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Abstract

Based on a formal analysis of the operations Merge and Move, I provide a

computational answer to the question why Move might be an integral part of language.

The answer is rooted in the framework of subregular complexity, which reveals that

Merge is most succinctly analyzed in terms of the formal class TSL. Any cognitive

device that can handle this level of complexity also possesses sufficient resources for

Move. In fact, Merge and Move are remarkably similar instances of TSL.

Consequently, Move has little computational or conceptual cost attached to it and

comes essentially for free in any grammar that expresses Merge as compactly as

possible.

Keywords: computational syntax, Minimalist grammars, subregular complexity, Merge,

Move
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1 Introduction

One of the central evolutionary questions posed by Minimalism is the origin of its two

fundamental operations Merge and Move. Merge represents the ability to build larger

structures from smaller ones and thus is indispensable for language. Move captures the

displacement property, i.e. that parts of a sentence are sometimes pronounced in a position

that is different from where they are interpreted. Chomsky (2004) reduces Move to Merge

by defining it as the process of merging a structure S with a proper subpart P of S. In this

paper, I argue that formal language theory allows us to sharpen this idea by building on

existing results rooted in Minimalist grammars (MGs; Stabler 1997, 2011) and subregular

complexity (see Heinz 2018 and references therein). I make three central claims: I) while

Merge falls into the class of strictly local dependencies (SL), a more succinct and elegant

picture emerges when Merge is viewed as a tier-based strictly local dependency (TSL); II)

any cognitive device that handles Merge in terms of TSL also has the means to handle

Move, so that the latter comes for free; and III) more specifically, Move and Merge are

exactly analogous from this subregular perspective and may be regarded as one and the

same operation.

The paper works its way towards this conclusion as follows: My vantage point is the

result in Graf (2012) that Merge is SL in MGs (Sec. 2). The result uses a particularly fertile

way to analyze syntactic operations: the structure-building operation Merge is converted

into a conjunction of constraints on MG derivation trees, and each constraint is in turn

equated with a set of well-formed derivation trees in order to measure its subregular

complexity. While the constraints regulating Merge are all SL, they also lack succinctness

and generality. The larger and more complex the lexicon, the more verbose the SL

description of Merge becomes. If one wants a compact description of Merge that is largely

independent of lexicon size, one has to take a step up to the subregular class TSL (Sec. 3).
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Curiously, the TSL view of Merge exactly matches the TSL analysis of Move in the

subregular literature. One might speculate, then, that evolutionary pressures to reduce

memory usage caused a shift from SL Merge to TSL Merge, which resulted in a cognitive

environment in which Move comes for free — a computational counterpart to Chomsky’s

reduction of Move to Merge.

2 Complexity of Merge

Let us start with an accessible summary of the finding in Graf (2012) that Merge is an SL

dependency. Complexity claims of this kind always presuppose a computational model of

Merge, which is provided by MGs. MGs are closely modeled after Minimalist syntax,

although they differ in some respects. I will point out such differences whenever they are

crucial for the results of this paper. This will be rare, though, as the core insights apply to

any variant of Minimalism that adopts some version of subcategorization and feature-driven

movement (as demonstrated in Graf 2017, most syntactic constraints can be replaced with

features, so that even variants with a free Merge/Move operation limited by interface

constraints is not obviously beyond the scope of this paper’s argument).

I first discuss how Merge works in MGs in general and how derivation trees provide a

linguistically faithful representation of syntactic structure (Sec. 2.1). This also allows for a

reanalysis of Merge as a bundle of constraints on derivation trees (Sec. 2.2). I then explain

why Merge is a locally bounded dependency and thus belongs to the very simple class SL

(Sec. 2.3).

2.1 Merge in Minimalist grammars

Following MG tradition, I assume that Merge does not apply freely but is mediated by a

feature-driven subcategorization mechanism. That is to say, every lexical item (LI) has a
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category feature X− and possibly one or more selector features Y+, Z+, and so on, that

encode what arguments the LI requires. These category and selector features fully control

the application of Merge.

For example, the noun cat has only one feature, the category feature N−. Therefore it

can be selected by any LI that is looking for a noun, but it cannot take any arguments of its

own. The determiner a, on the other hand, has the selector feature N+ and the category

feature D−. More precisely, a carries the feature string N+ D− — the order of the features

indicates that the determiner first has to merge with a noun before it can merge with an LI

that is looking for a DP. The same logic dictates that the feature specification of the

possessive marker ’s is N+ D+ D− as it first merges with the possessee NP, then with the

possessor DP, and only then can it act as a DP and merge with an appropriate selector,

e.g. the unaccusative verb arrive. The corresponding sequence of Merge steps is depicted in

(1) below with checked features crossed out, and with the notation α :: β to denote an LI

with phonetic exponent α and feature string β .

(1) a.

’s :: N+D+D− cat :: N−

D′

’s :: ✚✚N
+D+D− cat :: ✚✚N−

Merge

b.

Mary :: D− D′

’s :: ✚✚N+D+D− cat :: ✚✚N−

DP

Mary :: ✚✚D− D′

’s :: ✚✚N+✚✚D+D− cat :: ✚✚N−

Merge

c.

arrived :: D+V− DP

Mary :: ✚✚D− D′

’s :: ✚✚N
+
✚
✚D+D− cat :: ✚✚N−

VP

arrived :: ✚✚D+V− DP

Mary :: ✚✚D− D′

’s :: ✚✚N
+
✚
✚D+✚✚D

− cat :: ✚✚N−

Merge
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While feature ordering is never explicitly assumed in Minimalist syntax, there is an

implicit consensus that whatever mediates selection exercises tight control over the order of

arguments. This is why, say, v selects a VP as its complement and a subject DP as its

specifier, rather than the other way around. The ordered Merge features of MGs thus are

closely in line with linguistic practice, despite initial appearance to the contrary. For each

LI, its string of selector and category features describes exactly what Merge steps an LI will

partake in, similar to any other syntactic theory of subcategorization.

