Recursive prosody is not finite-state

Hossep Dolatian Aniello De Santo Thomas Graf
Department of Linguistics Department of Linguistics Department of Linguistics
Stony Brook University University of Utah Stony Brook University

Stony Brook, NY, USA

Abstract

This paper investigates bounds on the generative
capacity of prosodic processes, by focusing
on the complexity of recursive prosody in
coordination contexts in English (Wagner, 2010).
Although all phonological processes and most
prosodic processes are computationally regular
string languages, we show that recursive prosody
is not. The output string language is instead
parallel multiple context-free (Seki et al., 1991).
We evaluate the complexity of the pattern over
strings, and then move on to a characterization
over trees that requires the expressivity of multi
bottom-up tree transducers. In doing so, we
provide a foundation for future mathematically
grounded investigations of the syntax-prosody
interface.

1 Introduction

At the level of words, all attested processes in phonol-
ogy form regular string languages and can be gener-
ated via finite-state acceptors (FSAs) and transducers
(FSTs) (Johnson, 1972; Kaplan and Kay, 1994; Heinz,
2018). However, not much attention has been given
to the generative capacity of prosodic processes at
the phrasal or sentential level (but see Yu, 2019). The
little work that exists in this respect has shown that
many attested intonational processes are finite-state
and regular (Pierrehumbert, 1980). It is thus a common
hypothesis in the literature that the cross-linguistic ty-
pology of prosodic phonology should also be regular.

In this paper, we falsify this hypothesis by provid-
ing a mathematically grounded characterization of a
pattern of recursive prosody in English coordination,
as empirically documented by Wagner (2010). Specif-
ically, we show that when converting a syntactic repre-
sentation into a prosodic representation, the string lan-
guage that is generated by this prosodic process is nei-
ther a regular nor context-free language, and thus can-
not be generated by string-based FSAs. As a tree-to-
tree function, the pattern can be captured by a class of

Salt Lake City, Utah, USA

hossep.dolatian@stonybrook.edu aniello.desanto@utah.edu

11

Stony Brook, NY, USA

mail@thomasgraf.net

bottom-up tree transducers whose outputs correspond
to parallel multiple context-free string languages.

This paper is organized as follows. In §2, we
provide a literature review of phonology and prosodic
phonology, with emphasis on the general tendency for
regular computation. In §3, we describe the recursive
prosody of coordination structures, and why it cannot
be generated with an FST over string inputs. In §4,
we show how a multi bottom-up tree transducer can
generate the prosodic patterns. We discuss our results
in §5, and conclude in §6.

2 Computation of prosody

Within computational prosody, there are two strands
of work. One focuses on the generation of prosodic
structure at or below the word level. The other
operates above the word-level.

At the word level, there is a plethora of work
on generating prosodic constituents, all of which
require finite-state or regular computation, whether
for syllables (Kiraz and Mobius, 1998; Yap, 2006;
Hulden, 2006; Idsardi, 2009), feet (van Oostendorp,
1993; Idsardi, 2009; Yu, 2017), or prosodic words
(Coleman, 1995; Chew, 2003).! In fact, most word-
level prosody seems to require at most subregular
computation (Strother-Garcia, 2018, 2019; Hao, 2020;
Dolatian, 2020; Dolatian et al., 2021; Koser, in prep).

However, there is a dearth of formal results for
phrasal or intonational prosody. Early work in genera-
tive phonology treated the prosodic representations as
directly generated from the syntax, with any deviations
caused by readjustment rules (Chomsky and Halle,
1968). Notoriously, syntactic representations are at

"For syllables and feet, there is a large literature of formal-
ization within Declarative Phonology (Scobbie et al., 1996). This
work tends to employ formal representations that are similar
to context-free grammars (Klein, 1991; Walther, 1993, 1995;
Dirksen, 1993; Coleman, 1991, 1992, 1993, 1996, 2000, 1998;
Coleman and Pierrehumbert, 1997; Chew, 2003). But these
representations can be restricted enough to be equivalent to
regular languages (see earlier such restrictions in Church, 1983).

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,pages 11-22

August 5, 2021. €

least context-free (Chomsky, 1956; Chomsky and
Schiitzenberger, 1959). Because sentential prosody
interacts with the syntactic level in non-trivial ways, it
might seem sensible to assume that 1) the transforma-
tion from syntax to prosody is not finite-state definable
(= definable with finite-state transducers), and that
2) the string language of prosodic representations
is a supra-regular language, not a regular language.
Importantly though, this assumption is not trivially
true. In fact, early work has shown that even if syntax
is context-free, the corresponding prosodic structures
can be a regular string language. For instance, Reich
(1969) argued that the prosodic structures in SPE can
be generated via finite-state devices (see also Langen-
doen, 1975), while Pierrehumbert (1980) modeled
English intonation using a simple finite-state acceptor.

When analyzed over string languages, this
mismatch between supra-regular syntax and regular
prosody was not explored much in the subsequent
literature. In fact, it seems that current research on
computational prosody uses the premise that prosodic
structures are at most regular (Gibbon, 2001). Cru-
cially, this premise is confounded by the general lack
of explicit mathematical formalizations of prosodic
systems. For example, there are algorithms for Dutch
intonation that capture surface intonational contours
and other acoustic cues (t'Hart and Cohen, 1973;
t"Hart and Collier, 1975). These algorithms however
do not themselves provide sufficient mathematical
detail to show that the prosodic phenomenon in
question is a regular string language. Instead, one
has to deduce that Dutch intonation is regular because
the algorithm does not utilize counting or unbounded
look-ahead (t’Hart et al., 2006, pg. 114).

As a reflection of this mismatch, early work in
prosodic phonology assumed something known as the
strict layer hypothesis (SLH; Nespor and Vogel, 1986;
Selkirk, 1986). The SLH assumed that prosodic trees
cannot be recursive — i.e. a prosodic phrase cannot
dominate another prosodic phrase — thus ensuring
that a prosodic tree will have fixed depth. Subsequent
work in prosodic phonology weakened the SLH:
prosodic recursion at the phrase or sentence level is
now accepted as empirically robust (Ladd 1986, 2008,
ch8; Selkirk 2011; Ito and Mester 2012, 2013). But
empirically, it is difficult to find cases of unbounded
prosodic recursion (Van der Hulst, 2010). Consider
a language that uses only bounded prosodic recursion
— e.g. there can be at most two recursive levels of
prosodic phrases. The prosodic tree will have fixed
depth; and the computation of the corresponding

12

string language is regular. It is then possible to create
a computational network that uses a supra-regular
grammar for the syntax which interacts with a
finite-state grammar for the prosody (Yu and Stabler,
2017; Yu, 2019). To summarize, it seems that the
implicit consensus in computational prosody is that
1) syntax can be supra-regular, but the corresponding
prosody is regular; 2) prosodic recursion is bounded.

