
Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,

August 5, 2021. ©2021

pages 11–22

11

Recursive prosody is not finite-state

Hossep Dolatian

Department of Linguistics
Stony Brook University
Stony Brook, NY, USA

hossep.dolatian@stonybrook.edu

Aniello De Santo

Department of Linguistics
University of Utah

Salt Lake City, Utah, USA
aniello.desanto@utah.edu

Thomas Graf

Department of Linguistics
Stony Brook University
Stony Brook, NY, USA
mail@thomasgraf.net

Abstract

This paper investigates bounds on the generative

capacity of prosodic processes, by focusing

on the complexity of recursive prosody in

coordination contexts in English (Wagner, 2010).

Although all phonological processes and most

prosodic processes are computationally regular

string languages, we show that recursive prosody

is not. The output string language is instead

parallel multiple context-free (Seki et al., 1991).

We evaluate the complexity of the pattern over

strings, and then move on to a characterization

over trees that requires the expressivity of multi

bottom-up tree transducers. In doing so, we

provide a foundation for future mathematically

grounded investigations of the syntax-prosody

interface.

1 Introduction

At the level of words, all attested processes in phonol-

ogy form regular string languages and can be gener-

ated via finite-state acceptors (FSAs) and transducers

(FSTs) (Johnson, 1972; Kaplan and Kay, 1994; Heinz,

2018). However, not much attention has been given

to the generative capacity of prosodic processes at

the phrasal or sentential level (but see Yu, 2019). The

little work that exists in this respect has shown that

many attested intonational processes are finite-state

and regular (Pierrehumbert, 1980). It is thus a common

hypothesis in the literature that the cross-linguistic ty-

pology of prosodic phonology should also be regular.

In this paper, we falsify this hypothesis by provid-

ing a mathematically grounded characterization of a

pattern of recursive prosody in English coordination,

as empirically documented by Wagner (2010). Specif-

ically, we show that when converting a syntactic repre-

sentation into a prosodic representation, the string lan-

guage that is generated by this prosodic process is nei-

ther a regular nor context-free language, and thus can-

not be generated by string-based FSAs. As a tree-to-

tree function, the pattern can be captured by a class of

bottom-up tree transducers whose outputs correspond

to parallel multiple context-free string languages.

This paper is organized as follows. In §2, we

provide a literature review of phonology and prosodic

phonology, with emphasis on the general tendency for

regular computation. In §3, we describe the recursive

prosody of coordination structures, and why it cannot

be generated with an FST over string inputs. In §4,

we show how a multi bottom-up tree transducer can

generate the prosodic patterns. We discuss our results

in §5, and conclude in §6.

2 Computation of prosody

Within computational prosody, there are two strands

of work. One focuses on the generation of prosodic

structure at or below the word level. The other

operates above the word-level.

At the word level, there is a plethora of work

on generating prosodic constituents, all of which

require finite-state or regular computation, whether

for syllables (Kiraz and Möbius, 1998; Yap, 2006;

Hulden, 2006; Idsardi, 2009), feet (van Oostendorp,

1993; Idsardi, 2009; Yu, 2017), or prosodic words

(Coleman, 1995; Chew, 2003).1 In fact, most word-

level prosody seems to require at most subregular

computation (Strother-Garcia, 2018, 2019; Hao, 2020;

Dolatian, 2020; Dolatian et al., 2021; Koser, in prep).

However, there is a dearth of formal results for

phrasal or intonational prosody. Early work in genera-

tive phonology treated the prosodic representations as

directly generated from the syntax, with any deviations

caused by readjustment rules (Chomsky and Halle,

1968). Notoriously, syntactic representations are at

1For syllables and feet, there is a large literature of formal-
ization within Declarative Phonology (Scobbie et al., 1996). This
work tends to employ formal representations that are similar
to context-free grammars (Klein, 1991; Walther, 1993, 1995;
Dirksen, 1993; Coleman, 1991, 1992, 1993, 1996, 2000, 1998;
Coleman and Pierrehumbert, 1997; Chew, 2003). But these
representations can be restricted enough to be equivalent to
regular languages (see earlier such restrictions in Church, 1983).

12

least context-free (Chomsky, 1956; Chomsky and

Schützenberger, 1959). Because sentential prosody

interacts with the syntactic level in non-trivial ways, it

might seem sensible to assume that 1) the transforma-

tion from syntax to prosody is not finite-state definable

(= definable with finite-state transducers), and that

2) the string language of prosodic representations

is a supra-regular language, not a regular language.

Importantly though, this assumption is not trivially

true. In fact, early work has shown that even if syntax

is context-free, the corresponding prosodic structures

can be a regular string language. For instance, Reich

(1969) argued that the prosodic structures in SPE can

be generated via finite-state devices (see also Langen-

doen, 1975), while Pierrehumbert (1980) modeled

English intonation using a simple finite-state acceptor.

When analyzed over string languages, this

mismatch between supra-regular syntax and regular

prosody was not explored much in the subsequent

literature. In fact, it seems that current research on

computational prosody uses the premise that prosodic

structures are at most regular (Gibbon, 2001). Cru-

cially, this premise is confounded by the general lack

of explicit mathematical formalizations of prosodic

systems. For example, there are algorithms for Dutch

intonation that capture surface intonational contours

and other acoustic cues (t’Hart and Cohen, 1973;

t’Hart and Collier, 1975). These algorithms however

do not themselves provide sufficient mathematical

detail to show that the prosodic phenomenon in

question is a regular string language. Instead, one

has to deduce that Dutch intonation is regular because

the algorithm does not utilize counting or unbounded

look-ahead (t’Hart et al., 2006, pg. 114).

As a reflection of this mismatch, early work in

prosodic phonology assumed something known as the

strict layer hypothesis (SLH; Nespor and Vogel, 1986;

Selkirk, 1986). The SLH assumed that prosodic trees

cannot be recursive — i.e. a prosodic phrase cannot

dominate another prosodic phrase — thus ensuring

that a prosodic tree will have fixed depth. Subsequent

work in prosodic phonology weakened the SLH:

prosodic recursion at the phrase or sentence level is

now accepted as empirically robust (Ladd 1986, 2008,

ch8; Selkirk 2011; Ito and Mester 2012, 2013). But

empirically, it is difficult to find cases of unbounded

prosodic recursion (Van der Hulst, 2010). Consider

a language that uses only bounded prosodic recursion

— e.g. there can be at most two recursive levels of

prosodic phrases. The prosodic tree will have fixed

depth; and the computation of the corresponding

string language is regular. It is then possible to create

a computational network that uses a supra-regular

grammar for the syntax which interacts with a

finite-state grammar for the prosody (Yu and Stabler,

2017; Yu, 2019). To summarize, it seems that the

implicit consensus in computational prosody is that

1) syntax can be supra-regular, but the corresponding

prosody is regular; 2) prosodic recursion is bounded.

