −0.05). Spectra of the
phase are shown as purple curves.

L/�a = 0.87 or γ = 0.12], and with gain smaller than the
leakage rate of the modes in the region [Fig. 10(c), L/�a =
−0.05 or γ = −0.0065]. The number of modes with central
frequency within the spectral window is determined from the
total change in phase through the interval of ϕ = 48 giving
ϕ/π = 15 modes. The plot of the phase in different spectra
is smoother in samples with greater absorption but the total
phase change, ϕ, is nearly the same.

The fit of τT for γ = 0 by the sum over modes within the
frequency window of the measurements, and a background
due to modes outside this frequency window is shown as the
black dashed curve in Fig. 10(a). The values of ω0

m and γ 0
m

found in the fit to spectra of τT in the unitary sample are used
in the fit of spectra of the transmitted field to find the ampli-
tudes of the transmitted field a0m(L). Spectra of T = |E (L)|2
are plotted as the black dashed curve in Fig. 10(a). Fits of
comparable quality are found in samples with loss and gain
obtained with ωm = ω0

m, γm = γ 0
m + γ , and am = a0m(L).

IV. TRANSMISSION TIME IN MULTICHANNEL MEDIA

We now explore wave propagation in quasi-1D random
samples in which transmission zeros may exist and contribute
to τT. We consider the impact of transmission zeros upon the
transmission and transmission time of the entire system, T and
τT and upon individual transmission eigenchannels, τn and
tn. Since transmission zeros emerge from the interference of
modal contributions to the field, the effective completeness of
QNMs in quasi-1D media would be manifest in the close cor-
respondence between simulations of τT and Eq. (11) when the
transmission zeros and poles are known in a sufficiently large
sector of the complex frequency plane. At the same time, the
knowledge of the poles should yield spectra of transmission
in accord with simulations.

The average of the lowest transmission eigenvalue for
an N-channel conservative quasi-1D sample is exponentially
small, with 〈τN 〉 ∼ e− 2L

� . [63,64,68,69]. Increasing the scat-
tering strength might be expected to enhance the probability
of creating transmission zeros near or on the real axis.

We first study the impact of absorption on the statistics
of τT = ∑N

n=1 tn in random rectangular samples coupled to
empty waveguides on both sides with use of recursive Green’s

function simulations [110,111]. The randommedium is shown
schematically in Fig. 11(a). The samples composed of square
elements with sides of length a = λ0/2π , where λ0 = 1 m is
the vacuum wavelength, are coupled to waveguides support-
ing N = 8 channels. The sample width and length are 26a and
600a, corresponding to 14.4 m and 95.5 m. The dielectric
constant of each element is selected randomly from a rectan-
gular distribution [1−ε, 1 + ε]. The localization length
is 1/ξ = limL→∞ d〈lnT 〉

dL . Absorption is introduced by adding a
constant imaginary part to the dielectric constant. The absorp-
tion lengths are determined from the decay length of energy in
a homogeneous sample with loss, 1/�a = limL→∞ d〈lnT 〉

dL and
the corresponding absorption rate is γ = 1

2
v+
�a
. The velocity

relates the velocity of the waveguide channels and the DOS,
Nt+ = ∑N

n=1 L/vn = NL
v+

= π〈ρ〉.
The combined effects of scattering and absorption upon

〈τT/Nt+〉 for samples are shown in Fig. 11(b). In addition
to the results for the same value of ε = 0.3 (g = 1.74,
L/ξ = 0.64, blue circles) as in Fig. 10, results of simula-
tions are shown for ε = 0.4 (g = 0.98, L/ξ = 1.20, green
circles); ε = 0.45 (g = 0.73, L/ξ = 1.65, red circles); and
ε = 0.5 (g = 0.54, L/ξ = 2.04 purple circles). The number
of absorption length L/�a ranges from 0 to 14.1, correspond-
ing to the absorption rate γ from 0 to 2.23 × 10−3 ns−1. For
the ensembles with the two smallest values of ε, 〈τT〉 is
unchanged up to some value of γ after which it falls gradually
with added absorption. In contrast, for the ensembles with
the two largest values of ε, 〈τT〉 drops below Nt+ for the
slightest additional absorption and then falls gradually. The
magnitude of the discontinuity in 〈τT〉 and the rate decay 〈τT〉
with γ generally increases with ε.

Since 〈τp〉 is the DOS, its contribution to 〈τT〉 is indepen-
dent of loss and scattering strength in quasi-1D media, as in
1D samples. However, 〈τz〉 may fall with increasing absorp-
tion as transmission zeros are swept below the real axis as
absorption increases. Single zeros on the real axis in a lossless
sample are moved into the lower half of the complex plane for
the slightest additional absorption and the upper transmission
zero of a pair is brought below the real axis once γ > ζ 0

i .
Thus, the results in Fig. 11(b) indicate that at the frequency of
the simulations there are no zeros on or very close to the real
axis for the ensembles with ε equal to 0.3 and 0.4, while
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FIG. 11. Impact of absorption on the transmission time and the probability distribution functions of transmission zeros. (a) Schematic
diagram of locally 2D quasi-1D system. Squares with different colors represent the dielectric constants in various square elements. The
dielectric constant of the surrounding region is unity. (b) The normalized transmission time for different scattering strengths as a function of
absorption. Results are given for ε = 0.3 (blue), ε = 0.4 (green), ε = 0.45 (red), and ε = 0.50 (purple), corresponding, respectively,
to transmittance g = 1.74, 0.98, 0.73, 0. 54 at the frequency ω = 0.2998 ns−1. (c) Spectra of the lowest transmission eigenvalue in a set of
samples with different values of global disorder ε, which are the same as in (a) with the same spatial variation of the relative fluctuations in
the local dielectric function from the average of unity, (ε − 1)/ε, in the range [−1, 1]. Transmission zeros on the real axis are seen in the
dips in spectra of log10(τ8). The vertical dashed black line indicates the frequency at which results are obtained and analyzed in Fig. 11(b).
(d) A portion of the probability distribution of the imaginary part of transmission zeros in a unitary sample for different scattering strengths
calculated from the results in (b) using Eq. (12).

zeros do reside on and near the real axis for the ensembles
with ε equal to 0.45 and 0.5.

Since transmission zeros are moved downward in the com-
plex plane by iγ when absorption is added, the average
number of zeros at frequency ω brought below the real axis
as γ is incremented by γ is proportional to the density of
zeros in the corresponding lossless system with imaginary
part ζ 0, ρz(ω, ζ 0 = γ )γ . Further, since the contribution to
τz of a single zero above/below the real axis is π/−π when
integrated over frequency, the corresponding change in τT due
to a zero of a conjugate pair moving below the axis is 2π .
Since 〈τp〉 is invariant with absorption, the change in the aver-
age transmission time is due solely to the transmission zeros,
〈τT〉 = 〈τz〉 = −2π〈ρz(ω, ζ 0 = γ )〉γ . Normalizing to
the average transmission time in the lossless systems of 〈τp〉 =
Nt+ = π〈ρ〉, gives d〈τT/Nt+〉

dγ = −2〈ρz(ω, ζ 0 = γ )〉/〈ρ〉, for
the contribution of conjugate pairs. When a real zero on the
frequency axis in the lossless system is brought below the
real axis, the change in the transmission time integrated over
frequency is −π since a real zero does not contribute to
the transmission time. Letting ρ0

z (ω, 0)δ(0) be the density of
zeros on the real axis in the lossless system, gives

d〈τT/Nt+〉
dγ

= −2〈ρz(ω, ζ 0 = γ )〉 + 〈ρ0
z (ω)〉δ(ζ 0)

〈ρ〉 . (12)

Thus, the continuous probability density of the imaginary
part of zeros in the complex plane for unitary media in a
lossless medium, 〈ρz(ω, ζ 0)〉, and the spectral density of zeros
on the real axis 〈ρ0

z (ω)〉, at a frequency ω can be found from
the sensitivity of 〈τT/Nt+〉 to absorption.