However, as we elaborate in the next section,
coordination data from Wagner (2005) is a case where
syntactic recursion generates potentially unbounded-
recursive prosodic structure. The rest of the paper is
then dedicated to exploring the consequences of this
construction for the expressivity of sentential prosody.

3 Prosodic recursion in coordination

To our knowledge, Wagner (2005, 2010) is the
clearest case where syntactic recursion gets mapped
to recursive prosody, such that the recursion is
unboundedly deep for the prosody. In this section, we
go over the data and generalizations (§3.1), we sketch
Wagner'’s cyclic analysis (§3.2), and we discuss issues
with finiteness (§3.3). Finally, we show that that this
construction does not correspond to a regular string
language (§3.4).

3.1 Unbounded recursive prosody

Wagner documents unbounded prosodic recursion
in the coordination of nouns, in contrast to earlier
results which reported flat non-recursive prosody
(Langendoen, 1987, 1998). Based on experimental
and acoustic studies, Wagner reports that recursive
coordination creates recursively strong prosodic
boundaries. Syntactic edges have a prosodic strength
that incrementally depends on their distance from the
bottom-most constituents.

When three items are coordinated with two non-
identical operators, then two syntactic parses are pos-
sible. Each syntactic parse has an analogous prosodic
parse. The prosodic parse is based on the relative
strength of a prosodic boundary, with | being weaker
than ||. The boundary is placed before the operator.

Table 1: Prosody of three items with non-identical
operators

Syntactic grouping | Prosodic grouping

[A and [B or C]] Alland B |orC

[[A and B] or C] Aland B || or C

When the two operators are identical, then three
syntactic and prosodic parses are possible. The

difference between the parses is determined by
semantic associativity. For example, a sentence like
I saw [[A and B] and C] means that I saw A and B
together, and I saw C separately.

Table 2: Prosody of three items with identical operators

Syntactic grouping | Prosodic grouping
[Aand [BandC]] | A||and B |and C
[[Aand B]andC] | A|and B || and C
[[AandBandC] | A|andB |andC

When four items are coordinated, then at most
11 parses are possible. The maximum is reached
when the three operators are identical. We can have
three levels of prosodic boundaries, ranging from the
weakest | to the strongest |||.

Table 3: Prosody of four items with identical operators

Syntactic grouping Prosodic grouping

[A and B and C and D]

[A and B and [C and D]]
[A and [B and C] and D]
[[A and B] and C and D]
[A and [B and C and D]]
[[A and B and C] and D]

Aand B |and C |[and D
Alland B || and C | and D
Alland B |and C || and D
AlandB ||and C || and D
Alland B | and C | and D
AlandB |and C || and D

[[A and B] and [C and D]]
[A and [B and [C and D]]

[A and [[B and C] and D]]
[[A and [B and C]] and D]

AlandB || and C | and D
Al||and B || and C | and D
Al||and B | and C || and D
Alland B | and C ||| and D

[[[A and Bland Cland D] | A |and B || and C ||| and D

We can extract the following generalizations from
the data above. First, the depth of a constituent di-
rectly affects the prosodic strength of its edges. At a
syntactic edge, the strength of the prosodic boundary
depends on the distance between that edge and the
most embedded element: for instance, in (1a) the left-
bracket between A-B is mapped to a prosodic bound-
ary of strength three |||, because A is above two layers
of coordination. The deepest constituent C-D gets the
weakest boundary |. Second, when there is associativ-
ity, the prosodic strength percolates to other positions
within this associative span. For example, in (1b) the
boundary of strength || is percolated to A-B from B-C.

1. Generalizations on coordination

(a) Strength is long-distantly calculated
[A and [B and [C and D]]] is mapped to
Al|land B || and C | and D

(b) Strength percolates when associative
[A and B and [C and D]] is mapped to
Alland B || and C | and D

13

3.2 Wagner’s cyclic analysis

In order to generate the above forms, Wagner devised
a cyclic procedure which we summarize with the
algorithm below.

2. Wagner’s cyclic algorithm

(a) Base case: Let X be a constituent that
contains a set of unprosodified nouns
(terminal nodes) that are in an associative
coordination. Place a boundary of strength
| between each noun.

(b) Recursive case: Consider a constituent Y.
Let S be a set of constituents S (terminals
or non-terminals) that is properly contained
in Y, such that at least one constituent in
S be prosodified. Let |* be the strongest
prosodic boundary inside Y. Place the
boundary |**! between each constituent
inY.

The algorithm is generalized to coordination of any
depth. It takes as input a syntactic tree, and the output
is prosodically marked strings. We illustrate this below,
with the input tree represented as a bracketed string.

3. lllustrating Wagner’s algorithm
Input [A and B and [C and D]]
Base case C|and D
Recursive case A || and B || and C | and D

3.3 Issues of finiteness

Because Wagner’s study used noun phrases with
at most three or four items, the resulting language
of prosodic parses is a finite language. Thus, the
relevant syntax-to-prosody function is bounded. It is
difficult to elicit coordination of 5 items, likely due
to processing reasons (Wagner, 2010, 194).

If the primary culprit is performance, though,
then syntactic competence may in fact allow for
coordination constructions of unbounded depth with
any number of items. Wagner’s algorithm generates
a prosodic structure for any such sentence, such as
for (4). For the rest of this paper, we abstract away the
finite bounds on coordination size in order to analyze
the generative capacity of the underlying system (see
Savitch, 1993, for mathematical arguments in support
of factoring out finite bounds).

4. Hypothetical prosody for large coordination
[A and B and [C and [D and E]]] is mapped to
AlllandB ||| and C || and D | and E

34 Computing recursive prosody over strings

The choice of representation plays an important role
in determining the generative capacity of the prosodic
mapping. We first start by treating the mapping as
a string-to-string function. We show that the mapping
is not regular.