However, as we elaborate in the next section,

coordination data from Wagner (2005) is a case where

syntactic recursion generates potentially unbounded-

recursive prosodic structure. The rest of the paper is

then dedicated to exploring the consequences of this

construction for the expressivity of sentential prosody.

3 Prosodic recursion in coordination

To our knowledge, Wagner (2005, 2010) is the

clearest case where syntactic recursion gets mapped

to recursive prosody, such that the recursion is

unboundedly deep for the prosody. In this section, we

go over the data and generalizations (§3.1), we sketch

Wagner’s cyclic analysis (§3.2), and we discuss issues

with finiteness (§3.3). Finally, we show that that this

construction does not correspond to a regular string

language (§3.4).

3.1 Unbounded recursive prosody

Wagner documents unbounded prosodic recursion

in the coordination of nouns, in contrast to earlier

results which reported flat non-recursive prosody

(Langendoen, 1987, 1998). Based on experimental

and acoustic studies, Wagner reports that recursive

coordination creates recursively strong prosodic

boundaries. Syntactic edges have a prosodic strength

that incrementally depends on their distance from the

bottom-most constituents.

When three items are coordinated with two non-

identical operators, then two syntactic parses are pos-

sible. Each syntactic parse has an analogous prosodic

parse. The prosodic parse is based on the relative

strength of a prosodic boundary, with | being weaker

than ||. The boundary is placed before the operator.

Table 1: Prosody of three items with non-identical

operators

Syntactic grouping Prosodic grouping

[A and [B or C]] A || and B | or C

[[A and B] or C] A | and B || or C

When the two operators are identical, then three

syntactic and prosodic parses are possible. The

13

difference between the parses is determined by

semantic associativity. For example, a sentence like

I saw [[A and B] and C] means that I saw A and B

together, and I saw C separately.

Table 2: Prosody of three items with identical operators

Syntactic grouping Prosodic grouping

[A and [B and C]] A || and B | and C

[[A and B] and C] A | and B || and C

[[A and B and C] A | and B | and C

When four items are coordinated, then at most

11 parses are possible. The maximum is reached

when the three operators are identical. We can have

three levels of prosodic boundaries, ranging from the

weakest | to the strongest |||.

Table 3: Prosody of four items with identical operators

Syntactic grouping Prosodic grouping

[A and B and C and D] A | and B | and C | and D

[A and B and [C and D]] A || and B || and C | and D

[A and [B and C] and D] A || and B | and C || and D

[[A and B] and C and D] A | and B || and C || and D

[A and [B and C and D]] A || and B | and C | and D

[[A and B and C] and D] A | and B | and C || and D

[[A and B] and [C and D]] A | and B || and C | and D

[A and [B and [C and D]] A ||| and B || and C | and D

[A and [[B and C] and D]] A ||| and B | and C || and D

[[A and [B and C]] and D] A || and B | and C ||| and D

[[[A and B] and C] and D] A | and B || and C ||| and D

We can extract the following generalizations from

the data above. First, the depth of a constituent di-

rectly affects the prosodic strength of its edges. At a

syntactic edge, the strength of the prosodic boundary

depends on the distance between that edge and the

most embedded element: for instance, in (1a) the left-

bracket between A-B is mapped to a prosodic bound-

ary of strength three |||, because A is above two layers

of coordination. The deepest constituent C-D gets the

weakest boundary |. Second, when there is associativ-

ity, the prosodic strength percolates to other positions

within this associative span. For example, in (1b) the

boundary of strength || is percolated to A-B from B-C.

1. Generalizations on coordination

(a) Strength is long-distantly calculated

[A and [B and [C and D]]] is mapped to

A ||| and B || and C | and D

(b) Strength percolates when associative

[A and B and [C and D]] is mapped to

A || and B || and C | and D

3.2 Wagner’s cyclic analysis

In order to generate the above forms, Wagner devised

a cyclic procedure which we summarize with the

algorithm below.

2. Wagner’s cyclic algorithm

(a) Base case: Let X be a constituent that

contains a set of unprosodified nouns

(terminal nodes) that are in an associative

coordination. Place a boundary of strength

| between each noun.

(b) Recursive case: Consider a constituent Y.

Let S be a set of constituents S (terminals

or non-terminals) that is properly contained

in Y, such that at least one constituent in

S be prosodified. Let |k be the strongest

prosodic boundary inside Y. Place the

boundary |k+1 between each constituent

in Y.

The algorithm is generalized to coordination of any

depth. It takes as input a syntactic tree, and the output

is prosodically marked strings. We illustrate this below,

with the input tree represented as a bracketed string.

3. Illustrating Wagner’s algorithm

Input [A and B and [C and D]]

Base case C | and D

Recursive case A || and B || and C | and D

3.3 Issues of finiteness

Because Wagner’s study used noun phrases with

at most three or four items, the resulting language

of prosodic parses is a finite language. Thus, the

relevant syntax-to-prosody function is bounded. It is

difficult to elicit coordination of 5 items, likely due

to processing reasons (Wagner, 2010, 194).

If the primary culprit is performance, though,

then syntactic competence may in fact allow for

coordination constructions of unbounded depth with

any number of items. Wagner’s algorithm generates

a prosodic structure for any such sentence, such as

for (4). For the rest of this paper, we abstract away the

finite bounds on coordination size in order to analyze

the generative capacity of the underlying system (see

Savitch, 1993, for mathematical arguments in support

of factoring out finite bounds).

4. Hypothetical prosody for large coordination

[A and B and [C and [D and E]]] is mapped to

A ||| and B ||| and C || and D | and E

14

3.4 Computing recursive prosody over strings

The choice of representation plays an important role

in determining the generative capacity of the prosodic

mapping. We first start by treating the mapping as

a string-to-string function. We show that the mapping

is not regular.

Let the input language be a bracketed string

language, such that the input alphabet is a set of

nouns{A, ..., Z}, coordinators, and brackets. The

output language replaces the brackets with substrings

of |∗. For illustration, assume that the input language

is guaranteed to be a well-bracketed string. At a

syntactic boundary, we have to calculate the number

of intervening boundaries between it and deepest node.