A sequence of Merge steps can be represented more succinctly as a derivation tree as in

(2a), with the corresponding phrase structure tree shown in (2b). Each Merge step of the

derivation is represented by an interior node labeled with •. For sake of succinctness, I

assume that the subject is selected by V instead of v.

(2) a. Derivation tree

•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

b. Corresponding phrase structure tree

VP

DP

DP

the cat

D′

’s owner

V′

scolded her

Derivation trees provide a more abstract description of syntactic structure that focuses

on the grammatical operations rather than their output, the derived structures. In Minimalist

terminology, they are a direct representation of I-language operations, not objects of

E-language. A derivation tree acts as a common blueprint for all of the following: a

5



canonical X′-tree, the compacted X′-tree in (2b), a bare phrase structure set, a PF-structure

with prosodic modifications in the spirit of Richards (2016), a logical form, or simply the

output string. Each one of these is produced from the same derivation tree. For this reason,

derivation trees provide a unified representation format and are the ideal measuring rod for

the complexity of the grammar’s operations modulo differences in output representations.1

The remainder of this paper operates under the assumption that derivation trees are an

abstract representation of the actual computations carried out by syntax. Consequently, the

complexity of derivation trees is indicative of the complexity of syntactic computations.

The next section explains how this perspective allows us to reinterpret Minimalist

operations as constraints on derivation trees, which in turn makes it possible to measure the

complexity of syntactic operations in terms of the complexity of the corresponding

constraints on derivation trees.

2.2 Merge as a constraint on derivation trees

As discussed at the beginning of Sec. 2.1, Merge is a feature-triggered operation in MGs.

So a computational system that has to correctly apply Merge must ensure that no

requirements of the feature calculus are violated. For Merge, this involves two factors:

Every selector feature must be checked against a matching category, and every category

feature must be checked against a matching selector feature.

We can reduce these matching conditions to constraints on the shape of derivation trees.

We will employ a specific procedure to asymmetrically connect features on LIs to interior

nodes in the derivation tree (i.e. specific syntactic operations). In anticipation of the

discussion of movement in Sec. 4, I use the terms positive feature and negative feature to

refer to any feature with a superscripted plus or a superscripted minus, respectively. In an

1Derivation trees also satisfy many Minimalist desiderata for syntactic representations, in particular the

Extension Condition, the Inclusiveness Condition, and lack of linear order.
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MG without movement, selector features are the only positive features in the grammar, and

category features are the only negative features.

(3) Two tree-geometric principles for connecting features and Merge nodes

a. For every LI, its i-th positive feature F+ is connected to the i-th node above the

LI (if such a node exists). We also say that the node is hosted by F+ and, by

extension, the LI carrying said feature.

b. The D[erivational]-root of an LI l is the highest node hosted by l — if no such

node exists, it is l itself. Suppose l carries some negative feature F−. Then an

interior node m is an F-occurrence of l iff m is the lowest node such that I) m

properly dominates the D-root of l, and II) m is hosted by a matching positive

feature F+. Every F-occurrence of an LI is connected to the negative feature F−

of the LI.

Let us annotate an example derivation with arrows so as to make these connections between

features and nodes fully explicit: each positive feature has an arrow going to the node it

hosts, and each interior node n is connected to the negative feature F+ on LI l that makes n

an F-occurrence of l. These arrows are an expository device to simplify the discussion, not

part of the actual derivation tree.

(4) Derivation tree with arrows as visual aid

•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

The feature calculus driving Merge is equivalent to three constraints on the arrangement of

arrows.
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(5) Merge constraints on derivation trees

a. Single Head

Every interior node is hosted by exactly one feature (i.e. it has exactly one

incoming arrow).

b. Full Projection

Every LI with exactly n ≥ 0 positive features hosts exactly n interior nodes

(i.e. it has exactly n outgoing arrows).

c. Match

Let m be an interior node hosted by some positive feature F+ (i.e. it has an

incoming arrow from some F+). Then m is an F-occurrence of exactly one LI

(i.e. m has exactly one outgoing arrow, which must end in some negative feature

F−).

A derivation tree contains an illicit Merge application iff one of the constraints above is

violated. The example below shows a derivation that does not obey the MG feature calculus,

and how these violations correspond to illicit arrow configurations.

(6) A derivation that violates every constraint in (5)

•

•

he :: D− •

•

the :: N+D− eht :: D+N−

•

’s :: N+D+D− she :: D−

scolded :: D+D+V−

Full Projection (5b)

Single Head (5a)

Match (5c)Single Head (5a)

The representational, constraint-based view of the operation Merge allows us to assess

the complexity of Merge in terms of a specific formal problem. Let Lex be a set of LIs
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annotated with selector and category features in the usual manner. It is usually assumed in

the MG literature that Lex is finite (this is not at odds with the linguistic idea of an infinitely

productive lexicon, which can be regarded as a finite lexicon with the ability to add new

lexical items on the fly). Then there is a unique (and usually infinite) set of well-formed

derivation trees that can be built from Lex. As long as Lex is finite, this set forms a tree

language, just like a string language is a set of strings over a finite set of symbols. And just

as with string languages, formal language theory provides ways of measuring the

complexity of tree languages. With respect to Merge, the only criterion for well-formedness

of a derivation tree is whether it obeys the constraints in (5). Therefore the complexity of

Merge can be equated with the complexity of these derivation tree languages.

2.3 Merge is strictly local (SL)

Correctly employing Merge hinges on the ability to track how nodes in the derivation tree

are related to each other, which we visualized with arrows in (4) and (6). The arrows are not

part of the actual representation, they merely depict the inter-node dependencies that the

computational system has to infer on its own. Still, the arrows make it easier for an external

observer to analyze the difficulty of this task, and one particular property of these arrows

will reveal Merge to be an exceedingly simple operation.