The presence of transmission zeros on the real axis can be
seen in the vanishing of transmission of the lowest eigenchan-
nel, τ8, in unitary samples. Spectra of log τ8 in Fig. 11(c)
for single configurations with the four values of ε as in
Fig. 11(b) show that real transmission zeros move to lower
frequencies as ε is increased and g falls. The frequency at
which 〈τT〉 is determined in Fig. 11(b) is indicated as the
vertical dashed black line in Fig. 11(c). For ε = 0.3 and
0.4, Fig. 11(b) shows that 〈τT〉/Nt+ = 1 for small values of
absorption so that there are no transmission zeros on or very
near the real axis. Real zeros are observed at lower frequencies
when disorder is increased. Transmission zeros are found at
higher frequencies since the scattering from the square ele-
ments with sides smaller than the wavelength (a = λ0/2π )
increases with frequency.

The variation of 〈τT/Nt+〉 with γ , shown in Fig. 11(b),
is used together with Eq. (12) to obtain the density of the
imaginary part of zeros in the complex plane for unitary media
of different scattering strengths shown in Fig. 11(d). The plots
of ρz(ζ 0) in Fig. 11(d) show that in weakly scattering unitary
samples there are no transmission zeros on or near the real
axis. As ε increases, the likelihood of conjugate pairs of
zeros being found near the real axis increases. With stronger
scattering, zeros are found on the real axis and their number
increases with scattering strength. Transmission zeros reach
the real axis in a certain frequency range by either being
created in this frequency range as the zeros in a conjugate
pair merge on the real axis or by single zeros sliding along
the real axis into the frequency range. Both processes are
demonstrated in Fig. 13.

In addition to falling with increasing scattering strength or
absorption, 〈τT〉 falls as the number of channels increases for
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FIG. 12. The normalized transmission time for different channel
numbers with same ε = 0.4 as a function of absorption.

fixed scattering strength. The variation of 〈τT /Nt+〉 with γ

for the sample with ε = 0.4 is shown in Fig. 12 for N =
4, 8, 16. The curve for N = 8 corresponds to the red cir-
cles in Fig. 11(b). Increasing N lowers the transmission time
except at small values of γ for N = 4, 8. Thus, transmission
zeros in this sample appear on the real axis for higher values
of N even in the absence of absorption. Since transmission
zeros are absent in 1D and tend more strongly to be on or
near the real axis as N increases, the increasing number of
transmission zeros on the real axis may be associated with
the increased transverse component of the k-vector near the
sample output.

The location of transmission zeros in the complex fre-
quency plane in random lossless quasi-1D samples and their
evolution as the range of ε, [1 − ε, 1 + ε], increases can
be seen in the maps of the phase of det(t ) for different val-
ues of ε. Figures 13(a)–13(e) show maps of the phase of
det(t ) in samples in which the spatial distribution of relative
fluctuations of the dielectric constant from its average of 1
is fixed, and only the range of fluctuation, 2ε, changes.
The relationship between det(t ) and the zeros is given in
Eq. (10). The zeros and poles of the TM are phase singulari-
ties, with properties similar to those of phase singularities in
the speckle pattern of scattered light [112–116]. The phase
changes by −2π in a clockwise circuit around a zero and
by +2π around a pole. Using these properties of the phase
singularities, we can identify the zeros and poles of the TM,
which are indicated by red and blue diamonds, respectively, in
Figs. 13(a)–13(e).

Figure 13(a) shows four zeros and two poles. Two zeros
form a conjugate pair and two lie close together on the real
axis. As ε increases, the zeros of the conjugate pair move
closer to the frequency axis [Fig. 13(b)], merge at a ZP
[Fig. 13(c)] and two single zeros move away from the ZP on
the real axis [Fig. 13(d) and 13(e)]. The phase changes by
−4π in a clockwise rotation around the ZP in Fig. 13(c). The
positions of the transmission zeros in the complex frequency
plane is highly sensitive to changes in ε near a ZP. This can
be seen in the change of the position of transmission zeros
between Figs. 13(b) and 13(c). A plot of the rapid change with
ε of the real and imaginary coordinates of the transmission
zero near a ZP is seen in Fig. 13(f). Though transmission zeros
are created when the zeros of a conjugate pair arrive at the
real axis and by time-reversed process in which two single

zeros merge on the real axis and are converted to two zeros
of a conjugate pair that leave the real axis, Figs. 13(d) and
13(e) show that real transmission zeros can move through one
another. Over the range of the change in ε in Fig. 13, the
positions of the poles shift slightly to lower frequencies. This
is consistent with the counting number N (ω) ∼ V/(λ/2)2 at
the frequency of the poles in our sample, changing to second
order with ε. Though the average of the dielectric constant
remains 1 as ε increases, the average of N (ω) at a fixed fre-
quency would increase slightly because of the relatively small
wavelength within elements with higher ε. Consequently, the
poles move to lower frequency so that N (ω) at the frequency
of a particular poles tends not to change.

The difference in the coordinates of transmission zeros
during the conversion of a conjugate pair of zeros to two
single zeros, which is presented in Figs. 13(a)–13(e), is shown
in Fig. 13(f) with fine steps in ε. The sensitivity to disor-
der, which can be expressed as the derivative of the spacing
between two transmission zeros in the complex plane with
respect to change of disorder, dη

dε
, is seen to diverge at the

ZP [38]. The spacing between the conjugate pair of zeros
along the imaginary axis in the complex plane before the
zeros reach the ZP is η = 2ζ . After the conjugate pair
is transformed to two single zeros, the spacing on the real
axis is η = Z . The separation between the zeros near
the ZP shown in Fig. 13(f) is well fit by η = ζ = 2ζ =
1.98 × 10−3

√
ε − εZP for the conjugate pair, and η =

Z = 2.07 × 10−3
√

ε − εZP for the single zeros on the
frequency axis. This gives a square root singularity in the
sensitivity of the separation between transmission zeros to
ε. At the ZP, d2ζ

dε
= 9.90×10−4√

ε−εZP
and dZ

dε
= 1.04×10−3√

ε−εZP
, for the

conjugate pair and the single zeros, respectively.
The high sensitivity of the imaginary parts of the trans-

mission zeros of a conjugate pair of zeros near the frequency
axis to changes in the structure indicates that the probability
of finding transmission zeros with small values of ζ 0 is small.
A slight structural change either moves a transmission zero
further from the real axis or towards the real axis where the
conjugate pair of zeros is converted to two single zeros. As
a result, ρz(ζ 0) is low for small values of ζ 0 and rises as
ζ 0 increases, as can be seen in Fig. 11(d). Single zeros can
accumulate on the real axis since they can only leave the real
axis after each zero encounters another zero at a ZP and not
every encounter of two single zeros results in the formation of
a conjugate pair.

The impact of transmission zeros can be seen in a compari-
son of spectra of transmission and transmission time summed
over all transmission eigenchannels, T and τT, and for individ-
ual eigenchannels, τn and tn, with and without loss. In Fig. 14
we consider two samples with different global disorders of
ε = 0.435 and 0.438 but with the same spatial distributions
of the relative fluctuations of (ε − 1)/ε. The phase maps of
det(t ) for the respective samples with different global disorder
are shown in Figs. 13(b) and 13(d). A conjugate pair of zeros
is near the real axis of the first sample and two single trans-
mission zeros created when the zeros of the conjugate pair
met on the real axis at a ZP, as seen in Fig. 13(c), are on the
real axis of the second sample. The spectrum of the phase of
det(t ) for in a random sample, such as those shown in Fig. 13,

013102-16



WAVE EXCITATION AND DYNAMICS IN NON- … PHYSICAL REVIEW RESEARCH 4, 013102 (2022)

FIG. 13. Evolution of transmission zeros in samples with increasing disorder. (a)–(e) Phase maps of det(t ) showing the motion of
transmission zeros as the disorder characterized by ε increases. The transmission zeros (red diamonds) and poles (blue diamonds) tend
to shift to lower frequency as disorder increases. This necessitates a change in the frequency scale in (e). A conjugate pair of zeros in (a)
approaches the real axis in (b) and converge at a ZP on the real axis in (c). The two single transmission zeros move away from the ZP in (d)
and (e) as disorder increases. Two zeros that partially overlap on the real axis move together in (a)–(e). Transmission zeros are highly sensitive
to changes in the structure near a ZP, as compared to other transmission zeros or to the poles.

with a particular value of absorption corresponds to the phase
variation along a line displaced by iγ from the frequency axis.
This is equivalent to the spectrum one would obtain on the real
axis if the entire pattern were shifted down by iγ . Spectra in
Fig. 14 for samples without loss are shown as solid curves,
while spectra for samples with loss of γ = 1.0 × 10−5 are
shown as dashed curves.