But this requires unbounded memory. For instance, to

parse the example below, we incrementally increase

the prosodic strength of each boundary as we read

the input left-to-right.

5. Linearly parsing the prosody:

[[[A and B] and C] and D] is mapped to

A | and B || and C ||| and D, where

Input alphabet Σ ={ A, ... , Z, and, or, [,]}
Output alphabet ∆ ={ A, ... , Z, and, or, |}
Input language is Σ∗ and well-bracketed

Given the above string with only left-branching

syntax, the leftmost prosodic boundary will have a

juncture of strength |. Every subsequent prosodic

boundary will have incrementally larger strength.

Over a string, this means we have to memorize the

number x of prosodic junctures that were generated

at any point in order to then generate x+1 junctures

at the next point. A 1-way FST cannot memorize an

unbounded amount of information. Thus, this function

is not rational function and cannot be defined by a

1-way FST. To prove this, we can look at this function

in terms of the size of the input and output strings.

6. Illustrating growth size of recursive prosody

[n A0 and A1] and A2] and ... and An]

is mapped to

A0 | and A1 || and A2 ||| and ... |n and An

Abstractly, for a left-branching input string with

n number of left-brackets [, the output string has

a monotonically increasing number of prosodic

junctures: | ··· || ··· ||| ··· |n. The total number of

prosodic junctures is a triangular number n(n+1)/2.

We thus derive the following lemma.

Lemma 1. For generating coordination prosody as a

string-to-string function, the size of the output string

grows at a rate of at leastO(n2) where n is the size

of the input string.

Such a function is neither rational nor regular.

Rational functions are computed by 1-way FSTs,

and regular functions by 2-way FSTs (Engelfriet

and Hoogeboom, 2001).2 They share the following

property in terms of growth rates (Lhote, 2020).

Theorem 1. Given an input string of size n, the size

of the output string of a regular function grows at

most linearly as c·n, where c is a constant.

Thus, this string-to-string function is not regular.

It could be a more expressive polyregular function

(Engelfriet and Maneth, 2002; Engelfriet, 2015;

Bojańczyk, 2018; Bojańczyk et al., 2019), a question

that we leave for future work.

The discussion in this section focused on generat-

ing the output prosodic string when the input syntax

is a bracketed string. Importantly though, Lemma 1

entails that no matter how one chooses their string

encoding of syntactic structure, prosody cannot be

modeled as a rational transduction unless there is

an upper bound on the minimum number of output

symbols that a single syntactic boundary must be

rewritten as. To the best of our knowledge, there is

no syntactic string encoding that guarantees such a

bound. In the next section, we will discuss how to

compute prosodic strength starting from a tree.

4 Computing recursive prosody over trees

Wagner (2010)’s treatment of recursive prosody as-

sumes an algorithm that maps a syntactic tree to a

prosodic string. It is thus valuable to understand the

complexity of processes at the syntax-prosody inter-

face starting from the tree representation of a sen-

tence. Assuming we start from trees, there is one

more choice to be made, namely whether the prosodic

information (in the output) is present within a string or

a tree. Notably, every tree-to-string transduction can

be regarded as a tree-to-tree transduction plus a string

yield mapping. As the tree-to-tree case subsumes the

tree-to-string one, it makes sense to consider only

the former. For a tree-to-tree mapping, the goal is

to obtain a tree representation that already contains

the correct prosodic information (Ladd, 1986; Selkirk,

2011). This is the focus of the rest of this paper.

4.1 Dependency trees

When working over syntactic structures explicitly, it is

important to commit to a specific tree representation.

2This equivalence only holds for functions and deterministic
FSTs. Non-deterministic FSTs can also compute relations.

15

In what follows, we adopt a type of dependency trees,

where the head of a phrase is treated as the mother of

the subtree that contains its arguments. For example,

the coordinated noun phrase Pearl and Garnet is

represented as the following dependency tree.

and

Pearl Garnet

Dependency trees have a rich tradition in descrip-

tive, theoretical, and computational approaches to lan-

guage, and their properties have been defined across a

variety of grammar formalisms (Tesnière, 1965; Nivre,

2005; Boston et al., 2009; Kuhlmann, 2013; Debus-

mann and Kuhlmann, 2010; De Marneffe and Nivre,

2019; Graf and De Santo, 2019; Shafiei and Graf,

2020, a.o.). Dependency trees keep the relation be-

tween heads and arguments local, and they maximally

simplify the readability of our mapping rules. Hence,

they allow us to focus our discussion on issues that

are directly related to the connection of coordinated

embeddings and prosodic strength, without having to

commit to a particular analysis of coordinate structure.

Importantly, this choice does not impact the gener-

alizability of the solution. It is fairly straightforward to

convert basic dependency trees into phrase structure

trees. Similarly, although it is possible to adopt n-ary

branching structures, we chose to limit ourselves

to binary trees (in the input). This turns out to be

the most conservative assumption, as it forces us to

explicitly deal with associativity and flat prosody.

4.2 Encoding prosodic strength over trees

We are interested in the complexity of mapping a

“plain” syntactic tree to a tree representation which con-

tains the correct prosodic information. Because of this,

we encode prosodic strength over trees in the form of

strength boundaries at each level of embedding. Each

embedding level in our final tree representation will

thus have a prosodic strength branch. The tree below

shows how the syntactic tree for Pearl and Garnet

is enriched with prosodic information, according to

our encoding choices. For readability, we use $ to

mark prosodic boundaries in trees instead of |, since

the latter could be confused with a unary tree branch.

and

Pearl $ Garnet

As the tree below shows, the depth of the prosody

branch at each embedding level corresponds to the

number of prosodic boundaries needed at that level.

and4

Pearl1 $2

$3

and7

Garnet5 $6 Rose8

Finally, the prosodic tree is fed to a yield function

to generate an output prosodified string. In particular,

the correct tree-to-string mapping can be obtained

by a modified version of a recursive-descent yield,

which enumerates nodes left-to-right, depth first,

and only enumerates the mother node of each

level after the boundary branch. This strategy is

depicted by the numerical subscripts in the tree above,

which reconstruct how the yield of the prosodically

annotated tree produces the string: Pearl || and

Garnet | and Rose. The rest of this section will focus

on how to obtain the correct tree encoding of prosodic

information, starting from a plain dependency tree.

4.3 Mathematical preliminaries

For a natural number n, we let [n] = {1,...,n}. A

ranked alphabet Σ is a finite set of symbols, each one

of which has a rank assigned by the function r :Σ→N.