Upon closer inspection, it quickly becomes clear that given some lexicon Lex for a

grammar that only uses Merge, there is no well-formed derivation tree for Lex such that any

arrow in that derivation tree has a length that exceeds some fixed threshold k. Recall that

every incoming arrow spans from an LI’s i-th positive feature to the i-th Merge node above

the LI. The length of such arrows thus is finitely bounded by the number of positive features

an LI may carry. But since there are only finitely many distinct feature strings in Lex, and

each feature string must be finite, there is some upper bound p such that no LI in Lex has
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more than p positive features. But then an arrow from a selector feature to the

corresponding Merge node never spans across more than p+1 “levels” in the tree, as is

illustrated in (7).

(7) An arrow from an LI with 2 selector features spans at most 3 levels

•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

Level 1

Level 2

Level 3

Level 4

This also implies an upper bound on the length of outgoing arrows, which span from a

Merge node m to the category feature of the LI l that the Merge node is an occurrence of. In

a well-formed derivation, it is always the case that m is the mother of l’s D-root (one can

show that whenever this is not the case, the derivation tree contains some other Merge node

that violates one of the three conditions in (5)). But since an arrow from l’s D-root to l

never spans more than p+1 levels, the distance between l and the mother of the D-root is at

most p+2 levels.

(8) An arrow from a Merge node to an LI with 2 selector features spans 4 levels

•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

Level 1

Level 2

Level 3

Level 4

Arrows, or rather the Merge dependencies that they visualize, thus never span more than

p+2 levels in the derivation tree, giving us an upper bound of k = p+2 such that one

never needs to consider more than k levels at once in order to detect an illicit configuration.

In the terminology of formal language theory, this makes Merge a strictly k-local (SL-k)
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dependency, where k depends on the maximum number of positive features a single LI may

carry.

A dependency is SL-k iff one can determine the well-formedness of the whole structure

merely by investigating all its substructures of size k. The class SL has come to prominence

in computational phonology (see Heinz 2018, Chandlee this volume, and references

therein), where k measures the number of adjacent segments. A staggering number of

phonotactic phenomena are strictly local, which is noteworthy because this represents one

of the weakest known classes in formal language theory. For example, intervocalic voicing,

when construed as a phonotactic constraint on surface forms, is SL-3 because it suffices to

ensure that no sequences of three adjacent segments is of the form V[−voice]V. Hence

Northern Italian azola is well-formed because its substructures of size 3 are azo, zol, and

ola, none of which match the illicit pattern V[−voice]V. A putative form asola, on the other

hand, would contain the illicit aso, so that the whole string is ill-formed because one of its

substructures of size 3 does not obey intervocalic voicing. However, the morphologically

complex asociale would still be permitted if one treats the morpheme boundary as a

segment in its own right, so that the underlying structure is actually a+sociale, whose size-3

substructures are a+s, +so, soc, oci, cia, and ale, none of which violate intervocalic voicing.

The very same logic applies for SL-k over trees, except that k now indicates each

substructure’s number of levels instead of the number of segments/nodes. The illicit

derivation tree in (6), for instance, contains no LI with more than 2 positive features, and

every violation is indeed detectable within 2+2 = 4 levels.

(9) Both size-4 substructures of (6) are illicit
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•

•

he :: D− •

• •

scolded :: D+D+V−

•

he :: D− •

•

the :: N+D− eht :: D+N−

•

’s :: N+D+D− she :: D−

The left substructure is necessarily illicit because I) we know that no LI has more than 2

selector features, and II) the Merge node above he is neither the mother of an LI with at

least one selector feature, nor the mother of the mother of an LI with two selector features.

The violations of the Single Head condition (5a) and the Match condition (5c) are just as

readily apparent in the substructure on the right.2 In a grammar that only uses Merge and

where no LI has more than p positive features, determining the well-formedness of a

derivation tree reduces to determining the well-formedness of its substructures with p+2

levels. This reduction step from a structure of arbitrary size to substructures of fixed size is

what makes SL one of the simplest classes in formal language theory.

Rogers and Pullum (2011) argue that it also makes SL maximally simple from a

cognitive perspective, in at least two respects. First, only a single size-k substructure needs

to be worked on during any given point of the computation, which reduces working memory

requirements. For our earlier example of intervocalic voicing, one need not work on the

whole string asola at once, it is sufficient to work through it from left-to-right considering

only three consecutive symbols at any given moment. Similarly, a derivation tree can be

evaluated piece by piece by only considering one substructure of depth k at a time.

Second, determining the well-formedness of a size-k substructure is maximally simple.

For any integer k, there are only finitely many structures of size k. Hence one can simply

memorize all well-formed size-k substructures. For instance, intervocalic voicing can be

2The violation of the Full Projection constraint (5b) can be detected because SL can distinguish nodes at

the edge of the full structure — the first and last segment in a string, the root and the leaves of a tree — from

nodes inside the structure. In the case at hand, scolded has two selector features yet its mother is also the root

of the whole derivation tree, precluding the existence of the required second Merge node.
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mastered by listing all trigrams that do not violate it. There is no need for elaborate

inference rules, list look-up is fully sufficient. Of course an abstract pattern like V[−voice]V

will often provide a more succinct description, but it also requires a mechanism to correctly

compare substructures against this template. In terms of the bare cognitive minimum that

must be in place for SL-dependencies to emerge, all one needs is a small working memory

that can hold the relevant substructures, and some long-term storage that lists the allowed

substructures. In other words, the fact that Merge is an SL dependency makes it a very

natural evolutionary starting point for syntax. But as I will argue next, that SL is a natural

starting point for Merge does not entail that SL is also a natural end point for Merge.