Let the input language be a bracketed string
language, such that the input alphabet is a set of
nouns{A, ..., Z}, coordinators, and brackets. The
output language replaces the brackets with substrings
of |*. For illustration, assume that the input language
is guaranteed to be a well-bracketed string. At a
syntactic boundary, we have to calculate the number
of intervening boundaries between it and deepest node.
But this requires unbounded memory. For instance, to
parse the example below, we incrementally increase
the prosodic strength of each boundary as we read
the input left-to-right.

5. Linearly parsing the prosody:
[[[A and B] and C] and D] is mapped to
A|and B || and C ||| and D, where
Input alphabet ¥ ={ A, ... ,Z, and, or, [,]}
Output alphabet A ={ A, ... ,Z, and, or, |}
Input language is 3* and well-bracketed

Given the above string with only left-branching
syntax, the leftmost prosodic boundary will have a
juncture of strength |. Every subsequent prosodic
boundary will have incrementally larger strength.
Over a string, this means we have to memorize the
number z of prosodic junctures that were generated
at any point in order to then generate x+ 1 junctures
at the next point. A 1-way FST cannot memorize an
unbounded amount of information. Thus, this function
is not rational function and cannot be defined by a
1-way FST. To prove this, we can look at this function
in terms of the size of the input and output strings.

6. lllustrating growth size of recursive prosody
[Agand A;] and Ajz] and ... and A,]
is mapped to
Ap|and A; || and A ||| and ... | and A,

Abstractly, for a left-branching input string with
n number of left-brackets [, the output string has
a monotonically increasing number of prosodic
junctures: | - || - ||| -+ |n. The total number of

prosodic junctures is a triangular number n(n+1)/2.

We thus derive the following lemma.

Lemma 1. For generating coordination prosody as a
string-to-string function, the size of the output string

14

grows at a rate of at least O(n?) where n is the size
of the input string.

Such a function is neither rational nor regular.
Rational functions are computed by 1-way FSTs,
and regular functions by 2-way FSTs (Engelfriet
and Hoogeboom, 2001).> They share the following
property in terms of growth rates (Lhote, 2020).

Theorem 1. Given an input string of size n, the size
of the output string of a regular function grows at
most linearly as c-n, where c is a constant.

Thus, this string-to-string function is not regular.
It could be a more expressive polyregular function
(Engelfriet and Maneth, 2002; Engelfriet, 2015;
Bojariczyk, 2018; Bojariczyk et al., 2019), a question
that we leave for future work.

The discussion in this section focused on generat-
ing the output prosodic string when the input syntax
is a bracketed string. Importantly though, Lemma 1
entails that no matter how one chooses their string
encoding of syntactic structure, prosody cannot be
modeled as a rational transduction unless there is
an upper bound on the minimum number of output
symbols that a single syntactic boundary must be
rewritten as. To the best of our knowledge, there is
no syntactic string encoding that guarantees such a
bound. In the next section, we will discuss how to
compute prosodic strength starting from a tree.

4 Computing recursive prosody over trees

Wagner (2010)’s treatment of recursive prosody as-
sumes an algorithm that maps a syntactic tree to a
prosodic string. It is thus valuable to understand the
complexity of processes at the syntax-prosody inter-
face starting from the tree representation of a sen-
tence. Assuming we start from trees, there is one
more choice to be made, namely whether the prosodic
information (in the output) is present within a string or
a tree. Notably, every tree-to-string transduction can
be regarded as a tree-to-tree transduction plus a string
yield mapping. As the tree-to-tree case subsumes the
tree-to-string one, it makes sense to consider only
the former. For a tree-to-tree mapping, the goal is
to obtain a tree representation that already contains
the correct prosodic information (Ladd, 1986; Selkirk,
2011). This is the focus of the rest of this paper.

4.1 Dependency trees

When working over syntactic structures explicitly, it is
important to commit to a specific tree representation.

This equivalence only holds for functions and deterministic
FSTs. Non-deterministic FSTs can also compute relations.

In what follows, we adopt a type of dependency trees,
where the head of a phrase is treated as the mother of
the subtree that contains its arguments. For example,
the coordinated noun phrase Pearl and Garnet is
represented as the following dependency tree.

and

N

Pearl Garnet

Dependency trees have a rich tradition in descrip-
tive, theoretical, and computational approaches to lan-
guage, and their properties have been defined across a
variety of grammar formalisms (Tesniere, 1965; Nivre,
2005; Boston et al., 2009; Kuhlmann, 2013; Debus-
mann and Kuhlmann, 2010; De Marneffe and Nivre,
2019; Graf and De Santo, 2019; Shafiei and Graf,
2020, a.0.). Dependency trees keep the relation be-
tween heads and arguments local, and they maximally
simplify the readability of our mapping rules. Hence,
they allow us to focus our discussion on issues that
are directly related to the connection of coordinated
embeddings and prosodic strength, without having to
commit to a particular analysis of coordinate structure.

Importantly, this choice does not impact the gener-
alizability of the solution. It is fairly straightforward to
convert basic dependency trees into phrase structure
trees. Similarly, although it is possible to adopt n-ary
branching structures, we chose to limit ourselves
to binary trees (in the input). This turns out to be
the most conservative assumption, as it forces us to
explicitly deal with associativity and flat prosody.

4.2 Encoding prosodic strength over trees

We are interested in the complexity of mapping a
“plain” syntactic tree to a tree representation which con-
tains the correct prosodic information. Because of this,
we encode prosodic strength over trees in the form of
strength boundaries at each level of embedding. Each
embedding level in our final tree representation will
thus have a prosodic strength branch. The tree below
shows how the syntactic tree for Pearl and Garnet
is enriched with prosodic information, according to
our encoding choices. For readability, we use $ to
mark prosodic boundaries in trees instead of |, since
the latter could be confused with a unary tree branch.

and
%\
Pearl $ Garmet

As the tree below shows, the depth of the prosody
branch at each embedding level corresponds to the

15

number of prosodic boundaries needed at that level.

and4
T
Pearl; $5 and;
\ P
$3 Garnets $¢ Roseg

Finally, the prosodic tree is fed to a yield function
to generate an output prosodified string. In particular,
the correct tree-to-string mapping can be obtained
by a modified version of a recursive-descent yield,
which enumerates nodes left-to-right, depth first,
and only enumerates the mother node of each
level after the boundary branch. This strategy is
depicted by the numerical subscripts in the tree above,
which reconstruct how the yield of the prosodically
annotated tree produces the string: Pearl || and
Garnet | and Rose. The rest of this section will focus
on how to obtain the correct tree encoding of prosodic
information, starting from a plain dependency tree.