We write Σ(n) to denote {σ∈Σ |r(σ)=n}, and σ(n)

indicates that σ has rank n.

Given a ranked alphabet Σ and a set A, TΣ(A) is

the set of all trees over Σ indexed byA. The symbols

in Σ are possible labels for nodes in the tree, indexed

by elements in A. The set TΣ of Σ-trees contains

all σ∈Σ(0) and all terms σ(n)(t1,...,tn) (n≥0) such

that t1, ... , tn ∈ TΣ. Given a term m(n)(s1, ... ,sn)
where each si is a subtree with root di, we callm the

mother of the daughters d1,...,dn (1≤ i≤n). If two

distinct nodes have the same mother, they are siblings.

Essentially, the rank of a symbol denotes the finite

number of daughters that it can take. Elements ofA
are considered as additional symbols of rank 0.

Example 1. Given Σ :=
{

a(0),b(0),c(2),d(2)
}

, TΣ is

an infinite set. The symbol a(0) means that a is

a terminal node without daughters, while c(2) is a

non-terminal node with two daughters. For example,

consider the tree below.

d

c

b b

d

b a

This tree corresponds to the term d(c(b,b),d(b,a)),
contained in TΣ. y

16

As is standard in defining meta-rules, we introduce

X as a countably infinite set of variable symbols

(X ∩ Σ = X) to be used as place-holders in the

definitions of transduction rules over trees.

4.4 Multi bottom-up tree transducers

We assume that the starting point of the prosodic pro-

cess is a plain syntactic tree. Thus, in order to derive

the correct prosodic encoding, we need to propagate

information about levels of coordination embedding

and about associativity. We adopt a bottom-up ap-

proach, and characterize this process in terms of multi

bottom-up tree transducers (MBOT; Engelfriet et al.,

1980; Lilin, 1981; Maletti, 2011). Essentially, MBOTs

generalize traditional bottom–up tree transducers in

that they allow states to pass more than one output sub-

tree up to subsequent transducer operations (Gildea,

2012). In other words, each MBOT rule potentially

specifies several parts of the output tree. This is high-

lighted by the fact that the transducer states (q∈Q) can

have rank greater than one — i.e. they can have more

than one daughter, where the additional daughters are

used to hold subtrees in memory. We follow Fülöp

et al. (2004) in presenting the semantics of MBOTs.

Definition 1 (MBOT). A multi bottom-up tree trans-

ducer (MBOT) is a tuple M =(Q,Σ,∆,root,qf ,R),
where Q, Σ∪∆, {root}, {qf} are pairwise disjoint,

such that:

• Q is a ranked alphabet withQ(0)=∅, called the

set of states

• Σ and ∆ are ranked input and output alphabets,

respectively

• root is a unary symbol, called the root symbol

• qf is a unary symbol called the final state

R is a finite set of rules of two forms:

• σ(q1(x1,1,...,x1,n1
),...,qk(xk,1,...,xk,nk

))

→q0(t1,...,tn0
)

where k ≥ 0, σ ∈ Σ(k), for every

i ∈ [k] ∪ {0}, qi ∈ Q(ni) for some ni ≥ 1, for

every j∈ [n0],tj∈T∆({xi,j|i∈ [k],j∈ [ni]}).

• root(q(x1,...,xn))→qf(t)

where n≥1,q∈Q(n), and t∈T∆(Xn). y

The derivational relation induced byM is a binary re-

lation⇒M over the set TΣ∪∆∪Q∪{root,qf} defined as

follows. For every ϕ,ψ∈TΣ∪∆∪Q∪{root,qf}, ϕ⇒M ψ
iff there is a tree β ∈ TΣ∪∆∪Q∪{root,qf}(X1) s.t. x1
occurs exactly once in β and either there is a rule

• σ(q1(x1,1,...,x1,n1
),...,qk(xk,1,...,xk,nk

))→ r
inR

and there are trees Ti,j ∈ TΣ for every

i ∈ [k] and j ∈ [ni], s.t. ϕ =
β[σ(q1(t1,1, ... , t1,n1

), ... , qk(tk,1, ... , tk,nk
))], and

ψ=β[r[xi,j←ti,j|i∈ [k],j∈ [ni]]]; or there is a rule

• root(q(x1,...,xn))→qf(t) inR

and there are trees ti∈T∆ for every i∈ [n] s.t. ϕ=
β[root(q(t1,...,tn))], and ψ=β[qf(t[t1,...,tn])]. The

tree transformation computed byM is the relation:

τM={(s,t)∈TΣ×T∆ | root(s)⇒∗
M qf(t)}

Intuitively, tree transductions are performed by

rewriting a local tree fragment as specified by one

of the rules in R. For instance, a rule can replace

a subtree, or copy it to a different position. Rules

apply bottom–up from the leaves of the input tree,

and terminate in an accepting state qf .

4.5 MBOT for recursive prosody

We want a transducer which captures Wagner

(2010)’s bottom-up cyclic procedure. Consider now

the MBOT Mpros = (Q,Σ,∆, root, qf , R), with

Q= {q∗,qc}, σc ∈{and,or}(Σ, σ∈Σ−{and,or},
and Σ = ∆. We use qc to indicate that Mpros has

verified that a branch contains a coordination (so σc),
with q∗ assigned to any other branch. As mentioned,

we use $ to mark prosodic boundaries in the trees

instead of |. The set of rulesR is as follows.

Rule 1 rewrites a terminal symbol σ as itself. The

MBOT for that branch transitions to q∗(σ).

σ→q∗(σ) (1)

Rule 2 applies to a subtree headed by

σc∈{and,or}, with only terminal symbols as daugh-

ters: σc(q∗(x),q∗(y)). It inserts a prosodic boundary

$ between the daughters x,y. The boundary $ is also

copied as a daughter of the mother qc, as record of

the fact that we have seen one coordination level.

σc(q∗(x),q∗(y))→qc(σc(x,$,y),$) (2)

We illustrate this in Figure 1 with a coordination

of two items, representing the mapping: [B and A]

→ B | and A. We also assume that sentence-initial

boundaries are vacuously interpreted.

We now consider cases where a coordination is

the mother not just of terminal nodes, but of other

coordinated phrases. Rule 3 handles the case in which

17

and

B A

(1)
and

q∗

B

q∗

A

and

q∗

B

q∗

A

(2)

qc

and

B $ A

$

Figure 1: Example of the application of rules (1) and (2).