3 Merge as a tier-based strictly local dependency

Merge — when construed as a collection of constraints on derivation trees — is

computationally simple by virtue of being an SL-k dependency, but that does not guarantee

that it is simple from a cognitive perspective. The set of well-formed size-k substructures is

very large for any reasonably complex grammar, making brute-force memorization an

unlikely evolutionary scenario. Most of that memorization is a waste because only a few

nodes in any given substructure actually matter for a specific application of Merge.

(10) Only the boxed nodes matter for the features on scolded

•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−

Any reasonably large grammar will contains thousands of variants of the substructure above

depending on how on instantiates the nodes that are not boxed. None of these changes affect
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whether Merge was applied correctly with respect to scolded, yet the memorization

approach to SL dependencies would have to store each one of them.

If there are evolutionary pressures to minimize cognitive resource load, then the

brute-force memorization approach is expected to become disfavored as the lexicon grows

in size; alternative, more succinct methods should emerge. I present two findings along

those lines. First, the constraints Single Head and Full Projection can be lexicalized into

slices (Graf 2012; Kobele 2011), which are a metaphor for a system that memorizes not

well-formed substructures but what operations have to follow the introduction of a specific

LI (Sec. 3.1). Second, the Match constraint allows for a very simple description in terms of

tree tiers, which represent the ability to consider only those parts of a derivation that matter

for a specific type of Merge operation (Sec. 3.2).

3.1 Lexicalizing Single Head and Full Projection

The discussion of Merge as a collection of constraints on derivation trees implicitly

assumed a generate-and-filter approach: we consider any random tree where nodes denote

LIs or Merge steps, and then use the three constraints Single Head, Full Projection, and

Match to reduce this set to only those trees that encode well-formed derivations with respect

to Merge (not entirely unlike the free Merge system in recent Minimalist proposals). This is

a standard approach for studying complexity, but there are alternatives that shift some of the

workload from constraints into the generation itself. In the case of MG derivation trees,

there is a cognitively plausible scenario for this that also allows us to do away with Single

Head and Full Projection by lexicalizing them.

In MGs, it is already assumed that every LI comes with a linear sequence of positive

features that must be checked in this exact order. So if one adds, say, the LI

scolded :: D+D+V− to the derivation tree, the only way to obtain a licit derivation is if this is
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followed up by two Merge steps. Suppose, then, that the cognitive system does not merely

memorize an LI’s feature string, but also the operations that necessarily follow it in every

well-formed derivation. In formal terms, the lexicon no longer stores individual LIs, but

derivational slices as in (11) on the left. But once the lexicon memorizes slices, then we

might just as well remove positive features from the LI and put them directly into the slice,

as in (11) on the right.

(11) Two slice formats for the possessive marker

•

•

’s :: N+D+D−

D+

N+

’s :: D−

The slice on the left encodes that the possessive marker ’s must always trigger two

consecutive Merge steps due to its two selector features, whereas the more detailed one on

the right stores the triggering feature instead of the type of operation (which is easily

inferred from the feature).

A derivation tree is constructed by freely combining slices stored in the lexicon.

(12) Derivation tree as combination of slices (with and without feature

projections)

•

•

•

the :: N+D− cat :: N−

•

’s :: N+D+D− owner :: N−

•

scolded :: D+D+V− her :: D−
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D+

D+

N+

the :: D− cat :: N−

N+

’s :: D− owner :: N−

D+

scolded :: V− her :: D−

Any such combination of slices is guaranteed to obey Full Projection and Single Head. Full

Projection requires every positive feature to host a corresponding operation in the derivation.

But this necessarily holds because slices are explicitly constructed by adding one interior

node for each positive feature, and nodes cannot get lost when combining slices. Single

Head, on the other hand, enforces that every interior node m is hosted by exactly one LI,

which decomposes into two requirements: m is hosted by at least one LI, and m is hosted by

at most one LI. The first is trivially satisfied because m is present in the tree iff it is present

in the slice of some LI l. But then m is hosted by l because every interior node of the slice is

tied to some positive feature of l. For the very same reason, there cannot be another LI l′

such that m is hosted by both l and l′. Due to how slices are constructed, every LI hosts only

the nodes in its own slice, and it is impossible for m to belong to both the slice of l and the

slice of l′.

We see, then, that Full Projection and Single Head need not be enforced by considering

a full substructure, we can filter out irrelevant parts of the structure and focus only on the

nodes right above an LI. This can be thought of as memorizing what operations necessarily

follow the insertion of any given LI, which we represent in formal terms as the storing and

combining of slices. The specific feature that triggers each operation may be memorized,

too, giving us a feature-annotated form of slices. Either way the resulting system is still SL:

slices do not sneak in any additional power, they just provide a more succinct and elegant

way to specify these SL dependencies. By contrast, we will see next that the Match

constraint can also be given a more elegant description by filtering out irrelevant parts of the
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structure, but in this case the filtering does increase the grammar’s expressivity. However,

this increase in expressivity is exactly what paves the way for the emergence of Move.

3.2 Merge tiers: The intuition

Consider the derivation tree in (12), which is assembled from feature-annotated slices.

Suppose that we are interested in whether the two Merge steps in dashed boxes satisfy the

Match constraint.

(13)

D+

N+

the :: D− owner :: N−

D+

scolded :: V− her :: D−

Since both Merge steps involve D+, the issue is whether each Merge node is an occurrence

for an LI carrying D−, and how we could determine this. As a start, let us remove all nodes

that are not D+ or an LI carrying D−, without altering the dominance relations between any

of the remaining nodes. This is shown in (14) (dashed arrows connect nodes in the

derivation tree to their counterpart in the truncated structure). For reasons that will become

clear later on, we also add a special root marker ⊤ to the structure.

(14) D+

N+

the :: D− owner :: N−

D+

scolded :: V− her :: D−

⊤

D+

the :: D− D+

her :: D−

This truncated structure is called a tree tier, inspired by the notion of tiers in phonology.