4.3 Mathematical preliminaries

For a natural number n, we let [n] = {1,...,n}. A
ranked alphabet 3. is a finite set of symbols, each one
of which has a rank assigned by the function r: ¥ — N.
We write (" to denote {s €% |7(0)=n}, and ¢
indicates that o has rank n.

Given a ranked alphabet ¥ and a set A, 7%:(A) is
the set of all trees over Y indexed by A. The symbols
in X are possible labels for nodes in the tree, indexed
by elements in A. The set T of X-trees contains
all 0 € £ and all terms o™ (¢4,...,t,,) (n>0) such
that ¢1,...,t, € Tx. Given a term m(")(sl, ey Sn)
where each s; is a subtree with root d;, we call m the
mother of the daughters dy,...,d, (1 <i<n). If two
distinct nodes have the same mother, they are siblings.
Essentially, the rank of a symbol denotes the finite
number of daughters that it can take. Elements of A
are considered as additional symbols of rank 0.

Example 1. Given ¥ := {a(o),b(o),c(Q),d@)}, Ty, is
an infinite set. The symbol a(®) means that a is
a terminal node without daughters, while ?is a
non-terminal node with two daughters. For example,
consider the tree below.

d

N
C d

NN
b b b a

This tree corresponds to the term d(c(b,b),d(b,a)),

contained in 75. 2

As is standard in defining meta-rules, we introduce
X as a countably infinite set of variable symbols
(X NX = X) to be used as place-holders in the
definitions of transduction rules over trees.

4.4 Multi bottom-up tree transducers

We assume that the starting point of the prosodic pro-
cess is a plain syntactic tree. Thus, in order to derive
the correct prosodic encoding, we need to propagate
information about levels of coordination embedding
and about associativity. We adopt a bottom-up ap-
proach, and characterize this process in terms of multi
bottom-up tree transducers (MBOT; Engelfriet et al.,
1980; Lilin, 1981; Maletti, 2011). Essentially, MBOTs
generalize traditional bottom—up tree transducers in
that they allow states to pass more than one output sub-
tree up to subsequent transducer operations (Gildea,
2012). In other words, each MBOT rule potentially
specifies several parts of the output tree. This is high-
lighted by the fact that the transducer states (¢ € () can
have rank greater than one — i.e. they can have more
than one daughter, where the additional daughters are
used to hold subtrees in memory. We follow Fiilop
et al. (2004) in presenting the semantics of MBOTs.

Definition 1 (MBOT). A multi bottom-up tree trans-
ducer (MBOT) is a tuple M = (Q,3,A,ro0t,q7,R),
where Q, XUA, {root}, {q;} are pairwise disjoint,
such that:

Q is a ranked alphabet with Q(®) =0, called the
set of states

> and A are ranked input and output alphabets,
respectively

root is a unary symbol, called the root symbol
qr is a unary symbol called the final state

R is a finite set of rules of two forms:

° U(Ql(xl,la"'axl,n1)7"'7Qk(xk,17"'7$k,nk))
—)QQ(tl,...,tnO)

where ¥ > 0, ¢ € X% for every
i € [k]U{0},q € QM) for some n; > 1, for
every j € [no],tj ETA({xm‘ﬂ S [k?] ,j € [nl]})

* r00t(q(1,...,xn)) = qf(t)

where n>1,g€ Q™. and teTA(Xn).

|

The derivational relation induced by M is a binary re-
lation =5y over the set TsuAUQU{root o} defined as
follows. For every ¢,1) € TxuanuqQu{root.qr}» =M Y
iff there is a tree 3 € TEuAuQu{root,qf}(Xl) st
occurs exactly once in 3 and either there is a rule

16

° U(Ql(xl,ly"'7371,711)7"'7qk(xk,17---7xk,nk)) —T
in R

and there are trees T ;

i € [k] and j € [ng), st @

B[U((ﬂ(tl,la ’tlml)v ey qk(th, ?tkﬂlk))]’ and
=Pz <t li € [k].j € [n]]]; or there is a rule

€ Ty for every

* root(q(x1,...,xn)) = qf(t) in R

and there are trees t; € Ta for every i € [n] s.t. p=

Blroot(q(t1,...,tn))], and ¢ = Blqs(t[t1,...,tn])]. The
tree transformation computed by M is the relation:

v ={(s,t) €T x T | root(s) =}, qr(t)}

Intuitively, tree transductions are performed by
rewriting a local tree fragment as specified by one
of the rules in R. For instance, a rule can replace
a subtree, or copy it to a different position. Rules
apply bottom—up from the leaves of the input tree,
and terminate in an accepting state qy.

4.5 MBOT for recursive prosody

We want a transducer which captures Wagner
(2010)’s bottom-up cyclic procedure. Consider now
the MBOT Mp,,s = (Q, 3, A, root, g5, R), with
Q ={q+,qc}, 0c € {and,or} C %, 0 € ¥ —{and,or},
and ¥ = A. We use ¢ to indicate that M, has
verified that a branch contains a coordination (so o),
with g, assigned to any other branch. As mentioned,
we use $ to mark prosodic boundaries in the trees
instead of |. The set of rules R is as follows.
Rule 1 rewrites a terminal symbol o as itself. The
MBOT for that branch transitions to g, (o).
0—¢.(0) (1)
Rule 2 applies to a subtree headed by
o€ {and,or}, with only terminal symbols as daugh-
ters: 0.(q«(),q«(y)). It inserts a prosodic boundary
$ between the daughters x,y. The boundary $ is also
copied as a daughter of the mother q., as record of
the fact that we have seen one coordination level.

0c(q:+(7),q:(y)) = ge(0c(,3,y),8))

We illustrate this in Figure 1 with a coordination
of two items, representing the mapping: [B and A]
— B | and A. We also assume that sentence-initial
boundaries are vacuously interpreted.

We now consider cases where a coordination is
the mother not just of terminal nodes, but of other
coordinated phrases. Rule 3 handles the case in which

)

and ——~

B A Qx Qx
B A
and de
/N o /N
Gx Qs — and $
. PN
B A B $§ A

Figure 1: Example of the application of rules (1) and (2).
The numerical label on the arrow indicates which rule
was applied in order to rewrite the tree on the left as the
tree on the right.

the right sibling of the mother was also headed by
a coordination (as encoded by o, having ¢. as one
of its daughters). Here, q. is the result of a previous
rule application (e.g. rule 2) and it has two subtrees
itself: g.(w,y). Although we do not have access to
the internal labels of z, y, and w, by the format of the
previous rules we know that the right daughter of g,
(i.e. y) is the one that contains the strength informa-
tion. Then, rule 3 has three things to do. It increments
y by one boundary: $(y). It places $(y) in between
the two subtrees = and w. And, it copies $(y) as the
daughter of the new ¢, state in order to propagate
$(y) to the next embedding level (see Figure 2).