The numerical label on the arrow indicates which rule

was applied in order to rewrite the tree on the left as the

tree on the right.

the right sibling of the mother was also headed by

a coordination (as encoded by σc having qc as one

of its daughters). Here, qc is the result of a previous

rule application (e.g. rule 2) and it has two subtrees

itself: qc(w,y). Although we do not have access to

the internal labels of x, y, and w, by the format of the

previous rules we know that the right daughter of qc
(i.e. y) is the one that contains the strength informa-

tion. Then, rule 3 has three things to do. It increments

y by one boundary: $(y). It places $(y) in between

the two subtrees x and w. And, it copies $(y) as the

daughter of the new qc state in order to propagate

$(y) to the next embedding level (see Figure 2).

σc(q∗(x),qc(w,y))→qc(σc(x,$(y),w),$(y)) (3)

and

C qc

and

B $ A

$
(3)

qc

and

C $

$

and

B $ A

$

$

Figure 2: Example of the application of rule (3). For ease

of readability, we omit q∗ states over terminal nodes.

Rule 4 applies once all coordinate phrases up to the

root have been rewritten. It simply rewrites the root

as the final accepting state. It gets rid of the daughter

of qc that contains the strength markers, since there

is no need to propagate them any further.

root(qc(x,y))→qf(x) (4)

As the examples so far should have clarified,

Mpros as currently defined readily handles cases

where the embedding of the coordination is strictly

right branching, with the bulk of the work done via

rule 3. However, while these rules work well for

instances in which a coordination is always the right

daughter of a node, they cannot deal with cases in

which the coordination branches left, or alternates

between the two. This is easily fixed by introducing

variants to rule 3, which consider the position of

the coordination as marked by qc. Importantly, the

position of the copy of the boundary branch is not

altered, and it is always kept as the rightmost sibling

of qc. What changes is the relative position of the w
and x subbranches in the output (see Figure 3).

σc(qc(w,y),q∗(x))→qc(σc(w,$(y),x),$(y)) (5)

and

qc

and

B $ A

$

C

(5)

qc

and

and

B $ A

$

$

C

$

$

Figure 3: Left branching example as in rule (5).

Following the same logic, rule 6 handles cases like

[[A and B] and [C and D]], in which both daughters

of a coordination are headed by a coordination

themselves (see Figure 4).

σc(qc(x,z),qc(y,w))→qc($(x),σc(z,$(x),w)) (6)

and

qc

and

A $ B

$

$

qc

and

C $ D

$

$

(6)

qc

and

and

A $ B

$

$

and

C $ D

$

$

$

Figure 4: Example of the application of rule (6).

Finally, we need to take care of the flat prosody

or associativity issue. The MBOT Mpros as outlined

so far increases the depth of the boundary branch at

each level of embedding. Because we are adopting

binary branching trees, the current set of rules is

trivially unable to encode cases like [A and B and

C]. We follow Wagner’s assumption that semantic

information on the syntactic tree guides the prosody

cycles. Representationally, we mark this by using

specific labels on the internal nodes of the tree. We

assume that the flat constituent interpretation is

18

Input Apply rule (2) Apply rule (3) Apply rule (3) Apply rule (4)

and

D and

C and

B A

and

D and

C qc

and

B $ A

$

and

D qc

and

C $

$

and

B $ A

$

$

qc

and

D $

$

$

and

C $

$

and

B $ A

$

$

$

and

D $

$

$

and

C $

$

and

B $ A

Figure 5: Walk-through of the transduction defined byMpros . For ease of readability, and to highlight how qc propagates

embedding information about the coordination, q∗ and qf states are omitted.

obtained by marking internal nodes as non-cyclic,

introducing the alphabet symbol σn:

σn(q∗(x),qc(w,y)→qc(σc(x,y,w),y) (7)

Essentially, rule 7 tells us that when a coordination

node is marked as σn,Mpros just propagates the level

of prosodic strength that it currently has registered (in

y), without increments (see Figure 6). This rule can be

trivially adjusted to deal with branching differences,

as done for rules 3 and 5.

andn

C qc

and

B $ A

$
(7)

qc

andn

C $ and

B $ A

$

Figure 6: Application of rule (7) for flat prosody.

A full, step by step Mpros transduction is shown

in Figure 5. Taken together, the recursive prosodic

patterns are fully characterized by Mpros when it is

adjusted with a set of rules to deal with alternating

branching and flat associativity. The tree transducer

generates tree representations where each level of

embedding is marked by a branch, which carries

information about the prosodic strength for that level.

As outlined in Section 4.2, this final representation

may then be fed to a modified string yield function

for dependency tree languages.

Dependency trees allowed us to present a transducer

with rules that are relatively easy to read. But, as men-

tioned before, this choice does not affect our general

result. Under the standard assumption that the distance

between the head of a phrase and its maximal projec-

tion is bounded,Mpros can be extended to phrase struc-

ture trees, by virtue of the bottom-up strategy being

intrinsically equipped with finite look-ahead. A switch

to phrase structure trees may prove useful for future

work on the interaction of prosody and movement.

5 Generating recursive prosody

The previous section characterized recursive prosody

over trees with a non-linear, deterministic MBOT.

This is a nice result, as MBOTs are generally well-

understood in terms of their algorithmic properties.

Moreover, this result is in line with past work explor-

ing the connections of MBOTs, tree languages, and

the complexity of movement and copying operations

in syntax (Kobele, 2006; Kobele et al., 2007, a.o.).

We can now ask what the complexity of this

approach is. MBOTs generate output string languages

that are potentially parallel multiple context-free

languages (PMCFL; Seki et al., 1991, 1993; Gildea,

2012; Maletti, 2014; Fülöp et al., 2005). Since this

class of string languages is more powerful than

context-free, the corresponding tree language is not

a regular tree language (Gécseg and Steinby, 1997).

This is not surprising, as MBOTs can be understood

as an extension of synchronous tree substitution

grammars (Maletti, 2014).

Notably, independently of our specific MBOT solu-

tion, prosody as defined in this paper generates at least

some output string languages that lack the constant

growth property — hence, that are PMCFLs. Consider

as input a regular tree language of left-branching

coordinationate phrases, where each level is simply of

the form and(X, Mary). Then−th level of embedding

from the top extends the string yield by n+2 symbols.

This immediately implies no constant growth, and

thus no semi-linearity (Weir, 1988; Joshi et al., 1990).

Interestingly though, the prosody MBOT devel-

oped here is fairly limited in its expressivity as the

19

transducer states themselves do almost no work,

and most of the transduction rules in Mpros rely

on the ability to store the prosody strength branch.