More precisely, we may call it a D-tier because it contains all nodes that are in some way

related to a positive or negative D-feature.
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On the D-tier in (14), each selector feature D+ has exactly one LI with category feature

D− among its daughters. Contrast this against an ill-formed version of (13), where the

higher Merge step violates the Match constraint and we also find that the D-tier contains a

D+ without a suitable D− daughter.

(15) Derivation

D+

owner :: N− D+

scolded :: V− her :: D−

D-tier

⊤

D+

D+

her :: D−

This suggests that a derivation tree contains a violation of the Match constraint iff there is

some tier on which a positive feature does not have exactly one negative feature among its

daughters.

This is indeed the case, although it is essential to construct and check every tier for

every Merge feature. For example, the derivation tree in (16) contains a violation of the

Match constraint with respect to the selector feature N+ on a, yet the N-tier itself obeys the

requirement that every N+ has exactly one N− among its daughters. However, the violation

of the Match constraint for N+ on a also causes another Match violation for D+ on likes, and

this violation does show up on the D-tier. The D-tier also shows why each tier has a

distinguished root marker ⊤: without it, tree tiers are not guaranteed to be trees, which

would complicate the subsequent formalization in Sec. 3.3.
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(16) ⊤

a :: D− D+

N+

a :: D− D+

likes :: V− car :: N−

⊤

N+

car :: N−

Derivation treeD-tier N-tier

Example (16) illustrates a more general principle: even though not every Match

violation is visible on a tier, every derivation tree that violates Match contains at last one

Match violation that does show up on a tier. In light of this fact, we can replace the Match

constraint with the two principles in (17).

(17) F-tier projection

The F-tier of a derivation tree contains all nodes labeled F+ and all LIs that carry

F−. Dominance relations are carried over from the derivation tree. The tier has a

unique root ⊤.

(18) Match over tiers

No F-tier may contain a node m labeled F+ without exactly one LI among the

daughters of m.

The constraint in (18) indirectly enforces the match condition on Merge as a condition on

the shape of Merge tiers. If one uses slices without feature annotations, whose interior

nodes are labeled •, then the conditions have to be stated slightly differently, but they follow

the same principle of projecting both the relevant Merge nodes and the relevant LIs, and

using mother-daughter configurations to ensure that every positive feature has a matching

negative feature.3

While the preceding discussion does not qualify as a formal proof, it conveys the

intuition how the Match constraint on Merge can be reduced to maximally local

3Some technical complications arise with LIs that carry both a category feature F− and a selector feature

F
+, e.g. the possessive marker ’s :: N+D+D−. In this case, one has to consider a larger locality domain over the

tier than just the mother-daughter configuration. But the very same issues can also arise with Move, so that

they do not undermine the subregular parallels between Merge and Move.
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dependencies between mothers and daughters, assuming that one can filter out intervening

material that does not matter for this dependency. The next section refines the general idea

by building on the subregular notion of tier-based strictly local (TSL) dependencies.

3.3 The tier-based strictly local model of Merge

Even though TSL was originally defined as an extension of SL over strings in order to

model various phonological phenomena, e.g. long-distance harmony (Heinz et al. 2011;

De Santo and Graf 2019), it can also be applied to trees (Graf and Kostyszyn 2021). The

central idea is that a dependency is TSL iff it is SL over a tier. In the case of TSL over trees,

this takes the form of two functions: one for constructing a tier, and another one for

verifying its well-formedness in a strictly local manner.

(19) Components of TSL definition for trees

a. The projection function determines which nodes are ignored and which are

added to the tier. In standard TSL, the projection function makes this decision

based solely on the label of the node, but more powerful versions also allow

local context to be taken into account (De Santo and Graf 2019).

b. Each tier comes with a licensing function that maps each node on the tier to a

(possibly infinite) set L of permitted daughter strings. The tier is illicit if the

node’s string of daughters is not a member of L. Again this function may

consider only the label of the node or take its structural context into account.

The approach from the previous section is easily recast in terms of these two

components, although they take slightly different form depending on whether slices are

feature-annotated. Due to space constraints, I only discuss the latter here (but a summary of

the former is included in (20)). Suppose, then, that every interior node in the derivation is

annotated with the positive feature (i.e. the selector feature) that hosts this node. In this case,
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each F-tier uses a tier projection function that projects a node iff it is an LI carrying the

negative feature F− or an interior node annotated with F+. The licensing function then maps

every F+ to the string language F+≥0 F
− F+≥0, where F− is a shorthand for any LI with

category feature F−, and F+≥0 denotes 0 or more iterations of F+. This enforces that every

Merge node must have exactly one LI among its daughters. LIs are not allowed to have any

daughters, and consequently the licensing function maps each one of them to the empty set.

The tier root ⊤, finally, varies between tiers. In most tiers, the set of daughter strings for ⊤

is F+≥0, which prevents LIs from occurring at the top of the tier. This is done so as to ensure

that every LI has a Merge node as its tier mother, which in turn means that the LI gets

selected during the derivation and has its category feature checked. However, there is at

least one case where this is undesirable, namely for C− on the head of the matrix CP. This

feature never gets checked because the matrix CP is not selected by anything else. For

C-tiers, then, the daughter string of ⊤ is C+≥0 C
− C+≥0, which guarantees the presence of

exactly one C-head that is not selected by anything else. These definitions change only

marginally if one uses slices without feature annotation, the key difference being that the

projection function now has to inspect the local context to determine which feature a given

Merge node is hosted by.