0c(g:(@),ge(w,y)) = ge(oe(2,8(y),w) $(y)) (3)
and qe
/\ A
C q and $
AN 7 T~
and $i> Cc 3 and $
PN N
B $ A $ B $§ A

Figure 2: Example of the application of rule (3). For ease
of readability, we omit g, states over terminal nodes.

Rule 4 applies once all coordinate phrases up to the
root have been rewritten. It simply rewrites the root
as the final accepting state. It gets rid of the daughter
of q. that contains the strength markers, since there
is no need to propagate them any further.

“)

As the examples so far should have clarified,
Ms as currently defined readily handles cases

root(qe(x,y)) = qf(x)

17

where the embedding of the coordination is strictly
right branching, with the bulk of the work done via
rule 3. However, while these rules work well for
instances in which a coordination is always the right
daughter of a node, they cannot deal with cases in
which the coordination branches left, or alternates
between the two. This is easily fixed by introducing
variants to rule 3, which consider the position of
the coordination as marked by ¢.. Importantly, the
position of the copy of the boundary branch is not
altered, and it is always kept as the rightmost sibling
of g.. What changes is the relative position of the w
and x subbranches in the output (see Figure 3).

0e(Ge(w,y),q(2)) = Ge(oc(w,$(y),2).8(y)) (5)
and ge
AN N
¢ C and $
AN P
and $ i, and $ C §
SN PN
B $ A B $§ A §

Figure 3: Left branching example as in rule (5).

Following the same logic, rule 6 handles cases like
[[A and B] and [C and D]], in which both daughters
of a coordination are headed by a coordination
themselves (see Figure 4).

Uc(Qc(x7z)7qC(va)> _>QC($($)aUc(Z>$(x)>w)) (6)

and qe
/\ /\
Qe Qe and $
N N © T |
and $ and $ 5 and $ and $
N g N S T
A $ B $ C $ D § A $ B $§ C $ D §$

Figure 4: Example of the application of rule (6).

Finally, we need to take care of the flat prosody
or associativity issue. The MBOT M), as outlined
so far increases the depth of the boundary branch at
each level of embedding. Because we are adopting
binary branching trees, the current set of rules is
trivially unable to encode cases like [A and B and
C]J. We follow Wagner’s assumption that semantic
information on the syntactic tree guides the prosody
cycles. Representationally, we mark this by using
specific labels on the internal nodes of the tree. We
assume that the flat constituent interpretation is

Input Apply rule (2) | Apply rule (3) Apply rule (3) Apply rule (4)
and and Je and
/N /N T T | 7T
and D and D q and $| D $ and
N /N | T | | T T
D and C q and $| D $ and $ $ C $ and
C and and $§ | C $ and $ $ C $ and $ $ $ B $ A

SN N T | T

B A B § A $ B $ A $ $ B $ A

Figure 5: Walk-through of the transduction defined by M),. For ease of readability, and to highlight how g propagates
embedding information about the coordination, g, and g states are omitted.

obtained by marking internal nodes as non-cyclic,
introducing the alphabet symbol o,:

On (Q* (I)vqc(w’y) %qc(gc(x’va)’y) (7

Essentially, rule 7 tells us that when a coordination
node is marked as o, M, just propagates the level
of prosodic strength that it currently has registered (in
1), without increments (see Figure 6). This rule can be
trivially adjusted to deal with branching differences,
as done for rules 3 and 5.

andn e
AN N
C [¢18 and,, $
N -
and $ ———, C $ and
RN
B $ A B $ A

Figure 6: Application of rule (7) for flat prosody.

A full, step by step M, transduction is shown
in Figure 5. Taken together, the recursive prosodic
patterns are fully characterized by M, when it is
adjusted with a set of rules to deal with alternating
branching and flat associativity. The tree transducer
generates tree representations where each level of
embedding is marked by a branch, which carries
information about the prosodic strength for that level.
As outlined in Section 4.2, this final representation
may then be fed to a modified string yield function
for dependency tree languages.

Dependency trees allowed us to present a transducer
with rules that are relatively easy to read. But, as men-
tioned before, this choice does not affect our general
result. Under the standard assumption that the distance
between the head of a phrase and its maximal projec-
tion is bounded, M,,,s can be extended to phrase struc-

18

ture trees, by virtue of the bottom-up strategy being
intrinsically equipped with finite look-ahead. A switch
to phrase structure trees may prove useful for future
work on the interaction of prosody and movement.

5 Generating recursive prosody

The previous section characterized recursive prosody
over trees with a non-linear, deterministic MBOT.
This is a nice result, as MBOTs are generally well-
understood in terms of their algorithmic properties.
Moreover, this result is in line with past work explor-
ing the connections of MBOTs, tree languages, and
the complexity of movement and copying operations
in syntax (Kobele, 2006; Kobele et al., 2007, a.0.).

We can now ask what the complexity of this
approach is. MBOTs generate output string languages
that are potentially parallel multiple context-free
languages (PMCFL; Seki et al., 1991, 1993; Gildea,
2012; Maletti, 2014; Fiilop et al., 2005). Since this
class of string languages is more powerful than
context-free, the corresponding tree language is not
a regular tree language (Gécseg and Steinby, 1997).
This is not surprising, as MBOTs can be understood
as an extension of synchronous tree substitution
grammars (Maletti, 2014).

Notably, independently of our specific MBOT solu-
tion, prosody as defined in this paper generates at least
some output string languages that lack the constant
growth property — hence, that are PMCFLs. Consider
as input a regular tree language of left-branching
coordinationate phrases, where each level is simply of
the form and(X, Mary). The n— th level of embedding
from the top extends the string yield by n+2 symbols.
This immediately implies no constant growth, and
thus no semi-linearity (Weir, 1988; Joshi et al., 1990).

