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Characterizing random one-dimensional media with an embedded reflector via scattered waves
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We show in random matrix theory, microwave measurements, and computer simulations that the mean free
path of a random medium and the strength and position of an embedded reflector can be determined from
radiation scattered by the system. The mean free path and strength of the reflector are determined from the
statistics of transmission. The statistics of transmission are independent of the position of the reflector. The
reflector’s position can be found, however, from the average dwell time for waves incident from one side of the
sample.
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I. INTRODUCTION

Since disorder is more the rule than the exception, there is
a pressing need in diverse settings to image objects embedded
in complex systems. These include medical diagnostics [1,2],
security inspection, microwave cellular communication, and
the search for structural defects in manufactured good, and ge-
ological exploration [3,4]. A starting point for the study of the
interaction of waves in complex structures is the propagation
of waves in uniformly disordered media. This encompasses
optical scattering from clouds and paint, electrical resistance
in wires, and the spread of Bose-Einstein condensates in
random speckle patterns. In random one-dimensional (1D)
systems, the scaling of the statistics of transport [5] and the
excitation inside the medium [6] may be described in terms
of a single dimensionless parameter, the ratio of the sample
length and the mean free path, s = L/� [5,7].

In diffusive or metallic quasi-1D systems with constant
cross section, the statistics of propagation may also be given
in terms of a single parameter, the ratio of the sample length
and the localization length, L/ξ . The localization length in
quasi-1D media is the product of the number of transverse
propagation channels coupled to the sample on either side and
the transport mean free path, ξ = N� [8–10].

In 1D, it is convenient to study the statistics of the log-
arithm of transmission since this quantity self-averages [5].
For L � �, the statistics of ln T are log-normal with a vari-
ance equal to twice the magnitude of the average value,
var(ln T ) = −2〈ln T 〉 = 2L/�. In practice, disorder is not
uniform throughout a sample. A common example of nonuni-
formity is the presence of partial reflectors either at the
sample’s boundaries [11–20] or in its interior [21,22].

We consider here an ensemble of random configurations
with a fixed reflector within the medium. A first step is to
describe wave propagation in systems with a reflector in terms
of the parameter s of the medium and a set of parameters that
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characterize the reflector. In 1D, the reflector may be charac-
terized by its flux transmission coefficient, �, and position, x0.
An important question is whether it is possible to determine
the parameter s, as well as � and x0 from measurements of the
statistics of scattered waves.

Previous work has addressed the challenge of finding the
transport mean free path in random multichannel systems
in the presence of surface reflection [11–19]. In samples in
which there is a mismatch in the refraction of index across
the sample interface, internal scattering is enhanced due to
waves making impinging on the interface at angles beyond
the critical angle [11].

Scattering of the wave back into the medium at the in-
terface affects the total transmission of an incident wave,
[11,12,14] and the transmittance or optical conductance
[18,21], which is the sum of total transmission over all chan-
nels on one side of a sample. The spatial distribution of the
wave in the sample [14] and the dynamics of scattering [12]
are also affected by scattering at the interface. It is therefore
a challenge to find the values of the mean free path and
interfacial reflection.

The impact of internal reflection can be modeled in terms
of boundary extrapolation lengths on the input and output
surfaces, and a penetration depth at which the wave direction
is assumed to be randomized [11–18]. The situation is simpler
in 1D samples without a reflector since the wave can only
approach a surface in a single channel so that total internal
reflection does not occur. However, reflectors can be present in
1D media and including a reflector allows for consideration of
the broader problem of separately determining the scattering
properties of the random medium and of an added fixed
element.

In this article, we address the challenge of finding the mean
free path of the medium, as well as the transmission coeffi-
cient � and position x0 of an embedded reflector in a disor-
dered 1D system from waves scattered from the material. The
mean free path and the strength of the reflector can be obtained
from the statistics of the transmitted waves. In particular, �

depends on the ensemble averages 〈ln T 〉 and 〈1/T 〉. The
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FIG. 1. Schematic drawing of the random waveguide with a re-
flector inside.

statistical properties of the transmission are independent of the
position of the reflector. However, the time delay is sensitive
to the reflector’s position and can be determined from the aver-
age of the time delay of an incident wave from one side of the
sample. Measurements in microwave waveguides and numer-
ical simulations support predictions of random matrix theory.