In lossless samples, nulls occur in spectra of the lowest
transmission eigenvalue τ8 at the frequencies of each of the
real zeros, and peaks in T occur at the frequencies of poles
lying close to the real axis. The two peaks in T at the higher
frequency end of each of the spectra are associated with the
poles at the frequencies of these peak seen in Figs. 13(b) and
13(e). The peaks in transmission shift to lower frequency as
ε increases tracking the shift in the frequency of the poles.
Spectra of the transmission time of the lowest transmission
eigenchannel t8 in Figs. 14(d) and 14(h) in lossless samples
are flat because, on the one hand, the lowest transmission
eigenchannel is a superposition of far-off-resonance modes
for which the phase varies slowly [106], and on the other hand,
τz vanishes.

When weak absorption is introduced, spectra of T in
Figs. 14(a) and 14(e) are slightly suppressed and nulls that
appeared in τ8 in unitary samples become mild dips, as seen
in Figs. 14(b) and 14(f). Dips appear in τT in Figs. 14(c) and
14(g) and in t8 in Figs. 14(d) and 14(h) for each single trans-
mission zero. The single dips in τT and in t8 associated with

the two closely spaced transmission zeros seen in Figs. 14(b)
and 14(f) are nearly twice as deep as the dips associated with
isolated zeros because the separation in frequency of these
transmission zeros is much smaller than the half-width of the
dips of each of these zeros of γ . Peaks appear in spectra of
τT and t8 in Figs. 14(c) and 14(d) for a conjugate pair of zeros
due to the imbalance in the positive and negative contributions
of the zeros of a conjugate pair produced when absorption
is introduced. The transmission zero in the upper half of the
complex plane moves closer to the real axis while the lower
transmission zero is displaced farther from the real axis. This
leads to a peak in the contribution of the conjugate pair to the

transmission time, τzi = ζ 0
i −γ

(ω−Z0
i )

2+(ζ 0
i −γ )2

+ −ζ 0
i −γ

(ω−Z0
i )

2+(−ζ 0
i −γ )2

,

at ω = Z0
i .

The dips and peaks in t8 are seen to be closely correlated
with those in τT. This suggests that the contribution of trans-
mission zeros near the real axis to τT may be fully represented
in t8. We explore this conjecture by plotting the contribution
of transmission zeros to t8 plus a small flat background due
to off-resonance modes that is not much disturbed by the
introduction of moderate absorption. Simulations of t8 for
γ = 10−5 shown as the dashed red curves in Figs. 14(d) and
14(h) are compared to and the sum of the expression for τz
in Eq. (11) using the values of transmission zeros shown in
Figs. 13(b) and 13(d) plus the constant background in t8 in the
lossless samples, which are shown as the curve of black ovals.

013102-17



HUANG, KANG, AND GENACK PHYSICAL REVIEW RESEARCH 4, 013102 (2022)

FIG. 14. Impact of transmission zeros on total and eigenchannel
transmission and transmission time. Spectra of T and τn, and τT and
tn without (solid curves) and with (dashed curves) absorption of γ =
10−5 for n = 1, 4, 8 in quasi-1D samples with N = 8. (a)–(d) Results
for the sample with disorder ε = 0.435 with the phase map of
det(t ) shown in Fig. 13(b). The sharp double dips in τ8 in the lossless
system are due to two neighboring transmission zeros. These dips
are washed out by the addition of a small loss of γ = 1.0 × 10−5. A
conjugate pair of transmission zeros at ω = 0.307 produces a mild
dip in τ8. Linear plots of spectra of τ8 near a transmission zero are
shown in the insets of (b) and (f). (d) When absorption is added, a
single dip occurs in t8 because the two transmission zeros overlap. A
peak is produced as the upper transmission zero of the conjugate pair
is moved closer to the real axis, and the lower transmission zero is
moved farther from the real axis. The curves of black circles in (d)
and (h) are plots of Eq. (11), as explained in the text. (e)–(h) Results
for the sample with ε = 0.438 with the phase map of det(t ) shown
in Fig. 13(d). As in (b), the dips in τ8 seen in (f) are suppressed
by small additional absorption. The dip in t8 due to overlapping
transmission zeros in the absorbing medium is nearly twice as deep
as for the single transmission zeros because the frequency difference
between the transmission zeros is less than the linewidths γ of the
transmission zeros.

The overlap of the two curves confirms that the contributions
of transmission zeros to τT are fully represented in t8.

Nulls in spectra of τ8 at each of the transmission zeros
in the lossless sample are seen as sharp drops in log10(τ8).
Since transmission near a real transmission zero is small, the
impact of the transmission zero is manifest in the lowest trans-
mission eigenchannel. Following Eq. (10), the transmission
for this eigenchannel near a single real transmission zero at
ω = Z1 should be τN = τ8 ∼ (ω − Z1)2. This is confirmed
in spectra of τ8 near transmission zeros that lie on the real
axis shown in Fig. 15. The determinant of t , as given in
Eq. (10), changes rapidly near real zeros on the real axis
for which the factor (ω − ηi ) = (ω − Zi ) is real. For a sin-
gle transmission zero, τ8 ∼ (ω − Z1)2, while for two closely
spaced transmission zeros τ8 ∼ (ω − Z1)2(ω − Z2)2. When
two transmission zeros coincide at a ZP, Z1 = Z2 = ZZP, τN ∼
(ω − ZZP)4. Excellent fits of these functions to spectra of τ8

near a single zero, double zero, and ZP in Fig. 14 are seen in
Figs. 15(a)–15(c).

In quasi-1D samples, the phase map of det(t ) gives the
poles and zeros and thus τT via Eq. (11). A portion of the
phase map over the range of ζ 0 ∈ [−20, 5] × 10−5 is shown
in Fig. 16(a). The poles and transmission zeros over the range
[−100, 100] × 10−5 are given in Table II in Appendix I. Sim-
ulations of τT in samples with different absorption in the
narrower frequency range between the vertical black dashed
lines in Fig. 16(a) are seen in Fig. 16(b) to be in excellent
agreement with Eq. (11) using the singularities in the complex
frequency plane in Table II. The effective completeness of
the modes can be further demonstrated by showing that the
transmitted flux between any pair of channels in the nar-
rower frequency range can be found using the values of the
singularities in Table II and the modal amplitudes as fitting
parameters. An excellent fit to the spectrum of transmission
between an exciting channel which is the in-phase linear
combination of all incident channels with equal amplitude
and the first waveguide mode at the output surface is demon-
strated in Fig. 16(c) for different values of absorption. The
agreement of τT with Eq. (11) and the quality of a modal fit
to spectra of the field can never be perfect but can always
be improved by increasing the region of the complex plane
surrounding the probed region in which the singularities are
determined.