Hence, the specific MBOT in this paper might turn

out to belong to a relatively weak subclass of tree

transductions with copying, perhaps a variant of input

strictly local tree transductions (cf. Ikawa et al., 2020;

Ji and Heinz, 2020), or a transducer variant of sensing

tree automata (cf. Fülöp et al., 2004; Kobele et al.,

2007; Maletti, 2011, 2014; Graf and De Santo, 2019).

Since all of those have recently been used in the

formal study of syntax, they are natural candidates

for a computational model of prosody, and their sensi-

tivity to minor representational difference might also

illuminate what aspects of syntactic representation

affect the complexity of prosodic processes.

Finally, one might worry that the mathematical

complexity is a confound of the representation we use,

rather than a genuine property of the phenomenon.

However, a representation of prosodic strength is

necessary and cannot be reduced further for two

reasons. First, strength cannot be reduced to syntactic

boundaries because a single prosodic edge (may

correspond to |k for any k≥1. As discussed in depth

by Wagner (2005, 2010), one cannot simply convert

a syntactic tree into a prosodic tree by replacing the

labels of nonterminal nodes. Second, strength also

cannot be reduced to different categories of prosodic

constituents — e.g. assuming that | is a prosodic

phrase while || is an intonational phrase. As argued

in depth in (Wagner, 2005, 2010), these different

constituent types do not map neatly to prosodic

strength. Instead, these boundaries all encode relative

strengths of prosodic phrase boundaries.

6 Conclusion

This paper formalizes the computation of unbounded

recursive prosodic structures in coordination. Their

computation cannot be done by string-based finite-

state transducers. They instead need more expressive

grammars. To our knowledge, this paper is one of

the few (if only) formal results on how prosodic

phonology at the sentence-level is computationally

more expressive than phonology at the word-level.

As discussed above, recent work in prosodic

phonology relies on the assumption that prosodic

structure can be recursive. However, because such

work usually uses bounded-recursion, such phenom-

ena are computationally regular. Departing from this

stance, this paper focused on the prosodic phenomena

reported in Wagner (2005) as a core case study,

because of the following fundamental properties:

• The syntax has unbounded recursion.

• The prosody has unbounded recursion.

• All recursive prosodic constituents have the

same prosodic label (= a prosodic phrase).

• The recursive prosodic constituents have

acoustic cues marking different strengths.

• There is an algorithm which explicitly assigns

the recursive prosodic constituents to these

different strengths.

In this paper, we focused on explicitly generating

the prosodic strengths at each recursive prosodic

levels, putting aside the mathematically simpler task

of converting a recursive syntactic tree into a recursive

prosodic tree (Elfner, 2015; Bennett and Elfner,

2019) — which is a process essentially analogous to

a relabeling of the nonterminal nodes of the syntactic

tree, without care for the prosodic strength. The

mapping studied in this paper has been conjectured in

the past to be computationally more expressive than

regular languages or functions (Yu and Stabler, 2017).

Here, we formally verified that hypothesis.

An open question then is to find other empirical

phenomena which also have the above properties.

One potential area of investigation is the assignment

of relative prominence relations in English compound

prosody (Chomsky and Halle, 1968). However, En-

glish compound prosody is a highly controversial area.

It is unclear what is the current consensus on an exact

algorithm for these compounds, especially one that

utilizes recursion and is not based on impressionistic

judgments (Liberman and Prince, 1977; Gussenhoven,

2011). In this sense, the mathematical results in this

paper highlight the importance of representational

commitments and of explicit assumptions in the study

of prosodic expressivity. Our paper might then help

identify crucial issues in future theoretical and em-

pirical investigations of the syntax-prosody interface.

Acknowledgements

We are grateful to our anonymous reviewers, Jon

Rawski, and Kristine Yu. Thomas Graf is supported

by the National Science Foundation under Grant No.

BCS-1845344.

References

Ryan Bennett and Emily Elfner. 2019. The syntax–
prosody interface. Annual Review of Linguistics,
5:151–171.

20

Mikołaj Bojańczyk. 2018. Polyregular functions. arXiv
preprint arXiv:1810.08760.

Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote.
2019. String-to-string interpretations with polynomial-
size output. In 46th International Colloquium on
Automata, Languages, and Programming, ICALP
2019, July 9-12, Patras, Greece. (LIPIcs), volume
132, page 106:1–106:14, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik.

Marisa Ferrara Boston, John T. Hale, and Marco
Kuhlmann. 2009. Dependency structures derived
from minimalist grammars. In The Mathematics of
Language, pages 1–12. Springer.

Peter Chew. 2003. A computational phonology of Russian.
Universal-Publishers, Parkland, FL.

Noam Chomsky. 1956. Three models for the description
of language. IRE Transactions on information theory,
2(3):113–124.

Noam Chomsky and Morris Halle. 1968. The sound
pattern of English. MIT Press, Cambridge, MA.

Noam Chomsky and Marcel P Schützenberger. 1959.
The algebraic theory of context-free languages. In
Studies in Logic and the Foundations of Mathematics,
volume 26, pages 118–161. Elsevier.

Kenneth Ward Church. 1983. Phrase-structure parsing: A
method for taking advantage of allophonic constraints.
Ph.D. thesis, Massachusetts Institute of Technology.

John Coleman. 1992. The phonetic interpretation of
headed phonological structures containing overlapping
constituents. Phonology, 9(1):1–44.

John Coleman. 1993. English word-stress in unification-
based grammar. In T. Mark Ellison and James Scobbie,
editors, Computational Phonology, page 97–106.
Centre for Cognitive Science, University of Edinburgh.

John Coleman. 1995. Declarative lexical phonology.
In Jacques Durand and Francsis Katamba, editors,
Frontiers of phonology: Atoms, structures, derivations,
pages 333–383. Longman, London.

John Coleman. 1996. Declarative syllabification in
Tashlhit Berber. In Jacques Durand and Bernard Laks,
editors, Current trends in phonology: Models and
methods, volume 1, pages 175–216. European Studies
Research Institute, University of Salford, Salford.

John Coleman. 1998. Phonological representations:
Their names, forms and powers. Cambridge University
Press, Cambridge.

John Coleman. 2000. Candidate selection. The Linguistic
Review, 17(2-4):167–180.

John Coleman and Janet Pierrehumbert. 1997. Stochastic
phonological grammars and acceptability. In Third
meeting of the ACL special interest group in com-
putational phonology: Proceedings of the workshop,
pages 49–56, East Stroudsburg, PA. Association for
computational linguistics.