We carry our microwave experiments in a single-mode
waveguide of length L = 80 cm composed of randomly
selected alternating ceramic slabs and thin-wall Teflon U-
channel elements. The ceramic slabs have dielectric constant
ε = 3, height of 22.5 mm, width of 9.8 mm, and thickness
of 6.6 mm, and covering 95% percent of the waveguide
cross section. The Teflon U-channel spacers have lengths
of 1.27, 2.55, 3.82 cm. Successive elements in each sample
configuration selected randomly with a probability of 1/6
for the ceramic slabs and 5/18 for each thickness of the
U-channel spacers, giving an average of 5 ceramic slabs in
each configuration. Measurements are made for four different
reflecting copper plates with widths of 22.0 mm and thickness
of 0.32 mm and heights of 9.0, 8.5, 8.0, or 7.0 mm. A diagram
of the random sample is shown in Fig 1.

The wave is launched from one end of the waveguide
and the field before and after the sample is detected with an
antenna inserted successively into five holes before and after
the sample. The horizontal motion of the antenna is controlled
by a translation stage and the tip is lowered to penetrate to a
depth of 0.11 mm below the bottom of the hole. The reflection
coefficient R and the incident intensity I0 are found by fitting
the intensity of the wave in the segment just before the sample
to a constant plus a sinusoidal function. The transmitted wave
in the segment right after the sample is normalized by the
incident intensity to give the transmission coefficient T .

To compensate for absorption within the dielectric, waveg-
uide walls, and for leakage of energy through the holes, we
determine the decay rate of the field due to such losses from
the linewidth of the narrowest mode in the angular frequency
units when a reflecting aluminum plate is placed on the right-
hand side of the sample and the left-hand side is largely
covered by a copper plate to serve as a partial reflector that
admits a small fraction of the energy from the source. The
decay rate of the field found is γ = 4.63 × 10−3ns−1. The
measured spectrum is Fourier transformed into the time do-
main, multiplied by a factor eγ t and finally transformed back
to the frequency domain. This gives the spectrum that would
be obtained without loss. When the correction for absorption
is made, the value of 〈ln T 〉 changes by less than 2% indicating
that the sample is much shorter than the absorption length.

II. MODEL

We assume that the complex scattering processes in the
random waveguide containing a reflector can be described by

the product of three transfer matrices Ml, M� , and Mr: Ml is
associated to the segment of the waveguide to the left of the
reflector, M� , to the reflector, and Mr, to the segment of the
waveguide to the right of the reflector. The transfer matrix M
of the entire waveguide is thus given by

M = MrM�Ml. (1)

Using the polar representation, the left and right transfer
matrices may be written as [7]

Mr(l) =
[ √

1 + λl(r)eiθl(r)
√

λl(r)ei(2μl(r)−θl(r) )√
λl(r)e−i(2μl(r)−θl(r) )

√
1 + λl(r)e−iθl(r)

]
, (2)

where the radial variable λl(r) is a positive real number and θl(r)
and μl(r) are phases.

Assuming that the transmission and reflection coefficients
of the reflector are � and 1 − �, respectively, with 0 � � � 1
and imposing current conservation and time-reversal symme-
try, we model the scattering matrix S� associated with the
reflector as

S� =
[
i
√
1 − �

√
�√

� i
√
1 − �

]
. (3)

From S� matrix, the associated transfer matrixM� is given by

M� = 1√
�

[
1 i

√
1 − �

−i
√
1 − � 1

]
. (4)

Since flux is conserved, the transfer matrix M in Eq. (1)
satisfies det(M ) = 1.

We are interested in the transmission T which is given by
the inverse of the elementM11 of the transfer matrix in Eq. (1):
T = 1/M11. The strength of the reflector will be found from
the statistics of T . Since transmission statistics are indepen-
dent of the position of the reflector [22], we first consider the
case with the simplest transfer matrix of a reflector placed at
the output of the waveguide. The transfer matrixM in this case
is given by M = M�Ml. It follows from Eqs. (2) and (4) that

1

T
= 1

�
[1 + (2 − �)λ + 2

√
(1 − �)λ(1 + λ) cos 2μ]. (5)

The subindex l in λl and μl are dropped to simplify the
notation.