Interestingly though, the prosody MBOT devel-
oped here is fairly limited in its expressivity as the

transducer states themselves do almost no work,
and most of the transduction rules in My, rely
on the ability to store the prosody strength branch.
Hence, the specific MBOT in this paper might turn
out to belong to a relatively weak subclass of tree
transductions with copying, perhaps a variant of input
strictly local tree transductions (cf. Ikawa et al., 2020;
Ji and Heinz, 2020), or a transducer variant of sensing
tree automata (cf. Fiilop et al., 2004; Kobele et al.,
2007; Maletti, 2011, 2014; Graf and De Santo, 2019).
Since all of those have recently been used in the
formal study of syntax, they are natural candidates
for a computational model of prosody, and their sensi-
tivity to minor representational difference might also
illuminate what aspects of syntactic representation
affect the complexity of prosodic processes.

Finally, one might worry that the mathematical
complexity is a confound of the representation we use,
rather than a genuine property of the phenomenon.
However, a representation of prosodic strength is
necessary and cannot be reduced further for two
reasons. First, strength cannot be reduced to syntactic
boundaries because a single prosodic edge (may
correspond to | for any k> 1. As discussed in depth
by Wagner (2005, 2010), one cannot simply convert
a syntactic tree into a prosodic tree by replacing the
labels of nonterminal nodes. Second, strength also
cannot be reduced to different categories of prosodic
constituents — e.g. assuming that | is a prosodic
phrase while || is an intonational phrase. As argued
in depth in (Wagner, 2005, 2010), these different
constituent types do not map neatly to prosodic
strength. Instead, these boundaries all encode relative
strengths of prosodic phrase boundaries.

6 Conclusion

This paper formalizes the computation of unbounded
recursive prosodic structures in coordination. Their
computation cannot be done by string-based finite-
state transducers. They instead need more expressive
grammars. To our knowledge, this paper is one of
the few (if only) formal results on how prosodic
phonology at the sentence-level is computationally
more expressive than phonology at the word-level.
As discussed above, recent work in prosodic
phonology relies on the assumption that prosodic
structure can be recursive. However, because such
work usually uses bounded-recursion, such phenom-
ena are computationally regular. Departing from this
stance, this paper focused on the prosodic phenomena
reported in Wagner (2005) as a core case study,

19

because of the following fundamental properties:

* The syntax has unbounded recursion.

* The prosody has unbounded recursion.

* All recursive prosodic constituents have the
same prosodic label (= a prosodic phrase).

* The recursive prosodic constituents have
acoustic cues marking different strengths.

* There is an algorithm which explicitly assigns
the recursive prosodic constituents to these
different strengths.

In this paper, we focused on explicitly generating
the prosodic strengths at each recursive prosodic
levels, putting aside the mathematically simpler task
of converting a recursive syntactic tree into a recursive
prosodic tree (Elfner, 2015; Bennett and Elfner,
2019) — which is a process essentially analogous to
a relabeling of the nonterminal nodes of the syntactic
tree, without care for the prosodic strength. The
mapping studied in this paper has been conjectured in
the past to be computationally more expressive than
regular languages or functions (Yu and Stabler, 2017).
Here, we formally verified that hypothesis.

An open question then is to find other empirical
phenomena which also have the above properties.
One potential area of investigation is the assignment
of relative prominence relations in English compound
prosody (Chomsky and Halle, 1968). However, En-
glish compound prosody is a highly controversial area.
It is unclear what is the current consensus on an exact
algorithm for these compounds, especially one that
utilizes recursion and is not based on impressionistic
judgments (Liberman and Prince, 1977; Gussenhoven,
2011). In this sense, the mathematical results in this
paper highlight the importance of representational
commitments and of explicit assumptions in the study
of prosodic expressivity. Our paper might then help
identify crucial issues in future theoretical and em-
pirical investigations of the syntax-prosody interface.

Acknowledgements

We are grateful to our anonymous reviewers, Jon
Rawski, and Kristine Yu. Thomas Graf is supported
by the National Science Foundation under Grant No.
BCS-1845344.

References

Ryan Bennett and Emily Elfner. 2019. The syntax—
prosody interface. Annual Review of Linguistics,
5:151-171.

Mikotaj Bojariczyk. 2018. Polyregular functions. arXiv
preprint arXiv:1810.08760.

Mikotaj Bojaiczyk, Sandra Kiefer, and Nathan Lhote.
2019. String-to-string interpretations with polynomial-
size output. In 46th International Colloquium on
Automata, Languages, and Programming, ICALP
2019, July 9-12, Patras, Greece. (LIPIcs), volume
132, page 106:1-106:14, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik.

Marisa Ferrara Boston, John T. Hale, and Marco
Kuhlmann. 2009. Dependency structures derived
from minimalist grammars. In The Mathematics of
Language, pages 1-12. Springer.

Peter Chew. 2003. A computational phonology of Russian.
Universal-Publishers, Parkland, FL.

Noam Chomsky. 1956. Three models for the description
of language. IRE Transactions on information theory,
2(3):113-124.

Noam Chomsky and Morris Halle. 1968. The sound
pattern of English. MIT Press, Cambridge, MA.

Noam Chomsky and Marcel P Schiitzenberger. 1959.
The algebraic theory of context-free languages. In
Studies in Logic and the Foundations of Mathematics,
volume 26, pages 118-161. Elsevier.

Kenneth Ward Church. 1983. Phrase-structure parsing: A
method for taking advantage of allophonic constraints.
Ph.D. thesis, Massachusetts Institute of Technology.

John Coleman. 1992. The phonetic interpretation of
headed phonological structures containing overlapping
constituents. Phonology, 9(1):1-44.

John Coleman. 1993. English word-stress in unification-
based grammar. In T. Mark Ellison and James Scobbie,
editors, Computational Phonology, page 97-106.
Centre for Cognitive Science, University of Edinburgh.

John Coleman. 1995. Declarative lexical phonology.
In Jacques Durand and Francsis Katamba, editors,
Frontiers of phonology: Atoms, structures, derivations,
pages 333-383. Longman, London.

John Coleman. 1996. Declarative syllabification in
Tashlhit Berber. In Jacques Durand and Bernard Laks,
editors, Current trends in phonology: Models and
methods, volume 1, pages 175-216. European Studies
Research Institute, University of Salford, Salford.

John Coleman. 1998. Phonological representations:
Their names, forms and powers. Cambridge University
Press, Cambridge.

John Coleman. 2000. Candidate selection. The Linguistic
Review, 17(2-4):167-180.

John Coleman and Janet Pierrehumbert. 1997. Stochastic
phonological grammars and acceptability. In Third
meeting of the ACL special interest group in com-
putational phonology: Proceedings of the workshop,
pages 49-56, East Stroudsburg, PA. Association for
computational linguistics.