John S Coleman. 1991. Prosodic structure, parameter-
setting and ID/LP grammar. In Steven Bird, editor,
Declarative perspectives on phonology, pages 65–78.
Centre for Cognitive Science, University of Edinburgh.

Marie-Catherine De Marneffe and Joakim Nivre. 2019.
Dependency grammar. Annual Review of Linguistics,
5:197–218.

Ralph Debusmann and Marco Kuhlmann. 2010. Depen-
dency grammar: Classification and exploration. In
Resource-adaptive cognitive processes, pages 365–388.
Springer.

Arthur Dirksen. 1993. Phrase structure phonology. In
T. Mark Ellison and James Scobbie, editors, Compu-
tational Phonology, page 81–96. Centre for Cognitive
Science, University of Edinburgh.

Hossep Dolatian. 2020. Computational locality of cyclic
phonology in Armenian. Ph.D. thesis, Stony Brook
University.

Hossep Dolatian, Nate Koser, Kristina Strother-Garcia,
and Jonathan Rawski. 2021. Computational restric-
tions on iterative prosodic processes. In Proceedings
of the 2019 Annual Meeting on Phonology. Linguistic
Society of America.

Emily Elfner. 2015. Recursion in prosodic phrasing:
Evidence from Connemara Irish. Natural Language &
Linguistic Theory, 33(4):1169–1208.

Joost Engelfriet. 2015. Two-way pebble transducers
for partial functions and their composition. Acta
Informatica, 52(7-8):559–571.

Joost Engelfriet and Hendrik Jan Hoogeboom. 2001.
MSO definable string transductions and two-way finite-
state transducers. Transactions of the Association for
Computational Linguistics, 2(2):216–254.

Joost Engelfriet and Sebastian Maneth. 2002. Two-way
finite state transducers with nested pebbles. In Inter-
national Symposium on Mathematical Foundations of
Computer Science, pages 234–244. Springer.

Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki.
1980. Tree transducers, l systems, and two-way
machines. Journal of Computer and System Sciences,
20(2):150–202.

Zoltán Fülöp, Armin Kühnemann, and Heiko Vogler.
2004. A bottom-up characterization of deterministic
top-down tree transducers with regular look-ahead.
Information Processing Letters, 91(2):57–67.

Zoltán Fülöp, Armin Kühnemann, and Heiko Vogler. 2005.
Linear deterministic multi bottom-up tree transducers.
Theoretical computer science, 347(1-2):276–287.

Ferenc Gécseg and Magnus Steinby. 1997. Tree lan-
guages. In Handbook of formal languages, pages 1–68.
Springer.

21

Dafydd Gibbon. 2001. Finite state prosodic analysis of
African corpus resources. In EUROSPEECH 2001
Scandinavia, 7th European Conference on Speech
Communication and Technology, 2nd INTERSPEECH
Event, Aalborg, Denmark, September 3-7, 2001, pages
83–86. ISCA.

Daniel Gildea. 2012. On the string translations produced
by multi bottom–up tree transducers. Computational
Linguistics, 38(3):673–693.

Thomas Graf and Aniello De Santo. 2019. Sensing tree
automata as a model of syntactic dependencies. In
Proceedings of the 16th Meeting on the Mathematics of
Language, pages 12–26, Toronto, Canada. Association
for Computational Linguistics.

Carlos Gussenhoven. 2011. Sentential prominence in
English. In Marc van Oostendorp, Colin Ewen, Eliz-
abeth Hume, and Keren Rice, editors, The Blackwell
companion to phonology, volume 5, pages 1–29.
Wiley-Blackwell, Malden, MA.

Yiding Hao. 2020. Metrical grids and generalized tier pro-
jection. In Proceedings of the Society for Computation
in Linguistics, volume 3.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frans Plank, editors, Phonological Typology, Phonetics
and Phonology, chapter 5, pages 126–195. Mouton de
Gruyter, Berlin.

Mans Hulden. 2006. Finite-state syllabification. In Anssi
Yli-Jyrä, Lauri Karttunen, and Juhani Karhumäki,
editors, Finite-State Methods and Natural Language
Processing. FSMNLP 2005. Lecture Notes in Computer
Science, volume 4002. Springer, Berlin/Heidelberg.

Harry Van der Hulst. 2010. A note on recursion in
phonology recursion. In Harry Van der Hulst, editor,
Recursion and human language, pages 301–342.
Mouton de Gruyter, Berlin & New York.

William J Idsardi. 2009. Calculating metrical structure.
In Eric Raimy and Charles E. Cairns, editors, Contem-
porary views on architecture and representations in
phonology, number 48 in Current Studies in Linguistics,
pages 191–211. MIT Press, Cambridge, MA.

Shiori Ikawa, Akane Ohtaka, and Adam Jardine. 2020.
Quantifier-free tree transductions. Proceedings of the
Society for Computation in Linguistics, 3(1):455–458.

Junko Ito and Armin Mester. 2012. Recursive prosodic
phrasing in Japanese. In Toni Borowsky, Shigeto
Kawahara, Shinya Takahito, and Mariko Sugahara,
editors, Prosody matters: Essays in honor of Elisabeth
Selkirk, pages 280–303. Equinox Publishing, London.

Junko Ito and Armin Mester. 2013. Prosodic subcate-
gories in Japanese. Lingua, 124:20–40.

Jing Ji and Jeffrey Heinz. 2020. Input strictly local
tree transducers. In International Conference on
Language and Automata Theory and Applications,
pages 369–381. Springer.

C Douglas Johnson. 1972. Formal aspects of phonologi-
cal description. Mouton, The Hague.

Aravind K Joshi, K Vijay Shanker, and David Weir. 1990.
The convergence of mildly context-sensitive grammar
formalisms. Technical Reports (CIS), page 539.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computational
linguistics, 20(3):331–378.

George Anton Kiraz and Bernd Möbius. 1998. Mul-
tilingual syllabification using weighted finite-state
transducers. In The third ESCA/COCOSDA workshop
(ETRW) on speech synthesis.

Ewan Klein. 1991. Phonological data types. In Steven
Bird, editor, Declarative perspectives on phonol-
ogy, pages 127–138. Centre for Cognitive Science,
University of Edinburgh.

Gregory M. Kobele, Christian Retoré, and Sylvain Salvati.
2007. An automata-theoretic approach to minimalism.
Model theoretic syntax at 10, pages 71–80.