To calculate the statistical properties of transmission, we
assume thatμ in Eq. (5) is uniformly distributed over the inter-
val (0, 2π ], and λ follows the probability density distribution
[23,24]

p(λ) = C

(1 + λ)1/4
acosh1/2

√
1 + λ

× exp

[
−1

s
acosh2

√
1 + λ

]
, (6)

where C is a normalization constant.

III. Results

A. Strength of the reflector

Using the statistical model in the previous section, we
average Eq. (5) over the phase μ, to give〈

1

T

〉
= 1

�
[1 + (2 − �)〈λ〉]. (7)
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FIG. 2. (a) Experimental (histograms) and theoretical (continuous curves) of the probability distributions of ln T with and without a reflec-
tor. The scattering strengths of four different reflectors are ln� = −0.50, −0.89, −1.20, −1.60, corresponding to � = 0.61, 0.41, 0.30, 0.20.
These reflectors are labeled as reflector 1, 2, 3, and 4, respectively. (b) The corresponding probability distributions of 1/T . (c) Comparison of
the values of the reflector strengths obtained with use of Eq. (10) (y axis) and with the experimental values ln� = 〈ln T 〉 − 〈ln T0〉. The red
circle corresponds to the result for reflector 2 positioned randomly in different configurations.

From the relations T = 1/(1 + λ) and R + T = 1, we find
that 〈λ〉 = 〈R/T 〉. The ensemble average of the ratio of re-
flection and transmission is given by 〈R/T 〉 = (exp (2L/�) −
1)/2 [25,26], while, from Eq. (5), we obtain

〈ln T 〉 = ln� − L

�
, (8)

where we have used the relation 〈ln(1 + λ)〉 = L/� [26,27].
Using this result, we find

〈λ〉 = �2e−〈ln T 〉 − 1
2 . (9)

Finally, substituting Eq. (9) into Eq. (7), we obtain
the relation between � and average of functions of the
transmission:

� = 1 −
[
1 −

(
2

〈
1

T

〉
− 1

)
e2〈ln T 〉

]1/2

. (10)

This result allows us to determine the strength of a reflector
inside a disordered medium from transmission measurements.

We measure the transmission spectra from 9.5 to 11 GHz
for 50 random configurations. This gives the ensemble aver-
ages required in Eq. (10), as well as the complete distribution
of the transmission. The results of the probabilities distribu-
tions P(ln T ) and P(1/T ) are shown in Figs. 2(a) and 2(b) for
samples with four different embedded reflectors and without a
reflector. The histograms and continuous curves correspond to
the experimental and theoretical results, respectively. The lat-
ter is obtained from Eqs. (5) and (6). For the samples without
a reflector, 〈ln T0〉 = −1.39 and the distribution of ln T shown
as the continuous black line in Fig. 2(a) is similar to a portion
of a Gaussian distribution [28]. As the reflectivity of the fixed
reflector increases, the peak in P(ln T ) moves toward lower
values of ln T .

We find the value of � by substituting the experimental
values of 〈ln T 〉 and 〈1/T 〉 in Eq. (10). Since the logarithmic
transmission is an additive quantity, we obtain the experi-
mental values of � from the difference of the averages of
the logarithmic transmission for waveguides with and without
the reflector: ln� = 〈ln T 〉 − 〈ln T0〉. In our experiments, we
fix the position of the four different reflectors in the middle
of the sample (x/L = 0.5) and obtain the following results:

〈ln T 〉 − 〈ln T0〉 = −0.50,−0.89,−1.20,−1.60, correspond-
ing to samples with � = 0.61, 0.41, 0.30, 0.20, for reflectors
labeled as 1, 2, 3, and 4, respectively. We note � can be found
in our theoretical model, Eq. (10), without the knowledge of
〈ln T0〉, so that measurements of transmission in the samples
without a reflector are not needed.

The experimental results for the reflector strengths are
compare with the theoretical predictions in Fig. 2(c), where
ln�, as given by Eq.(10), is plotted versus the experi-
mental values of 〈ln T 〉 − 〈ln T0〉. The results fall close to
a straight line with slope 1. The red circle in Fig. 2(c)
represents the average over configurations with the reflec-
tor 2 positioned randomly in different configurations. The
parameter s for the waveguide without a reflector can be ob-
tained from s = −〈ln T 〉 + ln� = 1.35, 1.39, 1.42, 1.30 for
the ensembles with the four different reflectors. The average
magnitude of the difference from the expected value of s of
1.39 is 3.3%.