20

John S Coleman. 1991. Prosodic structure, parameter-
setting and ID/LP grammar. In Steven Bird, editor,
Declarative perspectives on phonology, pages 65-78.
Centre for Cognitive Science, University of Edinburgh.

Marie-Catherine De Marneffe and Joakim Nivre. 2019.
Dependency grammar. Annual Review of Linguistics,
5:197-218.

Ralph Debusmann and Marco Kuhlmann. 2010. Depen-
dency grammar: Classification and exploration. In
Resource-adaptive cognitive processes, pages 365-388.

Springer.

Arthur Dirksen. 1993. Phrase structure phonology. In
T. Mark Ellison and James Scobbie, editors, Compu-
tational Phonology, page 81-96. Centre for Cognitive
Science, University of Edinburgh.

Hossep Dolatian. 2020. Computational locality of cyclic
phonology in Armenian. Ph.D. thesis, Stony Brook
University.

Hossep Dolatian, Nate Koser, Kristina Strother-Garcia,
and Jonathan Rawski. 2021. Computational restric-
tions on iterative prosodic processes. In Proceedings
of the 2019 Annual Meeting on Phonology. Linguistic
Society of America.

Emily Elfner. 2015. Recursion in prosodic phrasing:
Evidence from Connemara Irish. Natural Language &
Linguistic Theory, 33(4):1169-1208.

Joost Engelfriet. 2015.
for partial functions and their composition.
Informatica, 52(7-8):559-571.

Two-way pebble transducers
Acta

Joost Engelfriet and Hendrik Jan Hoogeboom. 2001.
MSO definable string transductions and two-way finite-
state transducers. Transactions of the Association for
Computational Linguistics, 2(2):216-254.

Joost Engelfriet and Sebastian Maneth. 2002. Two-way
finite state transducers with nested pebbles. In Inter-
national Symposium on Mathematical Foundations of
Computer Science, pages 234-244. Springer.

Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki.
1980. Tree transducers, 1 systems, and two-way
machines. Journal of Computer and System Sciences,

20(2):150-202.

Zoltan Fiilop, Armin Kithnemann, and Heiko Vogler.
2004. A bottom-up characterization of deterministic
top-down tree transducers with regular look-ahead.
Information Processing Letters, 91(2):57-67.

Zoltan Fiilop, Armin Kiihnemann, and Heiko Vogler. 2005.
Linear deterministic multi bottom-up tree transducers.
Theoretical computer science, 347(1-2):276-287.

Ferenc Gécseg and Magnus Steinby. 1997. Tree lan-
guages. In Handbook of formal languages, pages 1-68.
Springer.

Dafydd Gibbon. 2001. Finite state prosodic analysis of
African corpus resources. In EUROSPEECH 2001
Scandinavia, 7" European Conference on Speech
Communication and Technology, 2" INTERSPEECH
Event, Aalborg, Denmark, September 3-7, 2001, pages
83-86. ISCA.

Daniel Gildea. 2012. On the string translations produced
by multi bottom—up tree transducers. Computational
Linguistics, 38(3):673-693.

Thomas Graf and Aniello De Santo. 2019. Sensing tree
automata as a model of syntactic dependencies. In
Proceedings of the 16" Meeting on the Mathematics of
Language, pages 12-26, Toronto, Canada. Association
for Computational Linguistics.

Carlos Gussenhoven. 2011. Sentential prominence in
English. In Marc van Oostendorp, Colin Ewen, Eliz-
abeth Hume, and Keren Rice, editors, The Blackwell
companion to phonology, volume 5, pages 1-29.
Wiley-Blackwell, Malden, MA.

Yiding Hao. 2020. Metrical grids and generalized tier pro-
jection. In Proceedings of the Society for Computation
in Linguistics, volume 3.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frans Plank, editors, Phonological Typology, Phonetics
and Phonology, chapter 5, pages 126-195. Mouton de
Gruyter, Berlin.

Mans Hulden. 2006. Finite-state syllabification. In Anssi
Yli-Jyrd, Lauri Karttunen, and Juhani Karhumiki,
editors, Finite-State Methods and Natural Language
Processing. FSMINLP 2005. Lecture Notes in Computer
Science, volume 4002. Springer, Berlin/Heidelberg.

Harry Van der Hulst. 2010. A note on recursion in
phonology recursion. In Harry Van der Hulst, editor,
Recursion and human language, pages 301-342.
Mouton de Gruyter, Berlin & New York.

William J Idsardi. 2009. Calculating metrical structure.
In Eric Raimy and Charles E. Cairns, editors, Contem-
porary views on architecture and representations in
phonology, number 48 in Current Studies in Linguistics,
pages 191-211. MIT Press, Cambridge, MA.

Shiori Ikawa, Akane Ohtaka, and Adam Jardine. 2020.
Quantifier-free tree transductions. Proceedings of the
Society for Computation in Linguistics, 3(1):455-458.

Junko Ito and Armin Mester. 2012. Recursive prosodic
phrasing in Japanese. In Toni Borowsky, Shigeto
Kawahara, Shinya Takahito, and Mariko Sugahara,
editors, Prosody matters: Essays in honor of Elisabeth
Selkirk, pages 280-303. Equinox Publishing, London.

Junko Ito and Armin Mester. 2013. Prosodic subcate-
gories in Japanese. Lingua, 124:20-40.

Jing Ji and Jeffrey Heinz. 2020. Input strictly local
tree transducers. In International Conference on
Language and Automata Theory and Applications,
pages 369-381. Springer.

21

C Douglas Johnson. 1972. Formal aspects of phonologi-
cal description. Mouton, The Hague.

Aravind K Joshi, K Vijay Shanker, and David Weir. 1990.
The convergence of mildly context-sensitive grammar
formalisms. Technical Reports (CIS), page 539.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computational
linguistics, 20(3):331-378.

George Anton Kiraz and Bernd Mobius. 1998. Mul-
tilingual syllabification using weighted finite-state
transducers. In The third ESCA/COCOSDA workshop
(ETRW) on speech synthesis.

Ewan Klein. 1991. Phonological data types. In Steven
Bird, editor, Declarative perspectives on phonol-
ogy, pages 127-138. Centre for Cognitive Science,
University of Edinburgh.

Gregory M. Kobele, Christian Retoré, and Sylvain Salvati.
2007. An automata-theoretic approach to minimalism.
Model theoretic syntax at 10, pages 71-80.