Gregory Michael Kobele. 2006. Generating Copies: An
investigation into structural identity in language and
grammar. Ph.D. thesis, University of California, Los
Angeles.

Nate Koser. in prep. The computational nature of stress
assignment. Ph.D. thesis, Rutgers University.

Marco Kuhlmann. 2013. Mildly non-projective de-
pendency grammar. Computational Linguistics,
39(2):355–387.

D. Robert Ladd. 1986. Intonational phrasing: The case for
recursive prosodic structure. Phonology, 3:311–340.

D. Robert Ladd. 2008. Intonational phonology. Cam-
bridge University Press, Cambridge.

D. Terence Langendoen. 1975. Finite-state parsing
of phrase-structure languages and the status of
readjustment rules in grammar. Linguistic Inquiry,
6(4):533–554.

D. Terence Langendoen. 1987. On the phrasing of
coordinate compound structures. In Brian Joseph and
Arnold Zwicky, editors, A festschrift for Ilse Lehiste,
page 186–196. Ohio State University, Ohio.

D. Terence Langendoen. 1998. Limitations on embedding
in coordinate structures. Journal of Psycholinguistic
Research, 27(2):235–259.

Nathan Lhote. 2020. Pebble minimization of polyreg-
ular functions. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science,
pages 703–712.

Mark Liberman and Alan Prince. 1977. On stress and
linguistic rhythm. Linguistic inquiry, 8(2):249–336.

22

Eric Lilin. 1981. Propriétés de clôture d’une extension de
transducteurs d’arbres déterministes. In Colloquium
on Trees in Algebra and Programming, pages 280–289.
Springer.

Andreas Maletti. 2011. How to train your multi bottom-
up tree transducer. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 825–834.

Andreas Maletti. 2014. The power of regularity-
preserving multi bottom-up tree transducers. In
International Conference on Implementation and
Application of Automata, pages 278–289. Springer.

Marina Nespor and Irene Vogel. 1986. Prosodic
phonology. Foris, Dordrecht.

Joakim Nivre. 2005. Dependency grammar and depen-
dency parsing. MSI report, 5133.1959:1–32.

Marc van Oostendorp. 1993. Formal properties of
metrical structure. In Sixth Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 322–331, Utrecht. ACL.

Janet Breckenridge Pierrehumbert. 1980. The phonology
and phonetics of English intonation. Ph.D. thesis,
Massachusetts Institute of Technology.

Peter. A. Reich. 1969. The finiteness of natural language.
Language, 45:831–843.

Walter J Savitch. 1993. Why it might pay to assume that
languages are infinite. Annals of Mathematics and
Artificial Intelligence, 8(1-2):17–25.

James M. Scobbie, John S. Coleman, and Steven Bird.
1996. Key aspects of declarative phonology. In Jacques
Durand and Bernard Laks, editors, Current Trends in
Phonology: Models and Methods, volume 2. European
Studies Research Institute, Salford, Manchester.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars. Theoretical Computer Science, 88(2):191–229.

Hiroyuki Seki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko
Ando, and Tadao Kasami. 1993. Parallel multiple
context-free grammars, finite-state translation systems,
and polynomial-time recognizable subclasses of
lexical-functional grammars. In Proceedings of the
31st annual meeting on Association for Computa-
tional Linguistics, pages 130–139. Association for
Computational Linguistics.

Elisabeth Selkirk. 1986. On derived domains in sentence
phonology. Phonology Yearbook, 3(1):371–405.

Elisabeth Selkirk. 2011. The syntax-phonology interface.
In John Goldsmith, Jason Riggle, and Alan C. L. Yu,
editors, The Handbook of Phonological Theory, 2
edition, pages 435–483. Blackwell, Oxford.

Nazila Shafiei and Thomas Graf. 2020. The subregular
complexity of syntactic islands. In Proceedings of the
Society for Computation in Linguistics, volume 3.

Kristina Strother-Garcia. 2018. Imdlawn Tashlhiyt Berber
syllabification is quantifier-free. In Proceedings of
the Society for Computation in Linguistics, volume 1,
pages 145–153.

Kristina Strother-Garcia. 2019. Using model theory
in phonology: a novel characterization of syllable
structure and syllabification. Ph.D. thesis, University
of Delaware.

Lucien Tesnière. 1965. Eléments de syntaxe structurale,
1959. Paris, Klincksieck.

Johan t’Hart and Antonie Cohen. 1973. Intonation by rule:
a perceptual quest. Journal of Phonetics, 1(4):309–327.

Johan t’Hart and René Collier. 1975. Integrating different
levels of intonation analysis. Journal of Phonetics,
3(4):235–255.

Johan t’Hart, René Collier, and Antonie Cohen. 2006.
A perceptual study of intonation: An experimental-
phonetic approach to speech melody. Cambridge
University Press.

Michael Wagner. 2005. Prosody and recursion. Ph.D.
thesis, Massachusetts Institute of Technology.

Michael Wagner. 2010. Prosody and recursion in coor-
dinate structures and beyond. Natural Language &
Linguistic Theory, 28(1):183–237.

Markus Walther. 1993. Declarative syllabification with
applications to German. In T. Mark Ellison and James
Scobbie, editors, Computational Phonology, pages
55–79. Centre for Cognitive Science, University of
Edinburgh.

Markus Walther. 1995. A strictly lexicalized approach
to phonology. In Proceedings of DGfS/CL’95, page
108–113, Düsseldorf. Deutsche Gesellschaft für
Sprachwissenschaft, Sektion Computerlinguistik.

David Jeremy Weir. 1988. Characterizing mildly context-
sensitive grammar formalisms. Ph.D. thesis, University
of Pennsylvania.

Ngee Thai Yap. 2006. Modeling syllable theory with finite-
state transducers. Ph.D. thesis, University of Delaware.

Kristine M. Yu. 2017. Advantages of constituency:
Computational perspectives on Samoan word prosody.
In International Conference on Formal Grammar 2017,
page 105–124, Berlin. Spring.

Kristine M. Yu. 2019. Parsing with minimalist grammars
and prosodic trees. In Robert C. Berwick and Edward P.
Stabler, editors, Minimalist Parsing, pages 69–109.
Oxford University Press, London.

Kristine M. Yu and Edward P. Stabler. 2017. (In)
variability in the Samoan syntax/prosody interface
and consequences for syntactic parsing. Laboratory
Phonology: Journal of the Association for Laboratory
Phonology, 8(1):1–44.