Features in transmission spectra associated with single
transmission zeros are generally broadened when absorption
is increased. However, because of the presence of zeros in
the upper half of the complex frequency plane, dips in trans-
mission spectra, and peaks or dips in the transmission time
can be produced by bringing transmission zeros close to
the real axis by adding absorption. This is demonstrated in
Fig. 22 of Appendix H. As in weakly absorbing media, the
impact of transmission zeros is manifested in tN in strongly
absorbing samples but the background due to the poles is
no longer small. Unlike single transmission zeros on the real
axis that remain on the real axis as the sample structure is
modified, the vanishing of transmission when the upper trans-
mission zero of a conjugate pair of zeros is brought to the
real axis by absorption is not robust to deformation of the
sample.

V. CONCLUSION

An appreciation of the role of resonances in physical phe-
nomena grew slowly in the centuries after Galileo’s studies
of freely oscillating pendulums. Euler drew the distinction
between the driving frequency and the natural frequency of
oscillation and Young showed that a pendulum could be
made to oscillate at the driving frequency when a sinusoidal
driving force is applied [118]. The study of resonances now
extends far beyond the pendulum and the broader mechanical
paradigm to encompass classical and quantum phenomena on
all length scales.

When a medium without material loss is opened to its
surroundings, modes are broadened as the poles are moved
off the real axis into the lower half of the complex plane.
The modes are then no longer orthogonal, but instead form
a complete biorthogonal set [11,16]. In unitary samples, the
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FIG. 15. Spectra of the lowest transmission eigenvalue near a transmission zero. The solid red curves are simulations of spectra of τ8 and
the black dashed curves are fits using with the functional forms given in the figure which are forms of Eq. (10) near transmission zeros. Spectra
for a sample with disorder strength ε = 0.438 for (a) a single transmission zero and (b) a pair of closely transmission zeros, which can be
seen in the phase map of Fig. 13(d). (c) The corresponding spectra near the ZP which is seen in Fig. 13(c).

Wigner time τW, DOS ρ, dwell time τD, total excited energy
U [8], and the transmission time, τT [58] are proportional to
one another, as given in Eqs. (1-2). This work finds striking
similarities and profound differences in the relationships of

E (x),U , τD, and τT to the modes of the medium in unitary and
dissipative 1D and quasi-1D media. This provides a deeper
understanding of wave propagation in complex systems and
points to open questions and potential applications.

FIG. 16. Phase map and spectra of transmission time and transmission. (a) Phase map of det(t ) over a wider range of the real and imaginary
parts of the frequency than in Fig. 13. The phase map shown is a portion of the phase map used to determine the complex frequencies of the
poles and transmission zeros used in the plots shown in (b) and (c). The poles and zeros over a wider range than shown in (a) with ζ up to 10−3

are presented in Table II in Appendix I. (c) Spectra of transmission time τT. The blue, red and green solid curves show simulations of τT with,
respectively, no absorption (γ = 0), weak absorption (γ = 1 × 10−5 ns−1) and strong absorption (γ = 1 × 10−4 ns−1). The dashed black
curves are the sums of Lorentzian terms associated with modes and transmission zeros in Eq. (11) and a quadratic background. (c) Spectra
of transmission of the first waveguide channel. The square of the field transmission for incident channel vin = 1√

8
[1, 1, 1, 1, 1, 1, 1, 1]T to the

first waveguide mode u1 = [1, 0, 0, 0, 0, 0, 0, 0]T , |t1,in|2. The colored curves correspond to the same values of γ as in (a). The dashed black
curve is the fit of Eq. 8 to the simulations without a background.
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The field excited within the lossless medium can be ex-
pressed as, E (x) = ∑

m
a0m (x)
ω−ωp

, where a0m(x) gives the spatial

variation of the excited mode with a pole at ωp = ω0
m − iγ 0

m.
The field within a medium with uniform loss or gain may
still be expressed as a coherent sum over modes with E (x) =∑

m
a0m (x)
ω−ωp

, where the coefficient of the modal partial fraction

a0m(x) is unchanged and ωp = ω0
m − iγ 0

m − iγ . This is an ar-
resting demonstration of the completeness of modes. Unlike
the excellent fit of Eq. (8a) to the simulated field in the lossless
sample by finding the modal amplitudes once the poles are
determined from the map of the phase of the transmitted field,
there is no additional fitting when absorption is added. Though
the relative weights of different modes change dramatically
when loss is added, Eq. (8a) is still in excellent agreement with
the simulated field. The modal expression for E approaches
the simulated field more closely as the spectral range of poles
is increased in both 1D and quasi-1D systems. The spectral
range required to give an excellent modal fit to the field
grows gradually and then rapidly as the point of observation
approaches the incident surface.

The modal analysis might be expected to break down
when modes are excited far-off-resonance since the half
wavelength of the incident driving field differs from the cor-
relation length in the random medium. We find, however,
that modal expression for the field accurately match simu-
lations even at high levels of dissipation, at which modes
are excited far off resonance. The impact of nonresonant
contributions to the field might best be explored in small
few-mode systems, which are of importance in photonics
[24]. The methods developed here will be useful in such
investigations.

When modal overlap in systems with loss or gain is weak,
the total energy excited near a spectrally isolated mode is
approximately given by the product of the contribution of the
mode in the lossless medium and the factor γ 0

m/(γ 0
m + γ ), as

given in Eq. (9b). As modal overlap increases in an absorbing
medium, U is further reduced by destructive interference at
each point in the medium. ThoughU is no longer proportional
to τW or τT in the presence of loss or gain, it remains equal to
2τD. This highlights the strong connection between static and
dynamic propagation.

We show that the average of the transmission time over
an ensemble of random 1D samples is independent of the
strengths of scattering, loss, or gain. The transmission time,
which is the derivative of the phase of the transmitted field,
is then a sum of Lorentzian functions associated with the
poles τp and is proportional to the DOS. In quasi-1D media,
the transmission time is proportional to the DOS in lossless
samples but is a sum of Lorentzian functions associated with
both transmission zeros and poles, τT = τp + τz, once loss or
gain are added, as given in Eq. (11). The poles and zeros are
singularities of the phase of det(t ) in the complex frequency
plane. The vanishing of τz in lossless multichannel systems
imposes topological constraints on the position and motion of
transmission zeros in the complex frequency plane under de-
formation of the medium: transmission zeros either lie on the
real axis or appear as complex conjugate pairs. When uniform
absorption or gain are present, transmission zeros move down
or up by iγ in the complex plane. This leads to a reduction in

〈τT〉with absorption as transmission zeros are swept below the
real axis. The probability distribution of transmission zeros in
the complex plane of the unitary system may be determined
from the variation of the average transmission time with γ .
The distribution of transmission zeros is expected to differ
from the distributions for zeros of the scattering and reflection
matrices since the transmission zeros do not correspond to
eigenvalues of an effective internal Hamiltonian. The zeros of
the SM are associated with the poles and are eigenvalues of an
effective Hamiltonian in which all channels provide effective
gain, whereas the zeros of the RM correspond to an effective
Hamiltonian in which the input channel act as effective gain
and the output channels act as effective loss [35,37,38].

As the structure of a unitary sample is modified, a conju-
gate pair of transmission zeros and two single zeros on the real
axis may interconvert at a ZP. All real transmission zeros pro-
duce sharp dips in transmission that are sensitive to changes in
the structure. The change in the frequency difference between
two real transmission zeros has a square-root singularity near
a ZP. The frequency difference of transmission nulls near a
ZP with changes in the sample is therefore ultrasensitive to
changes in the sample. Because the frequency difference be-
tween two transmission zeros can be determined directly from
measurements of transmission in a sample without loss or of
the transmission time in a sample with small dissipation, it is
not necessary to determine the shift in the absolute frequencies
of the transmission zeros.