(20) TSL-specification of Merge

With feature annotation Without feature annotation

Projection LI with F− LI with F−

F+ • if hosted by F+

Licensing F+ 7→ F+≥0 F
− F+≥0 • 7→ •≥0 F

− •≥0

⊤ 7→ F+≥0 ⊤ 7→ •≥0

⊤ 7→ C+≥0 C
− C+≥0 for C-tier ⊤ 7→ •≥0 C

− •≥0 for C-tier

Within the class of TSL dependencies over trees, Merge is surprisingly simple. The
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pattern F+≥0F
−F+≥0 (or equivalently, •≥0F

−•≥0) used by the licensing function is particularly

remarkable. First, it is TSL, too, albeit over strings instead of trees — take a string of the

form F+≥0F
−F+≥0, project a string tier that contains only LIs with F−, and then enforce the SL

constraint that the tier has a length of 1. Second, F+≥0F
−F+≥0 can be regarded as a syntactic

counterpart to the phonological property culminativity, i.e. that every phonological word has

exactly one primary stress. This corresponds to the formal language σ≥0σ́σ≥0, where σ

denotes an unstressed syllable and σ́ a stressed one. The parallels between F+≥0F
−F+≥0 and

σ≥0σ́σ≥0 are evident. Perhaps, then, a putative evolutionary step from an SL-system of

Merge to a TSL-system could have co-opted computational machinery that was already in

use in phonology — or the other way round, the step to a more powerful Merge operation

paved the way for more complex phenomena in phonology. This is highly speculative, of

course, but it illustrates how a perspective informed by formal language theory helps

identify novel connections between seemingly unrelated parts of linguistic cognition.

It is important to keep in mind, though, that these mathematical insights are necessarily

abstractions and should not be interpreted too literally. In particular the notion of tiers

should not be reified. Recall from Sec. 2.1 that derivation trees are a record of the

computations carried out by the grammar. This seems at odds with the notion of tree tiers,

for what could it possibly mean to project a tier from a computation? But this question

assumes that tiers are an actual structure of some kind, when they are in fact a metaphor for

what kind of memory and inference mechanisms have to be available to the cognitive

system. The insight is not that syntax literally projects tiers from tree representations in

order to determine if Merge is being used correctly. Rather, the SL-dependencies

underlying Merge can be verified in a more succinct and elegant manner if the inference

mechanisms can ignore irrelevant material. Recall that the SL-complexity of Merge

depends on the maximum number p of positive features an LI may carry, which may vary

across grammars. The TSL-account, on the other hand, is always one of mother-daughter
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relations on tiers, irrespective of the value of p. TSL thus provides a unified description of

Merge across all grammars, and since only very small chunks of structure need to be

worked on at a time, it also has lower working memory requirements.

There are many reasons to believe, then, that Merge is best understood as a TSL

dependency even though its complexity is just SL. From a linguistic perspective, it provides

a unified description of Merge, the complexity of which is constant across grammars. From

a cognitive perspective, the shift to a more sophisticated inference mechanism is welcome

as it greatly reduces memory requirements. From an evolutionary perspective, TSL is

appealing because it is not specific to syntax but also plays a role in phonology and possibly

morphology (Aksënova et al. 2016), perhaps even semantics (Graf 2019). And as we will

see next, it reveals a great degree of parallelism between Merge and Move.

4 Move is tier-based strictly local, too

The methods I used to show that Merge is TSL work just as well for Move. Given a basic

understanding of Move in MGs and how it is characterized as a constraint on derivation

trees (Sec. 4.1), it quickly becomes clear that these constraints are local over specific tiers,

and that these tiers are but notational variants of the Merge tiers we just encountered

(Sec. 4.2). The only significant difference between Merge and Move is how they affect the

output structure, but even in that respect Move stays within the realm of TSL.

4.1 Move in MGs

The MG operation Move is modeled closely after the Minimalist notion of movement and is

fully controlled by the feature calculus. Just like Merge is triggered by the presence of both

a selector feature F+ and a category feature F−, Move requires a licensor feature f+ and a

licensee feature f−. By convention, Move features are written in lower case like f+ and f−

23



to distinguish them from Merge features. Licensor features must always occur before an

LI’s category feature, which rules out countercyclic movement where a head attracts a

mover after it has already been selected and thus had its category feature checked. Licensee

features, on the other hand, always follow the category feature, so that a phrase cannot

participate in any movement until it has been selected by some other head. Given these

constraints on feature order, a well-formed derivation could contain the LI

good :: D+f+A−g−, but not bad :: f+A−g−D+ or worse :: g−D+A−f+. Quite generally, all

positive features must precede all negative features.

A single LI may have more than one licensee feature, for instance, nom− to undergo

movement to subject position and wh− for wh-movement (nom− is an arbitrary feature name

and should not be construed as a theoretical claim that subject movement is intrinsically tied

to checking of nominative case). In standard MGs, all licensee features are linearly ordered,

e.g. which :: N+D−nom−wh−. But this means that which does not count as a possible

wh-mover until it has undergone subject movement. This has the side effect that another

wh-phrase w should be able to wh-move across the wh-subject s as long as the

wh-movement of w targets a position below the subject position of s. As this is not in line

with standard Minimalist thinking, I will assume that licensee features are unordered, as in

which :: N+D−{nom,wh}−. This does not affect the generative capacity of the formalism

(Graf et al. 2016), but it is a prerequisite for the TSL account of Move (it is interesting that

this point where MGs deviate from linguistic practice is exactly one where TSL argues

against the former and for the latter).

With this system of unordered licensee features, each LI undergoes up to three

consecutive stages in a derivation: I) selecting 0 or more arguments with selector features

and attracting 0 or more movers with licensor features, and II) being selected by some head

via its category feature, and III) undergoing 0 or more movement steps from its argument

position to some higher landing site(s), where the LI always targets the closest possible
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landing site that can check one of its licensee features.