Gregory Michael Kobele. 2006. Generating Copies: An
investigation into structural identity in language and
grammar. Ph.D. thesis, University of California, Los
Angeles.

Nate Koser. in prep. The computational nature of stress
assignment. Ph.D. thesis, Rutgers University.

Marco Kuhlmann. 2013.
pendency grammar.
39(2):355-387.

Mildly non-projective de-
Computational Linguistics,

D. Robert Ladd. 1986. Intonational phrasing: The case for
recursive prosodic structure. Phonology, 3:311-340.

D. Robert Ladd. 2008. Intonational phonology. Cam-
bridge University Press, Cambridge.

D. Terence Langendoen. 1975. Finite-state parsing
of phrase-structure languages and the status of
readjustment rules in grammar. Linguistic Inquiry,
6(4):533-554.

D. Terence Langendoen. 1987. On the phrasing of
coordinate compound structures. In Brian Joseph and
Amold Zwicky, editors, A festschrift for Ilse Lehiste,
page 186-196. Ohio State University, Ohio.

D. Terence Langendoen. 1998. Limitations on embedding
in coordinate structures. Journal of Psycholinguistic
Research, 27(2):235-259.

Nathan Lhote. 2020. Pebble minimization of polyreg-
ular functions. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science,
pages 703-712.

Mark Liberman and Alan Prince. 1977. On stress and
linguistic thythm. Linguistic inquiry, 8(2):249-336.

Eric Lilin. 1981. Propriétés de cloture d’une extension de
transducteurs d’arbres déterministes. In Colloguium
on Trees in Algebra and Programming, pages 280-289.
Springer.

Andreas Maletti. 2011. How to train your multi bottom-
up tree transducer. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 825-834.

Andreas Maletti. 2014. The power of regularity-
preserving multi bottom-up tree transducers. In
International Conference on Implementation and
Application of Automata, pages 278-289. Springer.

Marina Nespor and Irene Vogel. 1986. Prosodic

phonology. Foris, Dordrecht.

Joakim Nivre. 2005. Dependency grammar and depen-
dency parsing. MSI report, 5133.1959:1-32.

Marc van Oostendorp. 1993. Formal properties of
metrical structure. In Sixth Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 322-331, Utrecht. ACL.

Janet Breckenridge Pierrehumbert. 1980. The phonology
and phonetics of English intonation. Ph.D. thesis,
Massachusetts Institute of Technology.

Peter. A. Reich. 1969. The finiteness of natural language.
Language, 45:831-843.

Walter J Savitch. 1993. Why it might pay to assume that
languages are infinite. Annals of Mathematics and
Artificial Intelligence, 8(1-2):17-25.

James M. Scobbie, John S. Coleman, and Steven Bird.
1996. Key aspects of declarative phonology. In Jacques
Durand and Bernard Laks, editors, Current Trends in
Phonology: Models and Methods, volume 2. European
Studies Research Institute, Salford, Manchester.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars. Theoretical Computer Science, 88(2):191-229.

Hiroyuki Seki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko
Ando, and Tadao Kasami. 1993. Parallel multiple
context-free grammars, finite-state translation systems,
and polynomial-time recognizable subclasses of
lexical-functional grammars. In Proceedings of the
31" annual meeting on Association for Computa-
tional Linguistics, pages 130-139. Association for
Computational Linguistics.

Elisabeth Selkirk. 1986. On derived domains in sentence
phonology. Phonology Yearbook, 3(1):371-405.

Elisabeth Selkirk. 2011. The syntax-phonology interface.
In John Goldsmith, Jason Riggle, and Alan C. L. Yu,
editors, The Handbook of Phonological Theory, 2
edition, pages 435—483. Blackwell, Oxford.

Nazila Shafiei and Thomas Graf. 2020. The subregular
complexity of syntactic islands. In Proceedings of the
Society for Computation in Linguistics, volume 3.

22

Kristina Strother-Garcia. 2018. Imdlawn Tashlhiyt Berber
syllabification is quantifier-free. In Proceedings of
the Society for Computation in Linguistics, volume 1,
pages 145-153.

Kristina Strother-Garcia. 2019. Using model theory
in phonology: a novel characterization of syllable
structure and syllabification. Ph.D. thesis, University
of Delaware.

Lucien Tesniere. 1965. Eléments de syntaxe structurale,
1959. Paris, Klincksieck.

Johan t’Hart and Antonie Cohen. 1973. Intonation by rule:
a perceptual quest. Journal of Phonetics, 1(4):309-327.

Johan t'Hart and René Collier. 1975. Integrating different
levels of intonation analysis. Journal of Phonetics,
3(4):235-255.

Johan t’Hart, René Collier, and Antonie Cohen. 2006.
A perceptual study of intonation: An experimental-
phonetic approach to speech melody. Cambridge
University Press.

Michael Wagner. 2005. Prosody and recursion. Ph.D.

thesis, Massachusetts Institute of Technology.

Michael Wagner. 2010. Prosody and recursion in coor-
dinate structures and beyond. Natural Language &
Linguistic Theory, 28(1):183-237.

Markus Walther. 1993. Declarative syllabification with
applications to German. In T. Mark Ellison and James
Scobbie, editors, Computational Phonology, pages
55-79. Centre for Cognitive Science, University of
Edinburgh.

Markus Walther. 1995. A strictly lexicalized approach
to phonology. In Proceedings of DGfS/CL’95, page
108-113, Diisseldorf. Deutsche Gesellschaft fiir
Sprachwissenschaft, Sektion Computerlinguistik.

David Jeremy Weir. 1988. Characterizing mildly context-
sensitive grammar formalisms. Ph.D. thesis, University
of Pennsylvania.

Ngee Thai Yap. 2006. Modeling syllable theory with finite-
state transducers. Ph.D. thesis, University of Delaware.

Kristine M. Yu. 2017. Advantages of constituency:
Computational perspectives on Samoan word prosody.
In International Conference on Formal Grammar 2017,
page 105-124, Berlin. Spring.

Kristine M. Yu. 2019. Parsing with minimalist grammars
and prosodic trees. In Robert C. Berwick and Edward P.
Stabler, editors, Minimalist Parsing, pages 69-109.
Oxford University Press, London.

Kristine M. Yu and Edward P. Stabler. 2017. (In)
variability in the Samoan syntax/prosody interface
and consequences for syntactic parsing. Laboratory

Phonology: Journal of the Association for Laboratory
Phonology, 8(1):1-44.