We note that the difference between 1D and quasi-1D
systems regarding the presence of transmission zeros is not
the number of channels coupling to the sample but the trans-
verse dimensions of the scattering region. Transmission zeros
may exist for conductors and cavities with a single input and
output channel [38,102,103], but the transverse dimensions
of the scattering region must be large enough to support
more than a single transverse mode. In such systems, the
wave near the output channel does not couple to the chan-
nel and the flux flows past the output channel. The drop
in the transmission time for a medium of given mean-free
path and absorption but larger channel number is consistent
with the association of vanishing transmission with transverse
flux within the medium. Since the sensitivity is related to
the phase change in transmission, greater sensitivity to small
structural variations is achieved for shorter wavelengths. Op-
tical measurements could probe deep-subwavelength changes
in a structure. A square-root singularity with sample change
also arises for the spacing between poles at an exceptional
point (EP) at which distinct modes coalesce and have identical
modal shapes [119,120]. This enables sensitive detection of
structural change. In contrast to EPs, ZPs do not require that
modes coalesce, and they can always be produced at a given
frequency by perturbing the medium.

The map of the phase of det(t ) gives the poles and zeros of
the TM that determine the transmission time in the medium
at any level of uniform loss or gain. The poles and zeros for
any level of loss or gain are obtained from the phase map
in the unitary system by shifting the phase map down or up
by iγ , respectively. In unitary samples, τN vanishes when
transmission zeros appear on the real axis, so that the dynamic
range of transmission eigenvalues is not only exponentially
large [63] but diverges. In contrast, spectra of tN are flat in
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unitary samples since τz = 0 while the lowest transmission
eigenchannel in samples without absorption is due to modes
that are far off resonance [117]. When small uniform absorp-
tion is present, however, the nulls in the lowest transmission
eigenchannel are washed out while sharp dips or peaks are
produced in τT. Dips in τT are produced at the frequencies of
single transmission zeros that are moved slightly below the
real axis while peaks are produced at the frequencies of pairs
of transmission zeros lying close to the real axis as the upper
member of the pair is moved closer to and the lower member is
move farther from the real axis. The spectrum of tN is then the
sum of a small flat background and τz. Transmission may also
vanish in absorbing media when the upper transmission zero
of a conjugate pair is brought to the real axis in the complex
frequency plane. Sharp spectra in tN will then appear when the
transmission is displaced slightly from the real axis.

The impact of absorption is of great importance in studies
of Anderson localization of classical waves. Anderson [89]
showed that a transition between diffusive and localized trans-
port of electrons and electronic spins can arise with increasing
disorder in 3D lattices and Gertsenshtein and Vasil’ev [121]
demonstrated that electromagnetic radiation could be local-
ized in single-mode waveguides even by weak disorder. The
dephasing of electrons in solids by phonon scattering has
restricted studies of coherent electron transport to mesoscopic
samples between the nanometer and micron scales at ultralow
temperatures [65,122,123]. In contrast, thermal fluctuations
do not lead to dephasing of electromagnetic or acoustic waves
even in macroscopic samples since the scale of such fluctu-
ations are so much smaller than the wavelength of classical
waves. This opens up the study of mesoscopic propagation
of classical waves even for macroscopic samples [121,124–
130]. Classical localization is of interest because it always
occurs in large enough random systems with dimensionality
of two or lower and because of the possibility of studying
a pure Anderson transition in 3D without particles of the
wave interacting via the Coulomb interaction or being trapped
in a potential well [124]. However, the search for photon
localization in 3D has been complicated by absorption, whose
influence is particularly acute in media supporting long-lived
localized states, and by fluorescence.

In the presence of absorption, total transmission in dif-
fusive 3D samples falls inversely with thickness up to
the absorption decay length Labs = √

��a/3, but then falls
exponentially with this decay length [128]. The signature ex-
ponential falloff of transmission expected for localized waves
in lossless media is hard to distinguish from the exponentially
decay that occurs in absorbing diffusive media [124,131–
134]. The decay of long-lived localized modes is seen in
pulsed transmission in low dimensional samples [22], but
fluorescence can complicate the interpretation of optical mea-
surements in the time domain in random 3D slabs [134,135].
It has been shown that electromagnetic localization does not
occur in random collections of point dipoles in random 3D
media once polarization effects are included [136]. Whether
photons can be localized in random dielectric 3D media and
how this can be determined experimentally remains an open
question.

The decreased spatial extent of excitation into a medium
when absorption is added is often described as a shortening of

the localization length. Thus, the localization length in one
dimension is taken to be the inverse of −〈ln T 〉, which is
reduced from � in a lossless sample to ( 1

�
+ 1

�a
)−1 when ab-

sorption is added [105]. We have seen, however, that am(x) =
a0m(x) so that the shape of localized modes and the leakage
rate through the boundaries is not changed by uniform absorp-
tion. Thus, the degree of modal localization is independent of
absorption. The Thouless number δ = δω/ω is a key local-
ization parameter in lossless media because it relates spatial
localization to spectral properties of modes, with δ = g. In
unitary media, δω = 〈γ 0

m〉 so that δ = 〈γ 0
m〉〈ρ〉. In the presence

of dissipation, 〈ρ〉 does not change, but modes broaden so
that δω/ω increases. On the other hand, g is suppressed
by absorption so that the possibility of localization cannot be
given strictly in terms of these localization parameters. The
challenge is thus to find the scaling of δ in equivalent lossless
samples from measurements in samples with loss. This is
as true for the propagation of ultrasound, where localization
has been observed in 3D structures [120,121], as it is for
electromagnetic localization.

In lower dimensional 1D, 2D and quasi-1D geometries,
waves may be localized in small enough samples that the level
spacing is large enough relative to the leakage and absorp-
tion rates that resonances can be discerned in transmission.
It is then possible to determine the central frequencies and
linewidths of the modes from transmission spectra and to
determine 〈ρ〉 and 〈γm〉 for an ensemble of random sam-
ples [22,23]. The field absorption rate could be determined
from the narrowed linewidth of transmission peaks in samples
with reflectors placed over the boundaries. This would give
〈γ 0

m〉 = 〈γm〉 − γ so that δ = 〈γ 0
m〉〈ρ〉 can be determined. But

in random 3D media, the DOS rises rapidly as the sample
size increases and absorption may wash out peaks in total
transmission.

In this work, we have considered dispersionless media with
uniform loss or gain in which the TM is fully determined.
When fluctuations of the absorption rate are on a scale smaller
than the spatial extent of a mode, the effect may be expected
to be small, but nonuniformity in dissipation on a larger scale
can lead to hopping of energy between modes [137–140].
Dispersion may alter the frequency of modes, but the modal
description given here does not depend on dispersion in the
dielectric constant and should not change. Incompleteness in
the measurement of the TM reduces the dynamic range in the
average of transmission eigenvalues [69,141], but transmis-
sion zeros still occur in multichannel systems.

Among the statistical questions regarding transmission ze-
ros in unitary systems are the distribution of the real and
imaginary parts of the spacing between transmission zeros
in different frequency ranges for different strengths of disor-
der, and possible correlation between transmission zeros and
between transmission zeros and poles. This is related to the
motion of transmission zeros. For example, the zeros of a con-
jugate pair near the real axis move quickly with sample change
heading towards or away from a ZP and so the probability of
finding such zeros is low. Zeros on the real axis can move
through one another and two closely spaced real transmission
zeros can move together as the sample is changed as seen in
Fig. 13. The physical basis for the different types of motion
requires further investigation.
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This work extends the paradigm of resonances to non-
Hermitian system and finds relations and phenomena linking
the excited field and energy, transmission time, and the den-
sity of states. Wave propagation in non-Hermitian systems is
explained via the poles and zeros which appear as singularities
in the phase map of the determinant of the transmission matrix
in the complex energy or frequency plane. Sharp structure in
spectra of transmission and transmission time may be cre-
ated by displacing the transmission zeros by modifying the
structure of a sample or adding loss or gain. This provides
a path to ultrasensitive detection and narrowband filtering.
Since the analysis is in terms of the poles and zeros of the
medium without reference to the structure, the results are
broadly applicable to complex systems.
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APPENDIX A: DESIGN OF 1D LAYERED MEDIUM
WITH DESIRED MEAN-FREE PATH

We find the values of the indices of refraction,
n1,2 = 1 ± n of a binary layered medium with Nlayer layers
that produce a desired value of L/�. In a random 1D medium
the average of the logarithm of transmission is the sum of
the corresponding averages for the segments and given by,
〈ln T 〉 = ∑Nlayer

1 〈ln Ti〉 = −L/� [74]. In a binary system with
alternating layer, the transmission coefficient of a normally
incident wave is ( 2n1

n1+n2
)2 (layer 1 to layer 2) and ( 2n2

n1+n2
)2

(from layer 2 to layer 1). Thus for an ensemble with random
spacing between interfaces, and Nlayer 	 1, 〈ln T 〉 = − L

�
=

2 ln [ 2n1
n1+n2

2n2
n1+n2 ]

Nlayer/2 = Nlayer ln
4n1n2

(n1+n2 )2
. Here we have

ignored the difference in scattering at the sample boundaries.
Since n1 + n2 = 2, this gives L

�
= −Nlayer ln[n1(2 − n1)].