The way movement is encoded in MG derivation trees is a bit unusual because no

subtrees are ever moved into a different position — the actual displacement only happens

during the construction of the derived structure, e.g. a bare phrase structure tree, a

multi-dominance tree, a prosodic structure, or an LF-interpretation. As such, each Move

step is merely a node in a derivation tree whose distribution is controlled by the presence of

licensor and licensee features on LIs. Intuitively, the derivation trees are multi-dominance

trees except that the dominance arcs introduced by Move are left implicit as they are easily

inferred from the feature calculus. The trees in (21) each depict a derivation with

wh-movement and nom-movement, with the corresponding multi-dominance tree on the

right. In anticipation of the subsequent discussion, I already annotate all Merge and Move

nodes with the positive features that host them. Following the discussion in Sec. 2.2, I also

use arrows to indicate how each instance of Move is linked to a specific licensee feature — I

will explain in a moment how these links are inferred.

(21) Derivation tree with separate wh-movement and case movement

wh+

T+

does :: C− nom+

V+

ε :: T− D+

N+

the :: D−{nom}− cat :: N−

D+

annoy :: V− who :: D−{wh}−

CP

C′

does TP

T′

T VP

DP

the cat

V′

annoy who

(22) Derivation tree with single phrase undergoing multiple movement steps
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wh+

T+

ε :: C− nom+

V+

ε :: T− D+

who :: D−{nom,wh}− D+

annoyed :: V− N+

the :: D− cat :: N−

CP

C′

C TP

T′

T VP

who V′

annoyed DP

the cat

While each derivation tree is almost identical to the corresponding multi-dominance tree,

the dominance arcs in the latter do not quite mirror the feature checking relations in the

former. Whenever an arrow ends in a licensee feature, the corresponding arc ends at the

D-root of the LI that carries this feature (recall that the D-root of an LI is the highest node

that it is connected to via a positive feature). That is to say, checking of a licensee feature on

an LI l triggers movement of the whole phrase headed by l. In (21), the entire phrase the cat

undergoes subject movement by virtue of being headed by the, which carries the relevant

licensee feature nom−.

Although readers familiar with Minimalist syntax won’t have a hard time figuring out

what features each Move node is hosted by, the issue merits discussion because it reveals

profound parallels to Merge. In particular, the principles in (3) that connect Merge nodes to

selector features and category features also work as intended for Move (provided that

licensee features are unordered). The i-th positive feature of an LI is still connected to the

i-th node above it, which is why we could use feature-annotated derivation trees in the

examples above. And an interior node m has an outgoing arrow to some negative feature f−

on LI l iff m is an f-occurrence of l. What more, Move is subject to all the constraints in (5)
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that also apply to Merge: every Move node must be hosted by exactly one licensor feature

(Single Head); each one of an LI’s licensor features must host a Move node (Full

Projection); and for every Move node m that is hosted by some f+ there must be exactly

one LI that m is an f-occurrence of (Match). Every aspect of MG feature checking that

applies to Merge also holds for Move.

4.2 Move as an instance of TSL

The basics of Move in MGs have now been put in place. Over derivation trees, movement is

a matter of feature checking, and as I explain next, the feature calculus for Move is an exact

counterpart of Merge from the TSL perspective. The actual displacement of subtrees is a

more complex affair, but at the end of this section I will briefly explain why it, too, is TSL.

When viewed as a feature checking dependency, Move in our system has three essential

properties: I) Move is triggered by (positive) licensor features and (negative) licensee

features, and II) the licensee features of an LI are unordered, so that it always targets the

closest possible Move nodes, and III) like Merge, Move is subject to the constraints Single

Head (5a), Full Projection (5b), and Match (5c). These properties make it fairly easy to

decompose Move into a number of constraints over derivation trees, which in turn are easily

converted into local conditions on tiers that mirror those for Merge in Sec. 3.3. Among the

three constraints Single Head, Full Projection, and Match, we already know that the first

two are SL and can also be lexicalized via slices, so they need not be considered further

(and I will only use feature-annotated derivation trees for the rest of the paper). Let us focus

our attention, then, on how Match is enforced for Move.

Remember from Sec. 3.3 that the TSL view combines a projection function that

truncates derivation trees into tree tiers with a licensing function that determines for every

node on the tier what its strings of daughters may look like. For Merge, a tier is projected
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for every type of category, with each F-tier containing all Merge nodes that are hosted by F+

and all LIs that carry F−. On each tier, every Merge node must have exactly one LI among

its daughters, and every LI must have a Merge node as its mother (which is enforced by

disallowing lexical daughters for the tier root ⊤). The very same strategy works for Move:

For each movement type f (e.g. nom, wh, . . . ) one projects a tier that contains I) all Move

nodes that are hosted by some f+, and II) all LIs with licensee feature f−, and III) nothing

else. Over these tiers, every Move node must have exactly one LI among its daughters, and

every LI must have a Move node as its mother.

The examples below show how these conditions discriminate between well-formed and

ill-formed derivation trees. The derivation tree in (23) is well-formed, and all its movement

tiers contain a Move node with exactly one lexical daughter. The same is true for example

(24) where a single mover targets multiple landing sites.

(23) Well-formed derivation tree with tiers, multiple movers

⊤

wh+

who :: D−{wh}−

wh+

T+

does :: C− nom+

V+

ε :: T− D+

N+

the :: D−{nom}− cat :: N−

D+

annoy :: V− who :: D−{wh}−

⊤

nom+

the :: D−{nom}−

Derivation treewh-tier nom-tier

(24) Well-formed derivation tree with tiers, single mover
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⊤

wh+

who :: D−{nom,wh}−

wh+

T+

ε :: C− nom+

V+

ε :: T− D+

who :: D−{nom,wh}− D+

annoyed :: V− N+

the :: D− cat :: N−

⊤

nom+

who :: D−{nom,wh}−

Derivation treewh-tier nom-tier

Example (25) shows that the move tiers of a well-formed derivation tree can also take on

more complex shapes, but it still holds that every Move node has exactly one LI among its

daughters and every LI has a Move node as its mother.