In accord with the invariance principle, the probability
distribution of transmission is independent of the position of
the reflector [22]. However, the spatial variation of the average
logarithmic intensity inside the waveguide 〈ln I (x)〉 naturally
changes when the position of the reflector changes with a
sudden drop of transmission at the position of the reflector.
This phenomenon is shown in Fig. 3 using transfer matrix
simulations of 1D binary random samples with an embedded
reflector of strength � = 0.41, as the reflector 2 in the experi-
ments [29].

A sharp drop of 〈ln I (x)〉 occurs at the position of the
reflector, Fig. 3(a). But if the average is taken over a random
ensemble, in which the position of the reflector equally likely
to be in any region of the sample, 〈ln I (x)〉 falls linearly with
a slope that would be found for a medium with no reflector
but with stronger scattering, such that s = −〈ln T 〉 − ln�.
However, the distributions of ln T and 1/T for a fixed reflector
and a randomly positioned reflector are the same, as shown in
Fig. 3(b) and 3(c), in accord with the invariance principle. In
addition, the strengths of reflector 2 evaluated from Eq. (10)
for fixed and random positions of the reflector are close, as
seen in the closeness of the corresponding green and red
circles for reflector 2 in Fig. 2(c).
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FIG. 3. (a) Average of the logarithmic intensity 〈ln I (x)〉 from simulations, labeled as Sim, for ensembles without a reflector, with the
reflector placed in the middle of the sample, and with the reflector placed in different positions with uniform probability in different
configurations. (b) The probability distributions of ln T for a fixed and a randomly placed reflector. (c) The corresponding probability
distributions for 1/T .

B. Position of the reflector

Though static measurement of transmission cannot yield
the position of the reflector, the dwell time of waves incident
from one side of the sample, τD,l, allows determining the
location of the reflector. The dwell time τD,l corresponds to
the energy excited inside the medium by the wave incident
from left side of the sample [30,31]. This energy varies with
the position of the reflector, as can be seen in Fig. 4(d). The
dwell time is given by

τD,l =
∫ L

0
ul (x)dx. (11)

Here, ul (x) = 1
2ε(x)|El (x)|2 is the energy density for a wave

of unit flux incident from the left.

FIG. 4. Probability distribution of transmission time τT, reflec-
tion time τR, dwell time τD,l. The double arrows indicate the values
of the ensemble average. (a) Probability distribution of transmission
time τT for 3 different positions of a reflector with ln� = −1.20.
(b) The probability distributions of reflection time, (c) the probability
distribution of dwell time and (d) the average of the excited energy
〈u(x)〉 along the sample for the reflector positions in (a).

The dwell time can be also expressed in terms of waves
scattered from the sample [30,31],

τD,l = T τT + RτR, (12)

where τT = dϕT/dω, τR = dϕR/dω, and ϕT, ϕR are the
phases of the transmitted and reflected fields, respectively. The
two expressions for τD,l in Eqs. (11) and (12) make it possible
to find the position of the reflector from scattered waves.

Measurements of spectra of the phase of the transmitted
and reflected fields, were not sufficiently accurate to allow for
a determination of the associated times. We therefore carried
out numerical simulations of τT, τR and τD,l for different posi-
tions of reflector 3 with ln� = −1.20. The results are shown
in Fig. 4. The probability distributions of τT for the reflector
at x0/L = 0 and 1 are identical since the transmitted field for
incident waves from the left and right are identical, as required
by reciprocity. This can also be understood by noting that τT
is equal to πρ, which is the average of the energy excited by
waves incident from both sides of the system [30]. Because
the statistics of total excited energy for waves incident from
both sides are the same for reflectors placed symmetrically
about the center of the sample, the probability distributions
of the transmission time for symmetrically placed reflectors
are the same. In addition, the average of the transmission
time is independent of the position of the reflector since it is
proportional to the average DOS, which is unchanged by the
presence of a thin reflector and is equal to the transmission
time of wave in the homogeneous medium, t+ = L/vg, where
vg is the group velocity [30,32].