This method gives a value of � which is within 0.3% of
the results obtained from a comparison of simulations to
〈ln u(x)v+〉 = −x/� [93]. The discrepancy is due to the
weaker scattering at the first and last interfaces in the sample
due to the smaller index mismatch than for interfaces in the
interior.

APPENDIX B: REMOVING IMPACT OF ABSORPTION
IN MICROWAVE MEASUREMENTS

The average absorption rate in the medium, γ , is found
from the half linewidths of long-lived modes peaked in the
middle of a sample for which the leakage rate through the
boundaries is small. The leakage rate is further reduced by
placing a totally reflecting aluminum block at the outgoing
boundary and a 90% reflector at the incident boundary, which
allows a small fraction of the energy launched in the waveg-
uide to enter the sample. The linewidth of the narrowest
modes, γ = 4.7 × 10−3 ns−1, is then essentially the absorp-
tion rate. The impact of absorption is compensated for by
multiplying the spectrum by a broad Gaussian function and
Fourier transforming from the frequency to the time domain
to give the response to a narrow Gaussian pulse in time. The
resulting variation of the field in time is then multiplied by the
factor eγ t to compensate for loss due to absorption. Finally,
the field is Fourier transformed back to the frequency domain
to give the spectrum that would be given without loss. The
validity of this approach is confirmed by the finding that
the probability distribution function of intensity found in an
absorbing random quasi-1D sample in which the impact of
absorption is removed is in agreement with that predicted
theoretically [90,129,142].

APPENDIX C: WIGNER TIME DELAY IN 1D UNITARY AND NONUNITARY SYSTEMS

The Wigner time delay is equal to the DOS in unitary media but becomes complex in the presence of loss or gain. Its real part
is plotted in Fig. 3(d). The Wigner time delay is defined as τW = Tr(−iS+ dS

dω
), with S = (t r′

r t ′ ). In a 1D system,

Tr

(
S+ dS

dω

)
= t∗

dt

dω
+ t ′∗

dt ′

dω
+ r∗ dr

dω
+ r′∗ dr

′

dω

= 1

2

d|t |2
dω

+ i|t |2 dϕt

dω
+ 1

2

d|t ′|2
dω

+ i|t ′|2 dϕt ′

dω
+ 1

2

d|r|2
dω

+ i|r|2 dϕr

dω
+ 1

2

d|C|2
dω

+ i|r′|2 dϕr′

dω

= 1

2

d

dω
(|t |2 + |t ′|2 + |r|2 + |r′|2) + i

(
|t |2 dϕt

dω
+ |t ′|2 dϕt ′

dω
+ |r|2 dϕr

dω
+ |r′|2 dϕr′

dω

)

For a unitary sample, t = t ′, |r| = |r′|, |t |2 + |r|2 = 1, 2ϕt = ϕr + ϕr′ + π , so

Tr

(
S+ dS

dω

)
= 1

2

d

dω
(2) + i

[
2|t |2 dϕt

dω
+ |r|2 d

dω
(ϕr + ϕr′ )

]
= 0 + i

[
2|t |2 dϕt

dω
+ 2|r|2 dϕt

dω

]
= i2

dϕt

dω
.

This gives τW = −iTr(S+ dS
dω

) = 2 dϕt

dω
.

In a system with loss, t = t ′ but |r| �= |r′| and |t |2 + |r|2 �= 2, 2ϕt �= ϕr + ϕr′ + π . Now,

Tr

(
S+ dS

dω

)
= 1

2

d

dω
(2|t |2 + |r|2 + |r′|2) + i

(
2|t |2 dϕt

dω
+ |r|2 dϕr

dω
+ |r′|2 dϕr′

dω

)
,
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so that

τW = −iTr

(
S+ dS

dω

)
=

(
2|t |2 dϕt

dω
+ |r|2 dϕr

dω
+ |r′|2 dϕr′

dω

)
− i

1

2

d

dω
(2|t |2 + |r|2 + |r′|2)

is no longer real. The real part of Wigner delay time is then

Re(τW) = |t |2 dϕt

dω
+ |t ′|2 dϕt ′

dω
+ |r|2 dϕr

dω
+ |r′|2 dϕr′

dω
.

APPENDIX D: DWELL TIME IN RANDOM
ABSORBING SAMPLES

The dependence upon absorption strength of 〈U 〉 and hence
τD in 1D and in quasi-1D samples with N = 8 for differ-
ent scattering strengths is shown in Figs. 17(a) and 17(b),
respectively. There is a sharp drop in 〈U 〉 for moderate ab-
sorption that increases with scattering strength and a gradual
approach to the results in a uniform sample without scattering
as absorption increases. In a uniform 1D sample, the energy
excited from excitation from one side decays exponentially
within the sample as e−x/�a with �a = 2γ v+. Summing the
integral of energy density for excitation from both sides gives
U = 1

γ
(1 − e−2γL/v+ ).

In lossless random media, the average reflection and trans-
mission times are equal. But the reflection time falls as the
loss increases, as can be seen in Fig. 3(d) for 1D media.
Partial waves that penetrate more deeply into the sample and
reside longer in the lossless sample are more strongly affected
by absorption. As a result, the average reflection time drops,
and 〈U (x)〉 falls towards the center of the sample. This is
in accord with the greater suppression of the field due to
modes with narrower linewidths, as seen in Eq. (8a). Since the
modal weights |am(x)|2 for modes with narrower linewidths
are further removed from the boundaries, the energy density
inside the sample associated with such modes is more strongly
suppressed and 〈U (x)〉 falls away from the boundaries.

When the absorption length falls below the transport mean-
free path, �a < �, the wave behaves ballistically within an
absorption length and 〈U 〉 is dominated by the wave intensity
in region in which scattering does not play a crucial role. Thus,

FIG. 17. Energy excited in random medium vs strength of ab-
sorption in samples with different scattering strengths. (a) Variation
with absorption of a uniform sample and of random 1D samples
of different scattering strength vs loss and gain. (b) The same as
(a) but for uniform and random quasi-1D samples with eight chan-
nels for samples with different average transmittance, 〈T 〉 = g. For
the uniform sample, the sample is perfectly transmitting so that
〈T 〉 = N = 8.

〈U 〉 approaches the result for a sample without scattering. This
occurs at smaller values of γ in more weakly scattering sam-
ples with larger � since the condition �a = v+

2γ ∼ � is reached
for a smaller value of γ .

The average transport properties of diffusing particles are
the same as the average over a random ensemble of diffus-
ing waves. The results for g = 3.12 in Fig. 17(b) fall in the
diffusive regime. Such results can be compared to a random
walk of insects that are prey to larger insects or of dissociating
molecules.