(25) A well-formed derivation tree with a complex tier
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T+

ε :: C− nom+

V+

ε :: T− D+

Sue :: D−{nom}− C+

thought :: V− T+

that :: C− nom+

V+

ε :: T− D+

fell asleep :: V− Mary :: D−{nom}−

⊤

nom+

Sue :: D−{nom}− nom+

Mary :: D−{nom}−

Derivation tree nom-tier

The ill-formed derivation tree in (26) illustrates how various violations are directly reflected

on the corresponding movement tiers. Match is violated whenever a Move node has more

than one lexical daughter, the lack of a mover is captured by the ban against Move nodes

with no lexical daughters, and movers with no landing site are ruled out because the tier root

⊤ must have no lexical daughters.

(26) Ill-formed derivation tree with tiers
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⊤

wh+

wh+

T+

ε :: C− nom+

V+

ε :: T− D+

N+

the :: D−{nom}− cat :: N−

D+

Mary :: D−{nom}− D+

showed :: V− Bill :: D−{top}−

⊤

nom+

the :: D−{nom}− Mary :: D−{nom}−

⊤

Bill :: D−{top}−

Derivation tree nom-tierwh-tier top-tier

This shows that movement, when construed as a constraint on derivation trees, works

exactly the same as Merge. The parallels become even more apparent if one compares the

projection functions and licensing functions for Merge and Move.

(27) TSL-comparison of Merge and Move (with feature annotations)

Merge Move

Projection LI with F− LI with f−

F+ f+

Licensing F+ 7→ F+≥0 F
− F+≥0 f+ 7→ f+≥0 f

− f+≥0

⊤ 7→ F+≥0 ⊤ 7→ f+≥0

⊤ 7→ C+≥0 C
− C+≥0 for C-tier

The projection functions are exactly the same in all three cases, and only the licensing

functions differ slightly because C-heads of matrix clauses do not need to be selected. We

see, then, that the computational machinery that was needed for a more succinct description

of Merge is exactly the same machinery that drives movement.
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But there is one major difference: while Merge is still an SL-dependency and the step to

TSL is motivated by succinctness and generality, Move is TSL but not SL. This is because

there is no upper bound on the distance between a mover and the corresponding move node.

There simply is no upper bound k such that a Move dependency never spans more than k

levels in the derivation tree. In terms of shear complexity, then, Move outstrips Merge

significantly. It is the need for a succinct specification that pushes us towards a TSL-view of

Merge, which turns Move into a natural evolutionary outgrowth of Merge.

However, this finding only addresses movement in terms of the syntactic dependencies

it induces, not in terms of the actual displacement of subtrees. But this, too, is a local

process over tiers, although the relevant notion of locality is now one of structural rewriting.

The mathematical concepts are a lot more involved in this case, so I will only present the

general intuition. An output structure, e.g. a multi-dominance tree, is the result of carrying

out the instructions specified in a derivation tree. This process is couched in mathematical

terms as a function that maps derivation trees to output structures. The main challenge

posed by movement is the association of a mover with its landing site(s). Intuitively, we

want to connect each Move node m that is hosted by a licensor feature f+ to the D-root of

the LI l that m is an occurrence of. Thanks to the TSL-nature of Move, l is easily identified,

though: it is a lexical daughter of m on the f-tier. Hence the actual displacement component

of Move hinges on the ability to determine for any two nodes m and l whether l is a lexical

tier daughter of m, which can already be done with the computational resources that are

needed for TSL-Merge and TSL-Move. We see, then, that even the displacement aspect of

Move emerges naturally from the TSL-view of Merge.
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5 Conclusion

I have argued that a specific view of Merge and Move that is grounded in formal language

theory, in particular subregular complexity, reveals surprising parallels between these two

operations. Even though Merge is a strictly local (SL) dependency, it can be described in

much more general, succinct, and less memory-intensive terms if one treats it as a

restriction on mother-daughter configurations in tree tiers. But the resulting system is

formally indistinguishable from Move, making the two essentially notational variants of

each other. A possible evolutionary scenario, then, is the following: Merge started out as a

maximally simple, strictly local operation that consumed a disproportionate amount of

memory as grammars gradually increased in complexity. This created evolutionary pressure

towards a more sophisticated, tier-based inference mechanism that consumes little cognitive

resources no matter how large or complex the grammar. As soon as this mechanism was

available, though, it was only natural to generalize Merge to Move. Since TSL also plays a

central role in phonology and morphology, this story could be expanded into a general

account that ties Merge and Move into developments beyond syntax.

This is, of course, just one of many conceivable scenarios. The argument is not that

things must have happened this way, but merely that there is a plausible computational path

from a local system of head-argument relations to a system with unbounded movement

dependencies. Two properties set this path apart from alternative scenarios. First, SL is one

of the weakest classes in formal language theory and has very few cognitive prerequisites

(Rogers and Pullum 2011). Second, TSL is a minimal extension of SL, the only innovation

being its ability to ignore symbols that are irrelevant for a given dependency. From a

cognitive perspective, the step from SL to TSL, and by extension the step from Merge to

Move, is not a big one. These findings are very much in line with Chomsky’s original

reduction of Move to Merge, but the argument from formal language theory does not hinge
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on a specific set-theoretic definition of Merge or Move and instead derives directly from the

computational nature of the syntactic dependencies that these operations establish.

Several interesting issues had to be omitted or left open. For instance, Graf (2018)

argues that TSL-Merge is also a necessary evolutionary milestone on the way to adjunction,

and the TSL-treatment of movement can also accommodate certain island phenomena such

as the Adjunct Island Constraint, providing an evolutionary pathway towards restrictions on

movement. At the same time, it is still unclear how well TSL fares with respect to head

movement, sideward movement, Agree, and the many, many constraints that have been

proposed in the Minimalist literature. In the spirit of this paper, though, I conjecture that

subregular complexity provides a plausible evolutionary path from TSL-syntax to these

extensions.
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