In contrast to the independence of the average transmission
time, the average of the reflection time increases as the reflec-
tor moves deeper into the random samples, as would be the
case in a sample with uniform dielectric constant.

The reflection time can be very small relative to t+ and in
some configurations it may even be negative. This does not
correspond to superluminal propagation of information but
simply to the reshaping of the scattered pulse [33]. The dwell
time for waves incident from the left, τD,l, is equal to the total
excited energy for a wave of unit flux incident from the left,
and so is always positive. As the reflector is moved deeper into
the sample, the distribution of dwell time for a wave incident
from the left broadens and its average value increases. Since
τR + τ ′

R = τD,l + τD,r = 2τT is valid for each configuration of
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FIG. 5. (a) Dependence of the average dwell time on the position
and strength of the reflector. (b) Slope of the linear relation between
average dwell time and the position of the reflector.

the disorder, the relation also holds for ensemble average,
〈τR〉 + 〈τ ′

R〉 = 〈τD,l〉 + 〈τD,r〉 = 2〈τT〉 = 2t+. As a result, the
sum of the average of reflection time and of the average dwell
time for two symmetrical positions about the center is equal
to 2t+.

More insight into the sensitivity of the dwell time to the
location of the reflector can be gained by the impact of the
reflector upon the excited energy inside the medium [22], as
shown in Fig. 4(d). The excited energy follows the invari-
ance principle, in which statistical properties of waves are
independent of the position of a reflector for any point as
long as the reflector is not moved through that point, and
the energy density experiences a sharp drop at the position
of the reflector. As a result, the total excited energy excited
from the left, which is equal to the corresponding dwell time
of the wave incident from the left, increases as the reflector
moves deeper into the sample.

We performed numerical simulations of the dependence
of the average dwell time upon the scattering strength and
the position of a reflector within the medium. The results
presented in Fig. 5 are for a medium with the same value
of s as in the experiment, s = 1.39. The average dwell time
〈τD,l〉 increases nearly linearly with the depth of the reflector
in the sample. The slope of the variation of dwell time with
depth of the reflector decreases as the strength of the reflector
decreases, as seen in Fig. 5(b). The variation of the dwell time
upon reflector position makes it possible to determining the
position of a reflector from waves scattered from the sample.

IV. CONCLUSIONS

The results presented here demonstrate that despite the
complexity of wave scattering inside a random medium, it

is possible to provide a universal description of wave trans-
port inside a homogeneously disordered 1D medium with an
embedded reflector in the sense that statistical results depend
only upon the value of s(=L/�) of the medium and charac-
teristics of the reflector. In 1D, the reflector is characterized
by its reflectivity and position. Furthermore, we show that
it is possible to separate the impact of scattering from a
fixed reflector and the homogeneously disordered surrounding
medium in scattered waves and to find the mean free path
and the transmission coefficient and position of an embedded
reflector. The strength of the reflector is given in terms of the
averages 〈1/T 〉 and 〈ln T 〉, while the position of the reflector
is obtained from the average of the dwell time for waves
incident from one side of the sample, which can be determined
from measurements of the transmitted and reflected field. The
solution of this inverse scattering problem for random 1D me-
dia and the universality of transport might also be extended to
higher dimensions. It may be possible to separately determine
the scattering strengths of the bulk medium and the position
and strength of a fixed reflector in higher dimensions.

We have considered a medium without absorption. The
presence of uniform absorption can in principle be separated
out from other phenomena. The ensemble average of the log-
arithm of transmission is reduced by absorption and by the
presence of a reflector as, 〈ln T 〉 = −s − ln� − L/�a, where
�a is the absorption length, �a = vτa, v is the wave velocity
inside the medium and τa is the exponential absorption time
[30,34]. This suggests that it may be possible to find �a as well
as �, �, and x0 from radiation scattered from complex systems.

In this work, the scattering strength of the random sample
and reflector were found from the statistics of transmission.
In many circumstances, it is not possible to measure transmis-
sion. However, the transmission coefficient in lossless systems
can be determined from the reflected wave, since R = 1 − T ,
so that characteristics of the medium and embedded reflected
can be found.
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