APPENDIX E: CALCULATION OF EXCITED ENERGY

The number of particles or total energy within a loss-
less medium with unit flux incident in all channels can
be calculated in quantum systems following the Feshbach
formalism [2]. The projection operators in the leads and
scattering region, P and Q are P = ∑

u ∫ dE |uE 〉〈uE |, and
Q = ∑ |m〉〈m|, where |uE 〉 and |m〉 indicate the contin-
uous spectrum of channels in the leads and the discrete
QNMs in the scattering region, respectively. We assume that
the coupling between channels and modes is independent
of frequency. Solving the quantum wave equation, Hψ =
Eψ , the field excited within the sample is obtained by
solving, Qψ = (E − Heff )−1QHPuE , where Qψ is the pro-
jection of the wavefunction onto the scattering region. The
operator QHP describes the coupling between the scatter-
ing region and the leads. The effective Hamiltonian Heff =
QHQ−π i

∑
u QHP|uE 〉〈uE |PHQ is the sum of the Hamilto-

nian for the scattering region and the coupling between the
scattering region and its surroundings.

The eigenvalues of Heff are the complex poles of the
resonances of the open system, Heff |ϕmr〉 = (Em − iγ 0

m)|ϕmr〉
and 〈ϕml |Heff = 〈ϕml | (Em − iγ 0

m). Here |ϕmr〉 and 〈ϕml | form
the bi-orthogonal basis of the non-Hermitian Hamiltonian.
The integral of the energy density within the sample is U =
2π

∑
ψ < Qψ |Qψ〉. Plugging in the expression above forQψ

and making use of the relation for traces, Tr(AB) = Tr(BA),
we have

U = 2π
∑
ψ

〈Qψ |Qψ〉

= 2π
∑
u

〈uE |PHQ(E−H†
eff )

−1
(E − Heff )

−1QHP|uE 〉

= 2πTr[(E−H†
eff )

−1
(E − Heff )

−1
∑
u

QHP|uE 〉〈uE |PHQ]

= Tr[(E−H†
eff )

−1
(E − Heff )

−1((H†
eff − Heff )/1i

+ 2Im(QHQ))]
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FIG. 18. Spectra of transmitted field. Real and imaginary parts
of field for the sample of Figs. 4–7 for x/L = 0.1 calculated over a
wide spectral range (a) without loss and (b) with loss of γ = 0.2.

=
∑
m

[(
E − Em − iγ 0

m

)−1(
E − Em + iγ 0

m

)−1(
2γ 0

m + 0
)]

=
∑
m

2γ 0
m

(E − Em)2 + γ 0
m
2 =

∑
m

2γ 0
m

(E − Em)2 + γ 0
m
2 .

This gives Eq. (8a). However, this approach cannot be ap-
plied to find U for classical waves experiencing loss or gain
because the Hamiltonian H is then not a Hermitian matrix
and the relation

∑
u QHP|uE 〉〈uE |PHQ = (H†

eff − Heff )/1i +
2Im(QHQ) is not valid.

APPENDIX F: SPECTRA OF EXCITED FIELD AND
COMPLETENESS OF QUASINORMAL MODES

The plots of T and U and |E |2 in Figs. 4, 6, and 7 are
based upon the fits to the field given by Eqs. (3a) and (8a) in
samples with and without absorption, respectively. The poles
used in fitting the spectra in Figs. 5–7 are shown in Table I
in Appendix I. The blue and red curves in Fig. 18 are simu-
lations of the real and imaginary parts of the transmitted field
at x = 0.1L in samples with and without absorption whose
square amplitude is shown in Fig. 6. The fit to the field of
a unitary sample in Fig. 18(a) is obtained using Eq. 3(a) with
the poles at ω0

m−iγ 0
m listed in Table I and the amplitudes a0m(x)

as fitting parameters. The fit shown as the dashed black curve
in Fig. 18(a) is in excellent agreement with simulations. The
dashed black curve in Fig. 18(b) for the absorbing sample is
obtained using the amplitudes for the fit in Fig. 18(a) for the
lossless sample in Eq. (8a).

In Fig. 19 we plot the amplitude squared of the field at x =
0.01L. Since x is considerably smaller than the mean-free path
of � = 0.29L, the field is strongly correlated with the incident
field, as was the case in Fig. 6. However, the quality of the
fit to simulations shown as the black dashed curves in Fig. 19
is substantially degraded compared to the fit shown in Fig. 7
for= 0.1L. The fit in the central part of the spectrum improves
considerably as the spectral window increases, as indicated by
the drop magnitude in the value of the chi-squared test 1

N χ2

by more than two orders of magnitude. This suggests that the
modes are effectively complete, in accord with the fit of the
square of the field amplitude at x = 0.1L in Fig. 7, however,
fit must include modes over a wider frequency range. The need
for a much larger spectral bandwidth to achieve a comparable
fit of the field for points closer to the beginning of the sample

FIG. 19. Spectra of intensity near the input surface in different
spectral windows. Simulations of 1

2 c|E |2 (solid green curves) and the
fit of the coherent sum in Eq. (8b) (black dashed curves) for spectra
of increasing width for the same sample as in Figs. 6 and 7 for x/L =
0.1 without loss. The fits in the center of the spectra improve as the
width of the spectral window increases but is of lower quality than fits
for x/L = 0.1. The chi-squared test 1

N χ 2 = 1
N

∑N
i=1

(Oi−Ei )
2

Ei
for the fit

of 1
2 c|E |2 in the central part with increasing width of the frequency

window gives 37.9, 1.38, and 0.164.

may be associated with the increasing portion of the energy
that has a short residence time in the sample.

APPENDIX G: SOLUTION OF THE TIME-INDEPENDENT
WAVE EQUATION WITH GAIN BEYOND

THE LASING THRESHOLD

Time-independent transfer matrix simulations of spectra of
τT, T , and U for a lossless 1D sample and for a sample with
gain exceeding the leakage rate, −γ = |γ | >= γ 0

m, for some
modes are shown as the blue curves in Figs. 20(a) and 20(b),
respectively. The expressions for all quantities in terms of the
modal quantities found for the system below the modal lasing
threshold are shown as the dashed black curves and seen to
overlap the simulations even above the modal lasing threshold

FIG. 20. Simulations of wave propagation in sample with and
without gain beyond the lasing threshold. Simulations of transmis-
sion time, transmission, and total excited energy in the 1D sample
of Fig. 5 for (a) a lossless sample and (b) a sample with γ =
−0.12 ns−1. The spectra obtained for U from Eqs. (5) and (6) and
τD from Eq. (7) are identical.
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FIG. 21. Variation of average of logarithm of transmission with
loss and gain. The straight line is 〈ln T 〉 + L

�
= − L

�a
= L

2v+/γ
=

−2t+γ = −2πργ .

of |γ | � γ 0
m. However, these simulations give an unphysical

reduction in energy in calculations and simulations based on
the time-independent wave equation. The source of this result
is the application of the time-independent wave equation to
model wave propagation above the lasing threshold [109]. The
solution of the wave equation in a sample with a uniform
amplification rate above the modal lasing threshold is not sta-
tionary and the energy inside the sample would grow without
limit. In addition, a proper account of wave propagation above
threshold would require the solution of the time-dependent
wave equation [109]. In addition, spontaneous emission,
which produces an unbounded output even without an injected
beam, and saturation of the gain medium, would need to be
included.

FIG. 22. Impact of transmission zeros on total and eigenchannel transmission and transmission time in strongly absorbing samples. Spectra
are presented for the same configuration of real values of ε presented in Figs. 13(e)–13(h) with ε = 0.438 but with levels of absorption of
(a)–(d) γ = 5 × 10−4, (e)–(h) γ = 10−3, and (i)–(l) γ = 1.16 × 10−3, which are much higher than the levels of absorption in Fig. 1. In the
first column, spectral features are broadened by absorption relative to spectra in Fig. 14. Spectra are seen to sharpen in the second column
with a clear dip in τ8 and a peak in t8. Ultrasharp spectra are observed in the third column as the upper transmission zero of a conjugate pair is
brought near the real axis from above.

As long as γm > 0, the scaling of the logarithm of trans-
mission in random 1D media [105] is a simple generalization
of the result of single-parameter scaling in the lossless case

〈ln T 〉 = −L

�
− L

�a
, (G1)

with 1
�a

= 2γ
v+
. The application of the time-independent wave

equation to amplifying systems well above the lasing modal
threshold, −γ = |γ | 	 γ 0

m, gives a dual symmetry between
random ensembles with absorption and gain with the same
values of |γ | and the absorption length equals the gain length,
�a = �g = v+

2|γ | [95,96,98], with

lim
L→∞

∂〈ln T 〉
∂L

= −1

�
− 1

�g
. (G2)

To demonstrate the dual symmetry of Eqs. (G1) and (G2),
we fix the sample length but change the absorption/gain rate.
This gives identical results for the variation of 〈ln T 〉 with |γ |
in the limit, γ 0

m + γ → γ . This gives

lim
|γ |→∞

∂〈ln T 〉
∂|γ | = −2πρ. (G3)

With the same result for positive or negative values of γ . This
can be derived as follows:

lim
|γ |→∞

∂〈ln T 〉
∂|γ |

= −∂ ( L
�a
)

∂|γ | =
−∂ (2|γ | L

v+
)

∂|γ | = −2
L

v+
= −2t+ = −2πρ.
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TABLE I. Poles in the complex frequency plane. (a) All the poles found for the unitary sample for the configuration for which simulations
are shown in Figs. 5–7, 9, and 18–20 in the frequency range from [51.070, 83.698] ns−1 and in half linewidths ranging from 0 to 2 ns−1.
(b) Histogram of the half-linewidths of the poles.

(a)

Poles [ns−1]

No. ωm γm No. ωm γm No. ωm γm

1 51.93241 0.176720 12 62.24249 0.695297 23 73.08614 0.181732

2 52.57933 0.168760 13 62.82962 0.554300 24 74.0087 0.151616

3 53.46449 1.046200 14 63.70691 0.141435 25 74.43765 0.056081

4 53.52407 0.103420 15 65.41333 0.048795 26 76.65675 0.027309

5 55.03455 0.037134 16 65.5566 0.637624 27 77.58716 0.371000

6 56.96185 0.601780 17 68.07462 0.086761 28 78.72988 0.260590

7 57.42756 0.444620 18 68.44942 0.216971 29 79.15607 0.620184

8 58.43136 0.051225 19 69.25126 0.328975 30 81.50837 0.318709

9 60.22251 0.030467 20 70.39609 0.103233 31 81.76158 0.234739

10 61.74348 1.764444 21 71.30602 0.083727 32 83.00573 1.901080

11 61.74361 0.181050 22 72.37903 0.350457 33 83.14765 0.127514

(b)

The results of simulation of the variation of 〈ln T 〉 + L
�

with −γ for different scattering strengths but fixed sample
length are shown in Fig. 21. When only absorption is consid-
ered, 〈ln T 〉 + L

�
varies with the absorption rate and the slope

is independent of scattering strength. When gain is introduced
into the system, the modal linewidth γm = γ 0

m + γ is positive
below the modal lasing threshold. In this case, the transmis-
sion increases with gain and 〈ln T 〉 + L

�
= −2γ L

c , as in an
absorbing medium. Beyond the localization threshold, a por-
tion of the modes have negative linewidths so that 〈ln T 〉 + L

�

does not increase as rapidly and finally decreases. Once the
gain is strong enough that nearly all the modal linewidths are
negative and γ 0

m + γ → γ , 〈ln T 〉 varies linearly with ampli-
fication rate −γ and the slope approaches −2πρ, in accord
with the dual symmetry for strong absorption and gain. As the
scattering strength increases, the turning point in the plot of
〈ln T 〉 + L

�
occurs for smaller values of −γ , as seen in Fig. 21,

as a result of the smaller values of γ 0
m.

APPENDIX H: EIGENCHANNEL TRANSMISSION
AND TRANSMISSION TIME IN STRONGLY

ABSORBING SAMPLES

Here we consider the impact of absorption upon spectra of
transmission and transmission time for the sample with ε =

0.438 and the same spatial distribution of the real part of the
dielectric function as studied in Figs. 14(e)–14(h). The results
for three different levels of absorption, all considerably higher
than the level of absorption in Fig. 14 of γ = 10−5 ns−1, are
shown in Fig. 22. The three dips seen in the spectrum of t8
with γ = 10−5 in Fig. 14(h) merge to form a single broad dip
as the width of each of the zeros broadens by a factor of 50
in the sample with γ = 5 × 10−4 ns−1, as seen in Fig. 22(d).
At the same time, the background t8 rises because the lowest
transmission eigenchannel is no longer composed exclusively
of far-off-resonance modes.

With a doubling the absorption rate of the field used in
Figs. 22(a)–22(d) to γ = 10−5 ns−1, a peak develops in τT
and t8, as seen in Figs. 22(g) and 22(h). The added absorption
lowers both zeros of the conjugate pair. The peaks in τT
and t8 indicates that a zero in the upper half of the complex
frequency plane has approached the real axis. The peak in
the transmission time due to the transmission zero is not
manifest in other transmission eigenchannels. The broad dip
in τ8 seen in Fig. 22(f) arises since transmission is lowered in
the eigenchannel with the lowest transmission eigenvalue as a
transmission zero approaches the real axis. This transmission
zero had not been manifest in spectra of transmission time and
transmission at lower absorption levels because it was so far
from the real axis.
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TABLE II. Poles and zeros in the complex frequency plane. (a) All the poles and zeros found from the phase map in the frequency range
[0.3053, 0.3087] ns−1 and in the imaginary part of the frequency ζ in the range [−1 × 10−3, 1 × 10−3] ns−1 in the sample configuration with
ε = 0.435 for which data are shown in Figs. 13(b), 14(a)–14(d), and 16. There are a total of 35 poles, eight zeros on the real axis, and two
zeros off the real axis in this sector of the phase map. The poles from No. 1 to No. 25 are seen in the phase map shown in Fig. 16. (b) Histogram
of the half-linewidths of the poles.

(a)

Poles [ns−1]

No. ωm γm (10−5) No. ωm γm (10−5) No. ωm γm (10−5)

1 0.305450 6.92 13 0.306838 6.66 25 0.30857 10.92
2 0.305491 10.20 14 0.306949 8.76 26 0.305846 24.8
3 0.305573 7.23 15 0.307190 2.38 27 0.306028 25.2
4 0.305799 11.16 16 0.307253 9.04 28 0.306424 28.2
5 0.305932 5.32 17 0.307259 5.19 29 0.307532 27.2
6 0.306073 4.20 18 0.307314 3.59 30 0.30783 23.8
7 0.306145 19.08 19 0.307591 7.24 31 0.30791 22
8 0.306265 12.92 20 0.307858 7.56 32 0.308157 25.6
9 0.306504 4.12 21 0.308137 9.80 33 0.30783 80
10 0.306526 16.76 22 0.308205 6.76 34 0.308038 59
11 0.306534 7.48 23 0.308395 5.72 35 0.308372 79
12 0.306813 5.82 24 0.308508 6.52 36

Zeros [ns−1]

No. Zi ζi (10−5) No. Zi ζi (10−5) No. Zi ζi (10−5)

1 0.305321 0 5 0.306942 0 9 0.307757 0
2 0.305419 0 6 0.307085 2.28 10 0.308335 0
3 0.306458 0 7 0.307085 −2.28
4 0.306937 0 8 0.307561 0

(b)

When γ = 1.16 × 10−3 ns−1, the transmission zero lies
slightly above the real axis creating a sharp dip in τ8
[Fig. 22(j)] and a narrow peak in τT [Fig. 22(k)] and t8
[Fig. 22(l)] in accord with Eq. (11). The full peak is seen in
the inset in Fig. 22(l).

APPENDIX I: POLES AND ZEROS IN 1D
AND QUASI-1D SAMPLE

The poles used in the fits in Figs 5, 7, 9, and 18–20 of
spectra in 1D samples are given in Table I. The poles and zeros
used in the fits in Figs.13(b), 14(a)–14(d), and 16 for quasi-1D
samples are given in Table II.
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